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Classical mechanism for negative magnetoresistance in two dimensions
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The classical two-dimensional problem of noninteracting electrons scattered by a static impurity potential in
the presence of a magnetic field is investigated both analytically and numerically. A strong negative magne-
toresistance exists in such a system, due to freely circling electrons, which are not taken into account by the
Boltzmann-Drude approach. A parabolic magnetoresistance is found at low fields.
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Negative magnetoresistance, i.e., decrease of resistan
magnetic field, frequently observed in semiconductors,
well as in metals, remained a mystery for a long time, u
Altshuler et al.1 explained this phenomenon by quantum
terference effects~weak localization!. Extensive experimen
tal studies of magnetoresistance, mostly in two-dimensio
~2D! semiconductor structures, have revealed that, ap
ently, there are two distinct types of negative magnetore
tance:~i! a small drop of resistivity observed at low field
such that the classical parameterb5vct is small, and~ii ! a
relatively large~up to 50%! decrease of resistivity atb*1 or
even atb@1. Negative magnetoresistance of type~ii ! is ob-
served before the onset of Shubnikov–De Haas oscillat
and may continue as a background trend after the oscillat
set in ~see, for example, Refs. 2–5!. In some instances, th
small low-field dip of type~i! is superimposed on a smoo
overall decrease of resistivity.3 Most of the studies were de
voted to the low-field magnetoresistance of type~i!, which is
very well explained by the weak localization correction f
noninteracting electrons.1 As to the high-field effect~ii !, it is
not so well understood and is either attributed to the effec
electron-electron interaction,2 which was considered theo
retically in Refs. 6 and 7, or left without any explanation.

We recall that the simple Drude approach yealds z
magnetoresistance. The Drude conductivity tensor is gi
by

sxx5
s0

11b2
, sxy5

s0b

11b2
, ~1!

where s05ne2t/m is the zero-field conductivity,n is the
electron concentration,e and m are the electron charge an
effective mass, respectively,t is the momentum relaxation
time, b5vct, andvc5eB/mc is the electron cyclotron fre
quency. For the resistivity tensor it follows thatrxx5r0
51/s0 andrxy5b/s05B/nec, and therefore the longitudi
nal resistivity is independent of the magnetic field. This
sult applies to degenerate electrons for which the timet,
entering Eq.~1!, should be taken at the Fermi energy@for
nondegenerate electrons one should take into accoun
dependence of the scattering timet on the electron energy
which, after averaging Eqs.~1! over the Boltzmann energ
distribution, results in apositivemagnetoresistance#.
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In this paper, we draw attention to a simple classi
mechanism for negative magnetoresistance. We cons
noninteracting 2D electrons with a given energy~the Fermi
energy! scattered by short-range impurity centers in the pr
ence of a magnetic field perpendicular to the 2D plane,
we show that for any type of scattering a strong negat
magnetoresistance should exist forb@1. We perform com-
puter simulations of the electron dynamics in such a sys
and find excellent agreement between the numerical res
and a very simple theory which is based on previou
known results. Moreover, we show that the magnetore
tance is parabolic at low fields.

The problem was studied in the pioneering work
Baskin et al.,8 and, more recently, by Bobylevet al.,9 who
considered specifically the 2D Lorentz model~scattering by
hard disks! and derived the main results relevant for the fu
ther discussion.

The main idea put forward in Refs. 8 and 9 is that, exc
for the case of smallb, the Boltzmann-Drude approach doe
not work, even as a first approximation, because of the e
tence of ‘‘circling’’ electrons, which never collide with the
short-range scattering centers, the fraction of such elect
being9

P5exp~22pR/ l !5exp~22p/b!, ~2!

where R5v/vc is the cyclotron radius,v is the electron
~Fermi! velocity, andl 5vt is the electron mean free path
Contrary to the assumption intrinsic to the Boltzmann-Dru
approach, an electron which happens to make one collis
less cycle will stay on its cyclotron orbit forever. The beha
ior of the rest of electrons~the ‘‘wandering’’ electrons, in
terms of Ref. 9!, whose fraction is 12P, is controlled by the
parameterNR2, the number of scatterers within the cyclo
tron orbit, N being the impurity concentration. ForNR2@1
they behave basically as predicted by the Drude theory, w
an important modification: after a collision with a given sca
terer there is a probabilityP that the electron will recollide
with the same scatterer without experiencing any other c
lisions. As a result, forb@1 the electron will recollide with
the same impurity center many times, and its trajectory w
have the form of a rosette, sweeping a circular area of rad
2R around the impurity center.8 Since the number of impu
rities inside this area, 4pNR2, is large, eventually the elec
©2001 The American Physical Society21-1
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tron will collide with one of them and thus continue its di
fusion in the 2D plane. As it follows from the results of Re
9, frequent recollisons with the same center lead to
isotropization of scattering, so that the effectivet in Eq. ~1!
becomes field dependent. This effect is absent if the sca
ing is isotropic.

At strong fields, when the parameterNR2 becomes smal
enough, the rosettes around different scatterers do not o
lap anymore, and the colliding electrons become locali
and give a zero contribution to bothsxx and sxy . This
means that a percolation transition should occur.8 The calcu-
lated threshold is (NR2)c50.36.9

Thus, there are two characteristic values of the magn
field B1 defined byvc51/t (b51) andB2 defined byvc

5vAN (NR251). The ratioB1 /B25(Nd2)1/2!1, whered
is the scattering cross section, is the small parameter of
theory.

For the simpler case of isotropic scattering andB!B2
(NR2@1), it follows from the results of Ref. 9 that the con
ductivity tensor for wandering electrons is given simply
the conventional Drude expressions, Eq.~1!, with an addi-
tional factor (12P) in bothsxx andsxy . The circling elec-
trons behave like free electrons with an effective concen
tion nP, giving a zero contribution tosxx , but contributing
a termPs0 /b5Pnec/B to sxy , and this is the reason wh
the magnetoresistance is negative. This role of circling e
trons was overlooked in Ref. 9, but was recognized late10

~see also Refs. 11 and 12!.
Thus, the conductivity tensor is given by

sxx5s0

12P

11b2 , ~3a!

sxy5s0S ~12P!
b

11b2 1P
1

b D . ~3b!

As a consequence, for the resistivity tensor we obtain

rxx5r0

12P

11P2/b2 , rxy5r0b
11P/b2

11P2/b2 . ~4!

Formulas equivalent to Eqs.~3! and~4! were previously ob-
tained by Baskin and Entin12 for scattering by randomly po
sitioned antidots. The expression forrxx clearly exhibits
negative magnetoresistance. Since the termsP/b2 and
P2/b2 are small for anyb, Eqs.~4! are very similar to

rxx5r0~12P!, rxy5r0b5
B

nec
, ~5!

with an accuracy better than than 2% forrxx , and better than
4% for rxy . Note that at low fields Eqs.~4! and ~5! predict
an exponentially small magnetoresistance.

Before further discussion, let us present the results of
numerical simulations. In our model a point particle~elec-
tron! with a given absolute value of its velocityv is scattered
by disks of diameterd randomly positioned on a plane insid
a square box of edge lengthL ~we takeL/d51000 to be sure
that L stays more than an order of magnitude larger than
electronic mean free path!. Periodic boundary conditions ar
23332
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imposed at the edges of the square box. Both the hard-
~Lorentz! model, which exhibits anisotropic scattering, and
modified model with isotropic scattering are studied.
characterize the coverage, we introduce a dimensionless
centration of scatterersc5pNd2/4, which was changed
from c50.025 toc50.2. Studies of the percolation phenom
ena are beyond the scope of the present study.

In the simulation, we first choose an initial electron po
tion at random with an initial velocity along thex direction.
In a magnetic field perpendicular to the plane the elect
trajectory is made of successive circular arcs of radiusR. For
each collision, we determine the intersections of the traj
tory with the disk periphery~the impact point!, which gives
us the impact parameterb, and calculate the scattering ang
f accordingly. We follow the electron velocitiesvx(t) and
vy(t) during a timet520t sufficient to get reliable results
for the integral below and calculate the components of
diffusion tensor by the standard formula:

Di j 5
1

2E0

`

^v i~0!v j~ t !&dt. ~6!

For each value of field and disk concentration we take
average over 102 independent disk configurations and, f
each configuration, over 106 independent trials for the initia
electron position. Of course, atB50, the trajectories are
straight-line segments andDxy should vanish~this provides a
nice test for the numerical precision!. The conductivity ten-
sor being proportional to the diffusion tensor, the comp
nents of the resistivityr i j are calculated asDi j /(Dxx

2

1Dxy
2 ), with an appropriate normalization. For the Loren

model numerical calculations of this type were previou
performed11 with an emphasis on the percolation pheno
enon.

Figure 1 shows examples of simulated circling and wa
dering trajectories for two values of magnetic field. The c
cling electrons give undamped oscillating contributions
the velocity correlation functions in Eq.~6!; accordingly, the
integral in Eq.~6!, strictly speaking, does not converge at
5`, but is an oscillating function of the upper limit. A
average over these oscillations is performed. The same re

FIG. 1. Examples of simulated circling and wandering trajec
ries for b51 ~left! and b54 ~right! for a dimensionless impurity
concentrationc5pNd2/450.1. The actual fraction of circling elec
trons atb51 is very small.
1-2
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BRIEF REPORTS PHYSICAL REVIEW B 64 233321
could be obtained if a small damping of these oscillatio
were introduced~due, for example, to weak phonon scatte
ing!.

The numerical results forrxx as a function ofb for the
model with isotropic scattering are presented in Fig. 2~top!.
The resistivity is normalized to the Boltzmann-Drude ze
field value,r0. The thick line is the theoretical curve pre
dicted by Eq.~4!. One can see that the theoretical and n
merical curves are qualitatively similar and the quantitat
agreement becomes better asc decreases. In the limitc→0
the numerical results converge to the theoretical curve
they should.13

Note that for finitec the value of the zero-field resistivit
is higher than the Boltzmann valuer0. The relative correc-
tion for small c is proportional toc ln(1/c) and is due to
recollisions with the same impurity, which are not accoun
for by the Boltzmann equation.14 Note also that the numeri
cal results for finitec approach the limiting theoretical curv
from above forb,2 and from below forb.2. This may be
qualitatively explained as follows. On the one hand, at sm
b the resistivity for finitec is higher than thec→0 Boltz-
mann value due to thec ln(1/c) correction. We have found
analytically that in a magnetic field this correction decrea
quadratically inb, thus giving a parabolic magnetoresistan
proportional tocb2;1/NR2. On the other hand, at largeb
we are on the way to the percolation threshold, whererxx
~but not rxy) becomes zero. So obviously for largeb and
finite c the resistivity should be lower than the limiting valu
given by Eq.~4!.13

Figure 2 ~bottom! displays quite similar results obtaine
for the hard-disk Lorentz model~anisotropic scattering!. The

FIG. 2. Numerical results for the resistivity as a function ofb
5vct for different impurity concentrations, compared to the the
retical curve given by Eq.~4! for the isotropic scattering mode
~top! and for the Lorentz model with anisotropic scattering~bot-
tom!. Circles, squares, diamonds, and triangles correspondc
50.025, 0.05, 0.1, and 0.2, respectively. The solid and dashed t
lines are the theoretical curves in the isotropic and anisotro
cases, respectively, and they are depicted in the inset on a la
scale. Note the surprising crossings atb52.
23332
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theoretical curve~thick dashed line! was calculated using the
results of Ref. 9 for the wandering electrons and adding
contribution of circling electrons, as explained above.
both cases all the numerical curves for differentc cross the
limiting theoretical curve at the same pointb52 ~within our
numerical precision!. We have no explanation for this su
prising finding so far.

One of the reasons why the finite-c corrections are of
interest is that Eq.~4! predicts exponentially small magne
toresistance for small values ofb. Corrections to this for-
mula make the magnetic field dependence parabolic
thus define the magnetoresistance at low fields. In orde
isolate the 1/NR2 terms in magnetoresistance, we look at t
difference

d5S rxx~B!2rxx~0!

rxx~0! D
num

2S rxx~B!2rxx~0!

rxx~0! D
th

. ~7!

Here the second term on the right-hand side is the norm
ized magnetoresistance, given by Eq.~4! for isotropic scat-
tering or by a similar formula taking care of the magne
field dependence oft for the anisotropic case. This term
represents the limitNR2→0. The first term is the normalized
magnetoresistance found numerically.

This difference, as a function of 1/NR2, is presented in
Fig. 3 for both isotropic and anisotropic scattering and
different values ofc. One can see that all the calculate
points reasonably fit a universal linear dependence, wh
corresponds to a quadratic dependence on a magnetic
While such a dependence for smallb could be anticipated, it
is surprising that it persists for quite large values ofb. Thus
at low magnetic field~b,1! the normalized resistivity be
haves like 120.15/NR2, the slope being deduced from Fig
3. Forb*1 the magnetoresistance is well described by E
~4! and~5! or, for anisotropic scattering, by similar formula
which take care of the magnetic field dependence oft.

The classical approach is justified if the number of La
dau levels below the Fermi energy is large. However, it
irrelevant whether one can describe the individual scatte

-
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FIG. 3. The differenced between normalized magnetoresi
tances, calculated in the limitNR2→` and obtained numerically
@see Eq.~7!# for the isotropic~open symbols! and anisotropic~solid
symbols! models, as a function of the square of the dimensionl
field (B/B2)251/NR2. Circles, squares, diamonds, and triang
correspond toc50.025, 0.05, 0.1, and 0.2, respectively. The data
a linear dependenced520.15/NR2.
1-3
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BRIEF REPORTS PHYSICAL REVIEW B 64 233321
events classically~when the electron wavelength is sma
compared to the size of the scatterer! or one needs a
quantum-mechanical description~in the opposite case!. As
long as weak localization corrections can be neglected,
differential scattering cross section, even though calcula
quantum mechanically, may be used in the framework o
classical transport theory. We also remark that an infin
lifetime of the circling electrons is certainly an idealizatio
In reality, even an electron whose orbit initialy avoids t
scattering centers experiences forces which will gradu
change its trajectory. However, it is clear that, if the impur
potential decreases fast enough compared to the averag
tance between impurities, the basic features of the model
remain valid. The situation is quite different for scattering
a long-range random potential, which is typical for hig
mobility 2D semiconductor structures. Classical mag
totransport in this case was thoroughly studied in Refs.
and 16.

In summary, for short-range impurity scattering in tw
dimensions a strong negative magnetoresistance exists
.
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main features of which are accounted for by a remarka
simple classical picture. There are two species of electro
wandering electrons which are described by the conventio
Drude theory and circling electrons which are collisionle
and contribute only to the transverse conductivity. With
creasing magnetic field the fraction of circling electrons
creases at the expense of the wandering ones, leadin
negative magnetoresistance. However, as we have show
low fields the magnetoresistance is entirely determined
small corrections to this picture, which give a parabol
rather than an exponentially small negative magnetore
tance. This mechanism may provide a purely classical ex
nation of, at least, some part of the experimental data
negative magnetoresistance in two-dimensional structure
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