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Classical mechanism for negative magnetoresistance in two dimensions
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The classical two-dimensional problem of noninteracting electrons scattered by a static impurity potential in
the presence of a magnetic field is investigated both analytically and numerically. A strong negative magne-
toresistance exists in such a system, due to freely circling electrons, which are not taken into account by the
Boltzmann-Drude approach. A parabolic magnetoresistance is found at low fields.
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Negative magnetoresistance, i.e., decrease of resistance inIn this paper, we draw attention to a simple classical
magnetic field, frequently observed in semiconductors, asnechanism for negative magnetoresistance. We consider
well as in metals, remained a mystery for a long time, untilnoninteracting 2D electrons with a given eneilgye Fermi
Altshuler et al explained this phenomenon by quantum in- energy scattered by short-range impurity centers in the pres-
terference effectéweak localization Extensive experimen- ence of a magnetic field perpendicular to the 2D plane, and
tal studies of magnetoresistance, mostly in two-dimensionalve show that for any type of scattering a strong negative
(2D) semiconductor structures, have revealed that, appamagnetoresistance should exist f8#1. We perform com-
ently, there are two distinct types of negative magnetoresisputer simulations of the electron dynamics in such a system
tance:(i) a small drop of resistivity observed at low fields, and find excellent agreement between the numerical results
such that the classical paramefes w7 is small, andii) a and a very simple theory which is based on previously
relatively large(up to 50% decrease of resistivity g#=1 or  known results. Moreover, we show that the magnetoresis-
even atB>1. Negative magnetoresistance of ty(@e is ob-  tance is parabolic at low fields.
served before the onset of Shubnikov—De Haas oscillations The problem was studied in the pioneering work of
and may continue as a background trend after the oscillationBaskin et al.® and, more recently, by Bobylest al.® who
set in(see, for example, Refs. 2):9n some instances, the considered specifically the 2D Lorentz modstattering by
small low-field dip of type(i) is superimposed on a smooth hard disk$ and derived the main results relevant for the fur-
overall decrease of resistivifyMost of the studies were de- ther discussion.
voted to the low-field magnetoresistance of typewhich is The main idea put forward in Refs. 8 and 9 is that, except
very well explained by the weak localization correction for for the case of smalB, the Boltzmann-Drude approach does
noninteracting electron'sAs to the high-field effectii), itis  not work, even as a first approximation, because of the exis-
not so well understood and is either attributed to the effect ofence of “circling” electrons, which never collide with the
electron-electron interactighwhich was considered theo- short-range scattering centers, the fraction of such electrons
retically in Refs. 6 and 7, or left without any explanation. being

We recall that the simple Drude approach yealds zero

magnetoresistance. The Drude conductivity tensor is given P=exp —27R/)=exp— 2/ B), 2
by
where R=v/w. is the cyclotron radiusp is the electron
(Fermj velocity, andl=v 7 is the electron mean free path.
7o 0B Contrary to th tion intrinsic to the Bolt Drud
Oyx= S Oy 5 ) ontrary to the assumption intrinsic to the Boltzmann-Drude
1+ 1+p approach, an electron which happens to make one collision-

less cycle will stay on its cyclotron orbit forever. The behav-
where op=ne?s/m is the zero-field conductivityn is the  ior of the rest of electrongthe “wandering” electrons, in
electron concentratiore and m are the electron charge and terms of Ref. 9, whose fraction is + P, is controlled by the
effective mass, respectively, is the momentum relaxation parametemNR?, the number of scatterers within the cyclo-
time, 8= w.7, andw,=eB/mcis the electron cyclotron fre- tron orbit, N being the impurity concentration. FOiR?> 1
guency. For the resistivity tensor it follows that,=p,  they behave basically as predicted by the Drude theory, with
=1loy andp,,= B/op=BI/nec and therefore the longitudi- an important modification: after a collision with a given scat-
nal resistivity is independent of the magnetic field. This re-terer there is a probability? that the electron will recollide
sult applies to degenerate electrons for which the time with the same scatterer without experiencing any other col-
entering Eq.(1), should be taken at the Fermi enerdgr  lisions. As a result, fog>1 the electron will recollide with
nondegenerate electrons one should take into account tliee same impurity center many times, and its trajectory will
dependence of the scattering timen the electron energy, have the form of a rosette, sweeping a circular area of radius
which, after averaging Eqsl) over the Boltzmann energy 2R around the impurity centérSince the number of impu-
distribution, results in gositivemagnetoresistange rities inside this area, ANR?, is large, eventually the elec-
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tron will collide with one of them and thus continue its dif- S
O

fusion in the 2D plane. As it follows from the results of Ref. 00
9, frequent recollisons with the same center lead to the Q Fo

isotropization of scattering, so that the effectivén Eq. (1) ol
becomes field dependent. This effect is absent if the scatter- °©
ing is isotropic.

At strong fields, when the parametfsiR?> becomes small &
enough, the rosettes around different scatterers do not over- @o
lap anymore, and the colliding electrons become localized o)

; . . . O o
and give a zero contribution to bot,, and o,,. This
means that a percolation transition should o&cTine calcu- 5

lated threshold isNR?).=0.367
Thus, there are two characteristic values of the magnetic

field B, defined byw.=1/7 (8=1) andB, defined byw, FIG. 1. Examples of simulated circling and wandering trajecto-
=v /N (NR?=1). The ratioB,/B,=(Nd?)"?<1, whered ries for B=1 (left) and B=4 (right) for a dimensionless impurity
is the scattering cross section, is the small parameter of théoncentratiort= #Nd%4=0.1. The actual fraction of circling elec-
theory. trons atB=1 is very small.

For the simpler case of isotropic scattering aBe&B,
(NR?>1), it follows from the results of Ref. 9 that the con- imposed at the edges of the square box. Both the hard-disk
ductivity tensor for wandering electrons is given simply by (Lorent2 model, which exhibits anisotropic scattering, and a
the conventional Drude expressions, Ef), with an addi- modified model with isotropic scattering are studied. To
tional factor (1-P) in both o,, ando,,. The circling elec- characterize the coverage, we introduce a dimensionless con-
trons behave like free electrons with an effective concentracentration of scatterers=7Nd?/4, which was changed
tion nP, giving a zero contribution ter,,, but contributing from ¢=0.025 toc=0.2. Studies of the percolation phenom-
atermPo,/B=PnedB to o,,, and this is the reason why ena are beyond the scope of the present study.
the magnetoresistance is negative. This role of circling elec- In the simulation, we first choose an initial electron posi-
trons was overlooked in Ref. 9, but was recognized 1ter tion at random with an initial velocity along thedirection.

(see also Refs. 11 and 12 In a magnetic field perpendicular to the plane the electron
Thus, the conductivity tensor is given by trajectory is made of successive circular arcs of raéusor
each collision, we determine the intersections of the trajec-
. 1-P 3 tory with the disk peripherythe impact point which gives
Txx= 0 1+p8% (33 us the impact parametér and calculate the scattering angle
¢ accordingly. We follow the electron velocitieg(t) and
B 3 B 1 vy(t) during a timet=20r sufficient to get reliable results
Txy= 00| (1 P)W’LPB : BB for the integral below and calculate the components of the

o _ diffusion tensor by the standard formula:
As a consequence, for the resistivity tensor we obtain

1-P 1+ P/p? Dij:%r@iw)uj(t))dt. (6)
P POT 232 ny:Poﬁm/rBz- (4 0

For each value of field and disk concentration we take the
average over R0independent disk configurations and, for
each configuration, over $Gndependent trials for the initial
electron position. Of course, 8=0, the trajectories are
straight-line segments aril,, should vanishthis provides a
nice test for the numerical precisiprhe conductivity ten-

B sor being proportional to the diffusion tensor, the compo-

Pxx=Po(1—=P),  pyy=poB= nec (5) nents of the resistivityp;; are calculated aj; /(D2,
+D§y), with an appropriate normalization. For the Lorentz

with an accuracy better than than 2% fgg, and better than model numerical calculations of this type were previously
4% for p,,. Note that at low fields Eqg4) and (5) predict performed! with an emphasis on the percolation phenom-
an exponentially small magnetoresistance. enon.

Before further discussion, let us present the results of our Figure 1 shows examples of simulated circling and wan-
numerical simulations. In our model a point parti¢kdec-  dering trajectories for two values of magnetic field. The cir-
tron) with a given absolute value of its velocityis scattered cling electrons give undamped oscillating contributions to
by disks of diameted randomly positioned on a plane inside the velocity correlation functions in E¢6); accordingly, the
a square box of edge length(we takelL./d= 1000 to be sure integral in Eq.(6), strictly speaking, does not convergetat
thatL stays more than an order of magnitude larger than the=oc, but is an oscillating function of the upper limit. An
electronic mean free pgthPeriodic boundary conditions are average over these oscillations is performed. The same result

Formulas equivalent to Eq§3) and (4) were previously ob-
tained by Baskin and EntiAfor scattering by randomly po-
sitioned antidots. The expression fpr, clearly exhibits
negative magnetoresistance. Since the terig? and
P2/ 32 are small for anys, Egs.(4) are very similar to
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FIG. 3. The differences between normalized magnetoresis-
tances, calculated in the limiiR?— and obtained numerically
[see Eq(7)] for the isotropic(open symbolsand anisotropi¢solid
symbolg models, as a function of the square of the dimensionless
field (B/B,)?=1/NR?. Circles, squares, diamonds, and triangles
correspond te=0.025, 0.05, 0.1, and 0.2, respectively. The data fit
a linear dependencé= —0.15NR2.

FIG. 2. Numerical results for the resistivity as a function@f

= w7 for different impurity concentrations, compared to the theo- . . . .
retical curve given by Eq(4) for the isotropic scattering model theoretical curvéthick dashed linpwas calculated using the

(top) and for the Lorentz model with anisotropic scatterifupt- ~ "€sSults of Ref. 9 for the wandering electrons and adding the
tom). Circles, squares, diamonds, and triangles correspond to contribution of circling electrons, as explained above. In
=0.025, 0.05, 0.1, and 0.2, respectively. The solid and dashed thicRoth cases all the numerical curves for differertross the
lines are the theoretical curves in the isotropic and anisotropidimiting theoretical curve at the same pojfit=2 (within our
cases, respectively, and they are depicted in the inset on a larggtimerical precision We have no explanation for this sur-
scale. Note the surprising crossings@at2. prising finding so far.

One of the reasons why the finitecorrections are of
could be obtained if a small damping of these oscillationdnterest is that Eq(4) predicts exponentially small magne-
were introduceddue, for example, to weak phonon scatter-toresistance for small values @ Corrections to this for-

ing). mula make the magnetic field dependence parabolic and
The numerical results fop,, as a function ofB for the  thus define the magnetoresistance at low fields. In order to
model with isotropic scattering are presented in Figtap). isolate the INR? terms in magnetoresistance, we look at the

The resistivity is normalized to the Boltzmann-Drude zero-difference
field value, py. The thick line is the theoretical curve pre-
dicted by Eq.(4). One can see that the theoretical and nu- Pxx(B) = pyx(0) Pxx(B) = pyx(0)
merical curves are qualitatively similar and the quantitative - 0 (0 v
agreement becomes better@decreases. In the limit—0 num th
the numerical results converge to the theoretical curve, allere the second term on the right-hand side is the normal-
they should? ized magnetoresistance, given by E4). for isotropic scat-
Note that for finitec the value of the zero-field resistivity tering or by a similar formula taking care of the magnetic
is higher than the Boltzmann valyg. The relative correc- field dependence of for the anisotropic case. This term
tion for small ¢ is proportional tocIn(l/c) and is due to represents the limiklR?>— 0. The first term is the normalized
recollisions with the same impurity, which are not accountednagnetoresistance found numerically.
for by the Boltzmann equatioff. Note also that the numeri- This difference, as a function of NR?, is presented in
cal results for finitec approach the limiting theoretical curve Fig. 3 for both isotropic and anisotropic scattering and for
from above for3<<2 and from below foi3>2. This may be different values ofc. One can see that all the calculated
qualitatively explained as follows. On the one hand, at smalpoints reasonably fit a universal linear dependence, which
B the resistivity for finitec is higher than the—0 Boltz-  corresponds to a quadratic dependence on a magnetic field.
mann value due to theln(1/c) correction. We have found While such a dependence for smaltould be anticipated, it
analytically that in a magnetic field this correction decreasess surprising that it persists for quite large valuesBofThus
guadratically ing, thus giving a parabolic magnetoresistanceat low magnetic field/8<1) the normalized resistivity be-
proportional toc?~1/NR?. On the other hand, at largg¢  haves like +0.15NR?, the slope being deduced from Fig.
we are on the way to the percolation threshold, where 3. For 83=1 the magnetoresistance is well described by Egs.
(but not p,,) becomes zero. So obviously for largeand  (4) and(5) or, for anisotropic scattering, by similar formulas,
finite ¢ the resistivity should be lower than the limiting value which take care of the magnetic field dependence. of
given by Eq.(4).13 The classical approach is justified if the number of Lan-
Figure 2(bottom) displays quite similar results obtained dau levels below the Fermi energy is large. However, it is
for the hard-disk Lorentz modéhnisotropic scatteringThe  irrelevant whether one can describe the individual scattering
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events classicallfwhen the electron wavelength is small main features of which are accounted for by a remarkably
compared to the size of the scattgremr one needs a simple classical picture. There are two species of electrons:
guantum-mechanical descriptidim the opposite cageAs  wandering electrons which are described by the conventional
long as weak localization corrections can be neglected, thBrude theory and circling electrons which are collisionless
differential scattering cross section, even though calculatednd contribute only to the transverse conductivity. With in-
guantum mechanically, may be used in the framework of areasing magnetic field the fraction of circling electrons in-
classical transport theory. We also remark that an infinitecreases at the expense of the wandering ones, leading to
lifetime of the circling electrons is certainly an idealization. negative magnetoresistance. However, as we have shown, at
In reality, even an electron whose orbit initialy avoids thelow fields the magnetoresistance is entirely determined by
scattering centers experiences forces which will graduallysmall corrections to this picture, which give a parabolic,
change its trajectory. However, it is clear that, if the impurity rather than an exponentially small negative magnetoresis-
potential decreases fast enough compared to the average diance. This mechanism may provide a purely classical expla-
tance between impurities, the basic features of the model wilhation of, at least, some part of the experimental data on
remain valid. The situation is quite different for scattering by negative magnetoresistance in two-dimensional structures.
a long-range random potential, which is typical for high-
mobility 2D semiconductor structures. Classical magne- We thank W. Knap for useful discussions and for com-
totransport in this case was thoroughly studied in Refs. 13nunicating his experimental results prior to publication. We
and 16. appreciate useful discussions with B. Shklovskii and D.
In summary, for short-range impurity scattering in two Polyakov. We thank I. Gornyi for bringing to our attention
dimensions a strong negative magnetoresistance exists, thefs. 10-12.
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