
PHYSICAL REVIEW B, VOLUME 64, 233320
Phase transition of a photogenerated electron gas in semiconductors
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~Received 23 September 2000; revised manuscript received 31 August 2001; published 3 December 2001!

We study a nonequilibrium phase-transition-like behavior of a photogenerated electron gas in semiconduc-
tors. The kinetics of the electron gas is given by a set of nonlinear rate equations. For low temperatures we
show that they have three steady-state solutions when the photoexcitation energy is in a certain interval that
depends on the electron-electron interaction. Two of them are stable and the other is unstable. By defining a
generalized free potential we obtain the Maxwell construction that determines the order parameter, namely, the
difference of the electron population in the bottom of the conduction band of the two steady-stable states.
Hence, this phase transition is a nonequilibrium first-order phase transition.
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Nonequilibrium phase transitions in semiconductors h
been studied in the past decades mainly in connection
the nonlinear generation-recombination mechanism, inc
ing impact ionization.1–3 Many experimental studies hav
been done on hot photoexcited electron systems.4,5 However,
to the best of our knowledge no systematic study has b
done as to as certain how the energy of the photoexci
pump influences the steady state of these systems.5,6 In Ref.
7 a qualitative theoretical account of the effects of the ex
tation energy was given. The authors showed that the e
tron population in the bottom of the conduction ba
strongly depends on the excitation energy. The purpos
this report is to show that, for low temperatures, there ex
a first-order nonequilibrium phase transition between two
mogeneous stable steady states of the electron gas tha
pears when the energy of the pump is varied. The order
rameter is the difference between the electron population
the bottom of the conduction band of the stable states
depends upon the effectiveness of the electron-electron (e-e)
interaction. We obtain the order parameter by defining a ‘‘p
tential’’ that allows us to make a construction similar to t
Maxwell construction for the equilibrium phase transition
a van der Waals gas.2,8

Electrons in the bottom of the conduction band of a se
conductor play an important role in the dynamics of t
whole-conduction electron gas. In general, electrons with
energy in excess less than the longitudinal optical~LO! pho-
non energy cannot make transitions by emitting LO phono
In the case in which the emission of LO phonons is one
the dominant mechanisms, the nonequilibrium kinetics of
electron gas in the conduction band of a semiconducto
given as follows.9 We define a set of energy levels, each o
of them representing an energy interval of widthDe of the
conduction band. Although not strictly necessary, for si
plicity De is set equal to\vLO , the LO phonon energy.9 We
set the electron population in these energy levels and, b
on the main interaction mechanisms, the nonlinear rate e
tions that give the temporal behavior of these populations
obtained.

Then, we have the following set of rate equations t
describes the kinetics of a photoexcited electron gas
semiconductors.9
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dx i

dt
5no

1~x i 112x i !1no
2~x i 212x i !

1ZNmaxx tot~x i 1122x i1x i 21!

1ZNmaxx0~x i2x i 21!1gpd i ,i p
2wx i , ~1!

for iÞ0. For i 50, since the emission of LO phonons by a
electron is not possible, we have

dx0

dt
5no

1x12no
2x01ZNmaxx tot~x12x0!

1ZNmaxx0x01gpd0,i p
2wx0 . ~2!

The terms withno
1 , in Eqs.~1! and ~2!, describe the contri-

bution of the electron-LO phonon emision interaction to t
rate of change of the populationx i at leveli. The terms with
the factorno

2 correspond to absorption of a LO phonon. T
e-e interaction contributes to the terms that contain the fac
ZNmax. Their form come from considering the contributio
to the rate of change of the populationx i of the interaction
between electron populations of all the energy levels a
from the use of the energy conservation.9 The electron popu-
lationsx i have been normalized to the maximum reacha
electron concentrationNmax and x tot5(x i . In the steady
stateNmax is constant andx tot51. The last two terms in the
right-hand member of Eqs.~1! and~2! are the generation an
recombination contributions, respectively. The main inter
tion mechanisms, the generation and recombination te
that are given by the collision frequenciesno

6 and ZNmax,
and bygp , andw, respectively, depend on the lattice tem
perature, carrier concentration, and material parameters
give the explicit expresions forno

6 and ZNmax, which are
needed for the following discussion and refer the reade
Ref. 9 for the expressions of the other frequencies. Then,
no

6 we have9,10
©2001 The American Physical Society20-1



n-
ar
e

ar
-

ic

e
y

c

n
o

th
er

h
c

in
th

e
a
n
q
-

lly,

ory
in

and
ave
d
us-
an-
es

ter.

s,

t
e

BRIEF REPORTS PHYSICAL REVIEW B 64 233320
no
6~e!5

Ame2\vLO

A2\2
S 1

E`

2
1

Es
D S Nq1

1

2
6

1

2
D

3
1

Ae
SLOlnF 11A17

\vLO

e

617A17
\vLO

e

G , ~3!

where E` and Es are the static and optical dielectric co
stants, respectively. The electron effective mass and ch
arem ande, respectively, and\ is the Planck constant. Th
upper ~lower! sign is for emission~absorption!. Phonon
population effects may be taken into account inNq , which is
the phonon population at wave vector of magnitudq. The
screening effects in the electron-LO phonon interaction
included in the factorSLO , which in the random-phase ap
proximation~RPA! is given by11

SLO
g 5F11S x totNmax

Nc D 2G21

,

where Nc5E`m(\vLO)3/33/28pe2\2kBTe is the threshold
value for the concentration in the conduction band at wh
the screening becomes important.11 Te is the effective elec-
tronic temperature andkB is the Boltzmann’s constant. Th
collision frequency~3! is a smooth function of the energ
and the solution to Eqs.~1! and ~2! can be considerably
simplified if we substitute it by its average over the condu
tion band.

For ZNmax, following ideas of Takenakaet al.12 and Col-
let and co-workers,13 we use static RPA and obtain9

ZNmax5
e2ApmkBTe

22\2E` F 1

11
x totNmax

Nee

G , ~4!

The square brackets factor takes into account the scree
effects. These become important when the carrier c
centration Nmax reaches a critical value Nee
54mE`(kBTe)

2/p2\2e2.
The expression forZNmax, Eq. ~4!, is a simple approxi-

mation that allows us to determine, in an easy way,
ranges of the carrier concentration and electronic temp
ture, in which the energy exchange throughe-e scattering is
the dominant mechanism in the kinetics of the system. T
use of static RPA is justified for experiments that take pla
on longer time scales.14

We have to point out that the structure of Eqs.~1! and~2!
does not depend on this approximation and we may use
more complete calculation a more general expresion for
e-e frequency. However, we expect that expressions~3! and
~4! give good results for steady-state situations and not v
high carrier concentrations as is the present case here
where many body effects and occupation effects are
important.6 Degeneracy effects change the structure of E
~1! and ~2!, but it is well known that for concentrations be
23332
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low 131018 cm23 their effects are negligible.6 Due to the
e-e interaction, this set of rate equations is nonlinear. Fina
we should say that Eqs.~1! and ~2!, which are the main
equations of our model, came from a more general the
published in Ref. 9. These general equations formulated
the energy space take into account degeneracy effects
have the mathematical structure that other formulations h
~See, for example, Refs. 13 and 14!. They can be generalize
to take into account quantum effects, e.g., exchange, by
ing more appropiate scattering frequencies. However, qu
tum effects are expected to be important in very short tim
and very small distances.6,14

Let us consider the finite differences as derivatives,

x i 112x i→
dx

de
De

x i 1122x i1x i 21→
d2x

de2
~De!2

x i2x i 21→
dx

de
De2

d2x

de2
~De!2.

Then, we obtain the partial-differential equation

]x

]t
5~x tot2x01m!

]2x

]«2

1~n2m1x0!
]x

]«
1xpd~«2«p!2vx, ~5!

where we have definedt[tZNmax, n[no
1/ZNmax, m

[no
2/ZNmax, v[w/ZNmax, xp[gp /ZNmax, and «[e/De.

By this normalization, we have eliminated one parame
For low temperatures,9 m!n. Also, in steady state,xp5v.
Hence, in this case, we have only two relevant parametern
and«p .

The electron distribution functionx~«,t! is continuous and
positive definite in the whole interval 0<«,` and has a
discontinuity in its first derivative at«5«p . In addition, it
must satisfy the conditions

x tot5E
0

`

d«x~«,t!, x05E
0

1

d« x~«,t!. ~6!

The steady-state solution to Eq.~5! is7

xs~«!5H Aea«1Be2b«, 0<«<«p

Ce2b«, «p<«,
~7!

where

a

bJ 5
@~n2m1x0

s!214v~12x0
s1m!#1/27~n2m1x0

s!

2~12x0
s1m!

.

~8!

In the steady statex tot
s 51. The electron population a

the lowest levelx0
s is determined self-consistently by th

equation

x0
s5

v

a
e2a«p

ea2e2b

a1b

1

12x0
s

. ~9!
0-2
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The coefficientsA, B, andC are obtained using the continu
ity in x(«), the discontinuity in its first derivative at«
5«p , and Eq.~6!.

In Fig. 1 we show the low temperature dependence of«p

on x0
s for several values ofn. We takev50.02 for the re-

combination. We must notice that we first set«p and then
find self-consistentlyx0

s . However, we chose to plot«p as a
function of x0

s . The reason will be apparent below. Als
notice that, for example, the curve withn50.02, for «p

(1)

,«p,«p
(2) has three possible values ofx0

s , that are labeled
x0

(1) , x0
(2) , and x0

(3) ~the interceptions with the horizonta
dashed-dotted line!. We will show that two of them are stabl
and the other one is unstable. In addition, fornc'0.2275 we
have the critical curve that separates curves that have reg
of «p with three possible solutions forx0

s from curves with
just one solution. We must point out thatn5no

1/ZNmax, then
Fig. 1 can be seen as a family of curves in which thee-e
interaction is changed, for example, by changing the elec
concentration. For GaAs at 4 K we obtain n'0.02 using
Te5300 K and Nmax54.131017 cm23 in expressions~3!
and ~4!. For a carrier concentration of 6.1131016 cm23 we
obtain approximately the critical curve.

Next, we consider the perturbation to the steady st
x(«,t)5xs(«)1dx(«,t) produced by a time-dependent e
citation, xp(t)5xp

s1dxp(t), wherexp
s is the constant exci-

tation that produces the steady state. Notice thatx tot andx0
are time dependent and they are given by the relationsx tot

511dx tot andx05x0
s1dx0, respectively.

From Eq.~2! for x0 and assuming that«p.1, we have for
its steady state

nx1
s2mx0

s1x1
s2x0

s1x0
s22vx0

s50, ~10!

and the time evolution of its perturbationdx0 is given to first
order by

d

dt
dx05Fn dx1

dx0
2m1

dx1

dx0
2112x0

s2vGdx0 . ~11!

FIG. 1. Photoexcitation pump energy«p as a function ofx0
s .

Numbers on each curve are the values ofn.
23332
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We now define the functionc(x0) that allows us to per-
form the stability analysis. From Eq.~10!

c~x0![nx12mx01x12x01x0
22vx0 ~12!

and the steady-state condition@Eq. ~10!# becomesc(x0
s)

50. Performing the derivative ofc(x0) with respect ofx0
we find that the factor in square brackets in Eq.~11! is equal
to this derivative evaluated atx05x0

s . Therefore,

d

dt
dx05

dc

dx0
U

x05x
0
s
dx0 ~13!

and the solution fordx0 is

dx0~t!5dx0~0!expF dc

dx0
U

x05x
0
s
tG . ~14!

A steady state, given by ax0
s , is stable if

dc

dx0
U

x05x
0
s
,0. ~15!

Equation~9! can be written as

2
1

a
lnF ~12x0

s!x0
sa

v

a1b

ea2e2bG2«p50. ~16!

In the steady state, Eqs.~12! and ~16! are equivalent, there
fore

c~x0!52
1

a
lnF ~12x0!x0

a

v

a1b

ea2e2bG2«p . ~17!

In Fig. 1 we plotted«p as a function ofx0
s , which means that

we plotted the functionc(x0) and this establishes the stab
ity of the statesx0

(1) , x0
(2) , andx0

(3) . The middle root is an
unstable steady state, whilex0

(1) and x0
(3) are stable steady

states.
A thermodynamic system remains homogeneous

stable if the criteria of instrinsic stability is satisfied,15

(]P/]V),0, whereP is the pressure of the system andV is
its volume. When this condition is violated a phase transit
ocurrs.15 Then, from Eq.~15!, we have the following corre-
spondence:x0→V, «p→P, andn→T, whereT is the tem-
perature of the thermodynamic system.2 We see that Eq.~16!
turns out to be the equation of state. The homogeneous s
x0

(1) and x0
(3) are nonequilibrium stable steady states of t

system. Therefore, we call the transition between statesx0
(1)

and x0
(3) , a first order out of equilibrium phase transitio

The order parameter isx0
(3)2x0

(1) and still remains unknown
So far, we have assumed that the populationsx0 , x1, and

so on, are constants and homogeneous in space. Now
assume that there exist spatial inhomogeneities,x05x0(r ),
which produce spatial gradients, and diffusion of this pop
lation. We also assume, from the structure of Eq.~5!, that the
spatial and temporal behavior of the populationsx i , i .0, is
given throughx0. Then, we have the following equation
0-3
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]x0

]t
5c~x0!1k

]2x0

]z2
. ~18!

We suppose, for simplicity, thatx0 depends only on the spa
tial coordinatez. Here,k is thex0 diffusion constant.

Let us introduce the ‘‘potential’’ F(x0) with the
definition3,8

c~x0!5
]

]x0
F~x0!. ~19!

Then, the steady state satisfies the equation

k
]2x0

]z2
52

]

]x0
F~x0!. ~20!

We have seen from Fig. 1 that, whenn50.02 and«p is in the
energy interval,«p

(1),«p,«p
(2) , the system has two homo

geneous stable steady states. Let us find a solutionx0(z)
such thatx0(1`)5x0

(1) andx0(2`)5x0
(3) . In such a case

two steady states coexist. Obviously, the ‘‘potential’’F(x0)
has two maxima inx0

(1) andx0
(3) . Coexistence ocurrs for a

value of«p such that the two maxima are indistinguishab
for the system,F(x0

(1))5F(x0
(3)). Then

05F~x0
(3)!2F~x0

(1)!5E
x0

(1)

x0
(3)

dx0c~x0!. ~21!

The last equation is the Maxwell construction for the v
por pressure in the van der Waals gas from which the or
parameterx0

(3)2x0
(1) can be calculated. We also notice th

2F corresponds to the Hemholtz free potential. Moreov
the condition thatF is at a maximum in a stable steady sta
corresponds to that the generalized free potentialH52F is
at a minimum. This is consistent with the condition that
equilibrium thermodynamic system is in a state of minimu
Hemholtz free energy.15
r

e

C

.

o
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In summary, we have found a low-temperature noneq
librium phase transition between two homogeneous sta
steady states of an electron gas in semiconductors. We in
duced the functionc and the stability condition for thes
states was given by Eq.~15!. A generalized free potentia
was defined by Eq.~19! from which we obtained Eq.~21!
that corresponds to the vapor pressure Maxwell construc
of a van der Waals gas. The order parameter, the differe
of the electron population in the bottom of the conducti
band, is then calculated and goes to zero whenn approaches
the critical valuenc'0.2275. This is the reason we call th
phase transition a first-order nonequilibrium phase transit
For GaAs at 4 K, this critical value corresponds to an el
tron effective temperature of 300 K and an electron conc
tration of 6.1131016 cm23. The bistability occurrs in the
range n,0.2275, which corresponds to carrier densit
greater than 6.1131016 cm23. We expect that the equation
of the model are valid for polar semiconductors, such
GaAs, under low-temperature cw photoexcitation that crea
a not-so-high carrier concentration~less than 1
31018 cm23), where many body and occupation effects a
not important and the electron-LO phonon ande-e interac-
tions dominate the dynamics of the carriers.6 Moreover, the
static RPA used to calculate these interactions is applic
under the present conditions.11–13 We have to point out tha
the mathematical form of Eqs.~1! and~2! and thee-e inter-
action, which gives the nonlinear character of the rate eq
tions, are the necessary main ingredients for the existenc
the phase transition. Thee-e interaction may be improved b
using a more general approximation for the scattering
quencies that take into account, for example, excha
effects.6,13 For higher concentrations degeneracy effects
easily taken into account as is described in Ref. 7. Also,
assumption that the distribution function changes v
slowly over an energy interval equal to the LO phonon e
ergy may be improved by sampling the distribution functi
over several tens of points. Finally, we may use a nonst
RPA in the evaluation of the scattering mechanisms but at
cost of computing several integrals.6,13
e

-

-
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