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Hamiltonians of strain effects
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Hamiltonians that generally describe the effects of strain are proposed. The strain effects can be calculated
easily from the unstrained potential using these Hamiltonians. These Hamiltonians are valid when the strain is
spatially modulated, and are also valid when the strain exists in a magnetic field. These Hamiltonians can also
be used in the improved effective mass approximation.
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Semiconductor strain structures are made from mate
with different lattice constants. Recently attempts to u
strain structures as the low-dimensional quantum confi
ments such as quantum wells, quantum wires, or quan
dots have become popular. Self-assembled quantum
grown in the Stranski-Krastanow mode1 are using the strain
confinements. GaN-type semiconductor blue lasers sti
lated by current injection use the strain structures as the
tive layers.2 Spin devicesthat use magnetic nanostructure3

are always associated with strain fields. And the magnet
sistance oscillation of two-dimensional electron gas un
one-dimensional periodic potential modulation includes
strain-induced component,4 whose amplitude cannot be es
mated from the theory.

Davies et al.5 proposed the theories of the confineme
potential in the quantum strain structures. Their theories
based on the classical mechanics of elastic body and
classical electromagnetism, so the results do not include
quantum effects, for example, the effect of the char
density wave.

The electronic states in the quantum strain structures
calculated from the first principle, if the systems are simp
But the electronic states in the complicated strain structu
cannot be calculated from the first principle because of
limited ability of computers.

The effect of strain was formulated by Pikus and Bir,6,7

and it is known asthe Pikus-Bir Hamiltonian. However, the
Pikus-Bir Hamiltonian is valid only when the strain is hom
geneous. It is invalid when the strain is spatially modula
in the low-dimensional quantum structures, and moreove
is invalid when the strain exists in a magnetic field. Hence
this paper I propose Hamiltonians that generally describe
effects of strain.

Strain means that a point in an object shifts from a po
tion x to a positionx8. Here, displacementu(x) is defined as
a function of the positionx,

x85x1u~x!. ~1!

First we consider the caseu(x)5a, which is not a func-
tion of the position but a real constant vector. In this case
strain becomes a mere parallel translation. The transfor
tion of an observableA in a parallel translation is wel
known in quantum mechanics.8 The transformation is ex
pressed by a unitary operatorT(a) as follows:
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A→T~a!AT†~a!, ~2!

T~a!5e2 ia•p/\, ~3!

wherep is a momentum operator@p5(\/ i )¹#.
Next, we consider the general case that the displacem

u(x) is a function of the positionx. In this case we canno
define a transformation operatorT@u(x)#5exp@2iu(x)
•p/\# to replace simply the real constant vectora with the
displacementu(x). The reason is that the operatorT@u(x)#
is not a unitary operator anymore, because the displacem
u(x) is a function of the positionx and does not commute
with the momentump. A transformation operator must be
unitary operator in order to guarantee an observable to b
Hermitian operator.

Hence when the displacementu(x) is small, I propose a
transformation operatorT@u(x)# that describes a strain
effect,

A→T@u~x!#AT†@u~x!#, ~4!

T@u~x!#5exp$2 i @u~x!•p1p•u~x!#/2\%. ~5!

The transformation operatorT@u(x)# becomes a unitary op
erator because the term@u(x)•p1p•u(x)#/2 in the exponen-
tial function of the transformation operator isHermitization
of the operator.9 Thus,

T@u~x!#AT†@u~x!#

5exp$2 i @u~x!•p1p•u~x!#/2\%A exp$ i @u~x!•p

1p•u~x!#/2\% ~6!

'A1
i

2\
@A, u~x!•p1p•u~x!# ~7!

5A1
1

2 FA, uj

]

]xj
1

]

]xj
uj G ~ j 51,2,3!.

~8!

From Eq.~6! to Eq.~7! the next relationship is used, and th
terms are adopted up to the first order about the displacem
u(x) becauseu(x) is small enough,

e2BA eB5A1@A,B#1 1
2 @@A,B#,B#1¯ . ~9!

In the component expression of Eq.~8!, we use Einstein’s
summation convention about the same appendixes.
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Now we consider the Hamiltonians that describe the
fects of strain using the transformation operatorT. The
Schrödinger equation for an electron in a strained crystal

H«c«5~K1V«!c«5E«c« , ~10!

where H« is a Hamiltonian of the strained crystal, whic
includes the kinetic energy termK and the unknown straine
potentialV« . We want to calculate the energiesE« and the
wave functionsc« . The Schro¨dinger equation of the un
strained crystal is

Hc5~K1V!c5Ec, ~11!

whereV is the unstrained potential. Here we note that
cannot interpret the differenceV«2V directly as a perturba
tion, since it is generally not small.7 For example, in the cas
of a Coulomb potential generated by an atomic nucleus,
differenceV«2V becomes infinite, however small the di
placementu(x) is. Therefore I propose a HamiltonianH̃
5T†KT1V that describes the strain effect to replace the d
ference of the potentials with the change of the kinetic
ergy term,

H̃f5~T†KT1V!f5Ef. ~12!

T is operated from the left, andT†T51 is inserted,

T~T†KT1V!~T†T!f5ETf, ~13!

~K1TVT†!~Tf!5E~Tf!. ~14!

RegardingTVT†'V« ,

~K1V«!~Tf!5E~Tf!. ~15!

Comparing Eq.~15! with Eq. ~10!, E«'E andc«'Tf. After
all, by solving Eq.~12! that uses the unstrained potentialV,
the electronic states in the strained crystal can be calcula

In the first problem, we transform a HamiltonianHzero in
a zero magnetic field,

Hzero52
\2

2m
¹21Vex~x!1Vst~x! ~16!

52
\2

2m

]2

]xi]xi
1Vex1Vst ~ i 51,2,3!. ~17!

Here we must pay attention to two kinds of potential,Vex(x)
andVst(x). Vex(x) is an external field, which is independe
of a strain. That is to say, the magnitude ofVex(x) does not
change even if a strain exists. In contrast, the magnitud
Vst(x) changes as a strain changes. For example,Vst(x) is a
potential that is generated by atomic nuclei and bound e
trons in a strained object. In the transformation, we reg
Vst(x) as not a function of the positionx but a real constan
scalar. Thus,

Hzerõ5T†S 2
\2

2m

]2

]xi]xi
1VexDT 1Vst ~18!
23331
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'2
\2

2m S ]2

]xi]xi
22

]uj

]xi

]2

]xi]xj
2

]2uj

]xi]xi

]

]xj
2

]2uj

]xi]xj

3
]

]xi
2

1

2

]3uj

]xi]xi]xj
D1S Vex1uj

]Vex

]xj
D1Vst ~19!

52
\2

2m S ]2

]xi]xi
22« i j

]2

]xi]xj
2

]« i j

]xi

]

]xj
2

]« i j

]xj

]

]xi

2
1

2

]2« i j

]xi]xj
D1S Vex1uj

]Vex

]xj
D1Vst. ~20!

We note that the differential of the third order about t
displacementu(x) appears in Eq.~19!. The change ofVex(x)
in Eq. ~20! cannot be expressed by the strain tensor« i j
[(]ui /]xj1]uj /]xi)/2. If the strain is homogeneou
(]« i j /]xk50), Eq.~20! becomes the Pikus-Bir Hamiltonian

In the second problem, we transform a HamiltonianHmag
in a magnetic field,

Hmag5
1

2m H \

i
¹2e@Aex~x!1Ast~x!#J 2

1Vex~x!1Vst~x!

~21!

5Hzero1
1

2m H 2
e\

i F2~Aex,i1Ast,i !
]

]xi

1
]~Aex,i1Ast,i !

]xi
G1e2~Aex,i1Ast,i !

3~Aex,i1Ast,i !J . ~22!

We must pay attention to two kinds of vector potent
Aex(x) andAst(x) also.Aex(x) is an external magnetic field
which is independent of a strain. In contrast, the magnitu
of Ast(x) changes as a strain changes. For example,Ast(x) is
generated by the magnetic substances buried in a stra
object. Note that from Eq.~21! to Eq. ~22!, bothAex(x) and
Ast(x) are transformed as functions of the positionx. How-
ever, from Eq.~22! to Eq. ~23!, Aex(x) is transformed as a
function of the positionx, while Ast(x) is transformed as a
real constant vector. Thus,

Hmag̃'Hzerõ1
1

2m H 2
e\

i F2~Aex,i1Ast,i !
]

]xi

1
]~Aex,i1Ast,i !

]xi
22~Aex,i1Ast,i !

]uj

]xi

]

]xj

12uj

]Aex,i

]xj

]

]xi
2~Aex,i1Ast,i !

]2uj

]xi]xj
1uj

]2Aex,i

]xi]xj
G

1e2F ~Aex,i1Ast,i !~Aex,i1Ast,i !

12uj~Aex,i1Ast,i !
]Aex,i

]xj
G J . ~23!

If a vector potential exists, the Hamiltonian of a strain effe
cannot be expressed as a function of the strain tensor« i j any
longer because the Hamiltonian of a strain effect includes
displacementu(x) obviously.
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Now I derive the Hamiltonian of a strain effect in th
improved effective mass approximation following Lutting
and Kohn.10 H̃ in Eq. ~12! is divided into the unstrained
HamiltonianH and the perturbation termH1 ,

H̃5H1~H̃2H![H1H1 . ~24!

The wave functionf'SkCkck , which is expanded by the
unstrained wave functions in the same band,

~H1H1!(
k

Ckck5E(
k

Ckck . ~25!

Multiplied by ck8
* from the left and integrated,

@E~k8!2E#Ck81(
k

^k8uH1uk&Ck50. ~26!

Multiplied by eik8"x and added overk8,

FIG. 1. ~Color! Energy dispersions of a one-dimension
strained Kronig-Penney model in a zero magnetic field.
23331
(
k8

@E~k8!2E#Ck8e
ik8•x1(

k,k8
^k8uH1uk&Cke

ik8•x50.

~27!

The envelope functionF5SkCke
ik"x is defined,

@E~2 i¹!2E#F1(
k,k8

^k8uH1uk&Cke
ik8•x50. ~28!

The second term in Eq.~19! is used as an example ofH1 ,

FIG. 2. ~Color! Wave functions of a one-dimensional straine
Kronig-Penney model in a zero magnetic field.
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(
k,k8

^k8uH1uk&Cke
ik8•x

5(
k,k8

Cke
ik8•xE ck8

*
\2

m

]uj

]xi

]2

]xi]xj
ckdx ~29!

'
\2

m

]uj

]xi
(
k,k8

Cke
ik8•xE ck8

*
]2ck

]xi]xj
dx ~30!

'
\2

m

]uj

]xi
(
k,k8

Cke
ik8•xE co* e2 ik8•x

]2~coe
ik•x!

]xi]xj
dx

~31!

5
\2

m

]uj

]xi
(
k,k8

Cke
ik8•xE dx ei ~k2k8!•xco*

3S 2kikjco1 ik i

]co

]xj
1 ik j

]co

]xi
1

]2co

]xi]xj
D ~32!

5
\2

m

]uj

]xi
(
k,k8

Cke
ik8•xdk,k8~2kikj1 ik i^] j&

1 ik j^] i&1^] i j &! ~33!

5
\2

m

]uj

]xi
S ]2

]xi]xj
1^] j&

]

]xi
1^] i&

]

]xj
1^] i j & DF.

~34!

WhenE(k)5E01\2kikj /2mi j* , the envelope functionF in a
zero magnetic field is described by the next equation,

H 2
\2

2mi j*
]2

]xi]xj
1

\2

2m F2
]uj

]xi
S ]2

]xi]xj
1^] j&

]

]xi
1^] i&

]

]xj

1^] i j & D1
]2uj

]xi]xi
S ]

]xj
1^] j& D1

]2uj

]xi]xj
S ]

]xi
1^] i& D

1
1

2

]3uj

]xi]xi]xj
G1uj

]Vex

]xj
J F5Eeff F. ~35!
23331
Then the energiesE«'Eeff1E0, and the wave functionsc«

'Fco.
In order to confirm the effectiveness of the Hamiltonian

the numerical calculations are carried out using a o
dimensional strained Kronig-Penney model in a zero m
netic field. The strained potential is

V«~x!5
3p\2

2ma (
n52`

`

d$x2@na1u~na!#%, ~36!

u~x!50.13a sin~2px/10a!, ~37!

whered(x) is a delta function. Strainu(x) is given as a sine
wave, whose wavelength is ten times the unstrained lat
constanta, and whose amplitude is 10% ofa. The exact
solutions of this model are calculated by the conventio
transfer-matrix method in Eqs.~10!, ~36!, and~37!. The en-
ergiesE« are indicated by black solid lines in Fig. 1, and t
wave functionsuc«u2 are indicated in Fig. 2. The solutions o
the Hamiltonian@Eqs. ~12!, ~19!, ~37!, and ~38!# are calcu-
lated by diagonalizing the Hamiltonian matrix, and the en
gies E and the wave functionsuTfu2 are indicated by red
solid lines,

Vst~x!5
3p\2

2ma (
n52`

`

d~x2na!, Vex~x!50. ~38!

The solutions of the Hamiltonian in the improved effectiv
mass approximation@Eqs.~35! and ~37!# are also calculated
by diagonalizing the Hamiltonian matrix. The energiesEeff
1E0 and the wave functionsuFcou2 are indicated by blue
solid lines, and the envelope functionsuFu2 are indicated by
blue broken lines. The Hamiltonians are accurate eno
from the data in these figures, therefore I conclude that
proposed Hamiltonians are very valid.

Last, I would suggest that when the displacement i
time-dependent functionu(x,t), it means the lattice vibra
tion, that is, the phonons. Therefore the Hamiltonians
express the effects of phonons, also.
ts
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