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Hamiltonians of strain effects
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Hamiltonians that generally describe the effects of strain are proposed. The strain effects can be calculated
easily from the unstrained potential using these Hamiltonians. These Hamiltonians are valid when the strain is
spatially modulated, and are also valid when the strain exists in a magnetic field. These Hamiltonians can also
be used in the improved effective mass approximation.
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Semiconductor strain structures are made from materials A—T(a) AT (a), 2
with different lattice constants. Recently attempts to use
strain structures as the low-dimensional quantum confine- T(a)=e '@Ph ®)

ments such as quantum wells, quantum wires, or quantum . )

dots have become popular. Self-assembled quantum dofé'erep is a momentum operat¢p=(4/i)V]. _

grown in the Stranski-Krastanow mddare using the strain Next, we consider the general case that the displacement

confinements. GaN-type semiconductor blue lasers stimd{(X) is @ function of the positiorx. In this case we cannot

lated by current injection use the strain structures as the adefine a transformation operatof[u(x)]=exd —iu(x)

tive layers? Spin deviceghat use magnetic nanostructidtes -P/%] to replace simply the real constant vectowith the

are always associated with strain fields. And the magnetorelisplacementi(x). The reason is that the operafru(x)]

sistance oscillation of two-dimensional electron gas undef$ Not & unitary operator anymore, because the displacement

one-dimensional periodic potential modulation includes the!(X) is & function of the positiorx and does not commute

strain-induced componehtwhose amplitude cannot be esti- With the momentunp. A transformation operator must be a

mated from the theory. unitary operator in order to guarantee an observable to be a
Davies et al® proposed the theories of the confinementHermitian operator. .

potential in the quantum strain structures. Their theories are Hence when the displacementx) is small, | propose a

based on the classical mechanics of elastic body and tH&ansformation operator7[u(x)] that describes a strain

classical electromagnetism, so the results do not include theffect,

quantum effects, for example, the effect of the charge-

density wave. A= Tu()JATTu(x)], 4
The electronic states in the quantum strain structures are .
calculated from the first principle, if the systems are simple. Tu(x)]=exp{—i[u(x)-p+p-u(x)]/2h}. 5

But the electronic states in the complicated strain structure$he transformation operatd@u(x)] becomes a unitary op-
cannot be calculated from the first principle because of therator because the teffu(x) - p+ p- u(x)]/2 in the exponen-

limited ability of computers. _ tial function of the transformation operator fifermitization
The effect of strain was formulated by Pikus and Bir, of the operatof Thus,

and it is known aghe Pikus-Bir HamiltonianHowever, the

Pikus-Bir Hamiltonian is valid only when the strain is homo- Tu(x)JATTu(x)]

geneous. It is invalid when the strain is spatially modulated ) )

in the low-dimensional quantum structures, and moreover it =exp{—i[u(x)-p+p-u(x)]/2h} Aexpfi[u(x)-p
is invalid when the strain exists in a magnetic field. Hence in +p-u(x)]/2%) 6)

this paper | propose Hamiltonians that generally describe the
effects of strain.

i
. o . . . ~A+ — -p+p-
Strain means that a point in an object shifts from a posi- A 2h [A u(x)-ptp-u(x)] @)
tion x to a positionx’. Here, displacement(x) is defined as
a function of the positiorx, . 1 " d N d 103
= E , UJ(?_XJ (9_)(Juj (J =1,z7, )
X" =X+ Uu(Xx). (1) 8

From Eq.(6) to Eq.(7) the next relationship is used, and the
terms are adopted up to the first order about the displacement

First we consider the cas€x)=a, which is not a func- (x) becausai(x) is small enough,

tion of the position but a real constant vector. In this case thé!
strain becomes a mere parallel translation. The transforma-
tion of an observabled in a parallel translation is well
known in quantum mechaniésThe transformation is ex- In the component expression of E@), we use Einstein’s
pressed by a unitary operatdfa) as follows: summation convention about the same appendixes.

e BAe®=A+[AB]+3[[AB],B]+--. 9
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Now we consider the Hamiltonians that describe the ef- %2 52 u; 9? azuj J azuj
fects_ qf strain using the transformqnon op_eratﬁr The _ ~ " om 9%, X, &—)q X, axj_ X9, a_xj_ 0%,
Schralinger equation for an electron in a strained crystal is
g 1 Pu )+

Voru e Ly (g
ex uj (9XJ- st ( )

where H, is a Hamiltonian of the strained crystal, which

includes the kinetic energy terfd and the unknown strained —

ﬁz( 9 #  dey 9 dey I

- 2e.
potential V.. We want to calculate the energiEs and the 2m \ 9x; X Uaxigxj % axj  Ixj X

wave functionsy, . The Schrdinger equation of the un- 1 . v
strained crystal is _Z ' e
y 2 % +(Vex+ uj x, + Vgt (20
Hy=(K+V)yp=E, (1) we note that the differential of the third order about the

whereV is the unstrained potential. Here we note that w Qisplacemenu(x) appears in Eq19). The change o e(x)

: : - n Eg. (200 cannot be expressed by the strain tensgr
cannot interpret the differencé, —V directly as a perturba- '= A
tion, since it is generally not smdllFor example, in the case =(du;/ox;+ou;/ox)/2. If the strain is homogeneous

of a Coulomb potential generated by an atomic nucleus th&72ii /7%= 0), Eq.(20) becomes the Pikus-Bir Hami?Itoj nian.
differenceV,—V becomes infinite, however small the dis- In the second problem, we transform a Hamiltontdisg

. o in a magnetic field,
placementu(x) is. Therefore | propose a HamiltoniaH

=T KT+ V that describes the strain effect to replace the dif- _ h 2
ference of the potentials with the change of the kinetic en- mag— om i_V A X) T AX)] 1 Vel X) +Ve(X)
ergy term, (21)
~ 1 eh d
Hop=(TKT+V)p=E¢. (12 =Hzerst 5 — i—{z(AeX,i +Agi) o
I

Tis operated from the left, an@ 7=1 is inserted,
+ a(Aex,i +Ast,i)

TTKT+V) (T T p=ET, (13 X

+ e2(Aex,i + Ast,i)

(K+IVT)(T¢p)=E(T¢h). (14) X(Aex’i+Ast,i)]. (22)
R i T~V
egardingZv e We must pay attention to two kinds of vector potential
K4V ) (Td) =E(Td). 15 Ag(X) andAg(X) also.Ag(X) is an external magnetic field,
( ) (19)=8T19) (9 which is independent ofxa strain. In contrast, the magnitude
Comparing Eq(15) with Eq.(10), E,~€ andy,~T¢. After  of Ay(X) changes as a strain changes. For examléx) is
all, by solving Eq.(12) that uses the unstrained potentigl ~ generated by the magnetic substances buried in a strained
the electronic states in the strained crystal can be calculate@bject. Note that from E¢(21) to Eqg.(22), both A¢,(x) and
In the first problem, we transform a Hamiltonigty,,in ~ As(X) are transformed as functions of the positianHow-

a zero magnetic f|e|d, ever, from Eq(22) to Eq (23), AeX(X) is transformed as a
function of the positiornx, while Ay(x) is transformed as a
72 ) real constant vector. Thus,
Hyere™ — ﬁv +Ve>&x) +V51(X) (16)
—_— — e d
) ) 7'(mag% Hzero+ ﬁ[ - I_ 2(Aex,i +Ast,i) &_X|
he 9 )
T amaxax VetV (1712317 LMot As) L 0
0-'Xi exi sti 5Xi &X]
Here we must pay attention to two kinds of potenti&ly(x) IAex; 0 d?u i P*Aexi
andV(X). Ve,(x) is an external field, which is independent +2uy x; (9_Xi_(Aex,i+Ast,i) a%,3% +u %9,
of a strain. That is to say, the magnitude\&f,(x) does not
change even if a strain exists. In contrast, the magnitude of 5
V(x) changes as a strain changes. For examylgx) is a + €7 (Aexi T Asti) (Aexi T Asti)
potential that is generated by atomic nuclei and bound elec-
trons in a strained object. In the transformation, we regard 20 (Aggi + Ag) IAexi 29
V(X) as not a function of the positiox but a real constant Pext TS g |
scalar. Thus, If a vector potential exists, the Hamiltonian of a strain effect
52 g2 cannot be expressed as a function of the strain tesjs@ny
%:fr - + Vo | T+ Vg (18)  longer because the Hamiltonian of a strain effect includes the
2m X X displacementi(x) obviously.
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FIG. 1. (Color) Energy dispersions of a one-dimensional =t 0.3 .
strained Kronig-Penney model in a zero magnetic field. o dl
e II'I “
Now | derive the Hamiltonian of a strain effect in the 0.1k 3 B
improved effective mass approximation following Luttinger ’ ﬁ | W&

10 7 i« divi ; ; = i1 =
and }(ohr]. H in Eq. (12) is dIYIded into the unstrained Ut 5010 & 29 % &
Hamiltonian+{ and the perturbation terri/,, ic) x (a)

H=H+(H—-H)=H+H,. (24 FIG. 2. (Color) Wave functions of a one-dimensional strained

The wave functionp~%,, C, ¢y, which is expanded by the

unstrained wave functions in the same band,

(H+ Hl)Ek: Cuihe= 5§k: Cribi-

Multiplied by ap’k‘, from the left and integrated,

[E(K)=€]C+ 2 (K'[Hy[k)Ci=0.

Multiplied by €'¥'* and added ovek’,

Kronig-Penney model in a zero magnetic field.

> [E(K) —EICeX *+ 3 (K|Hyk)Cielk *=0.

25 K’ k.’
(25) 27
The envelope functiofr =3,,C,e'“* is defined,
(26) [E(—iV)—&EF+ > (K |Hik)Ce'K *=0. (298
k,k’

The second term in Eq19) is used as an example &f;,
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> <k/|H1|k>Ckeik/'x

k,k’
. A% ou, 92
— ik’ x 1
kZW Ce f Yo ax, axax VX (29
h? au, f 20
T m ax; kk, lp"’ax <9xJ (30
~ ﬁ_z % J ¢* —ik"-x 62( (ﬂoelk X) 27097 T dx
m ax; kk, IXiIX;
(31
ﬁzauJE c e dexe (k')
m Jx; < ©
w o | Py
—kik; 1,//0+Ik +ik; ox + X0 (32
1% oy, .
m (9X: kEk' Ck ‘Xék’kr(—kikj-i—lki(&j)
+ikj(d)+(dj)) (33
kP oup [ a a -
% axiaxj+<(7j>o7_xi+<ai>(9_xj+<‘9ij>
(34

WhenE(k) = Eq+72kik; /2mIl , the envelope functiof in a
zero magnetic field is descrlbed by the next equation,

n? 5 . A2 _ouj[ &2 i iy
2m? axix; - 2m| " ox; | 9x;ox; ( j>axi { i>ax
. L azuj up [ 9 .
() A% 9Xi o | aXi ax ax, T
L1 oy Vel £ g qF. 35
2 axiaxiox;| ) ax; eff (35)
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Then the energiek, ~ &4+ Ey, and the wave functiong,
~F .

In order to confirm the effectiveness of the Hamiltonians,
the numerical calculations are carried out using a one-
dimensional strained Kronig-Penney model in a zero mag-
netic field. The strained potential is

V,(X)= 2 S{x—[na+u(na)]}, (36

2man

u(x)=0.1xXasin(27x/10a), (37
where §(x) is a delta function. Strain(x) is given as a sine
wave, whose wavelength is ten times the unstrained lattice
constanta, and whose amplitude is 10% @ The exact
solutions of this model are calculated by the conventional
transfer-matrix method in Eq$10), (36), and(37). The en-
ergiesk, are indicated by black solid lines in Fig. 1, and the
wave functiong i, |2 are indicated in Fig. 2. The solutions of
the Hamiltonian[Egs. (12), (19), (37), and (38)] are calcu-
lated by diagonalizing the Hamiltonian matrix, and the ener-
gies £ and the wave function§Z¢|? are indicated by red
solid lines,

2 [

Th
g2 d(x—na),

n=—ow

Vs X)= Vex)=0.  (38)

The solutions of the Hamiltonian in the improved effective-
mass approximatiofEgs. (35) and(37)] are also calculated
by diagonalizing the Hamiltonian matrix. The energs

+E, and the wave function§F ¢,|? are indicated by blue
solid lines, and the envelope functiofs|? are indicated by
blue broken lines. The Hamiltonians are accurate enough
from the data in these figures, therefore | conclude that the
proposed Hamiltonians are very valid.

Last, | would suggest that when the displacement is a
time-dependent function(x,t), it means the lattice vibra-
tion, that is, the phonons. Therefore the Hamiltonians can
express the effects of phonons, also.
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