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Hopping conductivity in heavily doped n-type GaAs layers in the quantum Hall effect regime
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We investigate the magnetoresistance of epitaxially grown, heavily depgie GaAs layers with thickness
(40-50 nm larger than the electronic mean free péB nm. The temperature dependence of the dissipative
resistanceR,, in the quantum Hall effect regime can be well described by a hopping Ryy«exp|
—(To/T)P}) with p~0.6. We discuss this result in terms of variable range hopping in a Coulomb gap together
with a dependence of the electron localization length on the energy in the gap. The value of the egponent
=0.5 shows that electron—electron interactions have to be taken into account in order to explain the occurrence
of the quantum Hall effect in these samples, which have a three-dimensional single electron density of states.
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For a two-dimensional electron system it is well known quantization of the Hall effect, the conductance deviated
that the discrete electron spectrum in a high magnetic fieldfrom the logarithmic temperature dependence at the lowest
leads to quantized Hall resistanéguantum Hall effegt  temperatures for values & where G,,—0 and where the
However, Landau quantization is not a strict prerequisite foHall conductances,, correspondingly shows a plateau at a
the QHE. According to gauge argumerttit is sufficient that ~ value of 2%/h.
the dissipative conductan€g,, vanishes at the Fermi level, In the current work we have investigated an additional
and that delocalized states exist below. The occurrence of theumber of strongly disordered GaAs layers with smaller val-
quantum Hall effect in not strictly two-dimensional systemsues ofd (namely 40 and 50 ninshowing a fully developed
has been considered by KhmelnitZkin conjunction with QHE below 100 mK. The obtained hopping law for the tem-
the scaling theoretical treatment of the QHE. perature dependent dissipative resistaRggis discussed in

In our previous works:;® we observed the quantum Hall terms of the opening of a Coulomb gap.
effect in a strongly disordered system, which consisted of a The Hall conductance quantization in the aforementioned,
heavily Si-doped ii-type) GaAs layer between undoped quasi-three-dimensional systems with a “bar@iigh tem-
GaAs. In this system a wide, smooth quantum well is formedperature conductanc@ﬁx> e?/h can be understood qualita-
by the impurity space charge potential that builds up at theively in the following way. Usually, in systems with coher-
layer interfaces. The electron gas is therefore confined insident diffusive transport the dissipative conductanGg,
the heavily doped GaAs layer, in the area of maximum disdecreases with temperatufedue to quantum corrections.
order. The thicknesd of the layers ranging from 50 up to The weak localizatior(single-particl¢ corrections are sup-
140 nm was larger than the electronic mean free path  pressed in a magnetic fieBland reduce t§

15-30 nm. The density of statd®OS of noninteracting

electrons in these samples is therefore expected to be practi- 2 e

cally three dimensional. As the very strong disorder broad- Gxx(L‘p):ng_ — o In(Ly/Lo)

ening in the samples leads to a rather smooth density of 7 MGy

states without the formation of gaps between Landau levels 4

even at the highest magnetic fields 20 T), we have pro- _go_ M e_|n(-|-1/-|-). (1)

XX o
w2 h2G°

posed a reduction of the diagonal conductafgg due to X

electron—electron-interaction effects in diffusive transport as

a possible explanation for the observed quantizatioRgf HereL,=yDy,7, is the distance an electron moves diffu-
in the investigated, strongly disordered systems. Evidenceively during the phase breaking timgeT™ ™, DSX is the
for this explanation comes from the temperature dependenc®are” high-temperature diffusion coefficient,

in the quantum Hall minima o6,, in samples with a thick-
ness between 50 and 140 Anwhich is logarithmic with Lo=dyD%/D%=dG’ /o, )
temperaturel, and thus resembles the temperature depen-

dence that is caused by quantum corrections due to electroris the electron displacement in the plane of the ldperpen-
electron interactions in disordered conductors both in Weakdicular to the magnetic fiejdfor the time of its diffusion
and in high magnetic fields® However, the logarithmic de- across the layefalong the magnetic fie)JdD,, and o, are
crease ofG,, that was found in Ref. 6 exceeds in amplitude the diffusion coefficient and the conductivity in the direction
the range, where the theory of quantum correctidis ap-  parallel to the magnetic field,, is defined from the equation
plicable. Furthermore, in the thinnest sampldth a layer d~\/2DZ°ZT‘p(T1). At low temperatures the phase breaks due
thickness d=50 nm), which showed a fully developed to electron—electron interactions, leadingnie=1. The sec-
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ond order corrections in a magnetic fi¢ldg. (1)] are much
smaller (rthG?,/e? timeg than the first-order corrections in
zero field. Nevertheless;,, will eventually vanish, and in
this case the Hall conductan€®,, should be quantizet”
Since Gy, tends to different quantum values for different
bare Hall conductance@gy, transitional values of the bare
conductanceegy should exist, for whiclG,, tends to a finite
value andG,, is not quantized.

This approach, initially developed for spinless noninter-

acting electrons, can give a reasonable, qualitative explana-

tion for the occurrence of the quantum Hall effect with even
numbers of quantizationin the above mentioned, strongly
disordered GaAs layer® Quantitative agreement with
theory however does not exist because the quantum corre
tions[Eq. (1)] are small at real experimental conditions. To
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FIG. 1. Magnetic field dependence of the Ha,() and trans-
verse R,,) resistance(per squarg for sample 40 in a magnetic
fleld perpendicular to the heavily doped GaAs layer at different
temperatures.

explain our results, we have proposed the inclusion of

electron—electron interactions. In this case, the single
particle DOS and the conductance should decrease with d

creasing temperature due to quantum corrections caused b

interactions

o M€ o 2\e?
Gxx(LT):Gxx_Eln(TZ/T):Gxx_Wln(LT/LO)
©))

that occur both in wedkand in high magnetic fields®? Here
Lt~ (D2 A/kgT)2 kg is the Boltzmann constant, anth
~7DY/kgd?. A<1 is the constant of interaction, which is of

for different temperatures &=3.4 T, taking into account
nat the classical resistance does not depend on field.

Yin Fig. 1 the magnetotransport data, namely the Hall
(Ryy) and transverseRy,, per squargresistance are plotted
for sample 40 at temperatures below 4.2 K. The diagonal
resistanceR,, decreases sharply at low magnetic fields due
to the suppression of the weak localization corrections, and
continues to decrease slightly between 0.5 and 4 T. It shows
a deep minimum ranging from 6 to 11 T. The Hall resistance
Ry shows a linear increase up to 5 T, and then reveals a

wide plateau frorB=6 T up to 11 T at the lowest tempera-

the order of unity and even somewhat larger in high magiures with the valu®,,=h/2e? (i.e.,i=2), in the same field

netic fields wggB/kgT>1) than in zero field 4g is the
Bohr magneton For GJ,>e? h these corrections are much
larger than the single-particle localization contributidEs.
(1)]. The interaction correctior€g. (3)] will lead to a van-
ishing of the dissipative conductan€g, as a consequence

range wherdR,, shows a deep minimum.

The Hall conductanc,, = Ry,/(RZ,+RZ,) in the field
range ofB=0.5—-4 T does not depend on temperature. The
diagonal conductancéper squarke G,, however shows a
logarithmic temperature dependence with an only slightly

of the opening of a Coulomb gap in the single particle DOS{ield dependent coefficient, while the value G, itself

Since also in this scenari@,, will vanish at zero tempera-
ture, the Hall conductance should be quantized.

changes considerably. This behavior is in agreement with Eq.
(3), giving an interaction constant~0.5. The magnetotrans-

The samples used were prepared by molecular-beam eort data for sample 50 are similar to the data for sample 40.

taxy: on a GaAs(100 substrate the following layers were
successively grown: an undoped GaAs layer (@), a
periodic structure of 38 GaAs/AlGaAs(10/10 nm), an un-
doped GaAs layer (0.5um), the heavily Si-doped GaAs
layer with a nominal thickness af=40 (sample 40 and 50
nm (sample 50 and donofSi) concentrations of 1.5
x 10 ecm™3, and last a cap layer of 0.,xm GaAs (un-
doped. Samples with Hall bar geometries of a width of 0.2

In our previous investigations of identical sampi&st
with however a larger layer thickness, we found corrections
to the conductivity due to electron—electron interactions. In a
region of low magnetic fieldg<4 T) WhereG2X> e?/h the
magnetoresistance data can be quantitatively described in
terms of quantum corrections due to electron—electron-
interaction effects? In high magnetic fields, even in samples
with thicknessesl ranging up to 140 nm, quantization of the

mm and a length of 1.4 mm were etched out of the wafers. Afall conductance is observed. The mentioned samples show
phase sensitive ac-technique was used for the magnetotranglues of the bare conductan@, up to 2.&%h.® Even at

port measurements down to 80 mK. In the experiments théhese high fields the different QHE minima in the transverse
applied magnetic field of up to 15 T was directed perpen-conductanceG,, of different samples show a universal

dicular to the layers. Samples from the same wafer showe

Woarithmic temperature dependence in a large range of a

identical behavior. The electron densities per square as deescaled temperatur@/T,., where T¢.<exp(—3Gohe?).5

rived from the slope of the Hall resistanBg, in weak mag-
netic fields (0.5-3 T at T=4.2 K are Ng=4.5 and 5.1
X 10' cm 2. The “bare” mobilities o are equal to 2500
and 2300 crfYVs for samples 40 and 50, respectively, and

Note however, that the decrease@f, is not small and that

a logarithmic temperature dependence is observed beyond
the region of applicability of the theory of quantum
corrections. In the thinnest sampled=50 nm) investi-

the electron mean free path is about 23 nm for both samplegated in Ref. 6, showing a well pronounced QH plateau, a

For the calculation ofuy we took the value of the bare re-
sistanceR, in the point of intersection of the curvéy,(B)

deviation from the logarithmic behavior becomes visible at
the lowest temperature§ €1 K). It is this range of tem-
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o B Gyx=Rux/RE,=Ryy/(0.50/€?)2~70e%/h  while Gy,

=0.95%?/h only atT=10 K. The large prefactor in the con-
ductance is compensated by a small exponential factor exp
10°F {—(To/T)Pl=exp(—25.5/2~6.4x 10 3, while G,,(10 K)/

G,«(1 K) has a value of about 3 only. The small difference
betweenG,,(1 K) andG,,(10 K) would be the result of a
compensation of the two, which is not realistic. Thus we
conclude, that the temperature dependence in 42 mini-
mum in R,, is rather described by a hopping law according
to Eq(4) with a hopping exponer near 0.6.

Without the existence of a Coulomb gap the Mott theory
of variable range hoppirfd predicts the temperature depen-
dence ofR,, to follow Eq. (4) with p=1/3. According to the
theory from Efros and Sklovskift'®p is equal to 1/2 in the
presence of a Coulomb gap around the Fermi end&tgy
(both in zero magnetic field and in the QHE regjm&his
theory was developed for situations where the localization
length ¢ does not depend on the energy:|E—Eg| in the

p. In the case of Anderson localization the localization
gngthg should depend on the energynear the Coulomb

R _ (h/e)

FIG. 2. The logarithm of the resistané®, as a function of
T~ %6for sample 40 in the minimumrB=8.8 T) and at larger fields
indicated by lines, and for sample 50 in the minimuB+8.7 T).

perature and layer thickness, that the present work is focus
on. We therefore study the temperature dependence of t
resistanceR,, of samples with a thickness<50 nm, and
therefore a rather low bare conductar@®, of aboute?/h.
These samples show a pronounced platealR)ip and a
strong T dependence near the minimum R§, at low tem-
peratur_es, as shown in Fig. 1 _ §5p~L0exp(O.57r2GSX2h2/e4) ©6)
In Fig. 2 we plot the logarithm of the resistanBg, as a

function of T"°®in the minima ofR,, corresponding to the estimated from the equatio,,({s)=0 with Gy, taken
plateaus aR,,= h/2e? for samples 40 and 5%,and addi- from Eq.(1). According to the scaling theoretical treatment
tionally for sample 40 at somewhat larggrbut still not far ~ of the QHE, the localization lengtls, generally depends
from the minimum. The exponemt=0.6 is chosen as a re- both onGY, and Gi’y. It diverges angy(B)=(i +1/2)e?/h.

In the single-particle approach, agy(B)=ie2/h with
eveni, the localization lengtlfs, of an electron at the Fermi
level equals

sult of a fit of the experimental data to a hopping law However, electron—electron interactions should result in a
decrease of the localization length in the Coulomb gap. A
Ryx=Roexp{ — (To/T)P} (4) lower limit of this decrease can be estimated from the equa-

in a range of temperature wher (T)<0.1R,,(4.2 K) tion Gyx(£o) =0 with Gy taken from Eq(3),

~0.02h/e?. The fitting parameterR, and T, are listed in +G% h

Table |. £o~Lgex i @)
Attempts to fit the data by an expression with a tempera- 2\e

ture dependent prefactor Outside the gap interaction is not important, and the local-

ization length is equal or larger than the one given by expres-

sion (6) with G%, =G0 (E) for the energyE. For typical

and a fixedp different from 0.6 resulted in a less optimal fit. values ofG2 ~e’/h and\~1, &, is much smaller thags,.

Moreover, the resulting fitting parameters are unphysical. FoAs it will be shown below, such an energy dependencé of

instance, for the case gi=0.5 the fit givesr=0.65, «  should result inp>1/2 in Eq.(4).

=17.1, andTy=25.5 K. For this situation, the prefactor = The single-particle density of states should be unaffected

aT" in Eq. (5) at T=1 K corresponds to a conductance by an energy dependence of the localization length, unless

the distance between electrons is much larger than the local-

TABLE I. Values of the magnetic fieldB, the constanT, and  ization length, i.e.g(€)£(€)?|e|<1. It should still be linear:

the prefactoR,, the localization lengtiE,, of the electrons giving  g(e)=y|e| with y=2«?/me* (« is the dielectric constant

the main contribution to the conductivity, &t=0.1 K and the lo-  of the lattice. Let us suppose that in some range of energy

Rux= aTreXp[—(TO/T)p} 5)

calization lengthé; of the electrons with energy/kg=0.1 K. £=alel®. Then by analogy with the Mott-law derivatibht®
5 we obtain
Sample B(T) To(K) Ro (h/e) & (um) & (um) (s 1)/(s42)
R Xp[— (To/T) ST+

40 8.8 6.0 2.41 0.63 0.24 0 Gro @XR (To/T) b ®
40 9.8 4.3 1.55 0.95 0.4 where
40 106  2.04 0.66 2.3 1.2 Yis+1)
50 8.7 4.5 1.6 0.9 0.37 T =§ g

0 kg | ak
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S=[(s+1) FD/IT2) 4 (g4 1)V6E+2)](sH2)/(+1) - (g) A dependence of the localization length on energy could
probably also account for hopping exponepts 1/2, ob-
served in zero-field experiments:*°An energy dependence
as described above is also indicated by numerical
simulations?>?! Therefore, also in zero magnetic field the
power of T in Eq. (4) could be larger than 1/2 in some range
of temperature.

In summary, in low magnetic fieldéut still larger than

The coefficienta depends on the magnetic field. Fo 0,
Egs. (8) and (9) reduce to the results from Efros and
Shklovskii. Fors>1 one finds activated behavior amml
=(s+1)/(s+2)=0.6 is obtained fos=1/2. The main con-
tribution to the conductivity is given by hopping electrons
with an energy of

Ckge?(s+1)_|V6+2) 0.5 T) whereG,,>3e?/h, the temperature dependence of the
€= TT . diagonal conductandd,, of heavily dopech-type GaAs lay-
) o ers with thicknessesdE40/140 nm) larger than the mean
The corresponding localization length free path of the electrond €23 nm) is well described by
Ckge?(s+1) sl/(s+2) the theory of quantum corrections due to electron—electron
&n=alep|’= TT , (10) interactions. In high magnetic fields whe®,<3e?h the

temperature dependence of the conductance in the minima of
of the electrons giving the main contribution to the conduc-G,y i, is still close to logarithmic down to 0.25/h, al-
tivity for T=0.1 K ands=1/2 is listed in the table. The though the theory of quantum corrections is no more appli-
numerical coefficienC is taken to be 1.55 as defined from cable. In the region oB,,<0.25%?/h the dissipative conduc-
the equation fofT, from the Efros—Shklovskii theoryT;  tance shows an exponential decrease with a pqwe0.6,
=6.2%/e£) .16 indicating the presence of a Coulomb gap. The data display

Since&, TY® cannot be smaller thag, it should become  the relevance of electron—electron interactions for the quan-
constant at the lowest temperatures and the temperature deim Hall effect in these systems which have a 3D single-
pendence should reduce to the Efros—Shklovskii law. In ouparticle spectrum.

experimental conditiong;, approaches,<200 nm at the We have pointed out that a dependence of the localization
very small temperature of<3x10 % K at B=8.8 T and length on energy could result in an expongnt1/2 both in
T<5x10 ' KatB=10.6 T for sample 40. zero and nonzero magnetic field.
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