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Hopping conductivity in heavily doped n-type GaAs layers in the quantum Hall effect regime

S. S. Murzin,1,2 M. Weiss,1 A. G. M. Jansen,1 and K. Eberl3
1Grenoble High Magnetic Field Laboratory, Max-Planck-Institut fu¨r Festkörperforschung and Centre National de la Recherche

Scientifique, BP 166, F-38042, Grenoble Cedex 9, France
2Institute of Solid State Physics RAS, 142432, Chernogolovka, Moscow District, Russia

3Max-Planck-Institut fu¨r Festkörperforschung, Postfach 800 665 D-70569, Stuttgart, Germany
~Received 13 June 2001; published 20 November 2001!

We investigate the magnetoresistance of epitaxially grown, heavily dopedn-type GaAs layers with thickness
~40–50 nm! larger than the electronic mean free path~23 nm!. The temperature dependence of the dissipative
resistanceRxx in the quantum Hall effect regime can be well described by a hopping law (Rxx}exp$
2(T0 /T)p%) with p'0.6. We discuss this result in terms of variable range hopping in a Coulomb gap together
with a dependence of the electron localization length on the energy in the gap. The value of the exponentp
>0.5 shows that electron–electron interactions have to be taken into account in order to explain the occurrence
of the quantum Hall effect in these samples, which have a three-dimensional single electron density of states.
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For a two-dimensional electron system it is well know
that the discrete electron spectrum in a high magnetic fi
leads to quantized Hall resistance~quantum Hall effect!.
However, Landau quantization is not a strict prerequisite
the QHE. According to gauge arguments1,2 it is sufficient that
the dissipative conductanceGxx vanishes at the Fermi leve
and that delocalized states exist below. The occurrence o
quantum Hall effect in not strictly two-dimensional system
has been considered by Khmelnitzkii3 in conjunction with
the scaling theoretical treatment of the QHE.4

In our previous works,5,6 we observed the quantum Ha
effect in a strongly disordered system, which consisted o
heavily Si-doped (n-type! GaAs layer between undope
GaAs. In this system a wide, smooth quantum well is form
by the impurity space charge potential that builds up at
layer interfaces. The electron gas is therefore confined in
the heavily doped GaAs layer, in the area of maximum d
order. The thicknessd of the layers ranging from 50 up t
140 nm was larger than the electronic mean free pathl of
15–30 nm. The density of states~DOS! of noninteracting
electrons in these samples is therefore expected to be pr
cally three dimensional. As the very strong disorder bro
ening in the samples leads to a rather smooth density
states without the formation of gaps between Landau le
even at the highest magnetic fields ('20 T), we have pro-
posed a reduction of the diagonal conductanceGxx due to
electron–electron-interaction effects in diffusive transport
a possible explanation for the observed quantization ofRxy
in the investigated, strongly disordered systems. Evide
for this explanation comes from the temperature depende
in the quantum Hall minima ofGxx in samples with a thick-
ness between 50 and 140 nm,6 which is logarithmic with
temperatureT, and thus resembles the temperature dep
dence that is caused by quantum corrections due to elect
electron interactions in disordered conductors both in we7

and in high magnetic fields.8,9 However, the logarithmic de
crease ofGxx that was found in Ref. 6 exceeds in amplitu
the range, where the theory of quantum correction7–9 is ap-
plicable. Furthermore, in the thinnest sample~with a layer
thickness d550 nm), which showed a fully develope
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quantization of the Hall effect, the conductance devia
from the logarithmic temperature dependence at the low
temperatures for values ofB whereGxx→0 and where the
Hall conductanceGxy correspondingly shows a plateau at
value of 2e2/h.

In the current work we have investigated an addition
number of strongly disordered GaAs layers with smaller v
ues ofd ~namely 40 and 50 nm!, showing a fully developed
QHE below 100 mK. The obtained hopping law for the tem
perature dependent dissipative resistanceRxx is discussed in
terms of the opening of a Coulomb gap.

The Hall conductance quantization in the aforemention
quasi-three-dimensional systems with a ‘‘bare’’~high tem-
perature! conductanceGxx

0 @e2/h can be understood qualita
tively in the following way. Usually, in systems with cohe
ent diffusive transport the dissipative conductanceGxx
decreases with temperatureT due to quantum corrections
The weak localization~single-particle! corrections are sup
pressed in a magnetic fieldB and reduce to10

Gxx~Lw!5Gxx
0 2

2

p2

e4

h2Gxx
0

ln~Lw /L0!

5Gxx
0 2

m

p2

e4

h2Gxx
0

ln~T1 /T!. ~1!

Here Lw5ADxx
0 tw is the distance an electron moves diff

sively during the phase breaking timetw}T2m, Dxx
0 is the

‘‘bare’’ high-temperature diffusion coefficient,

L05dADxx
0 /Dzz

0 5AdGxx
0 /szz ~2!

is the electron displacement in the plane of the layer~perpen-
dicular to the magnetic field! for the time of its diffusion
across the layer~along the magnetic field!, Dzz andszz are
the diffusion coefficient and the conductivity in the directio
parallel to the magnetic field,T1 is defined from the equation
d'A2Dzz

0 tw(T1). At low temperatures the phase breaks d
to electron–electron interactions, leading tom51. The sec-
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ond order corrections in a magnetic field@Eq. ~1!# are much
smaller (phGxx

0 /e2 times! than the first-order corrections i
zero field. Nevertheless,Gxx will eventually vanish, and in
this case the Hall conductanceGxy should be quantized.1,2

Since Gxy tends to different quantum values for differe
bare Hall conductancesGxy

0 , transitional values of the bar
conductanceGxy

0 should exist, for whichGxx tends to a finite
value andGxy is not quantized.

This approach, initially developed for spinless nonint
acting electrons, can give a reasonable, qualitative expl
tion for the occurrence of the quantum Hall effect with ev
numbers of quantizationi in the above mentioned, strongl
disordered GaAs layers.5,6 Quantitative agreement with
theory however does not exist because the quantum co
tions @Eq. ~1!# are small at real experimental conditions.
explain our results, we have proposed the inclusion
electron–electron interactions. In this case, the sing
particle DOS and the conductance should decrease with
creasing temperature due to quantum corrections cause
interactions

Gxx~LT!5Gxx
0 2

le2

ph
ln~T2 /T!5Gxx

0 2
2le2

ph
ln~LT /L0!

~3!

that occur both in weak7 and in high magnetic fields.8,9 Here
LT;(Dxx

0 \/kBT)1/2, kB is the Boltzmann constant, andT2

;\Dzz
0 /kBd2. l<1 is the constant of interaction, which is o

the order of unity and even somewhat larger in high m
netic fields (mBgB/kBT@1) than in zero field (mB is the
Bohr magneton!. For Gxx

0 @e2/h these corrections are muc
larger than the single-particle localization contributions@Eq.
~1!#. The interaction corrections@Eq. ~3!# will lead to a van-
ishing of the dissipative conductanceGxx as a consequenc
of the opening of a Coulomb gap in the single particle DO
Since also in this scenarioGxx will vanish at zero tempera
ture, the Hall conductance should be quantized.

The samples used were prepared by molecular-beam
taxy: on a GaAs~100! substrate the following layers wer
successively grown: an undoped GaAs layer (0.1mm), a
periodic structure of 303GaAs/AlGaAs(10/10 nm), an un
doped GaAs layer (0.5mm), the heavily Si-doped GaA
layer with a nominal thickness ofd540 ~sample 40! and 50
nm ~sample 50! and donor~Si! concentrations of 1.5
31017 cm23, and last a cap layer of 0.5mm GaAs ~un-
doped!. Samples with Hall bar geometries of a width of 0
mm and a length of 1.4 mm were etched out of the wafers
phase sensitive ac-technique was used for the magnetot
port measurements down to 80 mK. In the experiments
applied magnetic field of up to 15 T was directed perp
dicular to the layers. Samples from the same wafer sho
identical behavior. The electron densities per square as
rived from the slope of the Hall resistanceRxy in weak mag-
netic fields ~0.5–3 T! at T54.2 K are Ns54.5 and 5.1
31011 cm22. The ‘‘bare’’ mobilities m0 are equal to 2500
and 2300 cm2/Vs for samples 40 and 50, respectively, a
the electron mean free path is about 23 nm for both samp
For the calculation ofm0 we took the value of the bare re
sistanceR0 in the point of intersection of the curvesRxx(B)
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for different temperatures atB53.4 T, taking into account
that the classical resistance does not depend on field.

In Fig. 1 the magnetotransport data, namely the H
(Rxy) and transverse (Rxx , per square! resistance are plotted
for sample 40 at temperatures below 4.2 K. The diago
resistanceRxx decreases sharply at low magnetic fields d
to the suppression of the weak localization corrections,
continues to decrease slightly between 0.5 and 4 T. It sh
a deep minimum ranging from 6 to 11 T. The Hall resistan
Rxy shows a linear increase up to 5 T, and then revea
wide plateau fromB56 T up to 11 T at the lowest tempera
tures with the valueRxy5h/2e2 ~i.e., i 52), in the same field
range whereRxx shows a deep minimum.

The Hall conductanceGxy5Rxy /(Rxx
2 1Rxy

2 ) in the field
range ofB50.5–4 T does not depend on temperature. T
diagonal conductance~per square! Gxx however shows a
logarithmic temperature dependence with an only sligh
field dependent coefficient, while the value ofGxx itself
changes considerably. This behavior is in agreement with
~3!, giving an interaction constantl'0.5. The magnetotrans
port data for sample 50 are similar to the data for sample

In our previous investigations of identical samples5,6,11

with however a larger layer thickness, we found correctio
to the conductivity due to electron–electron interactions. I
region of low magnetic field (B,4 T) whereGxx

0 @e2/h the
magnetoresistance data can be quantitatively describe
terms of quantum corrections due to electron–electr
interaction effects.11 In high magnetic fields, even in sample
with thicknessesd ranging up to 140 nm, quantization of th
Hall conductance is observed. The mentioned samples s
values of the bare conductanceGxx

0 up to 2.6e2/h.5 Even at
these high fields the different QHE minima in the transve
conductanceGxx of different samples show a univers
logarithmic temperature dependence in a large range o
rescaled temperatureT/Tsc , where Tsc}exp(23Gxx

0 h/e2).6

Note however, that the decrease ofGxx is not small and that
a logarithmic temperature dependence is observed bey
the region of applicability of the theory of quantum
corrections.7 In the thinnest sample (d550 nm) investi-
gated in Ref. 6, showing a well pronounced QH plateau
deviation from the logarithmic behavior becomes visible
the lowest temperatures (T,1 K). It is this range of tem-

FIG. 1. Magnetic field dependence of the Hall (Rxy) and trans-
verse (Rxx) resistance~per square! for sample 40 in a magnetic
field perpendicular to the heavily doped GaAs layer at differ
temperatures.
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BRIEF REPORTS PHYSICAL REVIEW B 64 233309
perature and layer thickness, that the present work is focu
on. We therefore study the temperature dependence o
resistanceRxx of samples with a thicknessd<50 nm, and
therefore a rather low bare conductanceGxx

0 of aboute2/h.
These samples show a pronounced plateau inRxy and a
strongT dependence near the minimum ofRxx at low tem-
peratures, as shown in Fig. 1.

In Fig. 2 we plot the logarithm of the resistanceRxx as a
function of T20.6 in the minima ofRxx corresponding to the
plateaus atRxy5h/2e2 for samples 40 and 50,12 and addi-
tionally for sample 40 at somewhat largerB, but still not far
from the minimum. The exponentp50.6 is chosen as a re
sult of a fit of the experimental data to a hopping law

Rxx5R0exp$2~T0 /T!p% ~4!

in a range of temperature whereRxx(T),0.1Rxx(4.2 K)
'0.02h/e2. The fitting parametersR0 and T0 are listed in
Table I.

Attempts to fit the data by an expression with a tempe
ture dependent prefactor

Rxx5aTrexp$2~T0 /T!p% ~5!

and a fixedp different from 0.6 resulted in a less optimal fi
Moreover, the resulting fitting parameters are unphysical.
instance, for the case ofp50.5 the fit givesr 50.65, a
517.1, andT0525.5 K. For this situation, the prefacto
aTr in Eq. ~5! at T51 K corresponds to a conductanc

FIG. 2. The logarithm of the resistanceRxx as a function of
T20.6 for sample 40 in the minimum (B58.8 T) and at larger fields
indicated by lines, and for sample 50 in the minimum (B58.7 T).

TABLE I. Values of the magnetic fieldsB, the constantT0 and
the prefactorR0, the localization lengthjh of the electrons giving
the main contribution to the conductivity, atT50.1 K and the lo-
calization lengthjT of the electrons with energye/kB50.1 K.

Sample B ~T! T0 ~K! R0 (h/e2) jh (mm) jT (mm)

40 8.8 6.0 2.41 0.63 0.24
40 9.8 4.3 1.55 0.95 0.4
40 10.6 2.04 0.66 2.3 1.2
50 8.7 4.5 1.6 0.9 0.37
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Gxx5Rxx /Rxy
2 5Rxx /(0.5h/e2)2'70e2/h while Gxx

50.95e2/h only atT510 K. The large prefactor in the con
ductance is compensated by a small exponential factor
$2(T0 /T)p%5exp$225.51/2%'6.431023, while Gxx(10 K)/
Gxx(1 K) has a value of about 3 only. The small differen
betweenGxx(1 K) andGxx(10 K) would be the result of a
compensation of the two, which is not realistic. Thus w
conclude, that the temperature dependence in thei 52 mini-
mum in Rxx is rather described by a hopping law accordi
to Eq.~4! with a hopping exponentp near 0.6.

Without the existence of a Coulomb gap the Mott theo
of variable range hopping13 predicts the temperature depe
dence ofRxx to follow Eq. ~4! with p51/3. According to the
theory from Efros and Sklovskii,14,15 p is equal to 1/2 in the
presence of a Coulomb gap around the Fermi energyEF
~both in zero magnetic field and in the QHE regime!. This
theory was developed for situations where the localizat
length j does not depend on the energye5uE2EFu in the
gap. In the case of Anderson localization the localizat
length j should depend on the energye near the Coulomb
gap.

In the single-particle approach, atGxy
0 (B)5 ie2/h with

eveni, the localization lengthjsp of an electron at the Ferm
level equals

jsp;L0exp~0.5p2Gxx
0 2h2/e4! ~6!

estimated from the equationGxx(jsp)50 with Gxx taken
from Eq. ~1!. According to the scaling theoretical treatme
of the QHE, the localization lengthjsp generally depends
both onGxx

0 andGxy
0 . It diverges atGxy

0 (B)5( i 11/2)e2/h.
However, electron–electron interactions should result i

decrease of the localization length in the Coulomb gap
lower limit of this decrease can be estimated from the eq
tion Gxx(j0)50 with Gxx taken from Eq.~3!,

j0;L0expS pGxx
0 h

2le2 D . ~7!

Outside the gap interaction is not important, and the loc
ization length is equal or larger than the one given by expr
sion ~6! with Gxx

0 5Gxx
0 (E) for the energyE. For typical

values ofGxx
0 'e2/h andl'1, j0 is much smaller thanjsp.

As it will be shown below, such an energy dependence oj
should result inp.1/2 in Eq.~4!.

The single-particle density of states should be unaffec
by an energy dependence of the localization length, un
the distance between electrons is much larger than the lo
ization length, i.e.,g(e)j(e)2ueu!1. It should still be linear:
g(e)5gueu with g52k2/pe4 (k is the dielectric constan
of the lattice!. Let us suppose that in some range of ene
j5aueus. Then by analogy with the Mott-law derivation13,15

we obtain

Rxx}Gxx}exp$2~T0 /T!(s11)/(s12)%, ~8!

where

T05
S

kB
S Ce2

ak D 1/(s11)
9-3
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S5@~s11!2(s11)/(s12)1~s11!1/(s12)# (s12)/(s11). ~9!

The coefficienta depends on the magnetic field. Fors50,
Eqs. ~8! and ~9! reduce to the results from Efros an
Shklovskii. For s@1 one finds activated behavior andp
5(s11)/(s12)50.6 is obtained fors51/2. The main con-
tribution to the conductivity is given by hopping electro
with an energy of

eh5FCkBe2~s11!

ak
TG1/(s12)

.

The corresponding localization length

jh5auehus5FCkBe2~s11!

ak
TGs/(s12)

, ~10!

of the electrons giving the main contribution to the condu
tivity for T50.1 K and s51/2 is listed in the table. The
numerical coefficientC is taken to be 1.55 as defined fro
the equation forT0 from the Efros–Shklovskii theory (T0
56.2e2/«j).16

Sincejh}T1/5 cannot be smaller thanj0 it should become
constant at the lowest temperatures and the temperatur
pendence should reduce to the Efros–Shklovskii law. In
experimental conditionsjh approachesj0,200 nm at the
very small temperature ofT,331024 K at B58.8 T and
T,531027 K at B510.6 T for sample 40.
ev
.

he
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A dependence of the localization length on energy co
probably also account for hopping exponentsp.1/2, ob-
served in zero-field experiments.17–19An energy dependenc
as described above is also indicated by numer
simulations.20,21 Therefore, also in zero magnetic field th
power ofT in Eq. ~4! could be larger than 1/2 in some rang
of temperature.

In summary, in low magnetic fields~but still larger than
0.5 T! whereGxx.3e2/h, the temperature dependence of t
diagonal conductanceGxx of heavily dopedn-type GaAs lay-
ers with thicknesses (d540/140 nm) larger than the mea
free path of the electrons (l 523 nm) is well described by
the theory of quantum corrections due to electron–elect
interactions. In high magnetic fields whereGxx,3e2/h the
temperature dependence of the conductance in the minim
Gxx,min is still close to logarithmic down to 0.25e2/h, al-
though the theory of quantum corrections is no more ap
cable. In the region ofGxx,0.25e2/h the dissipative conduc
tance shows an exponential decrease with a powerp'0.6,
indicating the presence of a Coulomb gap. The data disp
the relevance of electron–electron interactions for the qu
tum Hall effect in these systems which have a 3D sing
particle spectrum.

We have pointed out that a dependence of the localiza
length on energy could result in an exponentp.1/2 both in
zero and nonzero magnetic field.
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19N. Marković, C. Christiansen, D. E. Gruppet al., Phys. Rev. B

62, 2195~2000!.
20F. Epperlein, M. Schreiber, and T. Vojta, Phys. Rev. B56, 5890

~1997!.
21Gun Sang Jeon, Seongho Wu, H.-W. Lee, and M. Y. Choi, Ph

Rev. B59, 3033~1999!.
9-4


