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Conductance renormalization and conductivity of a multisubband Tomonaga-Luttinger model
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We studied the conductance renormalization and conductivity of multisubband Tomonaga-Luttinger models
with intersubband interactions. We found that, as in single-band systems, the conductance of a multisubband
system with an arbitrary number of subbands is not renormalized due to interaction between electrons. We
derived a formula for the conductivity in multisubband models. We applied it to a simplified case and found
that intersubband interaction enhances the conductivity, which is contrary to the intrasubband repulsive inter-
action, and that the conductivity is further enhanced for a larger number of subbands.
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Recent studies of low-dimensional systems have brou
to light many important properties. For instance, on
dimensional~1D! electron systems, in a low-energy regim
are described not by the Fermi liquid but by a Tomona
Luttinger ~TL! liquid.1–3 Tomonaga-Luttinger liquids that in
clude the effects of the multiple degrees of freedom, such
multi-chain TL models with the interchain hopping, ha
been extensively studied. In a bulk system, the interch
hopping between 1D TL chains is relevant, resulting in
strong-coupling regime that includes a spin gap and/or
enhanced superconducting correlation.4–7 The crossover
from TL to Fermi liquid has also been studied by includi
the interchain hopping.8 Regarding the transport propertie
for example, a perfect transmission has been suggeste
two-chain system, reflecting the spin gap.9,10 The interchain
conductivity11 and the Hall effect12 of a multichain system
with the interchain hopping have also been discussed.

TL liquids have been also studied in mesoscopic quan
wires, especially with respect to the transport properties.
1D Coulomb drag13–16 has been studied on 1D two-cha
models coupled in a finite region15 or at a finite
point~s!.13,14,16In these models, the interchain backward sc
tering process between electrons, which results in a stro
coupling regime, is essential for the occurrence of a per
drag,15 a zero-bias anomaly,13 or a power-law temperatur
dependence of the transconductance.14

Another TL system with multiple degrees of freedom is
multisubband TL model with intersubband forward scatt
ing, where the intersubband single-particle hopping is forb
den. Although this model is relevant to wide quantum wir
with multisubbands, it has not been well studied for t
transport properties, such as conductance and conduct
In a quantum wire, the long-range Coulomb interaction is
sufficiently screened and the forward scattering processes
tween electrons with a small momentum transfer play
important role, while the scattering processes with large m
mentum transfers of the order of the Fermi wave number~s!,
such as the backward, Umklapp, or intersubband pair tun
ing process, may be neglected. The ground state of the a
multisubband model is in a weak coupling regime witho
the gapful excitation and is essentially different from t
multichain model with the interchain hopping or the bac
ward scattering, where the ground state is in a strong c
pling regime.
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For single-band TL models, both the conductance of cle
systems17–24 and the conductivity of dirty systems25–28 have
been studied. The models in Refs. 21–24 include the eff
of leading wires and show the absence of the conducta
renormalization due to the electron-electron interacti
which is consistent with experiments.29 However, it is not so
obvious whether the conductance renormalization of
multisubband model is absent or not. For example, Liang
co-workers30 have experimentally found that, in a clea
quantum wire, the conductance is smaller than the quant
conductance only in a high in-plane magnetic field, whe
the two inequivallent spin subbands cross the Fermi le
Hence, the conductance renormalization of a clean multis
band TL model is also of interest.

On the other hand, for a dirty single TL liquid, which ca
be realized in a long quantum wire where the wire length
longer than the mean-free path, a power-law temperature
pendence of the conductivity was observed in experimen29

which is consistent with the existing theory.25–27 If we con-
sider a multisubband system, in a two-subband system, t
as the author and co-workers28 theoretically found, the inter-
subband interaction enhances the conductivity even if
interaction is repulsive, contrary to the intrasubband rep
sive interaction. In order to further clarify the multisubban
effect, the conductivity of a TL model with larger number
subbands should be investigated.

In this paper, we study the transport properties of the m
tisubband TL model with the intersubband forward scatt
ing, neglecting the large momentum transfer processes,
as backward scatterings. We found that, as in single-b
systems, the conductance of a clean multisubband TL mo
with an arbitrary number of subbands is not renormaliz
due to the interaction between electrons. We derived a
mula based on the Mori formalism31,32 for the conductivity
of dirty multisubband TL models. Applying the formula to
multisubband model, we found that the intersubband inter
tion enhances the conductivity for an arbitrary number
subbands, and that the conductivity is more enhanced f
larger number of subbands.

Conductance of a clean TL model.Let us start from a
N-subband spinless TL model, which includes a spin
model as a special case; i.e., a spinless 2N-subband model is
equivalent to a spinfulN-subband model. The spinles
N-subband TL model can be represented as
©2001 The American Physical Society06-1



s

-

te
in

a

ht

e

a

if-
ing

tial
cted

ical
le-
nd
or-

uals

ed
y

-
rity

BRIEF REPORTS PHYSICAL REVIEW B 64 233306
H5(
i

N
1

4pE dx$vN
i @¹Q1

i ~x!#21vJ
i @¹Q2

i ~x!#2%

1(
iÞ j

N
1

4pE dxH gN
i j

2
@¹Q1

i ~x!#@¹Q1
j ~x!#

1
gJ

i j

2
@¹Q2

i ~x!#@¹Q2
j ~x!#J . ~1!

Herei or j show the subband index.Q1
i is the phase variable

for the i th subband andQ2
i is its dual variable.vN

i [vF
i

1g4
i 1g2

i [v i /Ki andvJ
i [vF

i 1g4
i 2g2

i [v iKi , whereg2(4)
i is

the interaction parameter between electrons with the oppo
~same! velocity direction in thei th subband.vF

i is the Fermi
velocity of thei th subband andv i(Ki) is the velocity of the
excitation ~critical exponent! of the i th subband. The inter
subband forward scatterings are included throughgN

i j [g4
i j

1g2
i j and gJ

i j [g4
i j 2g2

i j , where g2
i j (g4

i j ) is the interaction
parameter between electrons with the opposite~same! veloc-
ity direction in the i th and j th subbands. The unite25\
5kB51 is assumed throughout this paper.

The conductance in the ballistic regime can be calcula
by extending Ref. 24 for the single-band system. Follow
the usual manner,33 the local current operator of thei th sub-
band is determined from the continuity equation for loc
densityr i(x)5¹Q1

i (x)/(A2p) as

] ĵ i~x!

]x
52

]r i~x!

]t
52

1

A2p

]Q1
i ~x!

]t
. ~2!

The dc mean current operatorĵ N
i is then given by

ĵ M
i [

1

LE0

L

dx ĵi~x!

52
i

A2pL
E

0

L

dxE
0

x

dx8@H,¹x8Q
i~x8!#

5
1

L S vJ
i Ĵi1 (

j (Þ i )

gJ
i j

2
Ĵ j D , ~3!

whereL is the system length, andĴi5N̂1
i 2N̂2

i is the operator
for the difference between total number of particles of rig
going electrons (N̂1

i ) and left-going ones (N̂2
i ).33 On the

other hand, the Hamiltonian can be rewritten as

H5 (
k(Þ0),i

vk
i b̂k

i†b̂k
i 1

p

2L (
i

N

@vN
i N̂i

21vJ
i Ĵi

2#

1
p

4L (
iÞ j

N

@gN
i j N̂i N̂J1gJ

i j Ĵi Ĵ j #, ~4!

whereN̂i[N̂1
i 1N̂2

i andbk
i is the annihilation operator of th

boson with eigenenergyvk
i with some diagonalized indexi

51, . . . ,N. Let nk
i , Ni , andJi be the eigenvalues ofb̂k

i†b̂k
i ,

Ni , andJi , respectively. The energy eigenvalue is given
23330
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E5 (
k(Þ0),i

vk
i nk

i 1
p

2L (
i

N

@gN
i j Ni

21gJ
i j Ji

2#

1
p

4L (
iÞ j

N

@vN
i NiNj1vJ

i JiJj # ~5!

in the low-energy regime. Thus, the chemical potential d
ference between the right-going electrons and the left-go
electrons are obtained as

dm[m12m25
]E

]N1
i

2
]E

]N2
i

5
2p

L
vJ

i Ji1
p

L (
j (Þ i )

gJ
i j Jj ~ for all i !, ~6!

where the subband indexi for dm5m12m2 is omitted be-
cause bothm1 andm2 must be the same for all subbands.dm
should equal the experimentally-observed chemical poten
difference because both ends of the 1D system are conne
to reservoirs~see Ref. 24 for details!. The conductance is
readily obtained by usingj M

i [(2vJ
i Ji1( j (Þ i )gJ

i j Jj )/2L ~the

eigenvalue ofĵ M
i ) as

G5

(
i

j M
i

dm
5

1

2p
3N. ~7!

Hence, the renormalization of the current and the chem
potential difference is completely canceled out as in a sing
band system,23,24and hence the conductance of multisubba
systems with an arbitrary number of subbands is not ren
malized due to the interaction between electrons and eq
the quantized conductance~note that\5e251). From the
present result, it is found that the abovemention
experiment30 in a magnetic field cannot be explained only b
clean TL models, and the remaining possibilities34,35 should
be investigated.

Formula for the conductivity of a dirty TL model.Here,
we calculate the conductivity following Go¨tze and Wo¨lfle32

for the Mori formalism.31 We can calculate the subband
dependent relaxation time in the second order of the impu
scattering. As a result, we obtain the conductivitys(T) as

s~T!5(
i

s i~T!, s i~T!5s i0F~vF!/F~T!,

F~T![
1

TE2`

`

dt^r2k
F
i

i
~x50,t !r2k

F
i

i
~x50,t50!&, ~8!

r2k
F
i

i
~x![C i1

† ~x!C i2~x!1H.c.

Here, s i(T) is the conductivity ofi th subband,s i05s i(T
5vF)5nit i0 /m* that of the free electrons, t i0

5vF
i /(ni uu(2kF

i )u2), vF a high-frequency cutoff,m* the ef-
fective mass,kF

i (ni) the Fermi wave vector~the density of
electrons! of the i th subband, andu(k) the impurity potential
6-2
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in momentum space.C i1(2) is the annihilation operator o
right ~left!-going electrons in thei th subband. The Hamil-
tonian of Eq.~1! is written as

H5
1

4pE dx(
i j

N

$Hi j
1@¹Q1

i ~x!#@¹Q1
j ~x!#

1Hi j
2@¹Q2

i ~x!#@¹Q2
j ~x!#%, ~9!

whereHii
1(2)5vN(J)

i andHi j
1(2)5gN(J)

i j /2 for (iÞ j ). It is not
so straightforward to find a linear transformation,36 which
diagonalizes bothHi j

1 andHi j
2 , although we can diagonaliz

the Hamiltonian in principle, keeping the commutation re
tion @Q1

i (x),dQ2
j (y)/dy#522pd i j d(x2y). However, if

g2
i j 5g4

i j ~i.e., gJ
i j 50), Hi j

2 is already diagonal and can b

transformed to a matrixHi j
285vJ

1d i j by a transformation

Q1
i 5AvJ

i /vJ
1Q1

i 8 , whereas theQ1 part is simultaneously

transformed asQ2
i 5AvJ

1/vJ
i Q2

i 8 , Hi j
185Hi j

1AvJ
i vJ

j /vJ
1 . By

using a unitary matrixUi j [(uW 1 ,uW 2 , . . . ,uW N), whereuW i is the

i th eigenvector ofHi j
18 with the eigenvalueṽN

i , we can di-

agonalizeHi j
18 as H̃ i j

1[(kmUik
21Hkm

18Um j5 ṽN
i d i j by a uni-

tary transformationQ1
i 85( jUi j Q̃1

j , whereasHi j
28 remains

unchanged by the transformation becauseHi j
28 is propor-

tional to the unit matrix. Here, we should note that the co
dition g2

i j 5g4
i j is physically natural, because it holds whe

ever we assume an effective Hamiltonian where only
total charge density is coupled.33 Since the Hamiltonian is
now diagonalized, the density-density correlation functio
can be calculated as

^r2k
F
i

i
~0,t !r2k

F
i

i
~0,0!&}expF22(

j
K̃ jUi j

2 E
0

`dv

v
e2v/vF

3H tanhS v

2TD ~12cos~vT!!

1 i sin~vT!J G
})

j
F11 ivFt

pTt
sinhS p

TtD G
22K̃ jUi j

2

,

~10!

where K̃ i5AvJ
1/ ṽJ

i is the critical exponent ofQ̃1
i 8 . Finally,

the formula for the conductivity ofi th subband is obtained
by performing the time integral in Eq.~8! as

s i~T!5s i0S T

vF
D 2(12( j K̃ jUi j

2 )

. ~11!

Conductivity of an N-subband TL model.We apply the
above formula for a simplified case withN spin-full electron
subbands, where the calculation can be analytically p
formed for arbitraryN. We assume the intrasubband or inte
subband spin-independent interactions and the Fermi ve
ties are independent of the subband (g2

i 5g4
i [pvFg/2, g2

i j
23330
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5g4
ij[pvFg8/2, andv iF

↑ 5v iF
↓ [vF for all i , j ), whereas the

Fermi wave numberkF
i and the density of electronsni natu-

rally depend oni. The Hamiltonian can be written as

H5
vF

4pE dx(
i

N

$~11g!@¹u1
i ~x!#21@¹u2

i ~x!#2%

1
vFg8

4p E dx(
iÞ j

N

@¹u1
i ~x!#@¹u1

j ~x!#

1
vF

4pE dx(
i

N

$@¹f1
i ~x!#21@¹f2

i ~x!#2%. ~12!

Here u1
i (f1

i ) is the phase variable for the charge~spin!
degree of freedom of thei th subband, andu2

i (f2
i ) is its

dual variable. The Hamiltonian matrixHi j
1 (Hii

1511g,Hi j
1

5g8 for iÞ j ) has eigenvectors, such thatu1

5(1,1, . . . ,1)/AN, u25(1,21,0, . . . ,0)/A2, . . . ,ui5(1,1,
. . . ,12 i ( i -th),0, . . . ,0)/Ai ( i 21), . . . ,uN5(1,1, . . .,1,1

2N)/AN(N21), whereu1 has the eigenvalue 11g1(N
21)g8 and the other eigenvectorsu2;N have the same ei
genvalue 11g2g8. One can perform a unitary transforma
tion by using the eigenvectors to diagonalizeHi j

1 and finally
obtain the conductivity as

s i~T!5s i0S T

vF
D 2(12K)

,

K[
1

N

1

A11g1~N21!g8
1S 12

1

ND 1

A11g2g8
.

~13!

For N52, one can reproduce the result of Ref. 28. So
interesting properties of the conductivity can be found in E
~13!. First, as in the single-band case,]K/]g,0 always
holds, where the repulsive interaction enhances thekF
charge density wave~CDW! correlation, resulting in the re
duction of the conductivity. More interestingly,]K/]ug8u
.0 always holds for arbitrary subband numbers. This me
that the intersubband interaction, being independent of
sign, enhances the conductivity. This is not so trivial but m
be understood by the discordance between the wave num
of the CDW correlations of different subbands. Namely, t
intersubband interaction disturbs the CDW correlation
each subband because of the discordance, and the effe
the disturbance should naturally be independent of the s
of the intersubband interaction. On the other hand,]K/]N
.0 also always holds, and thus the conductivity is mon
tonically enhanced as a function of the number of subban
This is because the intersubband interaction, which enha
the conductivity, works more significantly for a larger num
ber of subband. If we consider the large-N ~2D-like! behav-
ior, which can be examined only wheng8.0, the critical
exponentK tends to (121/N)/A11g2g81O(N23/2) and
the resulting conductivity is the same as in the single ba
system with a renormalized intra-subband interactiong2g8.
If one compares our result with that of Ref. 37 based on
6-3
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Fermi liquid (s(T)}T1/N), there is a qualitative consistenc
in the sense that the conductivity is an increasing funct
of N.

In conclusion, we found that the conductance of cle
systems with an arbitrary number of subbands is not ren
malized due to the interaction between electrons. We a
found that the conductivity of a dirty multisubband model
enhanced by the intersubband interaction~contrary to the
intrasubband repulsive interaction! independent of its sign
and the number of subbands and that it is more enhance
a larger number of subbands. The present results ma
23330
n

n
r-
o

for
be

observed in future experiments on wide and long quant
wires that have multi-1D subbands.

Note added in proof.After the present work was com
pleted, the author became aware of Ref. 38. Their results
conductance of a two-subband model agree with our re
for conductance.
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çeau~Reidel, Dordrecht, 1985!, p. 41.

4M. Fabrizio, Phys. Rev. B48, 15 838~1993!.
5L. Balents and M.P.A. Fisher, Phys. Rev. B53, 12 133~1993!.
6T. Kimura, K. Kuroki, and H. Aoki, Phys. Rev. B54, R9608

~1996!.
7H-H. Lin, L. Balents, and M.P.A. Fisher, Phys. Rev. B56, 6569

~1993!.
8E. Arrigoni, Phys. Rev. Lett.83, 128 ~1999!.
9T. Kimura, K. Kuroki, and H. Aoki, Phys. Rev. B51, 13 860

~1995!.
10E. Arrigoni, Phys. Rev. Lett.79, 2297~1997!.
11A. Georges, T. Giamarchi, and N. Sandler, Phys. Rev. B61,

16 393~2000!.
12A. Lopatin, A. Georges, and T. Giamarchi, Phys. Rev. B63,

075109~2001!.
13A. Komnik and R. Egger, Phys. Rev. Lett.80, 2881~1998!.
14K. Flensberg, Phys. Rev. Lett.80, 2881~1998!.
15Y. Nazarov and D.V. Averin, Phys. Rev. Lett.81, 653 ~1998!.
16P. Durganandini and S. Rao, Phys. Rev. B59, 13 122~1999!.
17W. Apel and T.M. Rice, Phys. Rev. B26, 7063~1982!.
18C.L. Kane and M.P.A. Fisher, Phys. Rev. Lett.68, 1220~1992!.
19A. Furusaki and N. Nagaosa, Phys. Rev. B47, 4631~1993!.
20T. Kimura, K. Kuroki, and H. Aoki, Phys. Rev. B53, 9572
~1996!.

21D.L. Maslov and M. Stone, Phys. Rev. B52, R5539~1995!.
22V.V. Ponomarenko, Phys. Rev. B52, R8666~1995!.
23A. Kawabata, J. Phys. Soc. Jpn.65, 30 ~1996!.
24A. Shimizu, J. Phys. Soc. Jpn.65, 1162~1996!.
25A. Luther and I. Peschel, Phys. Rev. Lett.32, 992 ~1974!.
26H. Fukuyama, H. Kohno, and R. Shirasaki, J. Phys. Soc. Jpn.62,

1109 ~1993!.
27M. Ogata and H. Fukuyama, Phys. Rev. Lett.73, 468 ~1994!.
28T. Kimura, K. Kuroki, H. Aoki, and M. Eto, Phys. Rev. B49,

16 852~1994!.
29S. Tarucha, T. Honda, and T. Saku, Solid State Commun.94, 233

~1995!.
30C.-T. Liang, M. Pepper, M.Y. Simmons, C.G. Smith, and D.

Ritchie, Phys. Rev. B61, 9952~2000!.
31H. Mori, Prog. Theor. Phys.33, 423 ~1965!.
32W. Götze and P. Wo¨lfle, Phys. Rev. B6, 1226~1974!.
33F.D.M. Haldane, J. Phys. C14, 2585~1981!.
34K.J. Thomaset al., Phys. Rev. Lett.77, 135~1996!; Phys. Rev. B

58, 4846~1998!; 61, R13 365~2000!.
35V.V. Ponomarenko and N. Nagaosa, Phys. Rev. Lett.83, 1822

~1999!.
36N. Nagaosa and T. Ogawa, Solid State Commun.88, 295 ~1993!.
37A. Kawabata and T. Brandes, J. Phys. Soc. Jpn.65, 3712~1996!.
38O.A. Starykh, D.L. Maslov, W. Hausler, and L.I. Glazman,

Low-dimensional System: Interactions and Transport Prop
ties, Lecture Notes in Physics No. 544~Springer, Heidelberg,
2000!.
6-4


