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Ground states of the Falicov-Kimball model with correlated hopping
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Two-dimensional spinless Falicov-Kimball mod&KM) with correlated hopping is studied perturbatively
in the limit of large on-site Coulomb interactidd. In the half filled casdi.e., pi+pe.=1, wherep; ,p, are
densities of ions and electrons, respectiyéhe effective Hamiltonian in spin variables is derived up to terms
proportional toU ~3. Unlike the simplest FKM case, it contains odd parity tefmesulting from the correlated
hopping in addition to even parity ones. The ground-state phase diagram of the effective Hamiltonian is
examined in thed/t,h) plane, wherea/t is a parameter characterizing strength of the correlated hopping and
h is a difference of chemical potentials of two sorts of particles present in the system. It appears to be
asymmetric with respect to the changes —h and an additional ordered phase is found for a certain interval
of a/t.
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I. INTRODUCTION sites between which an electron hops.
One of the most difficult problems that one encounters,

One of the most fascinating, but still mysterious phenom-when trying to describe correlated electron systems, is the
enon observed in some materials is a charge ordér[hg._ choice of a reliable method that enables us to treat the model
Spite of its oddity, Originated from the quantum nature ofunder consideration in a controllable way. Here we use a
interacting electrons, it seems to be very likely that an inhoPerturbative method valid in the largelimit, that permits us
mogeneous charge distribution is a very common effecto transform an initial Hamiltonian, having a small quantum
present in strongly correlated electron systéri$ien, pre- part, into an effective classical one. The methoq has been
sumably, it must be related to a number of various phenomteported in a series of papers by Datta, Fernandealign
ena found in the system@uch asmetal-insulator phase and Rey-Bellet®™'®One can use this method to generate a
transition, high-T, superconducitivity, giant magnetoresistiv- perturbative series up to an arbitrarily high order ik 1to
ity, just to mention a feyv The above arguments point out establish ther:onvergence)f the whole procedure, and—in
how important is the understanding of the nature of the effecBome cases—to obtain phase diagrams in (out nonzer
and justify growing interest in its theoretical descriptfoim ~ temperatures. This can be done by extending the techniques
particular it is important to determine factors deciding aboutof Pirogov-Sinai theor§? to quantum models.
what sorts of charge superstructures are formed. The aim of our paper is to examine properties of the

One of the simplest models suitable to decribe chargechFKM in the perturbative regimei.e., in the range of pa-
ordered phases on a microscopic level is the Falicov-Kimbalfameters where all kinds of hopping terms are small in com-
model (FKM), previou5|y app“ed to account for the metal- parison with the on-site Coulomb interaction tetimWe are
insulator transitioﬁ’mixed valence phenomeﬁ&rysta”iza- particularly interested in the examination of how the corre-
tion and alloy formatior, etc. Indeed, it was shown that lated hopping term influences charge ordering. In the first
ground_state phase diagrams of the Simp|est version of thieart of our work we derived an effective Hamiltonian, that is
FKM have extremely rich structufe® The great advantage l€gitimated in the largeJ limit. Then we found its ground-
of the model is that it is amenable to rigorous analysfs.  state properties by means of the method of restricted phase

However, the simplest version of the FKM, although non-diagrams, used previously in the simplest version of the
trivial, is not able to account for all aspects of real experi-FKM."®
ments. An objective of our studies is the gradual inclusion of
those terms that were ignored in the simplest version of the
FKM, yet keeping the model tractable.

In this contribution we investigate the FKM with the so-  \We are dealing with two types of particles defined on a
called correlated hopping ternadded(chFKM). This term  d-dimensional simple cubic latticg%: immobile ions and
was already mentioned by Hubbard in Ref. 11. More than atinerant spinless electrongother interpretations of the
decade ago Hirsch pointed out that the term may be relevamodel have also been consideréd.
in the explanation of superconducting properties of strongly The Hamiltonian defined on a finite subsetof Z¢ has
correlated electron systemiie named itthe bond-charge the form
interaction.'? In the past few years some other authors have
examined a role of the correlated hopping in the FK\and
the Hubbard modét+!® mainly in the context of the metal- Hya=Hoa+Vy, @
insulator phase transition. Inclusion of this term makes elec-
tron hopping rate dependent on occupation numbers of thosghere

Il. MODEL
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oped in Refs. 16—19 for Hamiltonians of the foc#). Their
Hopa=U X Wyy— i >, Wx— e 2, Ny, (2)  components can have a quite general form; it is sufficient
xeA xeA XeA .
that both of them are sums of finite range operatorseven
infinite-range but exponentially decreasing with distance
Vy=-— z [t+a(wx+wy)](clcy+ C;Cx)- ©) Morgove(, itis assumt_ad thit, is expressible by translation-
Xy) ally invariantm potentiall’1843
The technique developed in Refs. 16—-19 has also two
other important aspects. First, since we restrict ourselves to
the low-temperature region of the phase diagram, we need to
"’Hiagonalize onlya low-energy part of the Hamiltonian,
which considerably simplifies the calculations. Second, spe-
cial care is taken to the form of the transformed Hamiltonian:
it is formulated as a sum dbcal operators. It is necessary to
obtain uniform estimate§.e., independent of volumeand,
as a consequence, to establish the convergence of the whole

Herecl andc, are creation and annihilation operators of an
electron at lattice sit& e A, satisfying ordinary anticommu-
tation relations and the corresponding number particle oper
tor is nX=cIcX. w, is a classical variable taking values O or
1. It measures the number of ions at lattice git€he chemi-
cal potentials of the ions and electrons areand u,, re-
spectively, t is the electron hopping amplitude between
empty sites and is the correlated hopping constant. The

s_ymbol (xy) depotes an orderless pair of nearest—neighbobrocedure, andin some casedo examine orderings emerg-
sites of the lattice. ing in the system.

In this paper we examine the model in the range of pa- “s| this formalism, its background, achievements, and
rameters,a<U. The value ofa is usually smaller than that imitations can be found in Refs. 16—19. It must be stressed

of t, however, both these quantities are of the same ordef, ¢ many analogous results have been also obtained by Ko-
Indeed, in systems described by the Hubbard-like models, gecky and co-worker& 25

has been found thaa/t|~0.31?In our studies we impose
the following condition:—t<a<t (for a=0, this model re-

duces to the ordinary FKM IV. EFFECTIVE HAMILTONIAN

Ill. GENERAL OUTLINE OF THE PERTURBATION The Hilbert space of the whole systehd, is a tensor
SCHEME product: H, = ®,. A Hy. EveryH, is spanned by the states:
|w, ,n,). There are four base vectot§,0), |1,0), |0,1), and

The perturbative scheme we use here can be applied t0|3 1), The corresponding energies are=Qu;; — pe;U — u;
general class dflattice) Hamiltonians(defined onA C Z9) of — e
the following form: Let us begin our analysis from the classical part of the
_ Hamiltonian. It is identical to a classical part of the Hubbard
HA(D=Hoa+1Vy, ) model and the FKM, and it is well knowtl.The phase dia-

where the unperturbed Hamiltonid, , is a classicalop- ~ 9ram consist of four regions. In region defined by u;
erator(i.e., it is diagonal in a basis being the product of bases<0:#e<0, all sites are empty. In two twin regiorb; , 11 ¢,
on all lattice siteswith degenerate ground staté@bviously ~ diven by the conditiondl;: ui>0, ui>ue, pe<U (for
the chFKM, introduced by the formulas above, belong to thid! e, one should interchange the subscriptside), all sites
class) Our purpose is to examine the effect of a quantumare in the[1,0) (correspondingly0,1)) state. In regiorll,
perturbationrV, , wherer is a small parameter. In other 9iven by ui>U,u.>U, all sites are doubly occupied. The
words, we want tablock) diagonalize the Hamiltonian and Most interesting situation is in the neighborhood of the
find its ground states. = ue line between regionH ; andll ., which corresponds to
To accomplish this task we are looking for a unitary trans-the half filled band, where there is a macroscopic degen-
formationU(r), which (block) diagonalizes the full Hamil- €racy. We will analyze mainly this region.
tonian. In most cases, finding out such a transformation ex- After some relatively straightforward but lengthy calcula-
actly is a hopeless job. More constructive method is dions, performed partially with the aid of symbolic computa-
perturbative treatment, consisted in “killing” the off- tion programs, we have obtained fdr=2 the following ef-

diagonal part of perturbation up to some finite power of theféctive Hamiltonian up to the second order of the
parameter: perturbation theory, i.e., up to terms proportionalto>:

H(r)=Hg+rV—H(r)+rn+1yed,

at t2 td
whereH{"(r) is block diagonal up to the ordert+1 inr. In H = ( h— 20—?) > st ZUef— 18%) > s
this way one can determine an explicit formula for a diago- U ' U/ dtiiy=1
nal part of the perturbed Hamiltonid{"(r), called the ef- 6ta+ 8a’t%
fective Hamiltonian. e E _SiS;
Results based on various perturbative schemes have been U di.j)=12

previously obtained for the simplest versioti., without a4+ 2222 gatd
correlated hopping term of the FKM and Hubbard et 77 Tef _
models!®?1?2The method applied in our studies was devel- U®  dip-2 U Saiik

233103-2



BRIEF REPORTS PHYSICAL REVIEW B 64 233103

16at3; 40t
D SSSt—— > SiSiSS)
us Bajjk U Pajiki

3tgf_ lOaztgf
+— 1, (5)
2U3 %§i|

Rescaled h
=

wheres; is the classical one-half spin on the lattice $jti¢ is
related to the variablev; by the formula:s;=w;—1/2; t
=t+a; Bsjjk—"bent” triples of spinsi,j,k (i.e., the angle
between bondgj and jk is 7/2); S3jj—"straight” triples;
Pajjii is @ 2X2 plaquette on the latticét= u; — ue.
Remark 1.For a=0, we should obtain an effective -0.773456 -0.3694 0
Hamiltonian for the ordinary FKM. Comparing E¢) for a/t
a=0 with analogous expression in Ref. 19, Table 2, we ob-
served full consistence with the exception of the constan{5
term [we claim that authors have omitted the term
(t*/2U3) P?Xyzm} (in their terminology]. But this term is im-
portant only for absolute values of energy; it neither affect
the differences of energies, nor the phase diagram.
Remark 2.The effective Hamiltonian5) written in the

FIG. 1. Schematic phase diagram of the effective Hamiltonian
) of the correlated hopping FKM. Phases represented by various
arrangements of the ions are depicted in Fig. 2.

Swill be able to find a rigorous proof that our configurations
are true minimizers.
The phase diagram in variablea/{,h) is displayed in

i oo g, henass -1 € can be otced ia o  predominan set o model
9 : ’ parameters the sequence of phases agrees with that one

is an important aspect, as compared with the simplest FKI\/[Iiound for the ordinary FKMalthough the values df sepa-

that comes from the correlated hopping tefine., for a - .
#0). This is the presence of terms with odd numbers of th«?r:trlggn:l?f;;gutigtt ?gﬁieos :ﬁg:rg ;tro;gl[g)\?vlr;lgr\gever, it
— 1 G+

spin operators. As a result the symmetirs —h (present in
FK and Hubbard modelsno longer holds. An additional
term proportional to the sum of spin variables plays a role of a,=(—4—12)/7~-0.773459,
a supplementary external field. The other odd terms can be
regarded as generalized fields.

A physical explanation of the reason why these terms with
odd numbers of spin operators emerge is straightforward. Let
us first focus on the linear term. Since in the chFKM the@ new type of orderinglabeled by(4)] appears, instead of
hopping rate depends on sites occupations, it is energeticalfiie three phaseg3, 5, 6. Consequently, the diagram is
favorable if all occupation numbers have one of two possiblelearly asymmetric with respect to the horizontal axis0.
values: 1 ifa>0 (as hopp|ng amp"tude between two occu- Another interesting feature of the diagram is presence of
pied site is equal to+a) and 0 ifa<0. (Note that for the the junction point foh=0a= —t, where all lines separating
simplest FKMa=0 so the linear term does not contribute to Various phases fdn>0, as well as most of the lines fdr
the Hamiltonian, as it is proportional ) The odd terms of

a_=(—4+/2)/7~—0.369398,

higher order enter in a more subtle way, as they involve three (1) (2) (3)

or more neighboring sites, but the principal rule stays the . . . . .. - -0 -® e -8

same: it favors an occupation number equal to 1 or Ogfor = - - - - - ¢-e-0- T8 -

>0 ora<O0, respectively. e . et al el
...... ® ® @ ® [
...... Y ] e - [ ] [ ]

V. THE PHASE DIAGRAM
Since there is no general method of finding ground states

for classical Hamiltonian&s far as we knoyy we looked for (4) (5) (6)

the ground states of the Hamiltoni&b) by minimizingen- .. .. .. ... ... - - - -8

ergy in some set of “trial” configurationgthe method of °-0 -9 ® -0 -0 e

restricted phase diagram§. We took a set of alperiodic . el e e S

configurations, having elementary cells up to 12 sitesre -« « - -« ... ... c e

are 4000 such nonequivalent configuratipm®wever, it ap- ¢t -0 ¢ e

peared thaall configurations that emerged in the phase dia- k|G, 2. Configurations of the ions, marked by heavy d@ (

gram have no more than five sites per elementary cell. Thigorresponding to phases displayed in Fig. 1. Phases labeled by num-
observation led us to the conjection that within the assumeders with prime(e.g., 2, 3, 4', etc) have mirror configurations

perturbation order our results are exact, i.e., we claim thakith respect to those without prim, i.e., lattice sites occupied by the
other configurations are absent. We hope that in the future wiens are then interchanged with those of unoccupied by the ions.
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<0, join together. It worthwhile to notice that the exact so-an additional ordered phase, that does not exist for the sim-
lution has been given just for this characteristic symmetryplest FKM, has been found for a certain interval of the pa-
point® rametera.

The possible directions for further studies that emerge
from our results are: taking into account subsequent terms of
) _ ) _ perturbation theory, investigation the system at low, but non-

The results obtained in this paper can be summarized agrg temperatures and the inclusion of additional small terms
follows. First, the effective Hamiltonian of the chFKM in the g the guantum part of the Hamiltonidfor instance, we will
second-order perturbation theofye., up to terms propor- gjjow hopping of the ions with a small amplitutie<t., thus

tional to U™%) has been found, and then its ground-stategptaining a strongly asymmetric Hubbard model with corre-
phase diagram has been constructed. It has become evidegied hopping

from our studies that the correlated hopping term modifies
substantionally the effective Hamiltonian and consequently
the phase diagram of the simplest FKM. The characteristic
feature of the effective Hamiltonian is the presence of odd
parity terms. As the result the phase diagram becomes asym- We acknowledge support from the Polish Research Com-

VI. SUMMARY
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