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Ground states of the Falicov-Kimball model with correlated hopping
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Two-dimensional spinless Falicov-Kimball model~FKM! with correlated hopping is studied perturbatively
in the limit of large on-site Coulomb interactionU. In the half filled case~i.e., r i1re51, wherer i ,re are
densities of ions and electrons, respectively! the effective Hamiltonian in spin variables is derived up to terms
proportional toU23. Unlike the simplest FKM case, it contains odd parity terms~resulting from the correlated
hopping! in addition to even parity ones. The ground-state phase diagram of the effective Hamiltonian is
examined in the (a/t,h) plane, wherea/t is a parameter characterizing strength of the correlated hopping and
h is a difference of chemical potentials of two sorts of particles present in the system. It appears to be
asymmetric with respect to the changeh→2h and an additional ordered phase is found for a certain interval
of a/t.

DOI: 10.1103/PhysRevB.64.233103 PACS number~s!: 71.10.Fd, 71.27.1a
m

o
ho
ec

m

v-
t

fe

ou

ge
ba
l-

t
t

e

n
ri
o
th

o-

n
va
gl

v

-
le
o

rs,
the

odel
e a

m
een

a

ues

he

m-

re-
rst
is

ase
the

a

I. INTRODUCTION

One of the most fascinating, but still mysterious pheno
enon observed in some materials is a charge ordering.1 De-
spite of its oddity, originated from the quantum nature
interacting electrons, it seems to be very likely that an in
mogeneous charge distribution is a very common eff
present in strongly correlated electron systems.2 Then, pre-
sumably, it must be related to a number of various pheno
ena found in the systems~such asmetal-insulator phase
transition, high-Tc superconducitivity, giant magnetoresisti
ity, just to mention a few!. The above arguments point ou
how important is the understanding of the nature of the ef
and justify growing interest in its theoretical description.2 In
particular it is important to determine factors deciding ab
what sorts of charge superstructures are formed.

One of the simplest models suitable to decribe char
ordered phases on a microscopic level is the Falicov-Kim
model ~FKM!, previously applied to account for the meta
insulator transition,3 mixed valence phenomena,4 crystalliza-
tion and alloy formation,5 etc. Indeed, it was shown tha
ground-state phase diagrams of the simplest version of
FKM have extremely rich structure.6–8 The great advantag
of the model is that it is amenable to rigorous analysis.9,10

However, the simplest version of the FKM, although no
trivial, is not able to account for all aspects of real expe
ments. An objective of our studies is the gradual inclusion
those terms that were ignored in the simplest version of
FKM, yet keeping the model tractable.

In this contribution we investigate the FKM with the s
called correlated hopping termadded~chFKM!. This term
was already mentioned by Hubbard in Ref. 11. More tha
decade ago Hirsch pointed out that the term may be rele
in the explanation of superconducting properties of stron
correlated electron systems~he named itthe bond-charge
interaction!.12 In the past few years some other authors ha
examined a role of the correlated hopping in the FKM,13 and
the Hubbard model,14,15 mainly in the context of the metal
insulator phase transition. Inclusion of this term makes e
tron hopping rate dependent on occupation numbers of th
0163-1829/2001/64~23!/233103~4!/$20.00 64 2331
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sites between which an electron hops.
One of the most difficult problems that one encounte

when trying to describe correlated electron systems, is
choice of a reliable method that enables us to treat the m
under consideration in a controllable way. Here we us
perturbative method valid in the largeU limit, that permits us
to transform an initial Hamiltonian, having a small quantu
part, into an effective classical one. The method has b
reported in a series of papers by Datta, Fernandez, Fro¨hlich,
and Rey-Bellet.16–19 One can use this method to generate
perturbative series up to an arbitrarily high order in 1/U, to
establish theconvergenceof the whole procedure, and—in
some cases—to obtain phase diagrams in low~but nonzero!
temperatures. This can be done by extending the techniq
of Pirogov-Sinai theory20 to quantum models.

The aim of our paper is to examine properties of t
chFKM in the perturbative regime, i.e., in the range of pa-
rameters where all kinds of hopping terms are small in co
parison with the on-site Coulomb interaction termU. We are
particularly interested in the examination of how the cor
lated hopping term influences charge ordering. In the fi
part of our work we derived an effective Hamiltonian, that
legitimated in the largeU limit. Then we found its ground-
state properties by means of the method of restricted ph
diagrams, used previously in the simplest version of
FKM.7,8

II. MODEL

We are dealing with two types of particles defined on
d-dimensional simple cubic latticeZd: immobile ions and
itinerant spinless electrons.~other interpretations of the
model have also been considered5,7–9!.

The Hamiltonian defined on a finite subsetL of Zd has
the form

HL5H0,L1VL , ~1!

where
©2001 The American Physical Society03-1
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H0,L5U (
xPL

wxnx2m i (
xPL

wx2me(
xPL

nx , ~2!

VL52(̂
xy&

@ t1a~wx1wy!#~cx
†cy1cy

†cx!. ~3!

Herecx
† andcx are creation and annihilation operators of

electron at lattice sitexPL, satisfying ordinary anticommu
tation relations and the corresponding number particle op
tor is nx5cx

†cx . wx is a classical variable taking values 0
1. It measures the number of ions at lattice sitex. The chemi-
cal potentials of the ions and electrons arem i and me , re-
spectively, t is the electron hopping amplitude betwe
empty sites anda is the correlated hopping constant. Th
symbol ^xy& denotes an orderless pair of nearest-neigh
sites of the lattice.

In this paper we examine the model in the range of
rameterst,a!U. The value ofa is usually smaller than tha
of t, however, both these quantities are of the same or
Indeed, in systems described by the Hubbard-like model
has been found thatua/tu'0.3.11,12 In our studies we impose
the following condition:2t<a<t ~for a50, this model re-
duces to the ordinary FKM!.

III. GENERAL OUTLINE OF THE PERTURBATION
SCHEME

The perturbative scheme we use here can be applied
general class of~lattice! Hamiltonians~defined onL,Zd) of
the following form:

HL~ t !5H0,L1rVL , ~4!

where the unperturbed HamiltonianH0,L is a classicalop-
erator~i.e., it is diagonal in a basis being the product of ba
on all lattice sites! with degenerate ground states.~Obviously
the chFKM, introduced by the formulas above, belong to t
class.! Our purpose is to examine the effect of a quant
perturbationrVL , where r is a small parameter. In othe
words, we want to~block! diagonalize the Hamiltonian an
find its ground states.

To accomplish this task we are looking for a unitary tran
formationU(r ), which ~block! diagonalizes the full Hamil-
tonian. In most cases, finding out such a transformation
actly is a hopeless job. More constructive method is
perturbative treatment, consisted in ‘‘killing’’ the off-
diagonal part of perturbation up to some finite power of
parameterr:

H~r ![H01rV→H̃0
(n)~r !1r n11Ṽod,

whereH̃0
(n)(r ) is block diagonal up to the ordern11 in r. In

this way one can determine an explicit formula for a diag
nal part of the perturbed HamiltonianH̃0

(n)(r ), called the ef-
fective Hamiltonian.

Results based on various perturbative schemes have
previously obtained for the simplest versions~i.e., without
correlated hopping term! of the FKM and Hubbard
models.19,21,22The method applied in our studies was dev
23310
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oped in Refs. 16–19 for Hamiltonians of the form~4!. Their
components can have a quite general form; it is suffici
that both of them are sums of finite range operators~or even
infinite-range but exponentially decreasing with distanc!.
Moreover, it is assumed thatH0 is expressible by translation
ally invariantm potential.17,18,23

The technique developed in Refs. 16–19 has also
other important aspects. First, since we restrict ourselve
the low-temperature region of the phase diagram, we nee
diagonalize onlya low-energy part of the Hamiltonian,
which considerably simplifies the calculations. Second, s
cial care is taken to the form of the transformed Hamiltonia
it is formulated as a sum oflocal operators. It is necessary t
obtain uniform estimates~i.e., independent of volume! and,
as a consequence, to establish the convergence of the w
procedure, and~in some cases! to examine orderings emerg
ing in the system.

All this formalism, its background, achievements, a
limitations can be found in Refs. 16–19. It must be stres
that many analogous results have been also obtained by
tecky and co-workers.24,25

IV. EFFECTIVE HAMILTONIAN

The Hilbert space of the whole systemHL is a tensor
product:HL5 ^ xPLHx . EveryHx is spanned by the states
uwx ,nx&. There are four base vectors:u0,0&, u1,0&, u0,1&, and
u1,1&. The corresponding energies are: 0;2m i ;2me ;U2m i
2me .

Let us begin our analysis from the classical part of t
Hamiltonian. It is identical to a classical part of the Hubba
model and the FKM, and it is well known.19 The phase dia-
gram consist of four regions. In regionI, defined bym i
,0,me,0, all sites are empty. In two twin regionsII i ,II e ,
given by the conditionsII i : m i.0, m i.me , me,U ~for
II e , one should interchange the subscriptsi ande!, all sites
are in theu1,0& ~correspondinglyu0,1&) state. In regionIII ,
given by m i.U,me.U, all sites are doubly occupied. Th
most interesting situation is in the neighborhood of them i
5me line between regionsII i andII e , which corresponds to
the half filled band, where there is a macroscopic deg
eracy. We will analyze mainly this region.

After some relatively straightforward but lengthy calcul
tions, performed partially with the aid of symbolic comput
tion programs, we have obtained ford52 the following ef-
fective Hamiltonian up to the second order of th
perturbation theory, i.e., up to terms proportional toU23:

HL,eff
(2) 5S h220

atef
3

U3 D(i
si1S 2

tef
2

U
218

tef
4

U3D (
d( i , j )51

sisj

1
6tef

4 18a2tef
2

U3 (
d( i , j )5A2

sisj

1
4tef

4 12a2tef
2

U3 (
d( i , j )52

sisj1
8atef

3

U3 (S3,i jk

sisjsk
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1
16atef

3

U3 (B3,i jk

sisjsk1
40tef

4

U3 (P4,i jkl

sisjsksl

1
3tef

4 210a2tef
2

2U3 (P4,i jkl

1, ~5!

wheresi is the classical one-half spin on the lattice sitei; it is
related to the variablewi by the formula:si5wi21/2; tef
5t1a; B3,i jk—‘‘bent’’ triples of spins i , j ,k ~i.e., the angle
between bondsi j and jk is p/2); S3,i jk—‘‘straight’’ triples;
P4,i jkl is a 232 plaquette on the lattice;h5m i2me .

Remark 1. For a50, we should obtain an effectiv
Hamiltonian for the ordinary FKM. Comparing Eq.~5! for
a50 with analogous expression in Ref. 19, Table 2, we
served full consistence with the exception of the const
term @we claim that authors have omitted the ter
(t4/2U3)P$xyzw%

0 ~in their terminology!#. But this term is im-
portant only for absolute values of energy; it neither affe
the differences of energies, nor the phase diagram.

Remark 2.The effective Hamiltonian~5! written in the
spin variables corresponds to the Ising-like model w
~dominating! antiferromagnetic interactions. However, the
is an important aspect, as compared with the simplest FK
that comes from the correlated hopping term~i.e., for a
Þ0). This is the presence of terms with odd numbers of
spin operators. As a result the symmetryh→2h ~present in
FK and Hubbard models! no longer holds. An additiona
term proportional to the sum of spin variables plays a role
a supplementary external field. The other odd terms can
regarded as generalized fields.

A physical explanation of the reason why these terms w
odd numbers of spin operators emerge is straightforward.
us first focus on the linear term. Since in the chFKM t
hopping rate depends on sites occupations, it is energetic
favorable if all occupation numbers have one of two poss
values: 1 ifa.0 ~as hopping amplitude between two occ
pied site is equal tot1a) and 0 if a,0. ~Note that for the
simplest FKMa50 so the linear term does not contribute
the Hamiltonian, as it is proportional toa.! The odd terms of
higher order enter in a more subtle way, as they involve th
or more neighboring sites, but the principal rule stays
same: it favors an occupation number equal to 1 or 0, foa
.0 or a,0, respectively.

V. THE PHASE DIAGRAM

Since there is no general method of finding ground sta
for classical Hamiltonians~as far as we know!, we looked for
the ground states of the Hamiltonian~5! by minimizing en-
ergy in some set of ‘‘trial’’ configurations~the method of
restricted phase diagrams7,8!. We took a set of allperiodic
configurations, having elementary cells up to 12 sites~there
are 4000 such nonequivalent configurations!, however, it ap-
peared thatall configurations that emerged in the phase d
gram have no more than five sites per elementary cell. T
observation led us to the conjection that within the assum
perturbation order our results are exact, i.e., we claim
other configurations are absent. We hope that in the future
23310
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will be able to find a rigorous proof that our configuratio
are true minimizers.

The phase diagram in variables (a/t,h) is displayed in
Fig. 1. It can be noticed that for a predominant set of mo
parameters the sequence of phases agrees with that
found for the ordinary FKM~although the values ofh sepa-
rating subsequent phases depend strongly ona). However, it
is remarkable that forh,0 andaP]a2 ,a1@ , where

a15~242A2!/7'20.773459,

a25~241A2!/7'20.369398,

a new type of ordering@labeled by~4!# appears, instead o
the three phases~3, 5, 6!. Consequently, the diagram i
clearly asymmetric with respect to the horizontal axish50.

Another interesting feature of the diagram is presence
the junction point forh50,a52t, where all lines separating
various phases forh.0, as well as most of the lines forh

FIG. 1. Schematic phase diagram of the effective Hamilton
~5! of the correlated hopping FKM. Phases represented by var
arrangements of the ions are depicted in Fig. 2.

FIG. 2. Configurations of the ions, marked by heavy dots (d),
corresponding to phases displayed in Fig. 1. Phases labeled by
bers with prime~e.g., 18, 38, 48, etc.! have mirror configurations
with respect to those without prim, i.e., lattice sites occupied by
ions are then interchanged with those of unoccupied by the ion
3-3
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,0, join together. It worthwhile to notice that the exact s
lution has been given just for this characteristic symme
point.15

VI. SUMMARY

The results obtained in this paper can be summarize
follows. First, the effective Hamiltonian of the chFKM in th
second-order perturbation theory~i.e., up to terms propor-
tional to U23) has been found, and then its ground-st
phase diagram has been constructed. It has become ev
from our studies that the correlated hopping term modi
substantionally the effective Hamiltonian and conseque
the phase diagram of the simplest FKM. The characteri
feature of the effective Hamiltonian is the presence of o
parity terms. As the result the phase diagram becomes as
metric with respect to the change of sign ofh. In particular,
y,

23310
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an additional ordered phase, that does not exist for the s
plest FKM, has been found for a certain interval of the p
rametera.

The possible directions for further studies that eme
from our results are: taking into account subsequent term
perturbation theory, investigation the system at low, but n
zero temperatures and the inclusion of additional small te
to the quantum part of the Hamiltonian~for instance, we will
allow hopping of the ions with a small amplitudet i!te , thus
obtaining a strongly asymmetric Hubbard model with cor
lated hopping!.
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