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Influence of the boundary resistivity on the proximity effect

C. Ciuhu and A. Lodder
Faculty of Sciences / Natuurkunde en Sterrenkunde, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
(Received 22 June 2001; published 26 November 2001

We apply the theory of Takahashi and Tachiki in order to explain theoretically the dependence of the upper
critical magnetic field of a S/N multilayer on the temperature. This problem has been already investigated in
the literature, but with a use of an unphysical scaling parameter for the coherence length. We show explicitly
that, in order to describe the data, such an unphysical parameter is unnecessary if one takes into account the
boundary resisitivity of the S/N interface. We obtain a very good agreement with the experiments for the
multilayer systems Nb/Cu and V/Ag, with various layer thicknesses.
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[. INTRODUCTION one increases the thickness of the layers. Since the fitting
problem mentioned above showed up particularly for thick-
In trying to describe the experimental data for differentlayer systems, taking into account surface superconductivity
kinds of multilayers, such as Nb/Cu or V/Ag, Koperdraaddoes not bring any essential improvement to the already
calculated upper critical magnetic fields versus temperatureeXisting results.
using Takahashi-Tachiki theory for infinite multilayérsie In the present paper we consider the influence of a S/N

used as fitting parameters the bulk critical temperature of théterface resistivity, in order to get rid of the unphysical pa-
S. the ratio between the densities of states of thd@metere. This is in line with experimental evidence that the

S layer, T; 4 e . : :
two materialsN</Ny : and the two corresponding diffusion interfaces of artificial multilayers for mgtals with a different
Ns/Ny P g crystal structure such as Nb/Cu are quite rotfjimdeed, we

constantdg andDy . : i g
. - . L find that a finite boundary resistivityRg) allows for a good
In calculating the magnetic field anisotropy, which is theTit with the experimental data.

ratio between the parallel and perpendicular upper critical The paper is organized as follows. In Sec. Il we summa-

magnetic fieldsH,)/Hc,, , two choices were possible for ;¢ yhe theory of Takahashi and Tachiki, and we introduce
the diffusion constants, which led to two solutions, called they,o boundary resistivity by adjusting the boundary condi-

. . _7 . . .
first and second solutioris! For the first solution, the fitted tions. We also illustrate the role of the boundary resistivity
parameters are close to what one knows from the measurgp the proximity effect. Section Il is dedicated to the

ments. However, the dimensional crossover, typical for S/IN\umerical results and conclusion.

multilayers, appeared to lie at a much higher temperature

than th_g measured one. In the.s_econd.solutlpn the upper par- || THEORY INCLUDING BOUNDARY RESISTIVITY

allel critical magnetic field exhibits a dimensional crossover _ . o

at a lower temperature than the experimental one. A charac- First we summarize the Takahashi-Tachiki theory for S/N
teristic of this type of solution is that the superconductivity multilayers. The theory starts from the Gor’kov equation
nucleation point for the parallel magnetic field shifts from for the pair potentialA(r), with a space-dependent coupling
the S layer at low temperatures to the N layer at highe€onstantv(r),

temperatures, which seems unphysical for a S/N multilayer

Whpsew:o. Another unphysical as.pect is that the fitted A(r)zV(r)kTE fd3r’Qw(r,r’)A(r’), 1)
critical temperature for the S layer is larger than the one ©

known for the bulk(8.9 K). Moreover, instead of an expected . . .
concave two-dimensiondRD) aspect of the curve at lower in which the su_mmat|on runs over the Matsupara frequen-
temperatures, the calculations lead to a convex type of curv&!es: .By averaging over t'he Impurity conﬂguraﬂons and con-
In order to fit the experimentally observed dimensionals'de”ng the dirty limit, it was shown that the integration

crossover with the theoretical one, Koperdraad and colfemele obeys a Green's-function-like equation

workers introduced a scaling parameteifor the magnetic N o
coherence length. However, the physical interpretation for [2]0[+L(V)]Qu(r.r")=2aN(r)a(r=r"), @
this free parameter remains an open question. where

Looking for a physical factor which can replace the role
of the unphysical scaling parameter in fitting the data, Aarts
suggested to consider finite samples rather than the infinite L(V)=—#D(r)
ones on which Koperdraad and co-workers did their calcula-
tions. In finite samples one has to face surface effects. Modélhis result appears to be equivalent to a different approach
calculations done on finite sampleshow that the surface going back to Usadél!? The material parameter§/(r),
nucleation of the superconductivity is more pronounced folN(r), and D(r) are the BCS coupling constant, the elec-
multilayers with thinner layers, but it almost disappears agronic density of states at the Fermi energy, and the diffusion

2

2ie
V—h—CA(r) 3
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coefficient, respectively. In practice, they are treated as being s ~
constant in each single layer. At the interfaces de Gennes 7l
boundary conditions are impos&tiwhich require the conti-
nuity of F(r)/N(r) and D(r)[V—(2ie/hc)A(r)]F(r),

where the pair amplitudg(r) is related to the gap function st
A(r) through T[K], |

A(r)=V(r)F(r). (4) !

Takahashi and Tachiki provide a way of solving E¢b.
and(2) by developing the kern& ,(r,r') and the pair func- - |
tion F(r) in terms of a complete set of eigenfunctions of the 0 L po — — poon
differential operatot_(V). These eigenfunctions are labeled d = dy = 2ds[A]
by the parametek, and the eigenvalues aeg . They are a
solution of the eigenvalue problem

FIG. 1. The critical temperatur€, for an 11-layers Nb/Cu sys-
tem, as a function of the layer thickness for different values of the
L(V)T, =€V, , (5) boundary resistivityRg , measured i) cm.

subject to de Gennes boundary conditions. The requireme

PLduces the migration of the Cooper pairs from the S layer to
of the existence of a solution for E(L) leads to the equation ¢ ber p 4

the N layer, by that diminishing the proximity effect.

As we will illustrate in the following,Rg modifies the
det 6y, — 2wkT, V| =0. (6)  critical temperaturel of the multilayer and the magnetic
o 2lo|+e, field anisotropy, defined abl., /Hc,, . By consequence,

including Rz as a parameter, the two solutions used by Ko-

For finite multilayers in vacuum, the de Gennes boundaryerdraad and co-workers have to be reconsidered. It will turn
conditions ensure that there is no current flow through theut that in using the boundary resistivity as a free parameter,
interface between the multilayer and the vacuum. Thesgnly one solution will be possible for the fitting, instead of
boundary conditions read(r)[V —(2ie/c)A(r)]|,F(r)  two solutions. This solution fits the experimental data, with-
=0 for the pair amplitude, at the interface with the vacuum.out using any other free parameter, such as the scaling pa-
As usual for these type of layered systems, the growth diregGametera.
tion coincides with thez direction. When applied to the  |et us first consider the situation in which there is no
eigenfunctions¥, , they becomeV,(x,y,z)/dz=0, where  magnetic field applied to the system. As mentioned already, a
we made use of the gaug¥g(r)=(Hz,0,0) when the mag- finite boundary resistivity reduces the proximity effect. This
netic field is applied parallel to the layers amdl(r)  leads to a higher multilayer critical temperature than in the
=(0,Hx,0) for the perpendicular magnetic field. In the ab-case of perfect transparency of the interfaces. As a conse-
sence of a magnetic field, the solution of K@) giving the  quence, the bulk critical temperatufEs used to fit the
largest value for the critical temperature is the physical onemuytilayer critical temperature will be smaller than the one
In the presence of a field, solving this equation allows us tqised by Koperdraad and co-workers. This leads us in a good
derive theHc,(T) curves. The temperature at whith,  direction, since the previously us&d was higher than the
—0isTe. . _ ~ measured value.

A _fu_rf[her step in applying the theory o_f Takahashl_and As an illustration of the influence d®z on the proximity
Tachiki is to consider the effect of the S/N interface resistiv-gffect, we calculate the dependence of the critical tempera-
ity. In our calculations, we make use of more general boundyre of a multilayer on the thickness of the layers for differ-
ary conditions rather than the de Gennes ones. Such boungdnt choices for the boundary resistivity. The results for an
ary cond4|t|ons were investigated by Kupriyanov and1.jayers Nb/Cu system are shown in Fig. 1. First, one no-
Luk|che}/1 a(?d according to Golubov and Kupriyarf8and tices that as the layer thickness decreases, the multilayer
Khushaino¥® they can be written as critical temperature converges smoothly towards 0, whereas
in the thick layer limit, it converges to the bulk critical tem-

D(r)ip(r) :D(r)ip(r) pgratureTf. Further, the curves show that belpyv a gertain
Jz r=rt Jz U thickness of the layersd;,, the superconductivity disap-
pears. Moreover, this critical thickneds, decreases with the

1 [F(r) F(r) increasing of the boundary resistivity, illustrating the fact

_eZRB N(r) B N(ro)) @) that due toRg, the density of Cooper pairs is more localized

in the S layers of the multilayer, so that the system becomes
The boundary resistivitRg is a parameter which character- a better superconductor.
izes the barrier which electrons encounter at the interface. A We consider now the presence of a magnetic field. When
source of this resistance comes from the mismatch of tha magnetic field is applied to the system perpendicularly to
Fermi(or electronig levels, lattice structure, and lattice con- the interfaces, due to the in-plane motion of the Cooper
stant of the two composite metals. As a consequeRge, pairs, the influence of the boundary resistivity is weak. How-
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FIG. 2. The upper parallel and perpendicular magnetic fields for FIG. 3. The upper parallel and perpendicular magnetic fields
the multilayer Nb(1714)/Cu(376 A). The dots denote the experi- experimental(Ref. 18 and theoretical curves for the multilayer
mental pointsRef. 18. Nb(172 A)/Cu(333 A).

ever, for the magnetic field parallel to the interfaces, the . .
picture looks different. In this situation, the Cooper pairs \P(171 A)/Cu(37.6 A) multilayer. The solid curves are ob-
move such that they cross the interface, which means th4gin€d by accounting for a finitRg . The dashed curves are
they experience the influence of the boundary resistivitfN€ results of Koperdraad and co-workers, which could be
much more strongly. In the presence of a boundary resisti;TProved by using a scaling parameter, still lacking a physi-
ity, the diffusion of the Cooper pairs from the S layers into cal interpretation. The perpendicular field curves are not very
the N layers is diminished. The proximity effect is weaker, sensitive to the change of the parameters. We fitted the points
leading to a higher critical temperature for the same magnitc2(Tc2) =0, Hez)(T°?), andH,, (T*) on the measured
tude of the magnetic field. Thus we can conclude that th&ritical field curves, rather than the poink$.(T.;)=0,
boundary resistivity increases the anisotropy ratiotc2y(T*), and Hep, (T*), used by Koperdraad and co-
Hez) Hez,: - workers. HereT is the temperature where the dimen-
In addition it appears that the dimensional crossover temsional crossover occurs on the p:_:lrallel magnetic field curve,
perature is shifted towards higher temperatures. This mearf§!d T* corresponds to the experimental point at the lowest
that the first solution is not favorable, whereas the seconéfperature. in Table I, we show the data used in our fitting
solution has chances to be ameliorated. (T¢, Ds, Dy, andRg), compared to the data used by Ko-
In the following section we will take as a starting point perdraad and co-worker§§*, D§, andDY). For example,
the second solution and we will present the correctiondn fitting the Nb(171A)/Cu(376 A) system, we useBg
which are performed in view of a fitting with the experimen- = 2.4 cnf/s, Dy=78 cnt/s, andRg=3.17 Q) cm, instead
tal data. of Dg=0.65 cnt/s andD =138 cnf/s, used by Koperdraad
and co-workers. The latter set is rather unrealistic, while the
first set compares nicely with the diffusion constants used by
Biagi et all’ The resistivity has the same order of magnitude
Considering the second solution, its inconveniences coras the resistivity of Nb at 77 K, which ipy,=3 ) cm,
sist in the fact that at low temperature tHe,(T.) curve is and it is an order of magnitude larger than the Cu value of
convex, instead of the well-known concave square-root be0.2 u{) cm. Since the interface can be considered as a dirty
havior for the 2D systems. Besides, at high temperatures thaixture, the value ofRg looks reasonable. The use of a
nucleation of the superconductivity lies in the N layer, whichsmaller and more realistic ratiblyDy/NsDg can be ex-
is unphysical for such S/N systems. Moreover, a too largelained as follows. In the absence of a boundary resistivity,
ratio NyDy/NgDg is used in fitting, in order to obtain the Rg=0, the anisotropy at a certain temperatlifeis directly
corresponding anisotropy. related to the ratidNyDy/NgDg. However, the anisotropy
All these shortcomings are remedied by considering a fiincreases when one considers a firlitg, so that a smaller
nite boundary resistivity. In Fig. 2 we show results for aratio NyDy/NgDg is necessary to fit the anisotropy of the

IIl. RESULTS AND CONCLUSIONS

TABLE |. Fitting data for theH .»(T) curves, compared to the ones used by Kooperdraad.

The system T, [K] Ds [cr?/s] Dy [cm?/s] Rg [« cm] TK [K] D [cnP/s] D{ [cn?/s]
Nb(171 A) /Cu(376 A) 9.20 2.4 78 3.17 9.89 0.65 138
Nb(172 A)/Cu(333 A) 9.20 1.23 69 2.07 9.88 0.64 180
Nb(168 A)/Cu(147 A) 9.50 1.45 73 2.38 9.61 0.58 231
V(240 A)/Ag(480 A) 5.47 11 54 3.52 5.70 0.67 73.4
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FIG. 4. The upper parallel and perpendicular magnetic fields FIG. 5. The upper parallel and perpendicular magnetic fields
experimental(Ref. 18 and theoretical curves for the multilayer €xperimental(Ref. 19 and theoretical curves for the multilayer
Nb(168 A)/Cu(147 A). V(240 A)/Ag(480 A).

the literature®°

upper critical fields. Besides, as one can notice in Fig. 2, this In conclusion, by focusing on a fit at the dimensional
choice of the diffusion constants is such that the convex becrossover temperature and allowing for a finite boundary re-
havior of theH,(T) curve of Koperdraad and co-workers sistivity, the theory describes the experimental data nicely.
is turned into a concave one, characteristic for a 2D systenBy that the merit of the scaling parameter introduced by
Furthermore, in our solution the nucleation of the superconkoperdraad and co-workers is reduced considerably, the
ductivity takes place in the S layer, as one expects for physimore so as up to now this parameter was not assigned any
cal reasons. Clearly, good agreement between theory arghysical interpretation. A finite boundary resistivity, on the

measurements is obtained. other hand, is in accordance with experimental evidéfice.
In the same way we fitted the data for two other Nb/Cu

multilayers, as well as for a V/Ag system. The results are

shown in Fig. 3 for Nb(172)/Cu(333 A), in Fig. 4 for ACKNOWLEDGMENTS
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