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Thermodynamic properties of the attractive Hubbard model
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We study the thermodynamic properties of short coherence length superconductors in the pseudogap phase.
Our description is based on the attractive Hubbard model that reproduces well these features in the interme-
diate coupling regime (U54t). Basing ourselves on the self-consistentT-matrix approximation, we perform
an analytical calculation that yields an expression for the thermodynamic grand potential of the electronic
system. It shows that the relevant degrees of freedom above the critical temperature are well-defined bosonic
fluctuations describing virtual Cooper pairing. The latter are described by the low-energy expansion of theT
matrix whose evaluation reveals that these pairing fluctuations behave quite similarly to free bosons undergo-
ing a Bose-Einstein condensation~BEC!. We then carefully analyze the conditions allowing for this interpre-
tation and finally consider the case of underdoped high-temperature superconductors where typical BEC
features have been observed experimentally.
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I. INTRODUCTION

High-temperature cuprate superconductors are know
have various remarkable and intriguing properties even
their normal state. Thermodynamic quantities as well
transport coefficients deviate from Fermi-liquid behavi
and electronic spectral functions show strong precursor
havior when the critical temperatureTc is approached. The
transition to the superconducting state itself is character
by strong fluctuations—unobservable in traditional sup
conductors, which are well described by BCS theory.

In this context we are particularly interested in the follo
ing features:

~1! The specific heatcV is an interesting indicator for the
nature of the superconducting transition and for the type
fluctuations that accompany the latter. The experime
data1 show rather different features for different materia
For traditional low-temperature superconductorscV has a
jump at Tc as predicted by the BCS theory. In an appli
magnetic field, the jump follows the field-dependent critic
temperature and gradually loses its sharpness.
YBa2Cu3O72d samples~YBCO!, cV has a critical behavior
that is well represented by the three-dimensional~3D! XY
model. In a magnetic field, the singularity is washed out a
the maximum again moves to lower temperatures.
Bi2Sr2CaCu2O81d samples~BSCCO! on the other hand,cV
is rather symmetric around the critical temperature.1 Besides
a possible singular behavior very close toTc , it resembles
the specific-heat curve of a system of noninteracting bos
in 3D that undergo a Bose-Einstein condensation~BEC!. In a
magnetic field, the maximum of the curve loses its heig
but the position of the maximum remains at the zero-fi
critical temperature, rather than to follow the field-depend
Tc . This is again a characteristic feature of BEC.2

~2! The one-electron spectral functions have been stud
by photoemission3 and tunneling4 experiments. They have
revealed that underdoped cuprates develop a pseudog
the electronic spectrum, and thus in the electronic densit
0163-1829/2001/64~22!/224524~15!/$20.00 64 2245
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states, well above the transition temperatureTc . When T
increases aboveTc, this pseudogap is gradually filled, but i
width only weakly depends on temperature. The pseudo
essentially disappears at some temperatureT* that increases
when one goes towards the underdoped limit. Thek depen-
dence of the pseudogap is the same as for the supercon
ing gap existing belowTc . Other experimental observation
such as the anomalousT dependence of the Pauli suscep
bility or of the nuclear magnetic resonance relaxation ti
are likely to be linked to the occurrence of the pseudog
but we will not discuss them here.5

The microscopic origin of this pseudogap is at presen
controversial subject. The fact that it has the same ang
dependence as the superconducting gap and thus goes
smoothly into the latter whenTc is crossed, respectively ‘‘co
exists’’ with it belowTc , has found diverging interpretations
It has been taken as a demonstration of strong supercond
ing, respectively pairing fluctuations aboveTc ,6 whereas
other authors conclude, from the differentB dependences o
superconducting and pseudogap, that the latter is not dire
related to the phenomenon of superconductivity.7 It has also
been pointed out that the usual temperatureT* , that joinsTc
somewhere near optimal doping, is actually not well defin
and that a more systematic characteristic temperature, re
to the width of the pseudogap, points to the existence o
~hidden! quantum phase transition.8

A current interpretation of these facts is based on the id9

of a crossover from a more BCS-like superconductivity
optimally and overdoped samples, where pairing and c
densation occur essentially at the same temperature, to
perconductivity produced by preformed pairs of electro
that are formed aroundT* , well above Tc , whereas the
phase coherence necessary for the collective behavior o
superconductor is only established at a lower tempera
Tc . This view is consistent with the fact that the low
temperature coherence length is much shorter in the un
doped regime, a fact that supports the picture of pairs that
well localized in space. Moreover, underdoped mater
©2001 The American Physical Society24-1
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typically get more and more anisotropic when the doping
decreased, such that the effective mass of these prefor
pairs is much larger in the crystallographicc direction than in
thea-b plane. The formation of a pseudogap induced by p
fluctuations is probably also favored by a low spatial dime
sionality.

In the absence of a full understanding of the microsco
mechanism that produces high-temperature supercondu
ity, the attractive Hubbard model10 is a useful and relatively
simple tool in order to describe various properties of a
perconductor. In particular, the crossover between weak c
pling ~long coherence length! and strong coupling~short co-
herence length! regimes can easily be achieved by varyi
the strength of the attraction.11 In this context it is useful to
stress that the concept of coherence length is associated
with the spatial extension of the Cooper pairs, not to
confounded with the phase correlation length describing
distance over which pairing fluctuations are correlat
which is a nonmonotonic function of the coupling strength
T50.12 Most often the simple case of a local attraction b
tween electrons of opposite spin sitting on the same lat
site and leading tos-wave pairing has been considere
but in order to take into account nontrivial order parame
symmetries, extensions including nearest-neighbor attrac
have also been treated.13 Insight into the properties o
this model in two spatial dimensions has been obtai
by various analytical approximations, such as functio
integral techniques,14 the self-consistent T matrix,15

the fluctuation exchange~FLEX!16 or the Hubbard-alloy-
analogy approach,17 and by quantum Monte Carlo~QMC!
simulations.18

Analytic work usually aims at describing the main effe
of the attractive interaction by a coupling between on
electron quantities and the two-particle propagator that m
fests the tendency toward the formation of pairs. In
T-matrix approach, some details of which will be recalled
Sec. II, this is manifest in the explicit form of the electron
self-energy. Decoupling of the interaction by a Stratonovi
Hubbard transformation allows to represent the free ene
of the system in terms of a classical pairing field. For we
interaction the action governing this field is of the Landa
Ginzburg type, whereas for strong interaction it has
Gross-Pitaevski form, describing interacting preform
bosonic pairs.14,19 In this regime the corresponding on
electron spectral function shows two bands,18,20 one with
states for unpaired electrons and the other with pair sta
separated by a ‘‘correlation gap.’’ The crossover region
tween the two regimes is more complicated. In particula
perturbative approach is delicate in the regime where
effective chemical potential moves out of the noninteract
band.21

Numerical work18 has yielded interesting informatio
about thermodynamic properties, such as the temperature
pendence of the chemical potential or the spin susceptib
Moreover, it has revealed the occurrence of a pseudogap
tered around the chemical potential that arises for interm
ate values of the coupling and develops into a band split
when the coupling gets stronger.

In the present paper, we treat theT-matrix equations for
22452
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intermediate values of the couplingU, i.e., for attraction en-
ergy of a local pair on the order of half of the noninteracti
bandwidthW. In this case, the chemical potentialm of the
interacting system is still inside the noninteracting band, c
trary to the strong-coupling regime, whereU is typically
larger thanW andm is below the noninteracting band, lead
ing to the ‘‘correlation gap’’ mentioned above. We solve t
equations by simple analytical calculations that guarante
minimal approximate self-consistency between the o
electron propagator and theT matrix, describing pair excita-
tions. In order to relate the spectral properties of the ren
malized electrons to the thermodynamics of the system,
also evaluate the grand canonical potential in the sa
T-matrix approximation.22 Since we do not solve the
T-matrix equations numerically in their full self-consistenc
we will take over some results from QMC in 2D for ou
calculations.18 Our main goal is to show that in the temper
ture regime where the electronic pseudogap is almost f
developed, with a width that is larger thankBTc , the ther-
modynamic properties of the system can, to a good appr
mation, be described by unpaired electrons and weakly in
acting and long-living preformed pairs.23 The latter obey
Bose statistics and their chemical potential shows the
dency to vanish when the critical temperatureTc is ap-
proached from above. Thus the BEC scenario for the su
conducting phase transition seems to be suited not only
the case where the coupling is ‘‘literally’’ strong—typicall
larger than the noninteracting bandwidth, which seems r
tively unrealistic for real materials—but also for the low
density intermediate coupling regime, provided that the s
tem develops a pseudogap with a sufficient width. Since
are interested in applying our considerations to underdo
high-temperature superconductors, we include a weak c
pling between the lattice planes which, if it is small enoug
preserves for the 3D case the conclusions drawn in 2D ab
the BEC scenario. Moreover, due to the special nature of
superconducting phase transition in a strictly 2D syst
~Berezinskii-Kosterlitz-Thouless vortex unbinding transitio!
that cannot be addressed by theT-matrix approach,24 the
extension to a 3D~anisotropic! system is essential in guar
anteeing the validity of the latter method, since we deal th
with an ‘‘ordinary’’ bulk phase transition. The question the
arises to know whether the bosons described by theT matrix
are able to characterize completely this phase transition.
value of the critical temperature shows that the unpai
electrons cannot be omitted in this context, although th
contribution to the thermodynamic potential is featureless
T5Tc . We finally discuss some implications of these co
siderations for the thermodynamic properties of underdo
cuprates.

In Sec. II we recall the basic equations for the one- a
two-electron propagators, as well as the grand canonical
tential, in theT-matrix approximation. In Sec. III, we presen
our strategy that consists in a perturbative calculation of
electronic self-energy, an approximate calculation of the
rameters determining theT matrix, based on a simple ana
lytic form of the pseudogap structure, and a suitable exp
sion of the grand canonical free energy. Concrete results
presented in Sec. IV, where we also use some ‘‘cro
checks’’ in order to confirm the validity of our simple proce
4-2
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THERMODYNAMIC PROPERTIES OF THE ATTRACTIVE . . . PHYSICAL REVIEW B 64 224524
dure. We analyze then the applicability of the BEC scena
The text ends with a summary in Sec. V. Various more te
nical parts of the calculations are presented in Append
A–D.

II. THEORETICAL FRAMEWORK OF THE T-MATRIX
APPROXIMATION

We start from the Hubbard model with a local attracti
(2U, with U.0! and a nearest-neighbor hoppingt.0 de-
fined on a 2D square lattice:

H52t (
^ i , j &,s5↑,↓

~cis
† cj s1H.c.!2U(

i
ni↓ni↑

2m(
i

~ni↓1ni↑! ~1!

with creation~annihilation! operatorscis
† (cis) for an elec-

tron of spin s on lattice sitei, and ni ,s5cis
† cis being the

corresponding density. In the well-known self-consiste
T-matrix approach,25 which is the ladder approximation t
the Bethe-Salpeter equation,26 the electronic self-energy
s(k,zn) describes scattering of electronic quasipartic
from pairing fluctuations. The latter are described by theT
matrix that takes into account repeated two-particle sca
ing processes:

T21~k,za!5
1

U
2x~k,za!, ~2!

x~k,za!5
1

bN (
q,zn

G~k2q,za2zn!G~q,zn!, ~3!

G21~k,zn!5G0
21~k,zn!2s~k,zn!, ~4!

s~k,zn!52
1

bN (
q,za

G~k2q,za2zn!T~q,za!. ~5!

Here b is the inverse temperatureT21 ~we take\5kB51
from now on!, N the number of lattice sites, theq sums run
over a 2D Brillouin zone@2p,p#3@2p,p# ~wave vectors
are in units of the inverse lattice constant! andzn andza are
fermionic and bosonic Matsubara frequencies, respectiv
The quantityG is the one-electron Green function and
related by Dyson’s equation~4! to its noninteracting form
given by

G0~k,zn!5
1

zn2jk
, ~6!

where jk5«k2m contains the dispersion associated to
Hamiltonian~1!. As for «k , the zero of the chemical poten
tial m is the middle of thenoninteractingband, so thatm5
2U/2 corresponds to a half-filled band for anyU or T. The
value of the noninteracting bandwidthW is equal to 8t for
the two-dimensional tight-binding case considered here.

The T-matrix approach has been used by ma
authors10,15,20 in order to describe various properties of t
model ~1! for low electronic densities where the neglect
22452
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more complicated scattering processes should be justi
The same set of equations can be obtained in leading ord
1/M for a generalized Hubbard model in which the electro
operators haveM ‘‘colors.’’ 27 The corresponding approxima
tion for the grand canonical potentialV can be expressed b
the same quantities,22

V~T,V,m!52
2

b
Tr@sG1 ln~s2G0

21!#1F@G#. ~7!

Here the symbol Tr means summation over wave vectors
Matsubara frequencies, and the functionalF is given by

F@G#5
1

b
Tr@ ln~T21!# ~8!

such that the self-energy can formally be obtained by a fu
tional derivative,

s5
1

2

dF@G#

dG
. ~9!

Such a form forV has been used for the same model in R
21 with a more general form forF@G#.

A self-consistent solution of the above equations can o
be achieved numerically. Our aim is to evaluateG and V
analytically by approximatingT(k,za) and the one-electron
spectral functions by simple forms that will partly be bas
on results obtained by numerical work in the framework
the T-matrix approach10,15,20,28,29and by quantum Monte
Carlo simulations.18 While the main part of our calculation
will be done for a 2D realization of the model~1!, i.e., for a
single lattice plane of the superconductor, we will indicate
the end how a weak coupling between planes would mod
the results. The different steps of our calculation are p
sented in the following section and corresponding concr
results forU54t are given in Sec. IV.

III. APPROXIMATE SELF-CONSISTENT CALCULATION

A. Analytic form of the T matrix

We consider an intermediate interaction strengthU54t.
From numericalT-matrix calculations,15,30 we borrow the
fact that forU values that are at least as large as half
noninteracting bandwidth, the imaginary part ofT(k,za
→v1 ih) develops a pronounced peak located around
single energy valuev @in the weak-coupling limit Im(T) has,
at least for small wave numbersk, a resonance form that i
antisymmetric with respect tov50, like the spectral func-
tion of a harmonic phonon#. Thus,T can be associated with
the propagator of a bosonic quasiparticle, a virtual pair
state of two electrons. We approximate this propagator by
following simple low-energy and small-wave-number form

T 21~k,za!'a1ck22dza, ~10!

in which the detailed dispersion is replaced by an isotro
parabolic wave-vector dependence~in an effective Brillouin
zone of spherical symmetry!. The coefficients involved in
Eq. ~10! are related to the particle-particle bubblex in ex-
pression~3! by
4-3
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ALAIN SEWER AND HANS BECK PHYSICAL REVIEW B64 224524
a5
1

U
2x~0,0!, ~11!

c52
1

2

]2

]k2 x~k,0!uk50 , ~12!

d5
]

]v
x~0,za5v1 ih!uh→0,v50 . ~13!

The coefficientd is in general complex and, corresponding
the virtual pairs described by Eq.~10! have a finite lifetime.
According to the Thouless criterion,31 the transition to a su-
perconducting state takes place whenT(0,0) diverges, i.e.,
when the ‘‘chemical potential’’ proportional toa of the qua-
siparticle described by Eq.~10! becomes zero. This is a rea
sonable criterion in three dimensions, but in a strictly 2
system the corresponding phase transition is expected t
of the Berezinskii-Kosterlitz-Thouless~BKT! type: there is
no true long-range order at any finite temperature but
superconducting coherence is manifested by a finite heli
modulus~or phase stiffness! below the transition temperatur
TBKT . This quantity is associated with the nontrivial r
sponse of the system to a phase twist imposed from out
and appears even in the absence of a finite order param
unlike in a ‘‘normal’’ second-order transition where the latt
is the fundamental characteristics of the ordered state be
Tc . Deisz and Serene32 have realized such a 2D scenario
the framework of a FLEX calculation, the essential elem
of which corresponds to theT-matrix approximation. They
have found thatT21(0,0) as a function of the temperatureT
effectively tends to zero forT↘TBKT , but bends atT
5TBKT and finally reaches zero only atT50. Here we are
mainly interested in the behavior of the system above
critical temperature. Moreover, the following strictly 2D ca
culations will finally be generalized in order to include
weak interplane coupling, as it is expected for strongly
isotropic materials such as BSCCO. Thus we will take
coefficienta that tends to zero as a sign of an incipient pha
transition, as it would be appropriate for three dimension

B. One-electron Green function

The electronic self-energy~5! can now be approximate
using the simple form~10! for T and replacingG by the
noninteracting limitG0 :

s~k,zn!'s0~k,zn!52
1

bN (
q,za

G0~k2q,za2zn!T~q,za! .

~14!

This expression has been evaluated by Capezzali and Be28

for an isotropic system by choosing values for the coe
cients a, c, and d that are compatible with self-consiste
T-matrix calculations.15 The resulting imaginary part ofs
has a relatively sharp peak.28 Whenk crosses the Fermi wav
number, the peak position of Im(s0) moves in the opposite
direction with respect to the peak of the noninteracting el
tronic energy. The corresponding one-electron band thus
velops a pseudogap centered around the Fermi energy
22452
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depth increases whena becomes smaller and it is fully de
veloped whena50. A simple estimate for the width of the
pseudogap can be obtained by concentrating the total we
of the pair fluctuations in the sum~14! over q andza on the
valuesq5za50 ~the total bandwidth of the pair fluctuations
represented byT(q,za), is indeed smaller than the free ele
tron bandwidth, see Sec. IV!. The resulting simplified self-
energy has BCS-like form,

s0~k,zn!'
D0

2

zn1jk1 iG0
~15!

with

D0
25

1

bN (
q,za

T~q,za!. ~16!

The effect of the full summation overq and za in Eq. ~14!
has been simulated by introducing a finite lifetimeG0 into
the Green function. The result~15! indeed reproduces quit
well the form ofs0 found numerically.28 The half-width of
the pseudogap is then approximately given by

D5AD0
22~G0/2!2. ~17!

C. Approximate self-consistent evaluation of theT-matrix
coefficients

As a next step on the way to a self-consistent solution
our basic equations~2!–~5!, the parameters determining th
T-matrix should now be~re-!calculated according to equa
tions ~2! and ~3!, by inserting intox the one-electron Green
function G with the self-energy found in Sec. III B. For ou
purposes, it will be sufficient to know the features of t
corresponding spectral functionsA. As obtained by numeri-
cal calculations,28 the latter have essentially a BCS form wi
two branches around the chemical potential, but with a fin
linewidth. Therefore, we will use the following method t
evaluate the coefficientsa, c, andd of theT matrix. First we
reexpress the latter in terms of the BCS electronic spec
function that is given by

ABCS~k,v!52p@uk
2d~Ek2v!1vk

2d~Ek1v!#, ~18!

with

Ek5AD21jk
2, ~19!

uk
25

1

2 S 11
jk

Ek
D , ~20!

vk
25

1

2 S 12
jk

Ek
D . ~21!

This is explained in Appendix A. The full results, shown
Appendix B, are expressed as energy integrals involving
BCS density of states combined with appropriate weight f
tors, as it has been done for deriving the Ginzburg-Land
theory belowTc .33 In a somewhat simplified form, they rea
4-4
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a5
1

U
2E dvDa,1~v!

tanh~bv/2!

2v
, ~22!

c5E dvH Dc,11~v!
tanh~bv/2!

2v

1Dc,31~v!F tanh~bv/2!

4v2 1
nF8 ~v!

2v G
1Dc,51~v!F2

tanh~bv/2!

4v3 2
nF8 ~v!

2v2 1
nF9 ~v!

2v G J
3

1

2 S djk

dk D
k5kF

2

1E dvDc,32~v!F tanh~bv/2!

4v2 1
nF8 ~v!

2v G S d2jk

dk2 D
k5kF

,

~23!

d5PE dvDa,1~v!
tanh~bv/2!

4v2 1 i
p

8
bDa,1~v50!,

~24!

where P denotes the Cauchy principal part. The integr
over energy involve various effective densities of states
tained by summing over particular weights and given in
tails in Appendix B. They are all based on the BCS dens
of states

DBCS~v! 5H D0@m01j~v!#
uvu

Av22D2
, uvu>D

0, uvu,D,

~25!

where j(v)5sgn(v)Av22D2 and D0 is the density of
states for the 2D tight-binding model given by Eq.~A10! and
corresponding to the kinetic energy of the Hamiltonian~1!.
The quantitym0 gives the position of the pseudogap insi
the interacting band~the Fermi energy! and has to satisfy the
usual condition of fixing the densityn. In the particular case
of a BCS-like electronic structure, it takes a very simp
form:

n[E deDBCS~e2m0!u~m02e!5E deD0~e!u~m02e!,

~26!

whereu is the Heaviside step function. Therefore,m0 corre-
sponds to the~zero-temperature! chemical potential of non-
interacting electrons having the same densityn. However, in
the present context whereUÞ0, m0 does not provide the
value of the ‘‘true’’ chemical potentialm because it is defined
with respect to the middle of theinteracting band whose
location is not specified~whereasm is measured with respec
to the middle of thenoninteractingband and will be given
later in Sec. IV A!. We also remark that the limitD→0 in
Eqs. ~22!–~24! is well defined and gives the usual expre
sions found in the literature.14
22452
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The finite width of the spectral functions in the pseudog
~PG! regime is now taken into account by replacing thed
functions in Eq.~18! by a normalized distribution function
f G with a finite widthG,

APG~k,v!52p@uk
2 f G~Ek2v!1vk

2 f G~Ek1v!#, ~27!

that involves the same quantitiesEk , uk , andvk as before.
In reality, the spectral widthG depends on wave number an
temperature: it is the largest near the Fermi wave numbekF
where the pseudogap is created and increases
temperature.28 In order to deal with simple expressions, w
choose a line shape that is the same for allk at Tc and that
eventually develops a peak aroundkF when one goes away
from the transition. A useful choice of the distribution fun
tion is

f G~v!5
1

A2pG
expF2

1

2 S v

G D 2G . ~28!

Using these ‘‘broadened BCS spectral functions,’’ we c
evaluate the coefficientsa, c, andd. As shown in Appendix
C, their expressions keep the form~22!–~24!, but all the
corresponding ‘‘densities of states’’~B4!–~B10! have to be
systematically replaced by expressions taking into acco
the finite width of the spectral function~27!. For instance,
DBCS from Eq. ~25! becomes

DPG~v!5E dEDBCS~E! f G~E2v!. ~29!

This expression shows clearly how the BCS density of sta
is modified by the finite linewidthG.0, which displaces an
increasing amount of spectral weight inside the gap reg
@2D, D# when the temperatureT becomes larger so that th
pseudogap gets gradually ‘‘filled.’’

D. Expansion of the grand canonical potential

In the general expression~7! for the grand canonical po
tential only the third term, given by Eq.~8!, has an immedi-
ate interpretation: it has the form of the free energy of no
interacting bosonic pair fluctuations, represented by thT
matrix. Indeed, when the imaginary part of the coefficiend
is small, expression~10! is the propagator of bosonic quas
particles with chemical potentialmB52a/ Re(d) and weight
ZB51/ Re(d). The first two terms ofV in Eq. ~7! can be
given a more concrete meaning by expandingG in powers of
the self-energys and using the explicit form~5! for the
latter. To second order ins, we are left with two terms beside
F@G# so thatV reads

V'V01Vb1V i , ~30!

where

V052
2

b (
k,zn

ln@2G0~k,zn!21#, ~31!

Vb5
1

b (
k,za

ln@T~k,za!21#, ~32!
4-5
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V i52
1

b (
k,zn

G0
2~k,zn!s2~k,zn!. ~33!

HereV0 is the free energy of noninteracting particles that
not participate in the pairing fluctuations. They have the
perturbed tight-binding spectrum of the Hamiltonian~1!, but
they are subject to the ‘‘true’’ chemical potentialm that
yields the correct number of electrons in the presence of
attraction. Vb is the bosonic contribution, as mentione
above. The last contributionV i describes an interaction be
tween the bosonic excitations. It can be given a m
transparent form after replacings(k,zn) by its explicit
expression~5!,

V i52
1

b (
k,za

T~k,za!sb~k,za!, ~34!

wheresb represents a bosonic self-energy defined as

sb~k,za!5
1

bN (
q,zb

T~q,zb!R~k,q,za ,zb!, ~35!

R~k,q,za ,zb!5
1

bN (
p,zn

G~k2p,za2zn!

3G~q2p,zb2zn!G0
2~p,zn!. ~36!

The above equations show thatV i is exactly the Hartree-
Fock term of the free energy of bosons interacting throu
the potentialR.26 ‘‘Bare’’ bosons are described by theT ma-
trix, whereas the propagator of the corresponding ‘‘dress
quasiparticles satisfies Dyson’s equation,

Td
21~k,za!5T21~k,za!2sb~k,za!. ~37!

It is then possible to write the bosonic part of the free ene
in a simpler way,

Vb1V i5Vd5
1

b (
k,za

ln@Td
21~k,za!#. ~38!

The main effect of the bosonic interaction is thus a renorm
ization of theT-matrix coefficientsa, c, and d and will be
discussed in the next section. For the moment, we cons
the equation for the particle number that determines
chemical potentialm by imposing a given density of particle
n per site,

n[
1

N (
i

^ni↑1ni↓&52
1

N

]V

]m
, ~39!

whereN is the number of lattice sites. Starting from Eq.~7!
for V and using the relations~2!–~5! that determine theT
matrix, it is easy to show that Eq.~39! reduces to

n5
2

bN (
k,zn

G~k,zn!, ~40!

which is obviously correct, but formal, in the sense tha
does not distinguish between unpaired-electron and bos
contributions to the total particle number. In order to intr
22452
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duce this ‘‘two-fluid concept’’ into the number equation~39!,
we can use the decompositions~30! and ~38! for V. This
yields a particularly transparent result if Im(d) can be ne-
glected as shown later~Sec. IV A 2!,

n5n01nd . ~41!

The first term represents the unpaired electrons, the num
of which is given by

n05
2

N (
k

nF~«k2m!, ~42!

wherenF is the Fermi-Dirac distribution andm is the ‘‘true’’
chemical potential, not to be confounded withm0 defined
previously in the framework of our model for the electron
structure. The second term reads

nd5
1

bN (
k,za

Td~k,za!
]

]m
Td

21~k,za! ~43!

and gives the number density of electrons involved in
pairing fluctuations. As explained above, the latter can
described in terms of interacting bosons and will be d
cussed more extensively below.

We finally stress that the expressions~31!–~33! do not
represent the only possible decomposition of the free ene
In fact one could imagine finding other approximate forms
V that would, for example, also introduce effective intera
tions between the unpaired electrons or between unpa
electrons and pairs. However, as it has just been shown,
are well suited to study the thermodynamic properties of
system and to find the nature of the degrees of freedom
are dominating in the pseudogap regime just aboveTc .

E. Effects of the bosonic interaction

The previous section has introduced an interaction
tween the bosonic quasiparticles that was formulated by
Hartree-Fock approximation to the self-energy given by E
~35!. In order to get some insight into the effects of th
interaction, we first calculate the Hartree contribution to t
grand canonical potential that is essentially given by expr
sion ~36! evaluated at zero arguments. We obtain

V i ,Hartree52NbF 1

bN (
k,za

T~k,za!G2

, ~44!

where we have introduced the coefficientb defined by

b5
1

bN (
k,zn

G2~k,2zn!G0
2~k,zn! ~45!

and that will be discussed below. Expression~44! corre-
sponds exactly to the result that would be obtained by p
forming a variational calculation for the free energy of t
time-dependent Landau-Ginzburg theory based on Bog
ubov’s inequality. An even deeper analogy can be found
considering the instantaneous approximation of the inte
tion potential~36!, i.e., by setting both frequenciesza andzb
to zero. In this case our approach is structurally identical t
4-6
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perturbative treatment of the Gross-Pitaevski equation34 that
is used to describe the physics of interacting bosons. Th
fore, we can base ourselves on known results about the l
problem in order to determine the effects of the interactionR.

First, coming back to the coefficientb defined above, we
anticipate the fact that it becomes small for an electro
structure containing a well-developed pseudogap, as it
be discussed in more details in the next section. In this c
we expect only small changes induced by the interac
which then manifests itself essentially by a weak renorm
ization of theT-matrix parametersa, c, andd. This could be
calculated in principle by performing a low-energy expa
sion of R(k,q,za ,zb), in the same way as it has been do
for T21(k,za) in Eq. ~10!. However, due to the already ap
proximative nature of our treatment, it is not sure that
obtained results would still be meaningful. We thus do n
undertake such a calculation and will subsequently neg
the effects of the interaction on theT-matrix coefficients,

Td~k,za!'T~k,za!. ~46!

We are now able to calculate explicitly the bosonic dens
by reconsidering Eq.~43!. Performing the frequency summa
tion and assuming thata contains the only relevant depen
dence inm, we find

nd'
1

N (
k

nB~Vk!S 2
]Vk

]m D . ~47!

This expression involves the Bose-Einstein distributionnB
for particles having the dispersion

Vk5
1

Re~d!
~a1ck2!, ~48!

Im(d) being neglected. The usualk sum is weighted by a
factor that will be evaluated below. These relations toget
with Eq. ~41! show that the total number of particles spl
into the number of free plus the number of paired electro
in agreement with the ‘‘two-fluid’’ idea underlying our ap
proach. This is, however, not true anymore when
pseudogap fills up, because then both the interaction and
imaginary part of the coefficientd cannot be neglected.

IV. RESULTS

A. T-matrix coefficients

The coefficientsa, c, d, andb can now be calculated fo
the pseudogap regime of the attractive Hubbard model~1! by
evaluating the corresponding expressions exhibited in S
III. The result depends on various parameters for which
have to choose appropriate values. Our objective is to
scribe the behavior of the model for a low density of cha
carriers, for which theT-matrix approach should be relevan
We take

n50.2 ~49!

in a normalization where, in agreement with Eq.~40!, n52
corresponds to a filled band. Given this condition, we fix
relevant parameters as follows:
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~1! We consider temperatures in the interval@Tc ,T* # that
corresponds to the region where the pseudogap is first f
developed and then gradually fills up. This qualitative beh
ior is borrowed directly from QMC results.18 The corre-
sponding temperature values are deduced from o
works22,35that consider the limit of infinite system size. The
provide the estimatesTc'0.07t andT* '0.2t. We also men-
tion that, by assuming a bandwidthW58t;1 eV, the corre-
sponding critical temperature would be of the order of 50
which makes sense for underdoped high-temperature su
conductors.

~2! The width of the pseudogap, which is essentia
given by 2D, can also be estimated from QMC
calculations.18 For a U value of the order of half the band
width, i.e.,U54t, this quantity is of the order oft. Thus we
chooseD50.5t.

~3! As stated above, the width of the electronic spect
function depends on the electronic wave numberk and on the
temperatureT.28 However, for temperatures just aboveTc it
is sufficient to take a constant value and we thus choose

G50.125t. ~50!

This yields appropriate values of the spectral width arou
the Fermi wave number where the main contribution to
coefficientsa, c, andd comes from. This choice ofD andG
yields the one-electron density of statesDPG(v) shown in
Fig. 1. For higher temperatures, we must take into acco
the dependences ofG in both T andk in order to reproduce
the ‘‘filling’’ of the pseudogap.28 This is done by adding toG
a k-dependent contribution centered around the Fermi w
vector and becoming larger as the temperature increa
This mechanism, which is not relevant to the subsequ
calculations that are restricted to temperatures close toTc , is
illustrated in Fig. 2.

~4! Solving Eq. ~26! for n50.2 gives the resultm05
22.9t, which is only weakly temperature dependent forT
,T* , as observed by replacingu(m02e) by nF(e2m0) in
Eq. ~26!. This value must be compared with the correspon
ing QMC data18 where the ‘‘true’’ chemical potentia

FIG. 1. Shapes of the density-of-state function for various ca
D5G50 ~‘‘weak coupling’’!, D.0, G50 ~‘‘BCS’’ ! andD, G.0
~‘‘pseudogap’’!. The chosen parameter values areD50.5t and G
50.125t ~see Sec. IV A!.
4-7
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ALAIN SEWER AND HANS BECK PHYSICAL REVIEW B64 224524
m is calculated for the same densityn50.2. Since the latter
is measured with respect to the middle of the noninterac
band, it fixes the ‘‘absolute’’ position of the interacting ban
~inside whichm0 gives the position of the pseudogap!. One
findsm523.5t for the same values ofU andn as used here
Therefore, the interacting band is shifted to lower energ
by a small amount,

m2m0520.6t. ~51!

This feature, illustrated in Fig. 3 and in agreement with ot
studies,15,36 will be used in Sec. IV B in connection with th
number equation~41!.

Given these parameter values, we obtain the results g
in Table I and commented hereafter.

1. Coefficient a

Its dependence on the temperatureT is shown in Fig. 4
together with the weak-coupling case.14 Two facts are impor-
tant. First, when the pseudogap is wider thanT and its depth
reaches its maximum value, as it is the case forT↘Tc , the

FIG. 2. Filling of the pseudogap with increasing temperature
varying the linewidthG. The thickest curve is obtained forG
50.125t (T5Tc). The thin curves require the additiona
k-dependent contribution toG mentioned in the text. For the highe
temperature~lightest curve!, it is characterized by a maximal heigh
of 8G and a width of 3D aroundjk50.

FIG. 3. Schematic behavior of the chemical potentialm when
varying the interaction strengthU. At half-filling ( n51), it is al-
ways equal to2U/2. For small densities (n;0.2), it reaches this
value only asymptotically in the strong-coupling regime. At inte
mediate coupling (U54t), the differencem2m0 allows to visual-
ize the two contributions to the electronic densityn discussed in the
text.
22452
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coefficienta decreases withT, but it is more weaklyT de-
pendent than for weak coupling, i.e., when we setD50 in
Eq. ~22!. Second, for the valueU54t, which is underlying
our calculations,a(T) clearly shows the tendency to vanis
for T↘Tc . As discussed in Sec. III A in connection with th
Thouless criterion,31 this fact is directly related to the occur
rence of the superconducting phase transition. Therefore
temperature at which the system makes the transition to
perconductivity is coinciding with the temperature at whi
the pseudogap is fully developed. We can thus conclude
our evaluation of the coefficientsa–d, based on the simple
form ~27! for the electronic line shape yields a satisfacto
self-consistency. This approach is, however, not able to g
precisely the value ofa for T5Tc and we will use another
way to determine it more accurately in Sec. IV B.

2. Coefficient d

Expression ~24! yields Re(d)50.031t22 for T5Tc ,
whereas the imaginary part Im(d) becomes very small when
the pseudogap is fully developed, since it is directly prop
tional to the value ofD̃a,1(v50), which then goes to zero
Thus, close to the transition temperature, the pairs acquir
increasingly long lifetime and, therefore, constitute we
defined bosonic quasiparticles.

3. Coefficient c

Expression~23! yieldsc50.19t21. According to our form
~10! for the ‘‘pair propagator,’’ one can attribute an effectiv
mass

mb5
Re~d!

2c
~52!

y

FIG. 4. Schematic temperature dependence of the coefficiea
in various cases: strictly two-dimensional system, anisotropic th
dimensional system and, in the inset, weak-coupling regime.

TABLE I. T-matrix coefficients for various cases~b5Tc
21

515t21 andn50.2!.

Coefficient
Weak coupling

D5G50
BCS

D50.5t, G50
Pseudogap

D50.5t, G50.125t

a@ t21# 0.158 0.019 0.021
c@ t21# 2.828 0.182 0.199

Re(d)@t22# 0.049 0.029 0.030
Im(d)@t22# 0.547 0 0

b@ t23# 2.246 0.184 0.217
4-8
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to the virtual bosonic pairs. The corresponding value ismb
50.16m, the latter quantitym being the effective mass of th
tight-binding electrons given by

m5
1

2t
. ~53!

A similar value for the bosonic effective mass has be
found by Haussmann36 and Stinzing and Zwerger.19 At first
sight this value ofmb seems rather small. However, we rec
that the choice of the couplingU54t represents an interme
diate regime where the coherence length is of the order of
lattice constant. This means that the electronic pairs are
yet strongly localized at the lattice sites and that their eff
tive mass is still lower than that in the large-U limit where it
is of the order ofU/4t2.30 Moreover, one should make
clear distinction between the effective curvature of t
‘‘bosonic band’’ near the origin ink space, as it is given by
the coefficientc and thus bymb , and the full width of this
band. The latter can be estimated from the value of thT
matrix ~2! for k5(p,p). Indeed, inserting the noninterac
ing G0 into Eq. ~3!, one finds thatT has a pole for a rea
frequency, which is the so-calledh peak,20

zh52~12n!U22m. ~54!

Since, nearTc , the coefficienta is very small, the pole ofT
at k50 is directly atz50, and thus the effective boson
bandwidth is directly given by Eq.~54!, which for our case is
on the order of 3.8t. Using a BCS form forG with a finite
width G, instead ofG0 , requires a numerical calculatio
whose result is similar: theh peak is located atzh'3.5t.
These values show that the bosonic bandwidth is ind
smaller than the noninteracting electronic bandwidthW
58t, and it is compatible with numericalT-matrix results.15

4. Coefficient b

The result of the calculation of expression~45! using the
spectral functions~27! is given in Appendix D. Although it is
quite complicated, the expression giving the coefficientb can
be interpreted in the same way as in the weak-coupling c
(G5D50). Thusb is essentially the sum of integrals co
taining the product of a weighted density of states with
function that is strongly peaked around the Fermi ene
Therefore, it becomes small when the pseudogap devel
for b5Tc

21515t21 we find the valueb'0.217t23, which is
one order of magnitude smaller than the weak-coupling
sult 7z(3)b2D0(m)/8p2'2.24t23 given in the literature.14

This means that the interaction between the bosonic fluc
tions weakens when the pseudogap approaches its full d
and becomes negligible close the superconducting transi
justifying the assumptions made previously~Sec. III E!.

B. Number equation and ‘‘consistency checks’’

We can now come back to the number equation~41! in
order to estimate the number of preformed pairs nearTc . As
already mentioned, the two terms entering this relation h
a simple meaning: the total number of charge carriers is s
up into nonpaired electrons (n0) and fluctuating pairs (nd).
22452
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The latter is given by a sum over all momenta of the pa
weighted by the derivative of the pair energyV(k), given by
Eq. ~48!, with respect to the~fermionic! chemical potential
m. Near Tc the dominant term is the contribution atk50,
that is the one proportional to]a/]m. Considering expres-
sions~22! and ~24! it is easy to see that

2
]Vk50

]m
52

1

Re~d!

]a

]m
52 ~55!

and, therefore, the second term in Eq.~41! is nothing else
than twice the numbernb of pairs defined as expected by

nb5
1

Re~d!N (
k

nB~Vk!. ~56!

According to Eq.~42! the densityn0 of unpaired electrons
per site is estimated by integrating the noninteracting~tight-
binding! density of statesD0(e) up to the~true! chemical
potentialm523.5t. This yields

n050.1. ~57!

This value allows to find the number of pairs that is given
half of the number of ‘‘available’’ electrons,

nb5
n2n0

2
50.05. ~58!

This means that roughly one-half of the charge carriers c
tribute to the~virtual! pairing fluctuations. As illustrated in
Fig. 3, this splitting of the total number of electrons in
paired and unpaired particles is determined here by the v
of the chemical potentialm. This is rather different from the
BCS weak-coupling superconductivity, where the gap
rameterD plays this role.

It is now possible to calculate precisely the~small! value
of the coefficienta as announced above. First, we analy
cally evaluate thek sum in Eq.~56! and get

nb52
1

4pbc
lnH 12expF2

ba

Re~d!G J . ~59!

Then, using the known values forb, c, andd, this equation is
compared with Eq.~58! and solved fora. The result isa
52.7831024t21 which is indeed too small to be obtaine
by the approach developed in Sec. III.

Now we want to see whether the value ofnb really makes
sense by subjecting it to various ‘‘consistency checks’’ ba
on alternative approaches that are valid in similar situatio

~1! In its simplified form ~15! the electronic self-energy
leads to a simple relation between the pseudogap widthD
and the number of bosonic pairs: according to Eq.~10! the
sum over wave vectors and Matsubara frequencies on
right-hand side of Eq.~16! is directly related to the numbe
of pairs, provided that Im(d) is small,

1

bN (
k,za

T~k,za!5
nb

Re~d!
. ~60!
4-9
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ALAIN SEWER AND HANS BECK PHYSICAL REVIEW B64 224524
Thus, given Eqs.~16! and ~17!, the following relation be-
tween the pseudogap half-widthD and the number of pairs
holds:

nb5Re~d!S D21
G0

2

4 D . ~61!

Using Re(d)50.031t22, D50.5t, and G050.125t, we ob-
tain nb50.008, which is more than a factor 5 smaller th
the value coming from the number equation. This discr
ancy is due to replacing the full expression~14! for the elec-
tronic self-energy by the approximate form~15! which is
only valid at weak coupling where the shiftm2m0 of the
chemical potential is small~see Fig. 3! and which is defi-
nitely not suited for the caseU54t.

~2! Stinzing and Zwerger19 considered the BCS-BEC
crossover problem at the level of a Gaussian approxima
for the pairing field. Although their approach is devoted
the case ofd-wave symmetry, we have already seen tha
yields a value for the bosonic massmb which is similar to
ours. For such amb value, their estimate fornd is approxi-
mately equal to one-third of the total density of electronsn.
In terms of the bosonic density, this givesnb50.033 that is
already closer to the value~58! found in the framework of
our approach. The same result is obtained from Haussma
work36 that provides a value for the chemical potent
shift ~51!:

m̃

m̃0
'

n0

n
5

2

3
. ~62!

Here the tilde (̃ ) means the value with respect to the botto
of the free band.

~3! One can also establish a link betweennb and the
double occupancyn2 of a given lattice site, which can b
calculated by dividing the total potential energy byU @see
expression~1! for the Hamiltonian#. This relation reads

n25S n

2D 2

1nb , ~63!

where the first term represents the free electron contribu
that is nonzero even without the attractive interaction. O
QMC results37 aren250.05 for n50.2 andb515t21. This
corresponds to a valuenb50.04 which is satisfactorily close
to the one obtained with our approach. We should men
that nb was defined here as the expectation value of the
eratorS i(ci↑ci↓)†(ci↑ci↓) describing strictly local pairs. The
latter may be different from the ones appearing in an in
mediate coupling regime.

The conclusion of the above is that the order of magnitu
of nb is correct, maybe a bit overestimated. This is proba
due to restricting thek-dependent weight factor in Eq.~47!
to its value ink50 and to neglecting the bosonic interactio
in Eq. ~46!. Indeed, it has been shown that the latter may le
to a depletion of the number of bosons to a slightly low
value.17,30 However, our estimate of the bosonic density
mains valid and fully compatible with the idea of preform
local pairs existing above the critical temperature.
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C. Influence of a weak interplane coupling

For a 3D anisotropic system, one has to add a term to
Hamiltonian~1! that describes hopping between neighbori
lattice planes involving the hopping amplitudet' . The ratio
between the two parameters

g25
t

t'
~64!

defines the electronic anisotropy. When the tight-bind
spectrum is approximated by a quadratic form for sm
wave vectors,g2 can be expressed by the product of t
lattice anisotropy times the ratio between the electronic
fective massesm andm' . TheT-matrix expressions~2!–~5!
remain valid, the wave-vector sum now running over the
Brillouin zone. However, rather than performing these 3
sums explicitly, we estimate in a simple way the effect of t
additional sum over thez component of the wave vectors o
the results obtained up to this point for a strictly 2D syste

It is clear that this additional sum over the perpendicu
direction ‘‘smears out’’ the form ofx and s, obtained
through Eqs.~2! and ~5!. Therefore, its main effect can b
summarized by introducing an additional contributionG' to
the spectral linewidth of the corresponding quantity, obtain
previously by a 2D wave-vector sum.

Following again the approximate scheme developed
Secs. III A–III C, one first has to evaluate the electronic se
energy according to Eq.~14!. The effect of summing also
over thez component of the wave vectorq is incorporated in
s by increasing its linewidth. An upper limit for the corre
spondingG' should be given by the sum of the total vari
tion of the two factors in Eq.~14! over the domain ofqz , i.e.,
the maximum value of the band dispersion inz direction

G'&2t' ~65!

and the additional width of the ‘‘bosonic band’’ given b
Im@T(q,za)#. Given that the estimate~54! is also valid for
the h peak in 3D, we can neglect the difference in t
bosonic bandwidth between 2D and 3D, and thus our e
mate ofG' for s is directly given by Eq.~65!. According to
Ref. 28, the linewidth ofs(q,zn) near the Fermi surface i
on the order of 0.2t. Thus, the additional broadening has
small effect provided that

2t'
0.2t

5
10

g2 !1. ~66!

For the next step, the evaluation of theT-matrix coefficients
performed in Sec. III C for 2D, we simply add the linewid
~65! to the linewidthG that characterized our approxima
electronic spectral function~27! in the pseudogap regime
Then the 3D effects are small as long as

2t'!G. ~67!

Given our choice ofG5t/8, the inequalities~66! and~67! are
satisfied and the pseudogap should not be appreciably
fected by the weak interplane coupling, as long as

g2@16. ~68!
4-10
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THERMODYNAMIC PROPERTIES OF THE ATTRACTIVE . . . PHYSICAL REVIEW B 64 224524
This requirement is in agreement with other authors38 who
claim that the pseudogap is a typical 2D phenomenon s
in this case the pairing fluctuations are strongly enhance24

On the other hand, the latter become much weaker when
approaches the 3D anisotropic case where the pseud
should then be observable only very close toTc . There are,
however, several nontrivial features resulting from the we
interlayer coupling, which we will mention now. A quantita
tive analysis would be delicate within our approach since
result would depend rather sensitively on the interplay
tween two small parameters, namely, the linewidthG and the
additional bandwidth 2t' . Therefore, we restrict ourselves
qualitative considerations and eventually borrow some
sults from other studies.

The following two quantities are affected by the we
interlayer coupling:

~1! Coefficient a. Unlike the strictly 2D case, the trans
tion to the superconducting phase transition must now sa
the Thouless criterion as mentioned above. Thus,a(T) must
vanish atT5Tc as sketched in Fig. 2.

~2! Coefficient c. There is now an additional paramete
namely, a coefficientc' that multiplieskz

2 in the T matrix
~10!. This quantity allows to define the bosonic anisotropy

gb
25

c

c'

. ~69!

Since it describes the correlated motion of two electro
along thez direction, it is different~and in fact much larger!
than the single electronic anisotropyg2. In a similar context,
Quick and Sharapov39 derived the following expression fo
quasi-2D systems,

gb
252png4, ~70!

wheren is the electronic density.
It is now possible to apply the above considerations

real ~3D! materials in order to determine the circumstanc
under which the bosonic properties associated with thT
matrix may be observed. It appears that the bosonic an
ropy gb defined above can be written as a product,

gb5lgm , ~71!

where l is the lattice anisotropy~out-of-plane lattice con-
stant divided by in-plane lattice constant! and gm the
‘‘bosonic mass’’ anisotropy that can be extracted from p
etration depth measurements. The data for the bilaye
compound Bi-2212~l530.7/235.4;3, gm;200 and n
;0.1! give gb;600. Using Eq.~70!, we getg2;750 that
satisfies the above conditions~66! and ~68!. Thus, we may
understand the observation of typical BEC features in
specific-heat measurements of underdoped BSCCO.1 On the
other hand, the corresponding parameters for underdo
YBCO ~l;11.7/233.8;1.5 and gm;30! yield g2;55.
This value does not fulfill the above requirements and
BEC properties are ‘‘smeared out’’ by the interlayer coupli
to give finally theXY-like behavior that has been observ
experimentally.1
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D. The superconducting transition as a Bose-Einstein
condensation

An important confirmation of the consistency of our a
proach was provided by the fact that the critical temperat
Tc't/15 was found to correspond to the point where t
coefficient a showed clearly the tendency to become ve
small ~and eventually to vanish in 3D!. This agreed with the
Thouless criterion for superconductivity. The interpretati
of the T matrix as the propagator of well-defined noninte
acting bosonic quasiparticles may suggest that one shoul
able as well to view the transition to the superconduct
state as a condensation of these bosons, forgetting c
pletely about the underlying electrons. In that case, the c
cal temperatureTc should correspond to the BEC transitio
temperature of the bosons described by theT matrix.

A first step in this direction was already performed in t
previous section where we have introduced a weak interla
coupling, making our system three-dimensional. This enab
a finite-temperature condensation of the noninteract
bosons. In order to preserve the main properties deduced
the strictly two-dimensional case~and displaying typical
BEC features!, we imposed conditions on the electronic a
isotropy constantg. According to Sec. IV C typical values
gb;500– 1000 are well suited to describe underdoped hi
temperature superconductors such as BSCCO. In this c
we expect the following relation to hold:

Tc,BEC@
c

gb
2 Re~d!

. ~72!

This situation corresponds to the case of ‘‘strongly anisotr
ic’’ bosons for which an implicit expression for the critica
temperatureTc,BEC has been derived by Wen and Kan.40 It
reads

Tc,BEC54pnb

c

Re~d!Y lnFTc,BEC

gb
2 Re~d!

c G . ~73!

All the parameters entering the above formula have b
determined previously so that we may use it straightf
wardly to see whether the system we are considering re
consists in free bosons undergoing a BEC. The result is

Tc,BEC50.4t. ~74!

This shows clearly that Eq.~73! gives a value that is sub
stantially larger than the ‘‘true’’ critical temperatureTc
'0.07t obtained from other methods.22,35 It could be low-
ered toTc by the choice of a higher anisotropy (gb;107) but
the latter would become so large that it would be meani
less to speak about a 3D system. Therefore, this discrep
is an intrinsic feature of the intermediate coupling range
the model. This is confirmed by applying the same proced
to the 3D isotropic case considered by Haussmann36 where,
after using the usual formula forTc,BEC,26 a similar disagree-
ment between the true transition temperature and the B
value is found as well.

It is clear that the coupling strengthU54t represents an
intermediate regime for which the pure BEC physics va
for large U is not expected to work. However, the study
4-11
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theT matrix performed above has shown that the latter co
be legitimately interpreted as the propagator of well-defin
noninteracting bosons approaching a BEC asT↘Tc . The
observed inadequacy of the BEC critical temperature me
that the ‘‘unpaired’’ electrons cannot be omitted. Althou
their contribution to the thermodynamic potential~30! is un-
interesting, they still play a role in inhibiting the boson
states to arrange themselves to form the BE condensate
they were alone. It is thus normal that the true critical te
perature lies below the one predicted by the BEC scena
They will coincide once the effects of the ‘‘unpaired’’ ele
trons have disappeared, i.e., whenn050, what corresponds
to the strong-coupling regime whereall the electrons are
forming thenb5n/2 pairs.

It is interesting to note that the evaluation of the formu
~73! with the incorrect~asymptotic! bosonic parametersnb
5n/250.1 andc/Re(d)52t2 /U50.5t yields Tc,BEC50.06t,
which is very close to the trueTc'0.07t. Such a procedure
was used in Ref. 1 and gave, together with the shapes o
specific-heat curves, a strong experimental support for
interpretation of the superconducting transition in und
doped high-temperature superconductors such as BSCC
a BEC. In the light of the present work, the agreement
tween these two aspects seems to be the result of a co
dence rather than the manifestation of an authentic BEC
preformed pairs.

V. SUMMARY

We have studied the attractive Hubbard model~1! on a
strongly anisotropic lattice for an attraction strength of t
order of half the free-electron bandwidth by means of
T-matrix approximation. We have focused on the tempe
ture regime close to, but above the superconducting tra
tion temperatureTc , where a pseudogap is developing in t
one-electron density of states.

An approximate self-consistency in the solution of equ
tion ~2!–~5!, determining the relevant quantities of th
T-matrix approach, has been achieved by proceeding in
steps. The first step—a perturbative calculation of the o
electron Green function by approximating the full Gre
function in Eq.~5! by its free-electron form, and theT matrix
T(q,zn) by its form for small wave vectorsq and frequencies
zn—has been taken over from previous work.28 The resulting
spectral function has been approximated by a BCS form w
an energy-dependent linewidth. The second step consis
~re!calculating the coefficients determiningT(q,zn) by using
these broadened BCS spectral functions in Eq.~3! for the
‘‘factorized particle-particle susceptibility’’x that yields
T(k,za) according to Eq.~2!. As a result, we confirmed th
superconducting transition temperature through the Thou
criterion:T(0,0) diverges for temperaturesT↘Tc . As a next
step, we have studied, still in the framework of theT-matrix
approximation, the thermodynamic properties of the mo
in the pseudogap regime, namely, the grand canonical po
tial and the ‘‘number equation’’ determining the link betwe
the electron density and the chemical potential. Close toTc ,
the number equation reduces to a simple form, which s
that the total particle number is approximately equal to
22452
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sum of the number of ‘‘unpaired’’ electrons and twice th
number of ‘‘virtual pairs.’’ The lifetime of the latter, which
have bosonic properties, becomes longer and longer,
their interaction weaker and weaker, whenTc is approached.
The fraction of electrons that participate in the constituti
of these ‘‘preformed’’ pairs is estimated by different approx
mate relations. It is on the order of one half.

At the end of these calculations that are performed fo
strictly 2D system representing one lattice plane, the in
ence of a weak interplane coupling is estimated. In agr
ment with other works, it is found that the pseudogap s
nario should not be substantially altered, as long as
hopping of electrons from one plane to the other is su
ciently weak. However, on the formal side, a nonvanish
interplane coupling is necessary in order to be able to t
the superconducting transition either as a ‘‘normal’’XY tran-
sition or as a Bose-Einstein condensation, whereas in a t
2D system one would expect a Kosterlitz-Thouless scena
which is more difficult to describe in a perturbative a
proach.

We finally use the quantities that characterize the boso
pairs in order to calculate the critical temperature of the B
associated to the latter. The obtained value appears to
definitively larger than the ‘‘true’’ critical temperature. Thi
shows that, for an intermediate coupling, a description of
superconducting transition in terms of bosons only is inco
plete: unpaired electrons cannot be omitted although they
not contribute explicitly to the part of the thermodynam
potential that is relevant asT↘Tc . On the other hand, the
‘‘true’’ critical temperature—given by the Thouless criterio
of a diverging T matrix ~in which all electrons are
involved!—can be equivalently reformulated as the po
where the chemical potential associated with the bosons
scribed by theT matrix is vanishing, which is a fundamenta
feature of a BEC. In this context, it then seems natural
understand observations, like the specific heat of stron
anisotropic high-temperature superconductors,1 as a sign of
Bose-Einstein physics.

Summarizing, we have interpreted the physical proper
of a strongly anisotropic superconductor, described by
attractive Hubbard Hamiltonian, in its normal state close
the critical temperature, in terms of a ‘‘two-fluid’’ picture o
coexisting preformed pairs and unpaired electrons. Vari
authors have analyzed the properties of such a system
working directly with a Hamiltonian of coupled fermion
and bosons.41 The self-consistentT-matrix approximation
used in this work has the advantage that one can start fro
purely electronic model~albeit with an electronic attraction
with unspecified origin!. The formal expressions determinin
the thermodynamic and the one-electron properties then
in a natural way to the two-fluid picture and allows us
determine the relevant parameters that characterize
bosons.
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APPENDIX A: CALCULATION OF THE COEFFICIENTS a,
c, AND d BY USING SPECTRAL FUNCTIONS

Expressions~11!–~13! for the coefficientsa, c, andd are
based on the particle-particle bubblex(k,za) from Eq. ~3!.
We first reexpress it in terms of the spectral functionA(k,v)
by using the Lehmann representation for the Gre
function:26

G~k,zn!5
1

2p E dv
A~k,v!

zn2v
. ~A1!

This gives

x~k,za!5
1

b (
zn

E dvdv8

3
1

~za2zn!2v

1

zn2v8
f~k,v,v8!, ~A2!

where

f~k,v,v8!5
1

~2p!2

1

N (
q

A~k2q,v!A~q,v8!. ~A3!

Performing the frequency summation in Eq.~A2! yields26

x~k,za!52E dvdv8
12nF~v!2nF~v8!

za2~v1v8!
f~k,v,v8!,

~A4!

wherenF is the Fermi-Dirac distribution

nF~v!5
1

ebv11
. ~A5!

Now we can introduce the explicit expression of the spec
function in order to evaluate the quantityf(k,v,v8). As a
first step, we take the BCS expression~18!. The generaliza-
tion to the pseudogap regime we are interested in will
straightforward as shown in Appendix C. For simplicity, w
consider the casek50, which concerns the coefficientsa and
d. But this method also applies toc once the twok deriva-
tions have been performed and the derivatives of thed func-
tions have been removed by partial integrations overv. In-
serting expression~18! into Eq. ~A3! gives

f~0,v,v8!5
1

N (
q

$uq
4d~Eq2v!d~Eq2v8!

1vq
4d~Eq1v!d~Eq1v8!

1uq
2vq

2d~Eq2v!d~Eq1v8!

1uq
2 vq

2d~Eq1v!d~Eq2v8!%. ~A6!

Using the propertyd(x2a)d(x2b)5d(x2a)d(a2b), we
find
22452
.

n

l

e

f~0,v,v8!5d~v2v8!Da,1S v1v8

2 D
1dS v1v8

2 DDa,2~v2v8!, ~A7!

where

Da,1~v!5
1

N (
q

@uq
4d~Eq2v!1vq

4d~Eq1v!#, ~A8!

Da,2~v!5
1

N (
q

uq
2vq

2@d~Eq2v!1d~Eq1v!#. ~A9!

Now we can perform theq integration in the above expres
sions by introducing the tight-binding density of states

D0~e!5
1

N (
q

d~«q2e!5
1

2p
FFp2 ,A12~e/@W/2# !2G ,

~A10!

whereF is the elliptic integral of the first kind. Integration
over e5m1j gives the final expressions forDa,1 and Da,2
displayed in Appendix B. The contribution~A9! is often re-
ferred to as ‘‘Landau term’’ and describes interband effec

The coefficientsa, c, and d are obtained from Eq.~A4!
that can be still simplified by making the variable transfo
mation (v,v8)→„V5(v1v8)/2,u5v82v…, as suggested
by Eq. ~A7!. This allows us to eliminate one of the integra
in Eq. ~A4! and to finally obtain the expressions given
Appendix B.

APPENDIX B: RESULTS FOR BCS SPECTRAL
FUNCTIONS

In the following, we give the exact expressions for t
coefficientsa, c, andd defined in Eqs.~11!–~13! and calcu-
lated them using the method of Appendix A based on
BCS spectral functions~18!. They read

a5
1

U
2E dvH Da,1~v!

tanh~bv/2!

2v
2Da,2~v!nF8 ~v!J ,

~B1!

c5E dvH Dc,11~v!
tanh~bv/2!

2v

1Dc,31~v!F tanh~bv/2!

4v2 1
nF8 ~v!

2v G
1Dc,51~v!F2

tanh~bv/2!

4v3 2
nF8 ~v!

2v2 1
nF9 ~v!

2v G J
3

1

2 S djk

dk D
k5k~v!

2

1E dvH Dc,12~v!
tanh~bv/2!

2v

1Dc,32~v!F tanh~bv/2!

4v2 1
nF8 ~v!

2v G J S d2jk

dk2 D
k5k~v!

,

~B2!
4-13
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d5PE dvDa,1~v!
tanh~bv/2!

4v2 1 i
p

8
bDa,1~0!, ~B3!

where the ‘‘weighted’’ density of states are given by

Da,1~v!5DBCS~v!S 12
D2

2v2D , ~B4!

Da,2~v!5DBCS~v!
D2

2v2 , ~B5!

Dc,11~v!5DBCS~v!
3D2

4v2 S 211
D2

v2D , ~B6!

Dc,12~v!5DBCS~v!
D2

4v4 j~v!, ~B7!

Dc,31~v!5DBCS~v!
D2

v3 S 12
3D2

4v2D , ~B8!

Dc,32~v!5DBCS~v!
j~v!

2v S 12
D2

2v2D , ~B9!

Dc,51~v!5DBCS~v!S 1

2
2

3D2

4v2 1
D4

4v4D , ~B10!

and contain the BCS expressions

DBCS~v!5D0@m01j~v!#%~v! ~B11!

j~v!5sgn~v!Av22D2 ~B12!

%~v!5
uvu

Av22D2
. ~B13!

Equations~22! and ~23! are a bit different from the abov
expressions~B1! and~B2! because negligible terms are om
ted and the derivatives of the bare dispersionjk are factored
out from the integrals in order to make their evaluati
easier.

APPENDIX C: BROADENED BCS SPECTRAL FUNCTIONS

Here we show how to modify the method and the resu
shown in Appendixes A and B in order to calculate the c
efficientsa, c, andd for the spectral functions given by Eq
~27!. First, the property of thed functions used to derive Eq
~A7! is no longer true. However, it is possible to obtain a
proximately a similar result by using the following strateg
We introduce the variables transformation (v,v8)→(V,u)
defined in Appendix A in Eq.~A6! and assume that the func
tions f G can be approximated by a Gaussian distribution
defined in Eq.~28!. This is quite reasonable as long as w
22452
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have very peaked line shapes, i.e.,G!W. Then we have, for
example,

f G~Eq2v! f G~Eq2v8!5 f G/&~Eq2V! f&G~u!, ~C1!

which yields an expression forf~0,v,v8! similar to Eq.~A7!.
For simplicity, we takef G/&' f&G' f G . The next step is the
integration over the variableu, which can be achieved by
expanding the fraction in Eq.~A4! with respect to the latter
and keeping only the zeroth-order term. The first correctio
are of second order and can be safely neglected for our
poses. Thus we finally get expressions for the coefficienta,
c, andd, which are very similar to those calculated for th
BCS case. This is the main advantage of our method.
only difference lies in the ‘‘weighted’’ density of state func
tions ~B4!–~B10!, which must be modified according to

Da,1~v!→D̃a,1~v![E dEDa,1~E! f G~E2v!, ~C2!

for example. We shall use a tildeD̃ to refer to the case o
‘‘broadened’’ density of states corresponding to the spec
function ~27!.

APPENDIX D: EVALUATION OF THE COEFFICIENT b

In this section, we present the result of the calculation
the coefficientb giving the strength of the bosonic intera
tion. Proceeding as explained in the previous appendices
find the following expression:

b5E dvDBCS~v!@uv
4 H̃uu~v!1vv

4 H̃vv~v!

12uv
2 vv

2 H̃uv~v!#. ~D1!

Here the finite widthG of the spectral functions manifest
itself as

H̃uu~v!5E dV f G~V2v!H@V,j~v!#, ~D2!

H̃vv~v!5E dV f G~V1v!H@V,j~v!#, ~D3!

H̃uv~v!5E du f G~u2v!
1

u
$HL@u,j~v!#2HL@2u,j~v!#%,

~D4!

and the corresponding expressions for the BCS case are

H~v1 ,v2!52
12nF~v1!2nF~v2!

~v11v2!3 1
nF8 ~v1!1nF8 ~v2!

~v11v2!2 ,

~D5!

HL~v1 ,v2!52
12nF~v1!2nF~v2!

~v11v2!2 2
nF8 ~v2!

v11v2
.

~D6!
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