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The structure and stability of superfluftHe systems with cylindrical symmetry are studied. Ground-state
energies and density profiles are computed by using density-functional approaches. A model to understand the
energetics of cylindrical systems is developed by following the main ideas of the Droplet Model utilized to
describe spherical clusters. The necessary condition for stability is formulated by imposing a positive longitu-
dinal isothermal compressibility along the principal axis of the cylinder. It is shown that free cylindéreof
atT=0 K are unstable. As an example of the evolution towards stable systems, results fofHguitnfined
by cylindrical nanopores in Cs are reported.
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. INTRODUCTION Saant® In our study the ground-state enerfy of an in-

The investigation of properties of superfluid helium ad-teractingN-body bosonic system dfHe atoms confined by a
sorbed in porous materials has long been a subject of inteadsorbate-substrate potential,(r) was written as
est. A pioneering study of Wecoglass, 99% of Si¢g) was
performed by Atkins, Seki, and Condbim 1956 for testing
the onset of superfluid flow. Since that time an important
research activity has been developed in this field. An impor- 52
tant theoretical work on this matter has been done by Cole _ _J' w2
and Saant: These authors have derived a formulation based 2m drvp(nV=p(r)
on the thermodynamics and hydrodynamic theory of fluid
systems in order to stud§He adsorbed on the internal wall +J drp(r)esc(r)_l_f drp(n)Ugdr), (1.0
of cylindrical pores. A survey of subsequent experimental
work on the helium adsorption into Vycor, Graphfoil where p(r) is the one-body density. The first term on the
(graphene foil, and Nucleopore(polycarbonate may be  right-hand side is the quantum kinetic energy of the helium
found in the work of Godshalk and Hallotlnd references particles of massn. The second term represents the interac-
quoted therein. More recently, during the last decade the egon between the particles of the system, wheygr) is the
fort has been mainly centered round the study of the adsorgself-correlation energy per particle depending on the adopted

. . . _9 . R . . .
tion of helium in carbon nanotubés’ Let us emphasize that DF approach. The last term is the interaction with the exter-
the graphite wall of the nanotube exerts an extremely strongg| field.

attraction on helium atoms. On the other hand, hitherto no The optimal solution is obtained by minimizing the ther-
attention has been paid in the literature*tde adsorbed into modynamic grand potentia?,

weakly attractive cylindrical pores, which could be present in

samples of alkali metals. Adsorption on planar surfaces of O=Eg{p,Vp]—uN, 1.2
this kind of metals has already been extensively stddiel
leading to the important conclusion that the less attractiv
alkali, Cs, is not wet by*He at temperatures<2 K.’ All 20\ 9ELp.Vp]
these facts have encouraged us to start an investigation of the (—) S
behavior of*He adsorbed into nanopores in alkali metals. N w N

In the present W(;rk' we shall report the investigation;, ,eactice, the Euler-Lagrang&L) equation for determin-
about_ the behavior ofHe adsor.bed into cylindrical nanop- ing the density profilep(r) is derived imposing the varia-
ores in the ultra-weakly attractive substrate of Cs. To illus+jonal condition

trate our findings, the results for two different pore sizes of
radii 3 and 5 nm will be shown and discussed. 50 8{Egdp.Vp]—uN}

The calculations for the ground state have been carried Sp(r) = Sp(r) =0. (1.9
out within the density-functionalDF) theory. This formal- P P
ism has proven to be a successful tool for treating this kind_et us mention in passing, that in order to stuthje systems
of quantum many-body problem&:28 Let us mention that the kinetic-energy term in Eq1.1) must be modified due to
the formulation of the energy of a given system in the DFthe fact that fermions obey a different statisticze, e.g.,
theory?? differs from that assumed in the hydrodynamic Refs. 19 and 20 Furthermore, the optimization equation in
theory used in the above-mentioned paper of Cole anthe case of°He becomes more complicated than Et.4)

o= | drp(nHIp Vol + [ drp(n)Uuir)

&t fixed chemical potentigk, i.e., by requiring

n=0. (1.3
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because the corresponding one-body dengfty) must be namely, the Skyrme-type “zero-range” expression suggested
expanded in an appropriate single-particle bpsfisEq. (3.5 in Ref. 19 and the nonlocal density functio&lLDF) for-
in Ref. 21]. malism proposed in Ref. 2@he versions of these DF ad-
In the route to analyze weakly attractive pores we shalkequate for studyingHe may be found in Refs. 19 and 21,
first examine free cylindrical systems 6He. It is known  respectively.
that free spherical drops ofHe at T=0 K are always In the cylindrical geometry, the fluid is translationally in-
stable}®*while to the contrary free %gmar films are unstablevariant along the coordinate coincident with the principal
against long-wavelength fluctuatioffs?” Long time ago it  axis of the cylinder and exhibits a density profile in the radial
has been found by Rayleigh that the surface of a perfect fregjrectionr perpendicular ta. So, in this case, the liquiHe
other geometries of lower surface areas yielding lower interUsut{f)EUsub(r) independent of the azimuthal angpe The
facial free energies. In particular, the cylindrical geometry isq anities of interest were obtained from the solution of the

not stable relative to the spherical one because the latter 9grartree equation for the square root of the one-body density
ometry have a lower surface/volume ratio. The reader MaYderived by using Eq(1.4)]

find a discussion of this issue in Ref. 31. In this context, it is

worthwhile to complete the pattern within microscopic theo- 52

ries obtained for regular geometries by studying the stability = ——

of free cylinders of*He. 2m
In fact, there are two different ways for establishing the _

necessary condition for the stability of a given syst&Af. =mp(r), 2.0

One of them is based on a study of the excitation spectrum afhich also determineg. HereV(r) is a Hartree mean-field

the analyzed system and leads to the so called dynamic@btential given by the first functional derivative of the total

condition. In the framework of the DF theory the latter kind correlation energE<{ p],

of procedure requires the solution of an eigenvalue problem

[see Eq.2.7) in Ref. 32 formally equivalent to that of the SEsdp] E) . ,

hydrodynamic theorysee Eq.(3.2) of Ref. 3. To get dy- Vi(r)= “op(t) mj drip(r')es(r’). (2.2)

namic stability one must require that the lowest eigenvalue ) )

#2w? be positive. The other way consists of a study of theThe expressions fo¥,;(r) should be derived for each one of

energetics within a thermodynamic descriptidin this case ~ the different DF approaches. In practice, E2.1) is solved

one has to analyze the evolution of the grand thermodynamitr & given number of particleld per unit lengthL along the

potential Q) of samples with increasing number of particles Z @Xis, i.e., at fixech,=N/L.

N. The requirements for stability aré) thatQ2(N) be lower

than that of any smaller system even than that of all other A. Zero-range density functional

c_onfiguratio_ns ancﬂii)_that the slope of the chemical poten- 110 simplest DF successfully employed to interpret prop-
tial q_M/dN in the n.e|ghborhood of the analyzed system begtias of 4He systems has been proposed by Stringari and
positive. However, it has been shown by Clemaegital. that Treiner®1° It is a zero-range correlation inspired in func-

in case of the DF theory the thermodynamic and dynamiGigonais derived by using a phenomenological interaction of
instability conditions are rigorously identicedee comment Skyrme type, which have been extensively applied to de-
to Egs.(5.2) and(5.3) in Ref. 33. Furthermore, the authors qcrine properties of atomic nuclei. The explicit form of the

of Re,f: 2 havg als_o stated that the th,ermOdynf?mic,in_Stabi"W:orrelation energy per particle for cylindrical geometry is
condition is identical to the dynamical stability limit ob-

& 1d
—2+—d—)¢p<r>+[vH<r>+usub<r>]¢p<r>
dr rdar

tained within the hydrodynamic theofgee the comment to . b, C4 1 [dp(r)\?
Eq. (8) therein. In practice, one may find a situation where  €5.(r)= S PN+ §P74+1(r)+d4m ar )
dynamic stability is accompanied by thermodynamic meta- P 2.3

stability. It occurs when bothzwg anddu/dN are positive
but Q(N) does not satisfy the conditiofi). In the present The phenomenological parametéxg, ¢4, v4, andd, fixed
work we shall examine the stability applying the thermody-in Ref. 19(see Table | therejrso as to reproduce the known
namic criterion. saturation properties of the uniform liquide., the equilib-
The paper is organized in the following way. The adoptedium density, the energy per particle, the compressibility, and
DF approaches are outlined in Sec. Il. Numerical results arée surface tension quoted in Tabjeare
provided in Sec. Ill. A model for interpreting the results ex-
hibiting a well-defined axial phase is proposed in Sec. IV.
Section V is devoted to study thermodynamic properties and
to formulate a stability criterion. The analysis and discussion
are performed in Sec. VI and a summary is given in Sec. VII.

b,=—8.88810< 10 KAS3,
C4=1.04554<10" KA3(a+1),

y4=2.8, (2.4)

Il. THEORETICAL APPROACHES
_ _ d,=2.383x10° KAS.
In this work we report results of calculations performed

by using two different DF approaches fdiHe systems, The corresponding’ﬁky(r) is given in the Appendix.
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TABLE I. Bulk observables, experimental values of the surface
tension for liquid*He atT=0, and values of the LJ parameters.

Observable Data Ref.
eg [K] -7.15 19
po [A 3] 0.021836 19
K [K] 27.2 19
Oexp [KIA?] 0.274+0.003 38
0.257+0.001 39
0.272+0.002 40
System ey [K] oy [A]
He-He 10.22 2.556 34
He-Cs 1.21 6.47 41

B. Orsay-Paris nonlocal density functional

The Orsay-Paris nonlocal functiondDP-NLDF pro-
posed by Dupont-Roet al.,?® which treats correctly the
long-range part of the helium-helium interaction and im-
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FIG. 1. Energy per particle and chemical potential as a function
of the inverse of square root of longitudinal density n;l’z for
free cylinders of*He. Results obtained with the Skyrme-DF and
OP-NLDF approaches are represented by open and full triangles,
respectively. The dashed lines are the linear approximations given
by Egs.(3.1) and (3.2 with 0..= 0ex,=0.272 K/IA taken from
Ref. 40.

proves the description of correlations, is sufficiently good towhere W(|r—r'[) is taken as a normalized step function.

reproduce properties of nonlayered systems like free o
weakly confined cylindrical systems. This functional reads

(=1 ST,
25

In this case the two-body interactiod"(r =|r—r’|), was
taken as thé'He-*He Lennard-Joned.J) potential screened
in a simple way at distances shorter than a characteristi

distancehgp,
[

Ry
VPP (hop) ( fom

=5 [ ar'p(r Ve

oL

r

oL

48|_J r

6
H if r=hop,

VPR =

if r<hpp,

(2.6

with the standard de Boer and Mich&parameters, well
depthe| ; and hard core radius, ; listed in Table I. In order

#he relevant quantities for solving a cylindrical system are
summarized in the Appendix.

Ill. NUMERICAL RESULTS
A. Free cylinders

In the case of free cylinders the integrodifferential prob-
lem (2.1) has been solved for a rangeof enough to cover
the domain of energy per particke6<e<-2 K. This re-
gime ofeis similar to that utilized for studying free systems
with other symmetriesgsee, e.g., Fig. 3 in Ref. 35 for planar
films and Fig. 1 in Ref. 36 for spherical drgpsSome se-
lected results foe and u obtained by carrying out calcula-
tions with both the Skyrme-DF and OP-NLDF approaches
are displayed in Fig. 1. This drawing indicates that for
=n,"?<0.4 A2 the data agree very well with the
asymptotic limit of expressions derived in the first approach
to this probler’

to recover the correct results for bulk liquid, the screening@nd

distanceho(=2.376 728 A) has been adjust@do that the
integral of V27(r) over the whole three-dimensional space

(el sl

be equal to the value df, quoted in Eq(2.4).

The p(r) is the “coarse-grained density” defined as the
straight average gf(r) over a sphere centeredragnd with
a radius equal to the screening distaheg,

8

3

327 3
E‘SLJULJ

oL

hop

(N
hop

f drvPoi(r) =

F(r>=f dr'p(r YW — 1)), 28

ar

e=e,+20., \/:nxl’z, (3.2
Po
o

w=e,+ o, \ﬁnhl’z, (3.2
Po

wheree,, is identified with the energy per particle of infinite
uniform helium matter at saturatieay=Eg/N and o, with

the experimental surface tension,,,**~*°the correspond-
ing values are quoted in Table I. FiguréaPshows the evo-
lution of density profiles for increasing, obtained with
both utilized functionals. A direct comparison is performed
for the system withn,=30 A~. In this case the corre-
spondingV,(r) are plotted in Fig. ). It can be realized
that the Hartree mean-field potential yielded by the
Skyrme-DF resembles a square-well potential with a small
diffusiveness, while the OP-NLDF approach leads to a self-

224523-3



LESZEK SZYBISZ AND SILVINA M. GATICA PHYSICAL REVIEW B 64 224523

FIG. 2. (a) Density profiles for several freHe cylinders. The
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equilibrium saturation density of bulk heliugy, is also indicated.

(b) Self-consistent potentials/,(r) for the system withn, 5 E Vna(r) = ]
=30 A L. In both parts the solid curves are results obtained with C R =504 ]
the OP-NLDF approach, while the dashed ones correspond to solu- _10 b (2) ’ _
tions yielded by the Skyrme-DF. . L . L

0 20 40
consistent potential with a more extended structure at the  [&]

surface region due to the long-range tail proportional 6
of the Lennard-Jones interaction. This difference causes the FIG. 3. (a) Adsorbate-substrate potentidl,r) for the nanop-
small difference in the width of the corresponding profilesore of R,=50 A in Cs given by Eq(3.4) together with a few
displayed in Fig. 22). On the other hand, Fig.(® indicates  selected density profiles of the adsorbed ligdide. Solid curves
a squeezing effect where the central denpitys larger than — are data of the axial systems with =25, 50, 90, and 140 A',
the equilibrium density of bulk helium Wwhile the dash-dotted curve stands for a shell solution with
Po= 0.021 836 kS-lg In order to understand such a com- =3 A_l. The equilibrium saturation density of bulk he“l.m is
pression we shall, in a next section, improve the model pro@iso indicated(b) Similar to part(a) for the pore ofR,=30 A.
posed in Ref. 37.

wherex=r/Rgng- IN addition,® is the surface density of

B. “He adsorbed into Cs nanopores Cs atoms andv ,(x) stands for the integrals

Since in the literature there is no potential for describing
the interaction between helium atoms and the wall of a Cs m
pore, in a first step, we have modeled such a potential. In Mn(x)= fo de
doing so, we suppose that a pore gives rise tdJap(r) (

equal to the sum of contributions yielded by successive con- ] ) ) o )
centric cylindrical Cs shells of raditRq,q Quantity O is determined by taking into account that solid

Cs is a bce crystal with a lattice constant 6.045 A taken
B = from Table 3 of Ref. 43. Assuming that each shell coincides
Usub(r)_ES: Usat s Rshen (33  with a (100 plane of the crystalline structure of Cs and ne-
glecting effects due to the curvature of the shell, the surface
wherer is the distance from the axis of the pore. This pro-density become®,=0.027 36 A 2. The first shell lies at
cedure has been previously used by Stan and®Colec-  the internal radius of the por, and the subsequent shells
counting for the effect produced by multiwall carbon nano-are located maintaining a distana#2 between them.
tubes. Furthermore, we assume thaflde atom interacts Of course, each approximation performed along this pro-
with a single Cs atom of a shell via an isotropic LJ pair cedure introduces an error. However, we expect that the re-
potential with parameters ; and o, ; quoted in Table I. sulting potential would give a reliable description of the
These values are taken from Anciloté al,** who deter-  main features of the systems. This statement should be con-
mined them by adjusting the He-Cs potential of P&tithe  firmed in the future byab initio calculations.
next assumption is the use of an azimuthally and longitudi- ~ As specific illustrations we present results fie con-
nally averaged potential. Under these conditions, it is posfined by two different cylindrical nanopores of Cs with radii
sible to demonstrate that the total effect for a single shell ist:3o and 50 A. In both cases the potential converges after

1
1+x2—2x cosg)"?’

(3.5

given by[see Eq(2) in Ref. 6] summing over fifteen shells. The obtaineld,{r) are dis-
) played in Fig. 3. Notice that both depths are close tg of
Ui Rshen) the He-He interaction. The repulsive “potential wall” is lo-
21( oy |10 oL\ cated at abouRe,=R,—5.6 A. We solved Eq(2.1) for
=3m04e 307, 3_2(R_hll) M 14(X) — (R—h”) Ms(X) |, these potentials by using both the Skyrme-DF and OP-NLDF
she shel

proposals. There are not sizable differences between results
(3.4  vyielded by these DF approaches.
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o—————— 17— also present a squeezing effect. In order to continue the dis-
I ] cussion of the results we need to introduce some theoretical
‘He/Cs (pore) ] background.

IV. DROPLETLIKE MODEL FOR CYLINDRICAL
SYSTEMS

u [K]

Let us now describe a formulation for the energetics ap-

Empty ~ CC - propriate for analyzing the axial phase of the solutions. The
P R T, following formalism is more complete than that of Ref. 37.
0 50 100 150 The equations and discussions reported in this section may
ny [A7] be applied to bosoniéHe as well as to fermioni¢He, and

even to classical systems. Simple models are often useful for
understanding complicated systems. An instructive way to
valuate the energy is to follow the main ideas of the Droplet
odel (DM)***®devised for spherical systems. At this point,
we shall restrict ourselves to consider free cylinders by set-
ting Ug,{r)=0. In the case of a large free cylinder, where
the length of the principal axis goes to infinity, the system
becomes translationally invariant along the coordirmaad

the ground-state energy is

FIG. 4. Chemical potential as a function of the longitudinal
densityn, for “He in cylindrical pores of radiR, =30 and 50 Ain
Cs. The solid curves are OP-NLDF values. Dashed lines are derive,
by Maxwell constructions for the empty-to-CC transitions.

For very small values of, (less than a few A®) there
are stable shell solutions similar to that obtained for the ad
sorption of “He into carbon nanotubdsee Fig. 10 in Ref.
6), but in the present case the systems are very dilydis-
eous phase not liquidas can be seen in Fig. 3. For increas- .
ing n, the shell solution becomes unstable and an axial one Egs=277|-f rdr p(r)H[p,Vp]. (4.2)
develops. This is due to the fact that the attractive correlation 0
between helium atoms becomes stronger than the attraction
exerted by the depth of the adsorbate-substrate potentidi€t €. denote the energy per particle in the central region of
This transition is a form of capillary condensati¢GC).**  the cylinder where the density jg . Then since
The behavior of the OP-NLDF values gf as a function of
n, is depicted in Fig. 4. The results ferand . correspond- *
ing to axial solutions are displayed as a function wof NIZWLI
=n;1/2 in Fig. 5. From the latter figure one realizes that,
although there are some differences betwéele adsorbed we can write the energy as
into pores of differenR,, in both cases there is a freelike
regime where the data exhibit a slope similar to that obtained ]
for free cylinders. In addition, one may observe that for sys- Egs=ecN+27L fo rdrp(r){Hlp,Vpl—el} (4.3
tems larger than a certain critical the behavior changes

noticeably. Some selected density profiles are given in Fig. 3yithout any approximation or loss of generality. In this pro-
Notice thatp. of profiles corresponding the freelike regime coqure the system has been divided into two pditsan
uniformly occupied region characterized by the single quan-
tity p. that determineg,; and(ii) a surface zone where the
density falls down. It is easy to realize that the contribution
to the integral is localized, singg(r) tends to zero outside
the surface andH[ p,Vp]—e.) tends to zero inside the sur-

rdr p(r), 4.2
0

0 T T T T T T T T

free helium v -

“He/Cs (pore)

=
3
o -5 ® free heiium 7| face. Because of this property it is convenient to define a
° " a7 15 K ] sharp mean radiuR as the radius of a sharp cylindrical
% I 5? ? ] uniform distribution of densityp. containing all theN par-
® r g:) A p=50 & circles t|C|eS
—-10 %) Eg‘ R,=30 & triangles and squares E
L | L | L | L | L 0
0 0.2 0.4 0.6 0.8 1 N=2mxL f rdr po=mR2Lp,. (4.4
0

v = 71;\1/2 [31/2]

FIG. 5. Energy per particle and chemical potential as a function! Nis definition for Ry coincides with the location of the
of the inverse of square root of longitudinal density:n; Y2 for ~ Gibbs surface. Now one can make the substitution
cylindrical pores of Cs. The full and open circles are OP-NLDF
values ofe and x for the pore of radiuR,=50 A. Squares and r=Rs+¢, (4.5
triangles(full and open stand for Skyrme-DF and OP-NLDF re-
sults (e and u), respectively, obtained for the pore of radiRg ~ where{ is the outward normal distance from the mean sur-
=30 A. The solid curves are evaluated with Eq(6.2). face. After this change of variables one gets
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o _ R2
Ege=N+2mReL f d¢ p(Ret+ O){HLp,Vp] —ec} =P PP _Ro_ 4.14
—Rs Po Po  R?

densities in terms of the radii. This relation allows us to
expresR; in terms of Ry and e,

Lol f_R {dZ p(Re+ O{HIp,Vpl—el. (4.6 where Eqgs(4.4) and (4.10 have been used for expressing

In order to treat large cylindrical systerfia the sense of big

sharp mean radiuRy) it is convenient to introduce(i) the 1 N 1 ,
asymptotic surface tension Rs=Rg Tre g 1- §e+ O(e€”)
o= im | dzp(Ret O(HIp.VpI-e), (47 I

Rg—o»7 ~Rs TP 2)
which may be identified with the experimerital*®values of .
the surface tensiore,, quoted in Table I; andii) the —no<1—§)ni’2. (4.15
asymptotic energy per unit length

- In this macroscopic model, in order to write down the
g =2 lim J LdZ p(Rs+O{H[p,Vpl—e.}. energy per particle in terms ofn, , one must first estimate
Rg—e ~Rs e. Keeping in mind that the latter quantity is essentially the

(4.8 density at the principal axis of the cylinder it may be deter-

Under these conditions the ground-state energy of a cylindrilined variationally by requiring tha be a minimum at the
cal system oN particles may be written as a sum of volume, OPtimal . For a system of given length and number of

Eg=eN+0.27RL+eL=E,+E+E . (4.9 9 (Bgs|  _
0, (4.19
de\ N LN

An important point of this kind of models is to make a
connection with infinite matter at saturatiéhlf we assume and resembles the EL E¢l.4) formulated for gettingo(r).
that N helium atoms form a cylinder uniformly filled with It should be noticed that this procedure has been applied in
density equal to the saturation valgg, then the following the past for studying spherical drofsee, e.g., Sec. 2 of Ref.
relation holds: 46). Now, one should express the quantities involved in Eq.
(4.9 keeping the lowest-order contributions carriedebyror
N=mR3Lpo. (4.10  uniform systems wittp, close topo, the evaluation of the

As in the spherical case, here one may also introduce a unf'ume energE, in the DM leads to Eq(3) of Ref. 46, i.e.,

radiusr  satisfying 1 )
E,=e.N=e.N+ EICNe , (4.17

R3 ) [ 1
NP0 mokpo=1=T0= mpol’ (4.17 wheree,=eg=—7.15 K is the energy per particle of infi-
nite uniform helium matter at saturation alid=27.2 K the
corresponding coefficient of incompressibilityalues same
as those quoted in Tablg The contributiorEs is the cost in

On the basis of these relations, the radRgsof the cylinder
can be written as

1 energy to form the lateral surface of a large cylinder. Accord-
Ro=roNY?= \/——nl?= 5 nl2, (4.12  ing to Eq.(4.9 it is equal to the asymptotic surface tension
TPo o.. multiplied by the lateral area of the cylindeA
This equation resembles the forRy=aoN"? known from  =2wRsL. Upon introducing the expressio@.15 for the
nuclear physicé>*® Here we have introduced the longitudi- sharp mean radius, one arrives at
nal particle density, defined as the number of particles per N
H H a €
unit length of the cylinder E.=0.27RL =20, / 1— 5) ' 4.18
0
N ©
n)\=E=2wJ rdr p(r). (4.13  Inthis approach one assumes that the contribuEigae L is
0 independent ok. So, the ground-state energy per particle of

Since this quantity accounts for the radial size of the cylin-2 large cylindrical system dl particles may be written as

der, it becomes plausible to expect that it should be the ex-
; Egs K ™ €| _ _
panding parameter. —F_e +=€2+20, \ﬁ 1- —) n, ¥2+gn;t.
In fact, for a cylinder with finite radius the central density N 2 Po 2
along the principal axip. will, in general, be different from (4.19
po- Therefore, it becomes useful to define the relative comUpon imposing Eq(4.16) the relative compressioa is ob-
pression variable by tained from
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J (E T
E(WQS) ZKG—O'OC \/:nA”Z:O, (4.2@
L,N p

0

which yields

Pc”Po_ 0= In—l/z

Po K /00A

(4.21

€=

This formula predicts a squeezing effect for large cylindrical
systems, manifested by the fact that the central density is
bigger than the saturation density of infinite helium matter,

PHYSICAL REVIEW B 64 224523

E T
gs gs -1/2
e=—= :em+20x\f—n
N n,L A

0

m

i)

770'30 Ro _1
+ 8'_2po/C+27Tp°Jo rdrUgdr)n, ~.
(4.27)

V. THERMODYNAMIC PROPERTIES

A stability condition suitable to be applied in the case of

pc=>po- This phenomenon has been already found in calcUhe parametrization of Eq4.22 may be derived from ther-

lations carried out for spherical clusters Hfle (see, Fig. 3

modynamic considerations. For a single-component system

of Ref. 18 and is known as the “leptodermous” behavior. o N particles that presents a volurieand a surface of area

The squeezing effect, i.e., the differenge- p,, vanishes for
ﬂ}\—>°0.

A, the ground-state energy &&=0 K satisfies according to
Eqg. (2.1)) of Ref. 48

Taking into account all the results given in the previous

paragraphs the ground-state energy per particle becomes

E E T
e= —9s_ gs=ew+2¢rm\/:n;1/2+ e
N nL Po

This equation confirms that=n,

770'02c

— n_l

I ZPOIC) »
(4.22

is the suitable param-

eter for the expansion and satisfies the condition that th

energy per particle in the limih,—o should attaineg of

bulk liquid. It is worthy of notice that this polynomial expan-

sion is equivalent to that written in terms Nf 3 for helium

drops[see, e.g., Eq13) of Ref. 18. Perhaps it is pertinent

to mention that for planar films one expanglss a polyno-
mial in powers of the inverse of coveragg=N/A (hereAis
the area of the planar surfac€ By keeping in Eq.(4.22

dEge= — P dV+oad A+ p dN. (5.1)

The intensive thermodynamic field%s o5, andu are pres-
sure, surface tension, and chemical potential, respectively.
The differential changes of volume and area caused by a
displacement of the surface parallel to the normal together
&vith an elongation parallel to the axisare

dV=27R, dRs+ wR3dL, (5.2

dA=27L dR+27RL. (5.3

Here the radiug, of the surface of tension is identified with

only the first two terms one recovers the asymptotic expresqe sharp radius defined in the previous section. By substi-

sion of EQ.(3.1) obtained in Ref. 37.
Let us now add to the ground-state energy of @) the
term stemming from the interaction with a substrate

R
Esubzzwa "rdr p(nUgyr). (4.23
0

tuting these expressions into E&.1) one arrives at

dEge=27L(—PRs+ 0a)dRs+ mRy(— PR+ 20,)dL
+w dN. (5.9

Here, we assume that the surface tension is independent of

We shall treat this contribution as a perturbation to the cycurvature(see cite 16 in Ref.)3Also notice that, if the area
lindrical DM formulated above. The simplest way of evalu- of both caps of the cyIindeAC=27rR§ is included in the

ating this integral is to assume that &llparticles are con-
tained in a sharp cylinder of radil’ with a uniform density
distributionp, . In this approach the energy per unit lengith
is

Esub Rs
3 =27p; . rdrUg{r), (4.29
while the energy per particle becomes
Eswn 2 (Rs
N :R_gj’o rdrUgr). (4.25

The lowest-order approximation f&g given by Eq.(4.15
leads to

Esub
N

=2mpo nt. (4.26)

Ro
f rdrUgr)
0

Hence, the totak takes the form

calculation, then this result will be recovered upon imposing
the conditionRg<<L. Let us now establish a relation among
P, o5, andRg for a system with fixed\. In the case of
helium clusters, from the fact that a sphere has the minimum
surface area and hence the lowest surface energy, one infers
that the equilibrium shape should be spherical. So, for such a
geometry, from the condition that work of a virtual increase
of the radius vanishes one obtains a relation between the
pressure and the surface tensjsee, e.g., Eq5.26 in Ref.

49]. Extending this idea to a cylindrical geometry, since a
circular contour gives the minimum lateral surface and hence
the minimum surface energy, a circular section should be the
equilibrium shape. By imposing that work of a virtual in-
creasedR; in the radius should vanish one gets

JE
( gs) =27L(~ PR+ 04 =0=0,=RP. (5.5
IRg LN
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This relation obtained for cylindrical systems is equivalent tofor cylindrical systems must require a positive longitudinal

that valid for spherical droplefand it corresponds to the

Laplace’s result for a two-dimensional spdsee Eq(2.1) in

Ref. 48. By inputting this result into Eq5.4) one arrives at
dEgs= mRsoadL+ w dN. (5.6

The formal thermodynamic definitions of, and n lead

to the following expressions in terms of the energy per par-

ticle e
JE s d(Egs/N) , e
sy 5| (25 e o
aL | d(LIN) | any
and
JE (a(E /L)) Je
gs gs
= = =e+n,—. (5.9
N | a(N/L) || any
From these equations one gets the relation
Egs—uN  Q
TROA= N, (6— p)= %z = (5.9

The chemical potential evaluated by operating with &8
on the expansio4.27) is
Ro
f rdr Usub(r)},
0

m=e,to \/Enllz-l—ZTrpoi
po any
(5.10

note that there is no explicit contribution proportional to
n;l. The surface tensionr, at the liquid-vacuum interface
derived by using either the definitiofb.7) or the relation
(5.9 becomes

2
n TO
R = 3o\/:nllz_f_ —
TRsIAT Y Po » ol 2pok
Ro
+27Tp0f rdrUgur)
0

fROr dr Usub(r)}. (5.11
0

1%
- 27790'%(9—nA

In order to check the thermodynamic limit we shall set

Ugfr)=0, use the relatioRs=R,/y1+ €, and perform an
expansion in powers oé. By keeping all terms up to first
order inv one gets

Po  _1p
OpA= 0t \/:8 n .
A T 1IN

(5.12

It is clear that this expression verifies the asymptotic result

for free systemsra(ny—®)=o0...

isothermal compressibilityc, . At T=0 K, this condition
leads to

1 ((9(7TRSO'A)) _L(&(WRSUA))
H_L gL NUaL/Ny |
R
_ nk—‘?(znj"’%o. (513

Upon introducing the incompressibility, which has the di-
mension of an energy, and taking into account E§<) and
(5.8 the inequality(5.13 becomes

1
N

TR0 p)
— =n
an,

Ip
—>0
Non, T

(5.19

in agreement with the necessary condition mentioned in Sec.
I. After a straightforward calculation it may be expressed as

I ‘Tw\/; ~112
—_— e — JR— J’_
N\ an, 2 ponA 27pony,
52 Ro
X—Z{f rdrUsub(r)}>O. (5.1
0
N

This condition is enough for insure metastable systems.
Since forn, — 0 quantityQ)/L goes to zero, in order to guar-
antee the stability of a system at finitg one must also
require at leasf)/L<0.
It should be mentioned that the condition of E§.15

may be also obtained on the basis of general grounds. The
explicit requirement that the grand thermodynamic potential
of Eg. (1.2) must be a minimum implies that besides Eq.
(1.3 it should be also satisfied

5°Q)

)

The use of Egs(1.3 and(5.16 together withEy given by
the sum of Eqs(4.9) and(4.26) yields

PE
0.

= N2 (5.19

du  PEgs &
IN GN2 N2

[E,+E+Eqy>0. (5.17

By taking into account some relations derived in Sec. IV it is
possible to demonstrate that this criterion reduces to that of
Eq. (5.15.

Furthermore, according to E¢5.3) of Ref. 32 it holds

au u
—=n, —
N Mon,

=mc, (5.18

A stable configuration must be robust against surfacevherec. may be identified with the speed of a longitudinal

long-wavelength fluctuations along the direction of the prin-

sound. This kind of sound is a surface wave of the superfluid

cipal axis. Following the idea developed in Refs. 14 and 27*He moving parallel to the axis resembling the third sound

for treating planar films, a formulation of a stability criterion

of planar systems.
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posF ' 7 l--7 T ] n{l’z, according to Eq(6.1) these systems are unstable. For
o [ 220 " e ek ] largern, it begins the filling of the region where the poten-
R N tial ts its well and the systems b .
X - presents its well and the systems become even more un
£ 0 ] stable. Aty=0.10 A2 (n,=100 A™') the slope ofu be-
Y I ] comes negative indicating the beginning of a metastable
" 005 | y regime. This regime is extended up to the critical value
3 [ Free cylinders ] =0.088 A2 (n,=130 A 1), where)/L becomes nega-
< tive indicating that larger systems diHe are stablé*'°*Note
“01r . . . ) that this crossing o and u occurs just at the minimum &
o o0z 04 _ o6 0.8 in agreement with Eqg5.8) and (5.9. An estimation ofe
v = /2 [81/7] can be done by adding the contributi_E@ub/N given by Eqg.
(4.26) to the asymptotic forn3.1) obtained for free systems
FIG. 6. Relative compression of the central densitylgs a function o
of the inverse of square root of longitudinal density n, ~“. Open o 0 -1
and full triangles gtand for Skyrmg-DF and OPELISF resuplts, re- e=ex+20, \gn)\ 1/2+27Tp° JO rdr US“t{r)}nA '
spectively. The dashed line corresponds to the asymptotic law for (6.2)
8plpo [see EQ.(4.2D)] with 0..= 0ey,=0.272 K/IA? taken from o o _ _ _
Ref. 40. The solid curves are only given to guide the eye. which is a simplified version of Eq4.27). The solid curve in
Fig. 5 indicates that this approach reproduces satisfactorily
VI. ANALYSIS AND DISCUSSION well the behavior of.

Figure 5 shows that foR,= 30 A the data always show

Let us first center the attention on results for free cylin-5 | ticeable departure from the asymptotic values of free

ders. The relative compression at the center of the free Cyléylinders. However, the slopes o and u for v

inderse is plotted as a function of=n, *?in Fig. 6. Small  —( 3g A2 (n,=11 A~ differ very little from the free

systems withn,<6 A~' (v=0.4 A% exhibit a central case. For larger systems all the features found for the broader
densityp. lower than the bulk saturation valyg. This fea-  pore occur more rapidly and are more pronounced.vAt
ture has been previously observed in the case of small he=0.20 A2 (n,=25 A™') the slope ofu changes its sign
lium droplets® and in the literature it is denoted “pachyder- and the systems enter in the metastable regime. The region of
mous” behavior. For wider cylinders we obtaingd> p. stable systems is reached at the critical value
This “leptodermous” behavior have been also found in stud-=0.164 A2 (n,=37 A™!) whereQ/L becomes negative.

ies of large helium dropgsee Fig. 3 in Ref. 18and of  As in the previous case, the solid curve in Fig. 5 standfor
atomic nucleilsee Fig. 1a) and Fig. 1b) in Ref. 46, while  yielded by Eq.(6.2. One realizes that this approximation

it is not exhibited by free planar systems 8He™ It is  accounts fairly well fore obtained from the solutions of Eq.
worthy of notice that for cylinders with<0.15 AY2 (n,  (2.1). The most important difference is that the minimum
=40 A1) the values ofe yielded by the solutions of Eq. given by Eq.(4.27) is abou 1 K too low. However, it is
(2.1) merge into the asymptotic law given by E¢.21). In  possible to improve the estimation &, by taking into

fact, from values of the relative compression displayed inaccount that the density of the liquid does not change
Fig. 6 it is clear that the largest systems examined in thebruptly but changes continuously from density liquid to
present work have, in practice, reached the asymptotic berero over a distance of aboMy=6.5 A28 Assuming a

havior. linear fall of the density over the distant one gets
The results concerning the long-wavelength stability of
the free systems can be summarized in the following way. Esun Ro—Wwi2
From Fig. 1 one realizes that increases monotonically as a N <TPo rdrUsur)
function of n, ¥2. In turn, this positive slope of. vs n; /2
implies that the stability condition of E¢5.14) is not satis- Ro+Wi2 q 1 Ry—r U _1
fied by any free cylinder ofHe because one always gets + R07W/2r Mo+ =W |Ysudr)
aM n;1/2 aM 0 6 1 (63)
Mon, ~ 2 an{1’2< ' 61 As shown in Fig. 7, the use of this expression instead of Eq.

(4.295 significantly improves the agreement between
Both utilized DF approaches led to the long-wavelength in-yielded by the DF approaches and the DM. Now, besides

stability of this configuration. accounting for the location of the minimum ef the model
Turning to “He adsorbed into Cs nanopores we shall firstalso provides a good value for the minimum.
look at the results for the pore &,=50 A. In this case, in A few selected density profiles corresponding to different

order to avoid the crowding of the plot, we only report the situations in both pores are shown in Fig. 3. In the freelike

outputs from the OP-NLDF approach. Figure 5 shows thategime the systems do not show any relevant difference with
for v=0.16 A2 (n,<40 A™') the values ofe and u lie respect to the free case. Only the central densities exhibit a
along the asymptotic lines derived for free systems. Sinceomewhat enlarged squeezing effect due to the confinement.
these data exhibit a positive slope pf as a function of A connection between data of Figs. 3 and 5 indicates that for
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44—

by parallel walls of Cs afT=0 K (see Fig. 13 therejn
Therefore, no hysteresis loop like that exhibited in Fig. 6 of
Ref. 3 or in Fig. 9 of Ref. 4 was determined.

Perhaps, it is worthwhile to notice that the pores in Cs
examined in the present work have an intermediate size.
They are one order of magnitude smaller than those in VWcor
(nominal radii 15—100 npanalyzed in Ref. 4 and are some-
what larger than the carbon nanotuliesdius 0.6—0.8 nin
| 50 cices  R=30 & trisngles sad squsres | studied in Ref. 9. Let us look for what is going on when the
-0 radius of the pore in Cs is increased. Figure 7 shows the

° 01 0.2 03 0.4 values ofe yielded by the DM withE,, given by Eq.(6.3) in
v=mn'? 8] the case of a cavity witlR,=10 nm. This estimation indi-
cates a large freelike regime and an abrupt change to a stable
situation. If the radius of the pore is decreased to alsut
=1 nm, then due to the large core radimgs; of the He-Cs
potential (=0.65 nm) Ug,{r) tends to take the form of a

both pores the stable regime is reached when the cavities apé)tential WE?" in a_lgre_ement with the trend as a function of
b g Ry /o, depicted in Fig. 1 of Ref. 6. However, under such

completely filled with helium. Furthermore, Fig. 3 shows L .
that the density profile of stable systems is everywher{ond't'onz’ because of the large lattice constemt
slightly larger thamp, except quite near the wall where there — 8-045 A our procedure for determinings,{r) would

—
free helium

| “*He/Cs (pore)

e [K]

FIG. 7. Similar to Fig. 5. In addition, the dashed curves show
the results of the DM wittEg /N given by Eq.(6.3), the label 1
indicates the prediction for a Cs nanoporeRyf= 100 A.

is a strong repulsion. become too poor due to curvature effects.
There is an alternative way for determining the transition
to stable CC liquid. From Fig. 4 one realizes that the depen- VIl. SUMMARY

dence ofw on n, is nonmonotonic. This indicates the pres-

ence of a Pha?e transition, requiring a Maxwell constructions ;o systems with cylindrical shape were theoretically stud-
to find the equilibrium be_hawor n the_sam_e way as in F'g‘_Gied. The calculations were carried out by using zero- and
Olf Redf. .44'.:_Thg cﬁf?”gmeq adsr(])rpt|onh|so§hermsfare dISﬁnite—range density functionals. In order to interpret the nu-
played in Fig. 8. This drawing shows thaf jumps from o ica) results we developed a formalism analogous to the
zero to the critical value corresponding to a CC liquid Wh|chDM_ It is shown that an expansion of the energy per particle
fills the pore. These adsorption isotherms are similar to thaﬁ1 12 ; ; :

. . . ) . terms ofn is appropriate to account for the behavior

of Fig. 3 in Ref. 44 obtained in the case fle confined by A pprop

planar walls of Cs. It should be noticed that the stable C lelded by DF calculations. This expansion is valid for cy-

hase is obtained wh reaches approximatelv the value indrical systems of*He as well as of’He, exactly in the
P an PP y same manner like the expansion in termsN\of® devised

for examining the energetics of spherical drdsse, e.g.,
Ref. 18. It is demonstrated that a necessary condition for the
stability of cylindrical systems is to require a positive deriva-
tive of the chemical potential with respectrig. It should be
stressed that stable systems must also saflgfy<<0.

Free “He cylinders exhibit, as shown in Fig. 1, a remark-
ably good agreement between the values afdw provided
150 . . ' ' ' by DF calculations and those predicted by the DM. Ror

! ] ' ] >40 A~! the obtained squeezing effect merges into the

Ry=60 % ] asymptotic form fore given by the DM. All these facts in-
dicate that the largest free cylinders have already reached the
asymptotic behavior. Since the results plotted in Fig. 1 do not
satisfy the stability condition of Ed5.15, these systems are

- ] unstable just like free planar films. To our knowledge, this is
50T g — ] the first microscopic proof of the long-wavelength instability

Rp=30 4 . of free cylinders of*He.

I ] The behaviors of*He adsorbed into Cs pores of different
o _'8 s 1 2 o radii, R,=30 and 50 A, present some differences as shown
in Figs. 5 and 7. For instance, for the smaller pore the results
for e and . exhibit a noticeable deviation from the freelike

FIG. 8. Longitudinal density as a function of the chemical po- 'eégime. However, this feature can be understood in terms of
tential for “He in cylindrical pores of radiR,=30 and 50 A inCs. the DM when theEg,, contribution is taken into account. The
The solid curves are adsorption isotherms derived from data in FigStability of the systems is reached when the pores are com-
4 by Maxwell constructions as discussed in the text. The dashepletely full of helium. This entrance to the stable regime is
lines are the values afS<° given by Eq.(6.4). also well predicted by the DM. An alternative way for deter-

The energetics and long-wavelength stability of liquid

ny ©°= 7R 0, (6.4)
corresponding to a cylindrical cavity of radilR.,=R,
—5.6 A completely filled with liquid of densityp,. No
stable liquid films(cylindrical shell phaseare obtained. This
feature is similar to that found in Ref. 44 fdHe confined

100 B “He/Cs (pore) ]

n [A7]

u [K]
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mining _the _transition to the CC phgse is to construct the 7;2=r2+r/2 —2rr'cose. (A4)
adsorption isotherms from data of Fig. 4. Such a procedure
yields critical values fon, consistent with that provided by The Hartree potential obtained according to E2j2) is
the DM model.

Let us also notice that for the systems treated in the , op,.. ©Esdpl _f . op )

; ; Vip(r)= = | dr'p(r")Vy ([r=r'])

present work no important differences were found between Sp(r)
results yielded by the zero- and finite-range DF approaches. c .
This is due to the fact that, because of the weakness of the AT N yatly T4
pore potential considered, the density profiles do not exhibit - 2 Lp(r)Jre=+ 2 (va+1)
oscillations.

Concerning future work, we are ur?de_rtaking a project to Xf dr’p(r’)[;(r’)]74W(|r—r’|).
extend this kind of analysis to pores in lighter, more attrac-
tive alkali metals, with a possible extension to finite tempera- (A5)
ture. It is encouraging the fact that Figs. 14 and 15 in Ref. 44 . . ) )
indicate that in the case of slab geometry substrates of NEere we shall provide the expressions derived in the present
and Li support stable film configurations. Since the depth ofVork for the contributions involving the “coarse-grained
the adsorption potential increases with temperature, finitdveight,”i.e.,
temperature effects may also favor the formation of stable

liquid shell configurations in heavier alkalis. ;(r):j dr'p(r' YW(|r=r’]), (AB)
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3
W([r=r'|)= O (hop—[r—r'])
APPENDIX: HARTREE MEAN-FIELD POTENTIALS

In this Appendix we summarize the expressions needed 33 , if |r=r'|<hgp,
for treating cylindrical systems characterized by the polar ={ 4mhgp (A8)
coordinates, ¢, andz 0 if |[r—r'|>hop.

The Hartree mean-field potential derived by using the

definiti f EQ.(2.2) in th f the Sk like DF read . :
efinition of £q.(2.2)in the case of the Skyrmelike reads Both these integrals may be cast into the form

y4+2

V(1) =byp(r)+ cap”4tH(r)—2d _ 3
H ( ) 4p( ) 4p ( ) 4 R(r): - fdr/R(r/)(hOP_|r_rr|). (Ag)
47hgp
> 1d . . o . -
X|—+ Tar p(r). (Al)  After introducing cylindrical coordinates and taking into ac-
dr count that the step function is symmetric in the azimuthal

. anglee and in thez’ coordinate along the principal axis, the
IIn the OP-NLDF approach the correlation energy per Parntegration over the latter variable yields
ticle is

_ ! Pmax
o T “ R(r)= f’“axr’dr’Rr’)f d
e?f(r)=4fo rdr’p(r >f0 dsofo dz VM (R) = (], 9
+%[;(r)]74“, (A2) xfozm”dz’(@[hzop—z'z—r2—r'2+2rr’cos(p]
whereR is the distance between two particles located at 3 " max dr' R(r!
andr’ i rdrR(r)
WhOP "min
2 _|p_pr12__5"2 2 Pmax '
RE=[r—r'[*=2"+7", (A3) xf mad<p\/h§)p—r2—r 2 4+2rr'cosp.  (A10)
0
with # being the distanc® projected onto the polar plane
perpendicular to the’ axis For points located at=0 one gets
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where
(r—O)——f r'dr’'R(r')Vh3,—r'2 (A1)
Forr>0 two different cases should be consider@i0<r 2_ i )= 1-COS@max_ Nop—(1'—1)°
<hgp and (ii) r>hgp. For 0<r=<hgp the integral over’ a%=sim(emaf2) = 2 - Arr! .
should be split into two parts (A16)
— 3 hop—r r+hop , Pmax
R(r)= he. fo T fhopr ridriR(r )jo de For r>hgp, only the second term in E4A14) contributes
X \/h2 —12—r'2 4211 cosep. (A12)
- -OP- o ﬁ(r):s\/ﬁ r+hop r’3/2R(r1)
Since for the first integral over’ the upper angular limit is Whgp f—hop
Pmax= 7, While for the second integral,,,.«is determined by
the condition ®max
X de \/COSE— COSPmax (A17)
h2p=r2+r'2 = 2rr’ coS@max (A13) °
then .
leading to
—_ 3 hop—r
R(r)=—3 f dr’' r'R(r")
mhop’ 0 — 6 [r+hop 11
W R(r)=hT dr'r 32R(r") F(_E’E’l’az
xf d¢\/hép—r2—r'2+2rr’cos<p op-1~for
0
—(1-a°F 1 1-1-a2 (A18)
3 r+h , 2’2’7 ’
\/— OP "r 3/2R(rl)
Whop hop—r
o with a? given by Eq.(A16).
X f de\COSe — COSPmax (A14) The contribution containing the screened LJ potential
0
The integration overp leads to elliptic integrals giving rise
to hypergeometric functions, VhJScr(r):f dr'p(r )WVO(|r=r'|)
R = [ v R W (=17
ry=-— r'dr’ R(r’ \/ﬁ
hgpJ o o =V (hop) f ar'p(r’ >(h—)
11 6\/F r+hop ,
XF| =551 1a% |+ —— dr'r"32R(r") f Uu
2'9 h30P hop-1 +4¢ thopdr p(r")
1 1 1 (A19)
_- _ 2l Z.q.42
X|F 22 (1- a)F22,1,a )

(A15) was evaluated in the same way as in Ref. 9.
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