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Structure and stability of superfluid 4He systems with cylindrical symmetry
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The structure and stability of superfluid4He systems with cylindrical symmetry are studied. Ground-state
energies and density profiles are computed by using density-functional approaches. A model to understand the
energetics of cylindrical systems is developed by following the main ideas of the Droplet Model utilized to
describe spherical clusters. The necessary condition for stability is formulated by imposing a positive longitu-
dinal isothermal compressibility along the principal axis of the cylinder. It is shown that free cylinders of4He
at T50 K are unstable. As an example of the evolution towards stable systems, results for liquid4He confined
by cylindrical nanopores in Cs are reported.
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I. INTRODUCTION

The investigation of properties of superfluid helium a
sorbed in porous materials has long been a subject of in
est. A pioneering study of Vycor~glass, 99% of SiO2) was
performed by Atkins, Seki, and Condon1 in 1956 for testing
the onset of superfluid flow. Since that time an importa
research activity has been developed in this field. An imp
tant theoretical work on this matter has been done by C
and Saam.2,3 These authors have derived a formulation ba
on the thermodynamics and hydrodynamic theory of fl
systems in order to study4He adsorbed on the internal wa
of cylindrical pores. A survey of subsequent experimen
work on the helium adsorption into Vycor, Graphfo
~graphene foil!, and Nucleopore~polycarbonate! may be
found in the work of Godshalk and Hallock4 and references
quoted therein. More recently, during the last decade the
fort has been mainly centered round the study of the ads
tion of helium in carbon nanotubes.5–9 Let us emphasize tha
the graphite wall of the nanotube exerts an extremely str
attraction on helium atoms. On the other hand, hitherto
attention has been paid in the literature to4He adsorbed into
weakly attractive cylindrical pores, which could be presen
samples of alkali metals. Adsorption on planar surfaces
this kind of metals has already been extensively studied10–16

leading to the important conclusion that the less attrac
alkali, Cs, is not wet by4He at temperaturesT&2 K.17 All
these facts have encouraged us to start an investigation o
behavior of 4He adsorbed into nanopores in alkali metals

In the present work, we shall report the investigati
about the behavior of4He adsorbed into cylindrical nanop
ores in the ultra-weakly attractive substrate of Cs. To illu
trate our findings, the results for two different pore sizes
radii 3 and 5 nm will be shown and discussed.

The calculations for the ground state have been car
out within the density-functional~DF! theory. This formal-
ism has proven to be a successful tool for treating this k
of quantum many-body problems.18–28 Let us mention that
the formulation of the energy of a given system in the D
theory22 differs from that assumed in the hydrodynam
theory used in the above-mentioned paper of Cole
0163-1829/2001/64~22!/224523~13!/$20.00 64 2245
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Saam.2,3 In our study the ground-state energyEgs of an in-
teractingN-body bosonic system of4He atoms confined by a
adsorbate-substrate potentialUsub(r ) was written as

Egs5E drr~r !H@r,“r#1E drr~r !Usub~r !

52
\2

2mE drAr~r !“2Ar~r !

1E drr~r !esc~r !1E drr~r !Usub~r !, ~1.1!

where r(r ) is the one-body density. The first term on th
right-hand side is the quantum kinetic energy of the heli
particles of massm. The second term represents the intera
tion between the particles of the system, whereesc(r ) is the
self-correlation energy per particle depending on the adop
DF approach. The last term is the interaction with the ex
nal field.

The optimal solution is obtained by minimizing the the
modynamic grand potentialV,

V5Egs@r,“r#2mN, ~1.2!

at fixed chemical potentialm, i.e., by requiring

S ]V

]N D
m

5
]Egs@r,“r#

]N
2m50. ~1.3!

In practice, the Euler-Lagrange~EL! equation for determin-
ing the density profiler(r ) is derived imposing the varia
tional condition

dV

dr~r !
5

d$Egs@r,“r#2mN%

dr~r !
50. ~1.4!

Let us mention in passing, that in order to study3He systems
the kinetic-energy term in Eq.~1.1! must be modified due to
the fact that fermions obey a different statistics~see, e.g.,
Refs. 19 and 29!. Furthermore, the optimization equation
the case of3He becomes more complicated than Eq.~1.4!
©2001 The American Physical Society23-1
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LESZEK SZYBISZ AND SILVINA M. GATICA PHYSICAL REVIEW B 64 224523
because the corresponding one-body densityr(r ) must be
expanded in an appropriate single-particle basis@cf. Eq.~3.5!
in Ref. 21#.

In the route to analyze weakly attractive pores we sh
first examine free cylindrical systems of4He. It is known
that free spherical drops of4He at T50 K are always
stable,18,30while to the contrary free planar films are unstab
against long-wavelength fluctuations.26,27 Long time ago it
has been found by Rayleigh that the surface of a perfect
cylinder of fluid is intrinsically unstable because there a
other geometries of lower surface areas yielding lower in
facial free energies. In particular, the cylindrical geometry
not stable relative to the spherical one because the latte
ometry have a lower surface/volume ratio. The reader m
find a discussion of this issue in Ref. 31. In this context, i
worthwhile to complete the pattern within microscopic the
ries obtained for regular geometries by studying the stab
of free cylinders of4He.

In fact, there are two different ways for establishing t
necessary condition for the stability of a given system.26,27

One of them is based on a study of the excitation spectrum
the analyzed system and leads to the so called dynam
condition. In the framework of the DF theory the latter kin
of procedure requires the solution of an eigenvalue prob
@see Eq.~2.7! in Ref. 32# formally equivalent to that of the
hydrodynamic theory@see Eq.~3.2! of Ref. 3#. To get dy-
namic stability one must require that the lowest eigenva
\2v0

2 be positive. The other way consists of a study of t
energetics within a thermodynamic description.33 In this case
one has to analyze the evolution of the grand thermodyna
potentialV of samples with increasing number of particl
N. The requirements for stability are:~i! thatV(N) be lower
than that of any smaller system even than that of all ot
configurations and~ii ! that the slope of the chemical pote
tial dm/dN in the neighborhood of the analyzed system
positive. However, it has been shown by Clementset al. that
in case of the DF theory the thermodynamic and dyna
instability conditions are rigorously identical@see comment
to Eqs.~5.2! and ~5.3! in Ref. 32#. Furthermore, the author
of Ref. 2 have also stated that the thermodynamic instab
condition is identical to the dynamical stability limit ob
tained within the hydrodynamic theory@see the comment to
Eq. ~8! therein#. In practice, one may find a situation whe
dynamic stability is accompanied by thermodynamic me
stability. It occurs when both\2v0

2 anddm/dN are positive
but V(N) does not satisfy the condition~i!. In the present
work we shall examine the stability applying the thermod
namic criterion.

The paper is organized in the following way. The adop
DF approaches are outlined in Sec. II. Numerical results
provided in Sec. III. A model for interpreting the results e
hibiting a well-defined axial phase is proposed in Sec.
Section V is devoted to study thermodynamic properties
to formulate a stability criterion. The analysis and discuss
are performed in Sec. VI and a summary is given in Sec. V

II. THEORETICAL APPROACHES

In this work we report results of calculations perform
by using two different DF approaches for4He systems,
22452
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namely, the Skyrme-type ‘‘zero-range’’ expression sugges
in Ref. 19 and the nonlocal density functional~NLDF! for-
malism proposed in Ref. 20~the versions of these DF ad
equate for studying3He may be found in Refs. 19 and 21
respectively!.

In the cylindrical geometry, the fluid is translationally in
variant along the coordinatez coincident with the principal
axis of the cylinder and exhibits a density profile in the rad
directionr perpendicular toz. So, in this case, the liquid4He
is confined by the action of supporting potentials of the fo
Usub(r )[Usub(r ) independent of the azimuthal anglew. The
quantities of interest were obtained from the solution of
Hartree equation for the square root of the one-body den
@derived by using Eq.~1.4!#

2
\2

2mS d2

dr2
1

1

r

d

drDAr~r !1@VH~r !1Usub~r !#Ar~r !

5mAr~r !, ~2.1!

which also determinesm. HereVH(r ) is a Hartree mean-field
potential given by the first functional derivative of the tot
correlation energyEsc@r#,

VH~r !5
dEsc@r#

dr~r !
5

d

dr~r !
E dr 8r~r 8!esc~r 8!. ~2.2!

The expressions forVH(r ) should be derived for each one o
the different DF approaches. In practice, Eq.~2.1! is solved
for a given number of particlesN per unit lengthL along the
z axis, i.e., at fixednl5N/L.

A. Zero-range density functional

The simplest DF successfully employed to interpret pro
erties of 4He systems has been proposed by Stringari
Treiner.18,19 It is a zero-range correlation inspired in fun
tionals derived by using a phenomenological interaction
Skyrme type, which have been extensively applied to
scribe properties of atomic nuclei. The explicit form of th
correlation energy per particle for cylindrical geometry is

esc
Sky~r !5

b4

2
r~r !1

c4

2
rg411~r !1d4

1

r~r ! S dr~r !

dr D 2

.

~2.3!

The phenomenological parametersb4 , c4 , g4, andd4 fixed
in Ref. 19~see Table I therein! so as to reproduce the know
saturation properties of the uniform liquid~i.e., the equilib-
rium density, the energy per particle, the compressibility, a
the surface tension quoted in Table I! are

b4528.888 103102 K Å3,

c451.045 543107 K Å3(g411),

g452.8, ~2.4!

d452.3833103 K Å5.

The correspondingVH
Sky(r ) is given in the Appendix.
3-2
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STRUCTURE AND STABILITY OF SUPERFLUID4He . . . PHYSICAL REVIEW B 64 224523
B. Orsay-Paris nonlocal density functional

The Orsay-Paris nonlocal functional~OP-NLDF! pro-
posed by Dupont-Rocet al.,20 which treats correctly the
long-range part of the helium-helium interaction and i
proves the description of correlations, is sufficiently good
reproduce properties of nonlayered systems like free
weakly confined cylindrical systems. This functional read

esc
OP~r !5

1

2E dr 8r~r 8!Vl
OP~ ur2r 8u!1

c4

2
@ r̄~r !#g411.

~2.5!

In this case the two-body interaction,Vl
OP(r 5ur2r 8u), was

taken as the4He-4He Lennard-Jones~LJ! potential screened
in a simple way at distances shorter than a character
distancehOP,

Vl
OP~r !55

4«LJF S sLJ

r D 12

2S sLJ

r D 6G , if r>hOP,

Vl
OP~hOP!S r

hOP
D 4

, if r ,hOP,

~2.6!

with the standard de Boer and Michels34 parameters, well
depth«LJ and hard core radiussLJ listed in Table I. In order
to recover the correct results for bulk liquid, the screen
distancehOP(52.376 728 Å) has been adjusted28 so that the
integral ofVl

OP(r ) over the whole three-dimensional spac

E drVl
OP~r !5

32p

21
«LJsLJ

3 F8

3 S sLJ

hOP
D 9

25S sLJ

hOP
D 3G ,

~2.7!

be equal to the value ofb4 quoted in Eq.~2.4!.
The r̄(r ) is the ‘‘coarse-grained density’’ defined as th

straight average ofr(r ) over a sphere centered atr and with
a radius equal to the screening distancehOP,

r̄~r !5E dr 8r~r 8!W~ ur2r 8u!, ~2.8!

TABLE I. Bulk observables, experimental values of the surfa
tension for liquid4He atT50, and values of the LJ parameters.

Observable Data Ref.

eB @K# 27.15 19
r0 @Å23# 0.021836 19
K @K# 27.2 19
sexp @K/Å2# 0.27460.003 38

0.25760.001 39
0.27260.002 40

System «LJ @K# sLJ @Å#

He-He 10.22 2.556 34
He-Cs 1.21 6.47 41
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where W(ur2r 8u) is taken as a normalized step functio
The relevant quantities for solving a cylindrical system a
summarized in the Appendix.

III. NUMERICAL RESULTS

A. Free cylinders

In the case of free cylinders the integrodifferential pro
lem ~2.1! has been solved for a range ofnl enough to cover
the domain of energy per particle26&e&22 K. This re-
gime ofe is similar to that utilized for studying free system
with other symmetries~see, e.g., Fig. 3 in Ref. 35 for plana
films and Fig. 1 in Ref. 36 for spherical drops!. Some se-
lected results fore andm obtained by carrying out calcula
tions with both the Skyrme-DF and OP-NLDF approach
are displayed in Fig. 1. This drawing indicates that forn
5nl

21/2<0.4 Å1/2 the data agree very well with th
asymptotic limit of expressions derived in the first approa
to this problem37

e5e`12s`Ap

r0
nl

21/2, ~3.1!

and

m5e`1s`Ap

r0
nl

21/2, ~3.2!

wheree` is identified with the energy per particle of infinit
uniform helium matter at saturationeB5EB /N ands` with
the experimental surface tensionsexp,38–40 the correspond-
ing values are quoted in Table I. Figure 2~a! shows the evo-
lution of density profiles for increasingnl obtained with
both utilized functionals. A direct comparison is perform
for the system withnl530 Å21. In this case the corre
spondingVH(r ) are plotted in Fig. 2~b!. It can be realized
that the Hartree mean-field potential yielded by t
Skyrme-DF resembles a square-well potential with a sm
diffusiveness, while the OP-NLDF approach leads to a s

e

FIG. 1. Energy per particle and chemical potential as a funct
of the inverse of square root of longitudinal densityn5nl

21/2 for
free cylinders of4He. Results obtained with the Skyrme-DF an
OP-NLDF approaches are represented by open and full triang
respectively. The dashed lines are the linear approximations g
by Eqs. ~3.1! and ~3.2! with s`5sexp50.272 K/Å2 taken from
Ref. 40.
3-3



th

t
es

-
ro

ing
C
.

o

o

o

air

d
os
ll

f

id

es
e-
ace

ls

ro-
re-
e

con-

ii
fter

-

DF
sults

it
o

LESZEK SZYBISZ AND SILVINA M. GATICA PHYSICAL REVIEW B 64 224523
consistent potential with a more extended structure at
surface region due to the long-range tail proportional tor 26

of the Lennard-Jones interaction. This difference causes
small difference in the width of the corresponding profil
displayed in Fig. 2~a!. On the other hand, Fig. 2~a! indicates
a squeezing effect where the central densityrc is larger than
the equilibrium density of bulk helium
r050.021 836 Å23.19 In order to understand such a com
pression we shall, in a next section, improve the model p
posed in Ref. 37.

B. 4He adsorbed into Cs nanopores

Since in the literature there is no potential for describ
the interaction between helium atoms and the wall of a
pore, in a first step, we have modeled such a potential
doing so, we suppose that a pore gives rise to anUsub(r )
equal to the sum of contributions yielded by successive c
centric cylindrical Cs shells of radiusRshell,

Usub~r !5(
s

Usub
(s) ~r ,Rshell!, ~3.3!

wherer is the distance from the axis of the pore. This pr
cedure has been previously used by Stan and Cole6 in ac-
counting for the effect produced by multiwall carbon nan
tubes. Furthermore, we assume that a4He atom interacts
with a single Cs atom of a shell via an isotropic LJ p
potential with parameters«LJ and sLJ quoted in Table I.
These values are taken from Ancilottoet al.,41 who deter-
mined them by adjusting the He-Cs potential of Patil.42 The
next assumption is the use of an azimuthally and longitu
nally averaged potential. Under these conditions, it is p
sible to demonstrate that the total effect for a single she
given by @see Eq.~2! in Ref. 6#

Usub
(s) ~r ,Rshell!

53pQs«LJsLJ
2 F21

32S sLJ

Rshell
D 10

M11~x!2S sLJ

Rshell
D 4

M5~x!G ,
~3.4!

FIG. 2. ~a! Density profiles for several free4He cylinders. The
equilibrium saturation density of bulk heliumr0 is also indicated.
~b! Self-consistent potentialsVH(r ) for the system with nl

530 Å21. In both parts the solid curves are results obtained w
the OP-NLDF approach, while the dashed ones correspond to s
tions yielded by the Skyrme-DF.
22452
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wherex5r /Rshell. In addition,Qs is the surface density o
Cs atoms andMn(x) stands for the integrals

Mn~x!5E
0

p

dw
1

~11x222x cosw!n/2
. ~3.5!

QuantityQs is determined by taking into account that sol
Cs is a bcc crystal with a lattice constanta56.045 Å taken
from Table 3 of Ref. 43. Assuming that each shell coincid
with a ~100! plane of the crystalline structure of Cs and n
glecting effects due to the curvature of the shell, the surf
density becomesQs50.027 36 Å22. The first shell lies at
the internal radius of the poreRp and the subsequent shel
are located maintaining a distancea/2 between them.

Of course, each approximation performed along this p
cedure introduces an error. However, we expect that the
sulting potential would give a reliable description of th
main features of the systems. This statement should be
firmed in the future byab initio calculations.

As specific illustrations we present results for4He con-
fined by two different cylindrical nanopores of Cs with rad
Rp530 and 50 Å. In both cases the potential converges a
summing over fifteen shells. The obtainedUsub(r ) are dis-
played in Fig. 3. Notice that both depths are close to«LJ of
the He-He interaction. The repulsive ‘‘potential wall’’ is lo
cated at aboutRrep5Rp25.6 Å. We solved Eq.~2.1! for
these potentials by using both the Skyrme-DF and OP-NL
proposals. There are not sizable differences between re
yielded by these DF approaches.

h
lu-

FIG. 3. ~a! Adsorbate-substrate potentialUsub(r ) for the nanop-
ore of Rp550 Å in Cs given by Eq.~3.4! together with a few
selected density profiles of the adsorbed liquid4He. Solid curves
are data of the axial systems withnl525, 50, 90, and 140 Å21,
while the dash-dotted curve stands for a shell solution withnl

53 Å21. The equilibrium saturation density of bulk heliumr0 is
also indicated.~b! Similar to part~a! for the pore ofRp530 Å.
3-4
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For very small values ofnl ~less than a few Å21) there
are stable shell solutions similar to that obtained for the
sorption of 4He into carbon nanotubes~see Fig. 10 in Ref.
6!, but in the present case the systems are very dilute~gas-
eous phase not liquid! as can be seen in Fig. 3. For increa
ing nl the shell solution becomes unstable and an axial
develops. This is due to the fact that the attractive correla
between helium atoms becomes stronger than the attra
exerted by the depth of the adsorbate-substrate poten
This transition is a form of capillary condensation~CC!.44

The behavior of the OP-NLDF values ofm as a function of
nl is depicted in Fig. 4. The results fore andm correspond-
ing to axial solutions are displayed as a function ofn
5nl

21/2 in Fig. 5. From the latter figure one realizes th
although there are some differences between4He adsorbed
into pores of differentRp , in both cases there is a freelik
regime where the data exhibit a slope similar to that obtai
for free cylinders. In addition, one may observe that for s
tems larger than a certain criticalnl the behavior change
noticeably. Some selected density profiles are given in Fig
Notice thatrc of profiles corresponding the freelike regim

FIG. 4. Chemical potential as a function of the longitudin
densitynl for 4He in cylindrical pores of radiiRp530 and 50 Å in
Cs. The solid curves are OP-NLDF values. Dashed lines are der
by Maxwell constructions for the empty-to-CC transitions.

FIG. 5. Energy per particle and chemical potential as a func
of the inverse of square root of longitudinal densityn5nl

21/2 for
cylindrical pores of Cs. The full and open circles are OP-NLD
values ofe and m for the pore of radiusRp550 Å. Squares and
triangles~full and open! stand for Skyrme-DF and OP-NLDF re
sults (e and m), respectively, obtained for the pore of radiusRp

530 Å. The solid curves aree evaluated with Eq.~6.2!.
22452
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also present a squeezing effect. In order to continue the
cussion of the results we need to introduce some theore
background.

IV. DROPLETLIKE MODEL FOR CYLINDRICAL
SYSTEMS

Let us now describe a formulation for the energetics
propriate for analyzing the axial phase of the solutions. T
following formalism is more complete than that of Ref. 3
The equations and discussions reported in this section
be applied to bosonic4He as well as to fermionic3He, and
even to classical systems. Simple models are often usefu
understanding complicated systems. An instructive way
evaluate the energy is to follow the main ideas of the Drop
Model ~DM!45,46devised for spherical systems. At this poin
we shall restrict ourselves to consider free cylinders by s
ting Usub(r )50. In the case of a large free cylinder, whe
the length of the principal axisL goes to infinity, the system
becomes translationally invariant along the coordinatez and
the ground-state energy is

Egs52pLE
0

`

r dr r~r !H@r,“r#. ~4.1!

Let ec denote the energy per particle in the central region
the cylinder where the density isrc . Then since

N52pLE
0

`

r dr r~r !, ~4.2!

we can write the energy as

Egs5ecN12pLE
0

`

r dr r~r !$H@r,“r#2ec% ~4.3!

without any approximation or loss of generality. In this pr
cedure the system has been divided into two parts:~i! an
uniformly occupied region characterized by the single qu
tity rc that determinesec ; and~ii ! a surface zone where th
density falls down. It is easy to realize that the contributi
to the integral is localized, sincer(r ) tends to zero outside
the surface and (H@r,“r#2ec) tends to zero inside the sur
face. Because of this property it is convenient to define
sharp mean radiusRs as the radius of a sharp cylindrica
uniform distribution of densityrc containing all theN par-
ticles

N52pLE
0

`

r dr rc5pRs
2Lrc. ~4.4!

This definition for Rs coincides with the location of the
Gibbs surface. Now one can make the substitution

r 5Rs1z, ~4.5!

wherez is the outward normal distance from the mean s
face. After this change of variables one gets

l

ed

n

3-5
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Egs5ecN12pRsLE
2Rs

`

dz r~Rs1z!$H@r,“r#2ec%

12pLE
2Rs

`

zdz r~Rs1z!$H@r,“r#2ec%. ~4.6!

In order to treat large cylindrical systems~in the sense of big
sharp mean radiusRs) it is convenient to introduce:~i! the
asymptotic surface tension

s`5 lim
Rs→`

E
2Rs

`

dz r~Rs1z!$H@r,“r#2ec%, ~4.7!

which may be identified with the experimental38–40values of
the surface tensionsexp quoted in Table I; and~ii ! the
asymptotic energy per unit length

« l52p lim
Rs→`

E
2Rs

`

zdz r~Rs1z!$H@r,“r#2ec%.

~4.8!

Under these conditions the ground-state energy of a cylin
cal system ofN particles may be written as a sum of volum
surface, and length terms

Egs5ecN1s`2pRsL1« lL5Ev1Es1El . ~4.9!

An important point of this kind of models is to make
connection with infinite matter at saturation.46 If we assume
that N helium atoms form a cylinder uniformly filled with
density equal to the saturation valuer0, then the following
relation holds:

N5pR0
2Lr0 . ~4.10!

As in the spherical case, here one may also introduce a
radiusr 0 satisfying

p
R0

2

N
Lr05pr 0

2Lr051⇒r 05A 1

pr0L
. ~4.11!

On the basis of these relations, the radiusR0 of the cylinder
can be written as

R05r 0N1/25A 1

pr0
nl

1/25h0nl
1/2. ~4.12!

This equation resembles the formR05a0N1/3 known from
nuclear physics.45,46 Here we have introduced the longitud
nal particle densitynl defined as the number of particles p
unit length of the cylinder

nl5
N

L
52pE

0

`

r dr r~r !. ~4.13!

Since this quantity accounts for the radial size of the cy
der, it becomes plausible to expect that it should be the
panding parameter.

In fact, for a cylinder with finite radius the central densi
along the principal axisrc will, in general, be different from
r0. Therefore, it becomes useful to define the relative co
pression variablee by
22452
i-
,

nit

-
x-

-

e5
dr

r0
5

rc2r0

r0
5

R0
2

Rs
2

21, ~4.14!

where Eqs.~4.4! and ~4.10! have been used for expressin
densities in terms of the radii. This relation allows us
expressRs in terms ofR0 ande,

Rs5R0A 1

11e
5A N

pr0LF12
1

2
e1O~e2!G

5A 1

pr0
S 12

e

2Dnl
1/2

5h0S 12
e

2Dnl
1/2. ~4.15!

In this macroscopic model, in order to write down th
energy per particlee in terms ofnl , one must first estimate
e. Keeping in mind that the latter quantity is essentially t
density at the principal axis of the cylinder it may be det
mined variationally by requiring thate be a minimum at the
optimal e. For a system of given lengthL and number of
particlesN ~i.e., at fixednl) this condition reads

]

]e S Egs

N D
L,N

50, ~4.16!

and resembles the EL Eq.~1.4! formulated for gettingr(r ).
It should be noticed that this procedure has been applie
the past for studying spherical drops~see, e.g., Sec. 2 of Re
46!. Now, one should express the quantities involved in E
~4.9! keeping the lowest-order contributions carried bye. For
uniform systems withrc close tor0, the evaluation of the
volume energyEv in the DM leads to Eq.~3! of Ref. 46, i.e.,

Ev5ecN5e`N1
1

2
KNe2, ~4.17!

wheree`5eB527.15 K is the energy per particle of infi
nite uniform helium matter at saturation andK527.2 K the
corresponding coefficient of incompressibility~values same
as those quoted in Table I!. The contributionEs is the cost in
energy to form the lateral surface of a large cylinder. Acco
ing to Eq.~4.9! it is equal to the asymptotic surface tensio
s` multiplied by the lateral area of the cylinderA
52pRsL. Upon introducing the expression~4.15! for the
sharp mean radius, one arrives at

Es5s`2pRsL52s`ApLN

r0
S 12

e

2D . ~4.18!

In this approach one assumes that the contributionEl5« lL is
independent ofe. So, the ground-state energy per particle
a large cylindrical system ofN particles may be written as

Egs

N
5e`1

K
2

e212s`Ap

r0
S 12

e

2Dnl
21/21« lnl

21 .

~4.19!

Upon imposing Eq.~4.16! the relative compressione is ob-
tained from
3-6
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]

]e S Egs

N D
L,N

5Ke2s`Ap

r0
nl

21/250, ~4.20!

which yields

e5
rc2r0

r0
5

s`

KA
p

r0
nl

21/2. ~4.21!

This formula predicts a squeezing effect for large cylindri
systems, manifested by the fact that the central densit
bigger than the saturation density of infinite helium matt
rc.r0. This phenomenon has been already found in ca
lations carried out for spherical clusters of4He ~see, Fig. 3
of Ref. 18! and is known as the ‘‘leptodermous’’ behavio
The squeezing effect, i.e., the differencerc2r0, vanishes for
nl→`.

Taking into account all the results given in the previo
paragraphs the ground-state energy per particle become

e5
Egs

N
5

Egs

nlL
5e`12s`Ap

r0
nl

21/21S « l2
ps`

2

2r0KDnl
21 .

~4.22!

This equation confirms thatn5nl
21/2 is the suitable param

eter for the expansion and satisfies the condition that
energy per particle in the limitnl→` should attaineB of
bulk liquid. It is worthy of notice that this polynomial expan
sion is equivalent to that written in terms ofN21/3 for helium
drops@see, e.g., Eq.~13! of Ref. 18#. Perhaps it is pertinen
to mention that for planar films one expandse as a polyno-
mial in powers of the inverse of coveragenc5N/A ~hereA is
the area of the planar surface!.47 By keeping in Eq.~4.22!
only the first two terms one recovers the asymptotic exp
sion of Eq.~3.1! obtained in Ref. 37.

Let us now add to the ground-state energy of Eq.~4.9! the
term stemming from the interaction with a substrate

Esub52pLE
0

Rp
r dr r~r !Usub~r !. ~4.23!

We shall treat this contribution as a perturbation to the
lindrical DM formulated above. The simplest way of eval
ating this integral is to assume that allN particles are con-
tained in a sharp cylinder of radiusRs with a uniform density
distributionrc . In this approach the energy per unit lengthL
is

Esub

L
52prcE

0

Rs
r dr U sub~r !, ~4.24!

while the energy per particle becomes

Esub

N
5

2

Rs
2E0

Rs
r dr U sub~r !. ~4.25!

The lowest-order approximation forRs given by Eq.~4.15!
leads to

Esub

N
52pr0F E

0

R0
r dr U sub~r !Gnl

21 . ~4.26!

Hence, the totale takes the form
22452
l
is

r,
-

e

s-

-

e5
Egs

N
5

Egs

nlL
5e`12s`Ap

r0
nl

21/2

1H « l2
ps`

2

2r0K 12pr0E
0

R0
r dr U sub~r !J nl

21 .

~4.27!

V. THERMODYNAMIC PROPERTIES

A stability condition suitable to be applied in the case
the parametrization of Eq.~4.22! may be derived from ther-
modynamic considerations. For a single-component sys
of N particles that presents a volumeV and a surface of area
A, the ground-state energy atT50 K satisfies according to
Eq. ~2.11! of Ref. 48

dEgs52P dV1sAdA1m dN. ~5.1!

The intensive thermodynamic fieldsP, sA , andm are pres-
sure, surface tension, and chemical potential, respectiv
The differential changes of volume and area caused b
displacement of the surface parallel to the normal toget
with an elongation parallel to the axisz are

dV52pRsL dRs1pRs
2dL, ~5.2!

and

dA52pL dRs12pRsdL. ~5.3!

Here the radiusRs of the surface of tension is identified wit
the sharp radius defined in the previous section. By sub
tuting these expressions into Eq.~5.1! one arrives at

dEgs52pL~2PRs1sA!dRs1pRs~2PRs12sA!dL

1m dN. ~5.4!

Here, we assume that the surface tension is independe
curvature~see cite 16 in Ref. 3!. Also notice that, if the area
of both caps of the cylinderAc52pRs

2 is included in the
calculation, then this result will be recovered upon impos
the conditionRs!L. Let us now establish a relation amon
P, sA , and Rs for a system with fixedN. In the case of
helium clusters, from the fact that a sphere has the minim
surface area and hence the lowest surface energy, one i
that the equilibrium shape should be spherical. So, for suc
geometry, from the condition that work of a virtual increa
of the radius vanishes one obtains a relation between
pressure and the surface tension@see, e.g., Eq.~5.26! in Ref.
49#. Extending this idea to a cylindrical geometry, since
circular contour gives the minimum lateral surface and he
the minimum surface energy, a circular section should be
equilibrium shape. By imposing that work of a virtual in
creasedRs in the radius should vanish one gets

S ]Egs

]Rs
D

L,N

52pL~2PRs1sA!50⇒sA5RsP. ~5.5!
3-7
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This relation obtained for cylindrical systems is equivalent
that valid for spherical droplets49 and it corresponds to th
Laplace’s result for a two-dimensional space@see Eq.~2.1! in
Ref. 48#. By inputting this result into Eq.~5.4! one arrives at

dEgs5pRssAdL1m dN. ~5.6!

The formal thermodynamic definitions ofsA andm lead
to the following expressions in terms of the energy per p
ticle e:

pRssA5S ]Egs

]L D
N

5S ]~Egs/N!

]~L/N! D
N

52nl
2 ]e

]nl
, ~5.7!

and

m5S ]Egs

]N D
L

5S ]~Egs/L !

]~N/L ! D
L

5e1nl

]e

]nl
. ~5.8!

From these equations one gets the relation

pRssA5nl~e2m!5
Egs2mN

L
5

V

L
. ~5.9!

The chemical potential evaluated by operating with Eq.~5.8!
on the expansion~4.27! is

m5e`1s`Ap

r0
nl

21/212pr0

]

]nl
F E

0

R0
r dr U sub~r !G ,

~5.10!

note that there is no explicit contribution proportional
nl

21 . The surface tensionsA at the liquid-vacuum interface
derived by using either the definition~5.7! or the relation
~5.9! becomes

pRssA5s`Ap

r0
nl

1/21S « l2
ps`

2

2r0KD
12pr0E

0

R0
r dr U sub~r !

22pr0nl

]

]nl
F E

0

R0
r dr U sub~r !G . ~5.11!

In order to check the thermodynamic limit we shall s
Usub(r )[0, use the relationRs5R0 /A11e, and perform an
expansion in powers ofe. By keeping all terms up to firs
order inn one gets

sA5s`1Ar0

p
« lnl

21/2. ~5.12!

It is clear that this expression verifies the asymptotic re
for free systemssA(nl→`)5s` .

A stable configuration must be robust against surf
long-wavelength fluctuations along the direction of the pr
cipal axis. Following the idea developed in Refs. 14 and
for treating planar films, a formulation of a stability criterio
22452
r-

t

lt

e
-
7

for cylindrical systems must require a positive longitudin
isothermal compressibilitykl . At T50 K, this condition
leads to

1

kl
5LS ]~pRssA!

]L D
N

5
L

N S ]~pRssA!

]~L/N! D
N

52nl

]~pRssA!

]nl
.0. ~5.13!

Upon introducing the incompressibility, which has the d
mension of an energy, and taking into account Eqs.~5.7! and
~5.8! the inequality~5.13! becomes

1

nlkl
52

]~pRssA!

]nl
5nl

]m

]nl
.0, ~5.14!

in agreement with the necessary condition mentioned in S
I. After a straightforward calculation it may be expressed

nl

]m

]nl
52

s`

2
Ap

r0
nl

21/212pr0nl

3
]2

]nl
2 F E

0

R0
r drU sub~r !G.0. ~5.15!

This condition is enough for insure metastable syste
Since fornl→0 quantityV/L goes to zero, in order to guar
antee the stability of a system at finitenl one must also
require at leastV/L,0.

It should be mentioned that the condition of Eq.~5.15!
may be also obtained on the basis of general grounds.
explicit requirement that the grand thermodynamic poten
of Eq. ~1.2! must be a minimum implies that besides E
~1.3! it should be also satisfied

S ]2V

]N2 D
m

5
]2Egs

]N2
.0. ~5.16!

The use of Eqs.~1.3! and ~5.16! together withEgs given by
the sum of Eqs.~4.9! and ~4.26! yields

]m

]N
5

]2Egs

]N2
5

]2

]N2
@Ev1Es1Esub#.0. ~5.17!

By taking into account some relations derived in Sec. IV it
possible to demonstrate that this criterion reduces to tha
Eq. ~5.15!.

Furthermore, according to Eq.~5.3! of Ref. 32 it holds

N
]m

]N
5nl

]m

]nl
5mcL

2 , ~5.18!

wherecL may be identified with the speed of a longitudin
sound. This kind of sound is a surface wave of the superfl
4He moving parallel to thez axis resembling the third soun
of planar systems.
3-8
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VI. ANALYSIS AND DISCUSSION

Let us first center the attention on results for free cyl
ders. The relative compression at the center of the free
inderse is plotted as a function ofn5nl

21/2 in Fig. 6. Small

systems withnl&6 Å21 (n*0.4 Å1/2) exhibit a central
densityrc lower than the bulk saturation valuer0. This fea-
ture has been previously observed in the case of small
lium droplets18 and in the literature it is denoted ‘‘pachyde
mous’’ behavior. For wider cylinders we obtainedrc.r0.
This ‘‘leptodermous’’ behavior have been also found in stu
ies of large helium drops~see Fig. 3 in Ref. 18! and of
atomic nuclei@see Fig. 1~a! and Fig. 1~b! in Ref. 46#, while
it is not exhibited by free planar systems of4He.50 It is
worthy of notice that for cylinders withn&0.15 Å1/2 (nl

*40 Å21) the values ofe yielded by the solutions of Eq
~2.1! merge into the asymptotic law given by Eq.~4.21!. In
fact, from values of the relative compression displayed
Fig. 6 it is clear that the largest systems examined in
present work have, in practice, reached the asymptotic
havior.

The results concerning the long-wavelength stability
the free systems can be summarized in the following w
From Fig. 1 one realizes thatm increases monotonically as
function of nl

21/2. In turn, this positive slope ofm vs nl
21/2

implies that the stability condition of Eq.~5.14! is not satis-
fied by any free cylinder of4He because one always gets

nl

]m

]nl
52

nl
21/2

2

]m

]nl
21/2

,0. ~6.1!

Both utilized DF approaches led to the long-wavelength
stability of this configuration.

Turning to 4He adsorbed into Cs nanopores we shall fi
look at the results for the pore ofRp550 Å. In this case, in
order to avoid the crowding of the plot, we only report t
outputs from the OP-NLDF approach. Figure 5 shows t
for n*0.16 Å1/2 (nl&40 Å21) the values ofe and m lie
along the asymptotic lines derived for free systems. Si
these data exhibit a positive slope ofm as a function of

FIG. 6. Relative compression of the central density as a func
of the inverse of square root of longitudinal densityn5nl

21/2. Open
and full triangles stand for Skyrme-DF and OP-NLDF results,
spectively. The dashed line corresponds to the asymptotic law
dr/r0 @see Eq.~4.21!# with s`5sexp50.272 K/Å2 taken from
Ref. 40. The solid curves are only given to guide the eye.
22452
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nl
21/2, according to Eq.~6.1! these systems are unstable. F

largernl it begins the filling of the region where the pote
tial presents its well and the systems become even more
stable. Atn.0.10 Å1/2 (nl.100 Å21) the slope ofm be-
comes negative indicating the beginning of a metasta
regime. This regime is extended up to the critical valuen
.0.088 Å1/2 (nl.130 Å21), whereV/L becomes nega
tive indicating that larger systems of4He are stable.14,15Note
that this crossing ofe andm occurs just at the minimum ofe
in agreement with Eqs.~5.8! and ~5.9!. An estimation ofe
can be done by adding the contributionEsub/N given by Eq.
~4.26! to the asymptotic form~3.1! obtained for free system

e5e`12s`Ap

r0
nl

21/212pr0F E
0

R0
r dr U sub~r !Gnl

21 ,

~6.2!

which is a simplified version of Eq.~4.27!. The solid curve in
Fig. 5 indicates that this approach reproduces satisfacto
well the behavior ofe.

Figure 5 shows that forRp530 Å the data always show
a noticeable departure from the asymptotic values of f
cylinders. However, the slopes ofe and m for n
*0.30 Å1/2 (nl&11 Å21) differ very little from the free
case. For larger systems all the features found for the bro
pore occur more rapidly and are more pronounced. An
.0.20 Å1/2 (nl.25 Å21) the slope ofm changes its sign
and the systems enter in the metastable regime. The regio
stable systems is reached at the critical valuen
.0.164 Å1/2 (nl.37 Å21) whereV/L becomes negative
As in the previous case, the solid curve in Fig. 5 stands foe
yielded by Eq.~6.2!. One realizes that this approximatio
accounts fairly well fore obtained from the solutions of Eq
~2.1!. The most important difference is that the minimu
given by Eq.~4.27! is about 1 K too low. However, it is
possible to improve the estimation ofEsub by taking into
account that the density of the liquid does not chan
abruptly but changes continuously from density liquid
zero over a distance of aboutW.6.5 Å.28,51 Assuming a
linear fall of the density over the distanceW one gets

Esub

N
52pr0H E

0

R02W/2

r dr U sub~r !

1E
R02W/2

R01W/2

r dr F1

2
1

R02r

W GUsub~r !J nl
21 .

~6.3!

As shown in Fig. 7, the use of this expression instead of
~4.25! significantly improves the agreement betweene
yielded by the DF approaches and the DM. Now, besi
accounting for the location of the minimum ofe, the model
also provides a good value for the minimum.

A few selected density profiles corresponding to differe
situations in both pores are shown in Fig. 3. In the freel
regime the systems do not show any relevant difference w
respect to the free case. Only the central densities exhib
somewhat enlarged squeezing effect due to the confinem
A connection between data of Figs. 3 and 5 indicates that

n

-
or
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both pores the stable regime is reached when the cavitie
completely filled with helium. Furthermore, Fig. 3 show
that the density profile of stable systems is everywh
slightly larger thanr0 except quite near the wall where the
is a strong repulsion.

There is an alternative way for determining the transit
to stable CC liquid. From Fig. 4 one realizes that the dep
dence ofm on nl is nonmonotonic. This indicates the pre
ence of a phase transition, requiring a Maxwell construct
to find the equilibrium behavior in the same way as in Fig
of Ref. 44. The determined adsorption isotherms are
played in Fig. 8. This drawing shows thatnl jumps from
zero to the critical value corresponding to a CC liquid whi
fills the pore. These adsorption isotherms are similar to
of Fig. 3 in Ref. 44 obtained in the case of3He confined by
planar walls of Cs. It should be noticed that the stable
phase is obtained whennl reaches approximately the valu

nl
CCo5pRrep

2 r0 , ~6.4!

corresponding to a cylindrical cavity of radiusRrep5Rp
25.6 Å completely filled with liquid of densityr0. No
stable liquid films~cylindrical shell phase! are obtained. This
feature is similar to that found in Ref. 44 for4He confined

FIG. 7. Similar to Fig. 5. In addition, the dashed curves sh
the results of the DM withEsub/N given by Eq.~6.3!, the label 1
indicates the prediction for a Cs nanopore ofRp5100 Å.

FIG. 8. Longitudinal density as a function of the chemical p
tential for 4He in cylindrical pores of radiiRp530 and 50 Å in Cs.
The solid curves are adsorption isotherms derived from data in
4 by Maxwell constructions as discussed in the text. The das
lines are the values ofnl

CCo given by Eq.~6.4!.
22452
re
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by parallel walls of Cs atT50 K ~see Fig. 13 therein!.
Therefore, no hysteresis loop like that exhibited in Fig. 6
Ref. 3 or in Fig. 9 of Ref. 4 was determined.

Perhaps, it is worthwhile to notice that the pores in
examined in the present work have an intermediate s
They are one order of magnitude smaller than those in Vy
~nominal radii 15–100 nm! analyzed in Ref. 4 and are some
what larger than the carbon nanotubes~radius 0.6–0.8 nm!
studied in Ref. 9. Let us look for what is going on when t
radius of the pore in Cs is increased. Figure 7 shows
values ofe yielded by the DM withEsubgiven by Eq.~6.3! in
the case of a cavity withRp510 nm. This estimation indi-
cates a large freelike regime and an abrupt change to a s
situation. If the radius of the pore is decreased to aboutRp
51 nm, then due to the large core radiussLJ of the He-Cs
potential (.0.65 nm) Usub(r ) tends to take the form of a
potential well in agreement with the trend as a function
Rp /sLJ depicted in Fig. 1 of Ref. 6. However, under su
conditions, because of the large lattice constanta
56.045 Å our procedure for determiningUsub(r ) would
become too poor due to curvature effects.

VII. SUMMARY

The energetics and long-wavelength stability of liqu
4He systems with cylindrical shape were theoretically stu
ied. The calculations were carried out by using zero- a
finite-range density functionals. In order to interpret the n
merical results we developed a formalism analogous to
DM. It is shown that an expansion of the energy per parti
in terms ofnl

21/2 is appropriate to account for the behavi
yielded by DF calculations. This expansion is valid for c
lindrical systems of4He as well as of3He, exactly in the
same manner like the expansion in terms ofN21/3 devised
for examining the energetics of spherical drops~see, e.g.,
Ref. 18!. It is demonstrated that a necessary condition for
stability of cylindrical systems is to require a positive deriv
tive of the chemical potential with respect tonl . It should be
stressed that stable systems must also satisfyV/L,0.

Free 4He cylinders exhibit, as shown in Fig. 1, a remar
ably good agreement between the values ofe andm provided
by DF calculations and those predicted by the DM. Fornl

.40 Å21 the obtained squeezing effect merges into
asymptotic form fore given by the DM. All these facts in-
dicate that the largest free cylinders have already reached
asymptotic behavior. Since the results plotted in Fig. 1 do
satisfy the stability condition of Eq.~5.15!, these systems ar
unstable just like free planar films. To our knowledge, this
the first microscopic proof of the long-wavelength instabil
of free cylinders of4He.

The behaviors of4He adsorbed into Cs pores of differe
radii, Rp530 and 50 Å, present some differences as sho
in Figs. 5 and 7. For instance, for the smaller pore the res
for e andm exhibit a noticeable deviation from the freelik
regime. However, this feature can be understood in term
the DM when theEsubcontribution is taken into account. Th
stability of the systems is reached when the pores are c
pletely full of helium. This entrance to the stable regime
also well predicted by the DM. An alternative way for dete

-

g.
d
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mining the transition to the CC phase is to construct
adsorption isotherms from data of Fig. 4. Such a proced
yields critical values fornl consistent with that provided b
the DM model.

Let us also notice that for the systems treated in
present work no important differences were found betw
results yielded by the zero- and finite-range DF approac
This is due to the fact that, because of the weakness of
pore potential considered, the density profiles do not exh
oscillations.

Concerning future work, we are undertaking a project
extend this kind of analysis to pores in lighter, more attr
tive alkali metals, with a possible extension to finite tempe
ture. It is encouraging the fact that Figs. 14 and 15 in Ref.
indicate that in the case of slab geometry substrates of
and Li support stable film configurations. Since the depth
the adsorption potential increases with temperature, fi
temperature effects may also favor the formation of sta
liquid shell configurations in heavier alkalis.
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APPENDIX: HARTREE MEAN-FIELD POTENTIALS

In this Appendix we summarize the expressions nee
for treating cylindrical systems characterized by the po
coordinatesr, w, andz.

The Hartree mean-field potential derived by using
definition of Eq.~2.2! in the case of the Skyrmelike DF read

VH
Sky~r !5b4r~r !1

g412

2
c4rg411~r !22d4

3S d2

dr2
1

1

r

d

dr D r~r !. ~A1!

In the OP-NLDF approach the correlation energy per p
ticle is

esc
OP~r !54E

0

`

r 8dr8r~r 8!E
0

p

dwE
0

`

dz8Vl
OP~R!

1
c4

2
@ r̄~r !#g411, ~A2!

whereR is the distance between two particles located ar
and r 8

R25ur2r 8u25z82 1h2, ~A3!

with h being the distanceR projected onto the polar plan
perpendicular to thez8 axis
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h25r 21r 82 22rr 8cosw. ~A4!

The Hartree potential obtained according to Eq.~2.2! is

VH
OP~r !5

dEsc@r#

dr~r !
5E dr 8r~r 8!Vl

OP~ ur2r 8u!

1
c4

2
@ r̄~r !#g4111

c4

2
~g411!

3E dr 8r~r 8!@ r̄~r 8!#g4W~ ur2r 8u!.

~A5!

Here we shall provide the expressions derived in the pre
work for the contributions involving the ‘‘coarse-graine
weight,’’ i.e.,

r̄~r !5E dr 8r~r 8!W~ ur2r 8u!, ~A6!

and

r̄V~r !5E dr 8r~r 8!@ r̄~r 8!#g4W~ ur2r 8u!, ~A7!

with

W~ ur2r 8u!5
3

4phOP
3

Q~hOP2ur2r 8u!

5H 3

4phOP
3

, if ur2r 8u<hOP,

0, if ur2r 8u.hOP.
~A8!

Both these integrals may be cast into the form

R̄~r !5
3

4phOP
3 E dr 8R~r 8!Q~hOP2ur2r 8u!. ~A9!

After introducing cylindrical coordinates and taking into a
count that the step function is symmetric in the azimut
anglew and in thez8 coordinate along the principal axis, th
integration over the latter variable yields

R̄~r !5
3

phOP
3 E

r min8

r max8
r 8 dr8R~r 8!E

0

wmax
dw

3E
0

zmax8
dz8Q@hOP

2 2z82 2r 22r 82 12rr 8cosw#

5
3

phOP
3 E

r min8

r max8
r 8dr8R~r 8!

3E
0

wmax
dwAhOP

2 2r 22r 82 12rr 8cosw. ~A10!

For points located atr 50 one gets
3-11
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R̄~r 50!5
3

hOP
3 E

0

hOP
r 8dr8R~r 8!AhOP

2 2r 82. ~A11!

For r .0 two different cases should be considered:~i! 0,r
<hOP and ~ii ! r .hOP. For 0,r<hOP the integral overr 8
should be split into two parts

R̄~r !5
3

phOP
3 H E

0

hOP2r

1E
hOP2r

r 1hOPJ r 8dr8R~r 8!E
0

wmax
dw

3AhOP
2 2r 22r 82 12rr 8cosw. ~A12!

Since for the first integral overr 8 the upper angular limit is
wmax5p, while for the second integralwmax is determined by
the condition

hOP
2 5r 21r 82 22rr 8 coswmax, ~A13!

then

R̄~r !5
3

phOP
3 E

0

hOP2r

dr8 r 8R~r 8!

3E
0

p

dwAhOP
2 2r 22r 82 12rr 8cosw

1
3A2r

phOP
3 E

hOP2r

r 1hOP
dr8 r 83/2 R~r 8!

3E
0

wmax
dwAcosw2coswmax. ~A14!

The integration overw leads to elliptic integrals giving rise
to hypergeometric functionsF,

R̄~r !5
3

hOP
3 E

0

hOP2r

r 8dr8 R~r 8!AhOP
2 2~r 82r !2

3FS 2
1

2
,
1

2
;1;1/a2D1

6Ar

hOP
3 E

hOP2r

r 1hOP
dr8 r 83/2 R~r 8!

3FFS 2
1

2
,
1

2
;1;a2D2~12a2!FS 1

2
,
1

2
;1;a2D G ,

~A15!
22452
where

a25sin2~wmax/2!5
12coswmax

2
5

hOP
2 2~r 82r !2

4rr 8
.

~A16!

For r .hOP, only the second term in Eq.~A14! contributes

R̄~r !5
3A2r

phOP
3 E

r 2hOP

r 1hOP
dr8 r 83/2 R~r 8!

3E
0

wmax
dw Acosw2coswmax, ~A17!

leading to

R̄~r !5
6Ar

hOP
3 E

r 2hOP

r 1hOP
dr8r 83/2 R~r 8!FFS 2

1

2
,
1

2
;1;a2D

2~12a2!FS 1

2
,
1

2
;1;a2D G , ~A18!

with a2 given by Eq.~A16!.
The contribution containing the screened LJ potential

VH
LJScr~r !5E dr 8r~r 8!Vl

OP~ ur2r 8u!

5Vl
OP~hOP!E

R<hOP

dr 8r~r 8!S R

hOP
D 4

14«E
R>hOP

dr 8r~r 8!F S sLJ

R D 12

2S sLJ

R D 6G ,
~A19!

was evaluated in the same way as in Ref. 9.
s.

.
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