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Simple model for plastic dynamics of a disordered flux-line lattice
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We use a coarse-grained model of superconducting vortices driven through a random pinning potential to
study the nonlinear current-voltage-\) characteristics of flux flow in type-ll superconductors with pinning.
In experiments, theé-V relation measures flux flow down a flux density gradient. The work presented here
treats this key feature explicitly. As the vortex repulsion weakens, the vortex pile maintains a globally steeper
slope, corresponding to a larger critical current, for the same pinning potential. In addition, the magnitude of
the peak in the differential resistance falls as the resistance peak shifts to higher currents. The model also
exhibits so-called I'-V fingerprints” and crossover to Ohmitinean behavior at high currents. Thus, many of
the experimentally observed characteristics associated with the plastic flow of soft flux-line systems are repro-
duced in numerical simulations of the zero-temperature model. This model describes a two-dimensional slice
of the flux-line system at the scale of the London length. (It does not include any degrees of freedom at
scales much smaller than which are required to specify the degree of disorder in a flux-line lattice. Instead,
the nonlinear transport behaviors are related to the self-organized, large-scale morphologies of the vortex river
flow down the slope of the vortex pile. These morphologies include isolated filamentary channels, which can
merge at higher flow rates to make a braided river and eventually give uniform flow at even higher flow rates.
The filamentary structure is associated withlavi characteristic that has concave, or positive, curvature. The
braided river is associated with the peak in the differential resistance, where the curvaturé-df takation
changes to convex. The transition to Ohmic behavior comes about as the braided river floods when it cannot
absorb a higher level of flow. We propose that these self-organized morphologies of flux flow down a flux
gradient govern the various plastic flow behaviors, including nonlihdAcharacteristics, observed in type-I|
superconductors with random pinning.
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[. INTRODUCTION flux lines, i.e. on dynamics and pinning, which would then
have to be connected, through highly model-dependent ways,
Collective transport in disordered media is a widespreado the structure of the state they pertain to.”
and poorly understood phenomenon. A great deal of experi- Here, we show that many of the empirical results found in
mental and theoretical effort in this area has been devoted twansport studies of plastic flux flow in type-Il superconduct-
studying the nonlinear dynamics of the disordered flux-lineors may be obtained with an extremely simple mddehas
lattice (FLL) in type-Il superconductors. The FLL exhibits a been recognized for many years that, in the presence of pin-
threshold behavior due to the competition between pinningning, magnetic flux in type-ll superconductors forms a pile
and flux-line repulsiort:? In response to a force, such as thatwith an overall, global slope, akin to a sandpile. Penetration
associated with a transport current, the three-dimensionaf magnetic flux into superconductors driven solely by the
FLL can move smoothly via elastic deformations, maintain-flux density gradient has been described using molecular dy-
ing its integrity and order. However, in another regime thenamics(MD) simulations~2° and by the model used hete.
FLL deforms plasticly. In that regime disorder becomes moreHowever, the flux gradient has not been taken into account in
important, and the moving FLL manifold tears as some fluxany previous numerical simulation studies of the current-
lines (in two dimensions, vorticgsnove while others do not. voltage characteristic. One possible reason is that previous
As a result, the flow pattern breaks up in a nonuniform waynumerical studies of flux motion at the scale of the vortex
It is generally believed that the microscopic structure of thecores have not been able to reach a sufficiently large system
FLL, or defects in it, is fundamental to transport behaviorsize. The Bassler-PaczusBP) model? on the other hand, is
both in the plastic and elastic regimes. a coarse-grained model and describes the magnetic flux dy-
Part of the attention to the dynamics of a moving FLL hasnamics at the much larger scale of the London length, mak-
been motivated by interest in possible, exotic phase transing the large-system-size limit much more accessible.
tions and glassy phases, melting, and other complicated sce- The numerical simulations presented here of the BP
narios associated with structural order in the FLL. Most ex-modef show that nonlinear behaviors, characteristic of ex-
periments, however, are essentially transport studies and anggrimental transport measurements of plastic flow in super-
quoting Higgins and Bhattacharya:notoriously ill-suited  conductors, arise as a result of vortex flow down a vortex
for the study of thermodynamic phase transitions. These exdensity gradient. The effect of the transport current is mod-
periments yield direct information only about the mobility of eled by a shift in boundary conditions, which leads to a gen-

0163-1829/2001/622)/22451710)/$20.00 64 224517-1 ©2001 The American Physical Society



BASSLER, PACZUSKI, AND ALTSHULER PHYSICAL REVIEW B64 224517

eralized “tilt" of the vortex pile. Eventually the “tilt” is  the FLL in the anisotropic superconductor 2H-NpSe this
sufficiently great so that some vortices can flow down thesystem, the pinning is extremely weak.(j,~10"%), the

pile in the steady state, leading to the onset of a finite voltiattice is well formed, and a robust “peak effect” occurs
age. Th_e vortex f|QW formfs a variety of river morphologies slightly belowH.,. Since the London lengtk is much less
depending on the interaction strength between the vortice$an the film thickness, the system operates in the three-
compared to pinning, and the overall rate of flow. The flow yiongjonal regime, where the flux-line interactions decay

patterns of magnetic flux are self-organized together with th%xponentially for lengths larger than They use the strong

magnetic flux profile, which is the substrate on which the ic field d d f the critical ich th
flow takes place. Since the BP model does not contain an) agneuc_ \eld dependence O.t € .cr.|t|_0a curregkich they
terpret in terms of a changing rigidity of the FLto ex-

detailed information on the positions of the vortex cores a | h b i fd s
the microscale of the FLL, it cannot exhibit any structural P'0'€ the crossover between different type of dynamics in-

ordering or disordering behavior. cluding “elastic” flow, “plastic” flow, and “fluid” flow. In

Although the BP model can also be studied at finite temlhis regard, th_e material they study is an_ideal expe_rimental
peratures, here we use the zero-temperature limit where thetystem, allowing the exploration of very different regimes in
mal fluctuations of the flux motion may be ignored. The @ well-controlled manner.
zero-temperature approximation seems reasonable to de- Near the upper critical magnetic field, they observe a pro-
scribe the plastic transport dynamics of the low-temperatur@ounced peak in the pinning force. This is referred to as a
superconductors and, perhaps, some aspects of the higtpeak effect.” (It should be distinguished from the peak in
temperature superconductors as well. Also, we consider thiae differential resistanceEquivalently, the critical current
limit where the depairing current densify, is extremely 1., where some flux lines start to move, increases as the
large compared to the critical current dengity This corre-  external magnetic fielth increases. We will focus mostly on
sponds to the so-called “weak-pinning” regime. results associated with the current-voltageV( relation as

We argue that many of the varieties of collective transporthe external magnetic fieléh is varied. Although we can
dynamics observed in superconductors may be generic tgescribe the nonlinear transport behaviors in this regime, we
repulsive particle systems driven through a disordered medo not explain the origin of the peak effect itself.
dia. These behaviors are directly related in our coarse- aAs shown in Fig. 1b) of Ref. 14, in the “peak regime”

grained model to large-scale morphologies of flow down &pg |/ characteristics of the superconductor vary enor-
vortex density gradient and changes from filamentary Smngsmously. First, on increasing, the critical currentl, in-

to a braided river, to uniform flow at high applied currents. creases. This is the “peak effect.” Second, below some

Since the BP model arguably contains the essent_ial phys“}ﬁreshold magnetic field, theV curves always rise concave
of the disordered flux-line system, at a coarse-grained leve o :
pward froml.. This is the generic form of the-V for an

and reproduces a wide variety of experimental results OIELL hat i I 4in the li diti
transport properties, we propose that these self-organize-- that IS usually reported in the literature, and it Is asso-

large-scale flow morphologies are also governing the nonlin¢/ated With an “elastic” regime. Third, when the external
ear, plastic dynamics in the actual physical system: flux line&n@gnetic field enters the “peak regime,” tHeV curves
driven through a superconductor with a disordered pinnin hange drastically, starting as concave upwgrds but.then
landscape by an applied transport current. ending over after a pronounced inflection point associated

with a change of curvature, resulting in a characteristic
A. Summary S-shapd-V curve. Close to onsét,, it is concave upward,
but then bends over dsincreases further, saturating to a
inite slope at large currents. There is also a special, critically
shaped curve in the midst of the peak regime which is always
convex forl>1.. This appears at approximately 5.8 T in

tShese”rles(;Jltts }?’%a'm tlo mf[)_del W|;htrr]1umer|cal smglat(;ons.dl xperiments where the inflection point has moved to onset.
ec. Ill, detailed explanations of the coarse-grained mo inally, above about 6.2 T, the inflection point is at currents

and the method; used in the simglations are presented. Tlﬂ'?rger than those used in the experiments, and there is no
BP tmodel vg?s first used to de'scnrtﬂ)te 1\éi|rtex avalarft,}h:adl saturation in the slope of tHeV curves that can be observed.
VOMEX TIVErs™as Seen in EXperments. “Here a completely Starting with the critically shaped curve, the numerical simu-
deterministic \(arlant Of. the original modgl is used to elimi- lations presented here reproduce the entire progression of
nate g” potentially SPUrious sources of noIse. To deSdWe. hese curves in the plastic regime and their changes as a
?>.<p"er|ments, a Sh'f.t n boundgry conditions, or generalize arameter in the model, representing vortex interactions, are
tilt” of the vortex pile, is applied to represent the effect of varied. It does not reproduce the behavior in the “elastic”
a transport current. The resultant vortex flow represents thﬁagime as explained later. The elastic regime is also not

measured voltage. Sepnon I.V contam_s the main nu"ner'catgbserved in two-dimensional MD simulations of driven vor-
results and a comparison with numerical results from MDyices near the onset of flow

simulations. The last section summarizes our conclusions. Experimental measurements of the differential resistance
Il EXPERIMENTAL TRANSPORT MEASUREMENTS R= dV/dl reveal a peak iR, corresponding to the inflection
THAT ARE MODELED point for the S-shapettV curves. As the external magnetic
field is increased in the peak regime, the position of the peak
In a series of papers, Bhattacharya and Higbtfis'®de-  first shifts to lower currents, and its magnitude grows. This
scribe experiments on the nonlinear transport properties afontinues until the position of the peak corresponds. toAt

In the next section, the results of an extensive experime
tal study of thel-V characteristics of 2H-NbSes summa-
rized by Higgins and Bhattacharyare briefly stated. It is
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this point the peak has its maximum amplitude andIthé
curve is critically shaped. At higher external magnetic fields,
the magnitude of this peak diminishes, and its position of
shifts to higher currents. Except for the largest magnetic
fields used, the differential resistance eventually saturates at
constant values at large enough currents, indicating Ohmic or
fluidlike behavior for sufficiently high driving. Also, except
for the critically shaped curve the usual scaling ansatz asso-
ciated with dynamic critical phenomend~ (1 —1,)#, does
not appear to hold for the S-shaped curves. The numeri-
cal simulations presented here reproduce this precise pattern
of behavior for the differential resistance in the “peak” re-
gime, including the changing positiofto higher currents
and decreasing magnitude of the peak resistance as vortex
interactions weaken and the saturation to Ohmic or fluidlike FiG. 1. The two-dimensional honeycomb lattice. Each xéths
behavior at high currents. three nearest neighbors and is occupied by an integer number of
Over a narrow range of parameters in the peak regimeyortices,m(x). The force pushing a vortex from cellto cell y is
Bhattacharya and Higgins observed jaggedness in the diffecalculated by taking the discrete gradient of the sum of two poten-
ential resistance. This corresponds to secondary peaks in aégls, one representing the repulsive interaction between vortices
dition to the main peak in the differential resistance. As thedccupying the same and nearest-neighbor cells and the other repre-
external magnetic field is varied, the peaks can be made $enting the attractive interaction between vortices and pinning cen-
appear and disappear, but for a given value of magnetic fiellf"s:
and for a given sample, the peaks are reproducible and thus
act as “fingerprints” of the underlying pinning disorder. Our Coarse-graining

model also exhibits suchV fingerprints. The BP modé results from a coarse-grained description
to the scale of the London length of the microscopic dy-
namics and incorporates the features that are essential to pro-
1. MODEL duce the observed complex behavior: repulsive interactions
between vortices, variations in the pinning potential, and
_ _ variations in the vortex density—all at the scalexofCon-

In order to describe the collective transport of superconsijger a transverse two-dimensional slice of a superconduct-
ducting flux, we consider a coarse-grained model where theyg slab atT=0 and imagine imposing a grid of cells on the
details of the precise interactions between flux lit@svor-  system. Vortices in the model correspond to a vortex number
tices are lost but the general effects of repulsive interactiorin an extended region of the actual physical system. Pinning
between granular or discrete objects, pinning, and overin the model corresponds to a number of point pins in an
damped motion leading to stick-slip dynamig¢earing are  extended cell. Each lattice site in the model can hold many
preserved. vortices and can have a different, albeit quenched, pinning

The BP model is an interacting sandpile model of vorticegpotential, due to the underlying randomness in the positions
in a type-ll superconductor, where the “sand” grains, repre-and strengths of the microscopic pinning centers. The model
senting magnetic vortices, repel each other. It was originallyallows many vortices to interact with each other while main-
motivated by the observation dposgbw Se|f-organized tain Iocality (at the scale Of\) in interactions. It is the only
critical'” avalanches in field ramping experimettsyhere ~ Model of this sort that has been proposed to describe flux
the distribution of flux packages falling into the interior coil dynamics in superconductors. It enables numerically studies,
of a hollow cylindrical superconductor were measured. Ac-USINg o-rdmary workstations, of the steady-stgtg and transient
tually, the similarity between the Bean sttéor vortex pile properties _of systems larger than (308 containing tens of
and sandpiles was first pointed out by de Gerlfidsater, 10 of vortices.
Vinokur, Feigel’'man, and Geshkenb&lisuggested that ther-
mally induced flux creep would lead to a self-organized criti-
cal state in a type-Il superconductor, as did TAh@he key
observation is that flux-line flow always takes place on a flux The BP model is defined as followisee Fig. 1 Consider
pile which has an overall density gradient. This pile may be? two-dimensional honeycomb lattfidevhere each cek has
in a self-organized critical or some other nontrivial state. ~ three nearest neighbors and is occupied by an integer number

In addition to describing vortex avalanches in field ramp-Of vortices,m(x). The total energy of the vortex system in-
ing experiments? the BP vortex model has also been used tocludes the repulsive pairwise interaction between the vortices
describe flux noisé? vortex avalanches in the presence of aand the attractive interaction of vortices with the pinning
periodic, dense array of pinning centéfsthermally acti- potential V. For a given configuration of vortex number
vated flux creep*?°and magnetization loofs. {m(x)}, the total energy of the system is

A. Motivation

B. Definition
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. is occupied with an equal number of vortices as that bound-
HEMOOH =2 Jym(hHm(j)— 2 Voin()m(i). (1) ary site. More specifically, at the beginning of each lattice
h ' update, all of the sites on the boundary are set to be occupied
Since the model describes a system coarse grained to thgth the same number of vortices. The lattice update then
scale of the London length, the repulsive interactidpsare  proceeds, during which vortices can move off the boundary
short ranged. This usually includes an on-site interaction andites into the system or from the system onto the boundary
a weaker nearest-neighbor interaction. sites, thereby changing the number of vortices occupying a
As in the microscopic case described by MD simulations boundary site. However, at the beginning of the next lattice
the change in the total energy of the model when moving aipdate all of the sites on the boundary are reset to their
unit vortex from one site to a nearest-neighbor site is deteroriginal value. Through this process, vortices can be re-
mined. This yields the force to move a unit vortex fromno moved or added to the system. In general, the left and right
y, which is boundaries are held at different values. There is no pinning at
the boundary sites.
FXHy:Vpin(y) _Vpin(x) +[m(x)—m(y)—1]
FrIm(x1)+m(x2)—m(yl)—m(y2)]. (2 2. Details of the parallel update
o o ] An artifact of parallel updating is the existence of local
As indicated in Fig. 1, the nearest-neighbor cellxafrey, instabilities in which two, or more, vortices oscillate back
x1, andx2 and the nearest-neighbors cellyafrex, y1,and  and forth between neighboring sites. These local instabilities
y2 and Osr<1. A slightly different implementation of the disappear if the model is coarse grained, because then the
disorder is used than before. The normalized pinning potemeighboring sites are incorporated into a single one and,
tial Vpin(x) is a random number taken from a uniform distri- therefore, are not important to the large-scale behavior of the
bution in the interval between zero aW,,.. In each time  system. The instabilities can be eliminated by keeping track
step, all cells of the lattice are updated in parallel. A singleof the direction from which the last vortex moved onto each
vortex moves from a cell to a neighboring cell if the force in sjte and always forbidding a return movement backwards in
that direction is positive or, equivalently, if the total energy that direction. Otherwise, backward jumps are rare and there-
of the system is lowered. In E@2), the units of force on a fore disallowing them does not change the large-scale behav-
vortex have been normalized so that the on-site term is unityor of the system. A similar rule applies to the boundary sites.
Thus there are two dimensionless parameters remaininghe advantage of the parallel update is that it is numerically

Vmax andr. _ _ o more efficient than other update schemes and does not intro-
Many alternatives exist to handle the situation when morejuce any uncontrollable spurious effects.

than one unstable direction appears for a vortex to move. In
the previous implementation of the model, one unstable di-
rection was chosen at random. In order to simplify the model
and eliminate all potentially spurious sources of noise, the We consider an infinite slab of finite thickness in a paral-
most unstable direction that has the largest force is choseel applied magnetic field, carrying a current perpendicular to
and the vortex moves to that site. This represents an extrem#ile field. Depending on the direction of the applied current,
process. In fact the entire model is now completely determinthe magnetic field on one side of the superconduttag.,

D. Transport current: Shifting the boundary conditions

istic, corresponding to @=0 limit of the dynamics. the right-hand sidewill be decreased and the magnetic field
on the other side will be increaséd.g., the left-hand side
C. External magnetic field: Building a vortex pile Assuming the applied magnetic field is sufficiently strong,

this corresponds just to changing the heights of the magnetic

Flux _Iines enter the supercondgctor ff.O”? the edgesf ux pile on the left and right edges or a general kind of “tilt”
pushed in by the external magnetic field. This is represente f the pile. See, for example, Ref. 28. Of course, the internal

bY putting all ;ltes on Fhe left edge of the'model n Coma.‘thurrents and forces inside the superconductor will readjust to
with a reservoir of vortices at some potential, correspondin

%ccommodate this new boundary condition. The flux lines

?hthe eXteF”"ﬂ magfnetiﬁ fie_ldhon_':jhe I?fthside of tlhe éampleare considered to be perfectly stiff and described by a two-
€ same is done for the right side of the sample. For Simg;mengional slice of the three-dimensional slab.

plicity, periodic boundary conditions are used for the top an An applied magnetic field in the geometry described

botto_m. If the two res_ervoirs are set equal, r_epr_esenting_engbove will produce the well known “V profile” of the mag-
bedding the sample in an external ”.‘agne“c field, Vortlce.§1etic flux density discussed, for example, in Orlando and
enter the system generating the classic V-shaped flux densiy X '

16 MIASSIE elin?® and observed in many experiments, such as those of
curve as the external magnetic field is increage® below.  gapniaet al3 This is shown in Fig. 2. The actual magnetic

profile depends on the history of the sample and how the
magnetic field has been applied in the past. Applying a finite
In order to calculate the force on a vortex to move to orcurrent shifts the boundary conditions, resulting in a hyster-
from a boundary site, a special algorithm must be used beetic profile, also shown in Fig. 2. Note the overlap in the
cause one of the nearest-neighbor sites of each boundary sjteofiles in Fig. 2 on the portion where the slope is positive.
is not on the lattice. The rule used here simply assumes thathe profiles are exactly the same in this region as the applied
the “virtual” off-lattice site neighboring each boundary site current has caused no flux motion in this part of the system.

1. Details of the boundary algorithm
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FIG. 2. Magnetic field profile as a function of distance from the  FIG. 3. Finite-size scaling plot d£V measurements from simu-
center of a superconducting slab in the direction perpendicular tgations of the cellular model. System sizes are shown in the legend.
both the external magnetic field and applied current. Horizontal
units are lattice sites from the center of the system, and verticamagnetic field density at the boundary of the sample. How-
units are the number of vortices per lattice site. Vhghaped long-  ever, only integer units of magnetic flux can enter the interior
dashed line is the stable profile when an external field is applledof the System, and thus 0n|y integer numbers of vortices
but no applied current The short-dashed and dotted lines are theoccupy interior lattice sites. Obviously, the magnitude of the
stable h.yst.eretic profiles resylting frpm increaging applied currentyifference between the heights of the left and right bound-
The solid line(the s_teep straight linds the profile just above the aries can also be set to noninteger values. However, if the
onset of vortex motion. boundary heights are shifted by less than whole integers,

steps can appear in theV data. These steps are caused by
Onset the fact that only whole numbers of vortices can occupy

Eventually, as the applied current is increased further, dnterior lattice sites. Since one vortex unit in the model rep-
critical current is reached, where the shift of the boundaryreésents many actual physical vortices, this is to some extent
conditions is so large that steady vortex flow occurs dowrgn unphysical artifact of the model and the discreteness ef-
the gradient spannning the entire sample. A profile just abovéect should be less apparent in experiments. To eliminate this
the critical current is also shown in Fig. 2. Note that thiseffect, all of thel -V data presented in this paper were calcu-
profile also retains some hysteretic properties. For exampldated by shifting the boundary heights by only integer num-
it has a bump corresponding to where the increasing anbers of vortices.
decreasing portions of the magnetic field profile merged as In simulations of the model, there is almost no backward
the external current was increased above the threshold. Thisovement of vortices. Thus, the vortex flow can be deter-
bump disappears if the boundary conditions on the sampl&lined by measuring the average number of vortices moving

are shifted further and then lowered back to the previouger lattice updatéthe average activily Furthermore, the ve-
value. locity of each moving vortex is one lattice site per update.

Thus, the experimentally measured voltage, which is equal to
_ the amount of moving flux times the velocity of that flux, is
E. Making |-V measurements therefore proportional to the average vortex activity.

The |-V characteristic is determined by the relation be- Current-voltage I(-V) data from simulations of different
tween applied current and the vortex flow, which induces size systems collapse nicely in a scaling plot, Fig. 3, if the
voltage. To our knowledge, this type of numerical measurevoltage is measured as vortices moving per lattice update per
ment, made by shifting the boundary conditions on the Beargttice site(the average activity per sjtend the current is
state, has not been investigated before. Herd tWecharac- measured as the average slope across the sygtenmag-
teristic is simply the relation between the magnitude of thenitude of the height difference between the left and right
shift (representing an applied currgrind the average flow boundaries divided by the length of the sysjein the fol-
rate of vortices(representing a voltagevhen the critical lowing sections|-V data are presented in these scaling units.
current(tilt) is exceeded. In order not to confuse the readetn Fig. 3, thel -V data were produced by repeatedly increas-
we use the term current to refer to the applied electricalng the height of the left boundary by one vortex and lower-
transport current and the term flow to refer to the motion ofing the height right boundary by one vortex. The vortex in-
magnetic vortices. teraction strength was=0.1.

In general, the boundary sites in the model can be set to The |-V data presented in the following sections were
any real value, including noninteger values. This is becausealculated in a similar fashion. All of the data are for systems
vortex number on the boundary sites describes the externaf size 200 400. Each -V data point was calculated by first
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_FIG. 4.1-V measurements from numerical simulations for four  FiG. 5. Differential resistance measurements from numerical
different values of the vortex interaction strength simulations. These results are calculated by numerical differentia-
tion of thel-V results shown in Fig. 4.

shifting the left boundary height up one vortex and shifting

the right boundary height down one vortex. As for Fig. 3, thegimylations®! Again, all of this agrees with the experimental
lattice was updated 20000 times to eliminate transient bergagits.

havior, and finally the lattice was updated another 20000 |, Fig 5 the differential resistanav/d| is calculated by
times during which the average vortex activity was mea"[aking numerical derivatives of the curves shown in Fig. 4.

sured. At the largestr value, the resistance peak is very large. As
the parameter decreases, the peak moves to higher currents
and decreases in magnitude. In fact the same behavior is
observed in experiments as the external magnetic field ap-
proachesH_.,. As mentioned before, the MD simulations

Thel-V relation was measured for different values of thegive the opposite result of a peak that increases in magnitude
parameters and for different system sizes. Our main result ias it shifts to higher currenfs.
shown in Fig. 4, where the paramed,,,=5 and the pa- In the actual experiments, at fields below the peak effect
rameterr is varied. The parameterrepresents the strength regime, the vortex flow is believed to be elastic and there is
of repulsion between vortices at nearest-neighbor dells no observed peak in the differential resistance. As the mag-
sizel). netic field increases a peak in the differential resistance starts

The first result is that as decreases, the critical current, to develop, which then reaches a maximum, decreasing again
which is the slope of the pile where vortices first start tofor larger fields. Our simulations appear to describe the ex-
flow, increases. Clearly, applying an increased the pile in  periments once the peak in differential resistance has reached
the steady state lowers the slope of the pile since formerljts maximum.
stable local slopes will now become unstable due to the in- In order to obtain an elastic regime, we could consider a
creased repulsion between vortices at neighboring siteshree-dimensional coarse-grained model of repelling flux
Thus, fixing all other parameters, we can identify the paramiines rather than point vortices representing a two-
eterr in the model as a way of controlling the critical current dimensional cross section of that system. Work is in progress
or slope of the pile. In the superconductor, the critical currentalong those lines.
can be controlled by the applied magnetic field. In the peak The model discussed here does not describe the behavior
effect regime, it turns out that increasing the applied magof the superconductor in fields greater than that which gives
netic field leads to a softer FLL and thus a higher criticalthe largest critical current, where the critical current de-
current. Therefore, the regime where the critical current is areases as the magnetic field increases. This may be due to
increasing function of the applied magnetic field is repre-the fact that we take the depairing current to be strictly infi-
sented in our model by a critical current which is a decreasnite (i.e., j./jo=0) and there is no transition to a nonsuper-
ing function of the parametar. conducting state in the model presented here.

The second result is that, except for the largestl of the Note that the differential resistance curves for smalbn-
I-V curves have a characteristic S shape. They start out &in secondary peaks, in addition to the main peak. This is
somel . increasing concave upward and then bend over satwsimilar to the jaggedness or “fingerprint” found in experi-
rating to a finite slope at large currents. Th¥ relations for  ments. This jaggedness in our results occurs in the filamen-
a given realization of disorder, however, do not overlap atary channel regime, discussed below, and is due to filaments
high currents, unlike the results obtained with previous MDopening and closing as the applied current increases.

IV. SIMULATION RESULTS: COLLECTIVE TRANSPORT
BEHAVIOR OF THE MODEL
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FIG. 7. Histograms of the site activity corresponding to the vor-
tex flow patterns shown in Fig. 6. Not visible in the figures are the
peaks at zero activity. The size of those peaks(ar®93, (b) 920,

(c) 735, (d) 95, (e) 14, and(f) 7.6.

proportional to their activity. These patterns are fixed and do
not change in time with fixed external driving conditions.
The nature of the flow can be quantified by the distribu-
tion of activity at the different lattice sites. Figure 7 shows
histograms of the activity corresponding to the images of
FIG. 6. Vortex flow patterns at different values of the external Fig. 6. These histograms are constructed with 1000 bins and
transport current for a vortex interaction strengthref0.1 with a  normalized so that the area under the curve is equal to 1.
corresponding S-shapéeV curve. The current in each cag@ea-  Note that there are peaks corresponding to zero activity not
sured as the slope of the systeisi(a) 0.21,(b) 0.225,(c) 0.25,(d)  included in the figure. Those peaks at zero activity decrease

0.30,(e) 0.375, and() 0.45. in size as the current is increased.
As can be seen in Figs. 4 and 5, th&/ curve forr
A. Relation to river morphology =0.1is S shaped. Figurdd@ shows the vortex flow pattern

. . ajust above threshold for that case. The vortex flow takes
So far we have only characterized the model using mea- ; , . .
lace only on a single filamentary string with some small

surements analogous to those th"’?t eXp‘?”mef?ta“Sts typlcalfiQ)/ide branches. This behavior is also evident in the histogram
have available. However, numerical simulations can als

. . S . q:ig. 7(a), which shows a small number of isolated peaks. As
provide a great deal of easily accessible information aboufe it of the pile increases the number of filaments of the

the morphologies of flow patterns associated with different,qex flow increases, and they begin to merge. This process
configurations. In fact, different morphologies of vortex flow ¢an pe seen in Figs(I§ and &c). The corresponding histo-
patterns have been observed using MD simulatfot*=*>  g-amg of activity shown in Figs.(®) and 7c) indicate an
To understand the nature of the differences in the Shape %Creasing number of peaks and the deve|opment of a con-
the I-V curves, we have examined how the flow morpholo-tinuous distributionDuring this merging process, while the
gies change as one increases the applied current for a systemrtex flow remains filamentary, theM curve remains con-
that has an S-shapéeV curve and also for the singuléafV ~ cave upward, and the differential resistance rises.
curve that occurs at large Eventually the filaments of vortex flow merge to form a
The paths that the vortices take as they cross the samplwaided river, as shown in Fig(@®. This occurs around the
can be determined by measuring the average activity at eaqieak in differential resistance, corresponding to a change in
site. For example, Fig. 6 shows a series of gray scale imagesurvature of thd -V relation. In this case, the corresponding
of the vortex flow patterns. These images represent “timehistogram of activity[Fig. 7(d)] shows a continuous distri-
lapsed photographs” of the vortex activity. The different im- bution of activity peaked at zerd@hus the peak in differen-
ages in Fig. 6 show the vortex flow patterns for the case tial resistance signals a change in the underlying vortex flow
=0.1 as a function of increasing external currenin these = morphology from filamentary strings to a braided rivéhis
images, sites with no vortex activity are blank, sites with anappears to be consistent with the observation of Koétbal.
activity greater than or equal to 0(Bne vortex moves every that at the peak in differential resistance “all the vortices are
other lattice updajeare black, and sites with activity be- moving in a seemingly isotropic channel network with maxi-
tween 0 and 0.5 are indicated by gray dots with a darknesswum interconnectivity.3®
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FIG. 9. Histograms of the site activity corresponding to the vor-
tex flow patterns shown in Fig. 8. Not visible in the figures are the
peaks at zero activity. The size of those peaks(ard5.7,(b) 5.6,

(c) 4.4, and(d) 3.3.

diverging differential resistance at onset, this further supports

FIG. 8. Vortex flow patterns at different values of the external our observation that the peak in the differential resistance is

transport current for a vortex interaction strengthr ef0.4 with a  ggsociated with a braided river structure.
corresponding critical -V curve. The current in each casmea-
sured as the slope of the systeisi(a) 0.10,(b) 0.15,(c) 0.20, and B. Scaling of the critical -V curve
(d) 0.40. :
The criticalI-V curve forr=0.4 is well described by

As the tilt of the pile is increased even further, the vortex P
flow becomes spatially more and more uniform, as the V(=17
braided river floods. This uniform flow region corresponds toyith B=0.6+0.1, as shown in Fig. 10. For that measure-
linear or Ohmic behavior. These results can be seen in thgent, the critical currerit, was measured to be 0.095, which
river flow pictures in Figs. @) and f). The corresponding  was the largest current found with zero voltage. Since the
histograms shows a peaked continuous distribution, whickyrrent was sampled at values spaced by 0.005, the uncer-
has separated from zero activity. As the tilt increases furthefainty in 1 is approximately* 0.005. Varying the value df,
the continuous distribution of activity obtains an increasingoyer that range changes the valuedfthat best fits the data
mean and narrowing widthilhe transition to Ohmic behav- near the onset of vortex motion and allows an estimate of the
ior comes about as the braided river floods at higher flowgror in g.
rates than can be supported by such a structure. The exponenf3 can be related via scaling arguments to
A similar progression of flow morphologies, from isolated the exponents characterizing the distribution of avalanches in

filamentary channels, to a braided river, to a flooded rivefpe self-organized critical state. In the self-organized critical
with uniform flow, occurs for other values ofwith S-shaped

|-V curves. However, a different scenario occurs at large  44°
values ofr where thel-V curve is not S shaped, but is in-
stead always concave downward from the onset of vortex
motion. Thel-V curve forr =0.4 in Fig. 8 is an example. We
will refer to this as the critical curve; its functional form is
discussed in the next subsection. The differential resistanct
for the critical curve is discontinuous, as can be seen in Fig.
5.

For the critical curve, there is no filamentary region of =
vortex flow. Instead, right at the onset of vortex motion, the
flow has the structure of a braided rivarhis can be seen in 107
Fig. 8@), and in the corresponding activity histogram in Fig.
9(a), which shows a continuous distribution of activitiig-
ures 8 and 9 were produced in the same manner as Figs.
and 7, respectivelyAs the tilt of the pile is increased even
further, the flow again increases and becomes more spatiall L L
uniform, similar to behavior of the S-shapéd/ case after 10 10
the peak in the differential resistance, where the braided river al
floods. This behavior can be seen in the river flow pictures in  FIG. 10. Double-logarithmic plot of voltage vs current minus
Figs. 8b), 8(c), and &d) and the corresponding histograms critical current forr =0.4. The straight line shown has a slope of
in Figs. 9b), 9(c), and 9d). Since the critical curve has a 0.615.

10°

224517-8



SIMPLE MODEL FOR PLASTIC DYNAMICS OF A.. .. PHYSICAL REVIEW B34 224517

state, the average flow ratéof vortices is controlled rather overall vortex density gradient can develop owing to the pe-

than the overall slope of the system. The scaling argument igodic boundary conditions. This makes the vortices travel

similar to that used in Corral and Paczi#kb describe the perpetually around the system and forces the paths to circle,
transition from avalanche to continuous flow in the one-which is unphysical and does not occur in the real system.
dimensional Oslo modél. The excess slope above the criti- The actual physical situation is an open system with flux

cal slope at onset idm=1—1.=(AN)L® whereAN is the  pushed in and out, rather than a periodic one. The physical
excess number of vortices in the system anid the system  system adjusts its overall magnetic flux profile in response to
size. If vortices are added very slowly, then there will begpplied forces. This is not possible in a periodic, closed sys-
distinct avalanches separated by intervals of no activity. Ifey Nevertheless, the basic result that the critical current
that regime, superposition applies ail~VL?, whereL*is i creages as the vortex interactions weakens is obtained.

the cutoff in the duration of the avalanches. In the rapidlyHowever, all thd -V curves measured via MD simulations of

driven regime, the avalanches ove_rlap and th(f/ﬁexcess SIO%%riodic systems fall on top of each other, or overlap, at high
becomes independent of system size; thus~V~". These : : .
currents, for different values of the vortex interaction

two limits can be combined into a single crossover Scallngstrength. This is inconsistent with the experiments of Bhat-

function tacharya and Higgins and reflects the fact that the artificially

AN~L2f(VLX¥). 3 periodic system is not able to adjust its profile in response to

) ] ) applied forces. An even more significant, but related, differ-

The exponenk in this expression measures the average dugnce s that the peak in the differential resistance grows
ration of avalanchegt)~L*. Since avalanches in this case ,notonically and gets sharper as the resistance peak shifts

come about from adding an entire row ofvortices to the  y, higher currents, the exact opposite of what happens in
system, the average size of avalanches, measured in terms&‘periments

the number of topplings i6s)~L?, rather thar(s)~L, as in
the Oslo model. Obviously, on average each site in the sys-
tem topples once when a row of vortices is added in the

self-organized critical state. Using this result together with V. SUMMARY
conservation of probability gives a scaling relation between
andz We have studied the nonlinear current-voltage character-
istics of flux flow in type-ll supeconductors with random
Xx=z+2-D. pinning using a simple, cellular model. As in the physical

system, vortices flow down a flux density gradient. Because
the coarse-grained model does not include any degrees of
X z+2-D freedom at scales much smaller than the London leRgih
B= = . cannot describe structural ordering or disordering of the flux
X+2—z 4-D ; . ; . . .
line lattice. Despite this fact, simulations of the model repro-
Using the exponent values=1.5 andD=2.7 obtained in duce many of the empirically observed transport characteris-
Ref. 4 givesB=0.6, in good agreement with the numerical tics of plastic flux flow in type-1l superconductors.

Combining all these results gives

result presented in Fig. 10. In particular, our results reproduce many of the features
attributable to plastic flow of the FLL in the “peak regime.”
C. Comparison with MD simulation results By weakening the vortex interaction strength, we find an

Nori and collaborators first studied, using MD simula- increase of the critical current and a falling of the magnitude

tions, flux driven into superconductors with random pinning,Of t_he_: peak n the _dlfferentlal resistance. The_ mode_l also
with the driving force solely due to the flux density gradient. €XNibits |-V fingerprints and crossover to Ohmic or linear
They elucidated many properties of the Bean state includin§€havior at high currents. Also, theV curves for different
the magnetic field profile, magnetization hysteresis loopsVortex interaction strengths do not merge at large external
critical currents, vortex avalanches, and vortex rivefd, currents. All of these features are completely consistent with
None of these studies using an open system with an overa@ixperimental results. However, presumably due to the two
density gradient reported theV characteristics, though. dimensionality of the model, the elastic behavior of the FLL
Recently, Olseret al3! have simulated thé-V curve as is not reproduced.
the FLL softens by varying the vortex interaction parameter The success of these efforts to describe the plastic trans-
(see also Ref. 34As in all previous MD studies of IV be- port behavior of magnetic flux in superconductors with a
havior of the FLL31733:36:38-44he vortices are contained in a coarse-grained cellular model suggests a possibly generic ex-
periodic system, where they can neither enter nor le@he.  planation for and ubiquity of plastic flow phenomena ob-
initial condition is an ordered vortex lattice. Motion takes served in superconductors. It may not depend on the degree
place via MD updates with aniform forceapplied to all ~ of disorder or defects in an underlying microscopic flux-line
vortices. lattice. Instead the behavior may be common to driven repul-
The most important difference, besides the scale of theive particle systems in a disordered media. The varieties of
model, with our description of thieV experiments is that, in  plastic flow behaviors in the model studied here result from
all of these MD studies of the current-voltage relation, nothe changing morphologies of the vortex flow pattern down a
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