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Direct-current Josephson effect in SNS junctions of anisotropic superconductors
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We derive a formula of the dc Josephson current between two superconductors with anisotropic pairing
symmetry. One of the basic characters in the junctions of the anisotropic superconductors is the formation of
the zero-energy bound states at the junction interfaces, which leads to the low-temperature anomaly of the
Josephson current. The contribution of the zero-energy states to the Josephson current is taken into account in
the present formalism.
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[. INTRODUCTION This paper is organized as follows. In Sec. I, we derive
the Josephson current formula based on the mean-field
The discovery of highF, superconductofshas stimulated theory of superconductivity. In Sec. Ill, the Josephson cur-
intensive research in this field. The symmetry of the Cooperent is expressed for the superconductors with spin-singlet
pair is important for understanding the mechanism of high-and spin-triplet Cooper pairs. The conclusion is given in Sec.
T, superconductivity. The Josephson effect in anisotropic sukV.
perconductors has attracted much attention in recent years
because the high; superconductors might haveé-wave
pairing symmetry:°> So far, transport properties in various _
junctions ofd-wave superconductors have been discussed in L8t us consider the superconductor-normal-metal-
a number of studie® 2 In anisotropic superconductors, the SUP€rconduct¢gNS junction as shown in Fig. 1, where the
sign of the pair potential depends on the direction of a qual€ngth of the normal metal isy and the cross section of the
siparticle’s motion. As a consequence, the zero—energwnc_non isS;. The Hamiltonian in the mean-field approxi-
stated! (ZES'9 are formed at the normal-metal/ Mmation reads
superconductofNS) interface when the potential barrier at 1

II. JOSEPHSON CURRENT FORMULA |

the interface is large enough. The ZES'’s are clearly observeq_|MF:_f drf dr'[et(r)8(r—r")ho(r')e(r’)

in the conductance spectra of NHvave superconductor
junctions?*23where | denotes the insulator. It is known that
the ZES’s are responsible for the low-temperature anomaly
of the Josephson current in superconductor-insulator-
superconduct@slS) junctions of the d-wave
superconductot?

The anisotropic superconductivity itself has been an im-
portant topic in condensed-matter physics since unconven-
tional superconductivity was found in heavy-fermion materi-
als such as CeGBi,,UBe;3, and UP§2*~?" In a recent
study, anisotropic superconductivity was found in a layered
perovskite, SiIRu0,.2® Some interesting effects of the an-
isotropy in the pairing symmetry on Josephson currents are
revealed in previous workS3! However, in order to study
the contribution of the ZES to the Josephson current, we
have to pay careful attention to the boundary condition of the
wave function at the junction interfacé.

In this paper, we derive a formula of the dc Josephson
current between the two anisotropic superconductors with
spin-singlet and spin-triplet Cooper pairs. The results are an
extended version of the Furusaki-Tsukada formula for
s-wave superconductor junctiof$The influence of the ZES
on the Josephson current is naturally taken into account in

the obtained formula because the Josephson current is ex-

pressed by the Andreev reflectircoefficients(ARC'’s) of
the junction. The low-temperature anomaly is described by

2
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the dependence of the ARC’s on the temperature. Through- FIG. 1. The SNS junction of the anisotropic superconductors.
out this paper, we take the units bf=kg=1, wherekg is  The phase of the pair potential on the I&fght) superconductor is
the Boltzmann constant. oL (eR).
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wherec,(r) is the annihilation operator of an electronrat  pelongs to— E, . They satisfy the following relations:
with spino=1 or |,{c(r)}! is the transposition of Eq3),
0, is the unit matrix of 2<2,ur is the Fermi energy, and f df{al(f)aw(f)+5I(r)5w(f)}:5x Voo, (13
Vo(r) denotes the spin-independent potential which includes ’
the barrier potential at the two NS interfacés{ 5(z) + 5(z
—Ly)}. The spin-orbit scattering in the normal metal is de- f dr{ﬁ{(r){;’;,(r)+8{(r)ﬁ’;,(r)}=6, (14)
noted byV(r)~fr. The pair potential between an electron
with (o,r) and that with ¢',r") is given byA, ,.(r—r’). . ~ R R R
In the normal segment @z<L,), the pair potential is > {uy(nul (r+oX(nol(r)}=s8r—r")oq, (15
taken to be zero. In what follows, we use- for 2X2 ma- .
trices. The pair potential is given by S L R
. _ > {u (Dol ry+or ()t (r)}y=0. (16)
~ ido(r)o, (singled, A
A(r)= i[d(r)-o]o, (triplet), @ Here 3y s a s_ummation ovei with E\>0. The local
charge density is defined by
where o; with j=1,2, and 3 are the Pauli's matrices. The

pair potential satisfies a relation P(r,t)=—ec(r,t)c(r,1), 7
A =) =A(r=r"). ®) wheret is the time. The current conservation law implies
iltonian i is di i iu- I~ -~
The Ham|lt0n|ar_1 in Eq(1) is diagonalized by the Bogoliu T PrH)+v-3(rT)=0. (18)
bov transformation, ot
() ﬁx(r) {);‘(r) N The_ dc Josephson current between the two superconductors
_ = R R ~ , (6) is given by the expectation value of E{.9),
') T own )\ {al)
e .
o 3(1)= g lim (Ve =V)TX TrG, (1), (19
Hue=2 @ E\a,, (7) P o
A
- ~ t
. ) o o fu(r)
- E?\,l 0 gwn(rvr,)ZE |:(A )(IMHUO_E}\) 1(,\ ,
E,= , (8) A va(r) vp(r’)
0 E» :
oy . [ok(r)
where +(Ai )(iwnaoJrEA)_l(Ai .
a ux (r) ux (r’)
CY)\E( ’ ) ©) (20)
a)\’l

denotes the annihilation operator of a Bogoliubov quasipar’Neré T is the temperatureg,, (r.r') is the Matsubara

ticle. The wave functions satisfy the Bogoliubov-de GennesGreen function of the SNS junctions, and- indicates 4

(BdG) equatior® X 4 matrices. On the derivation of E¢19), we have as-
. . . sumed that the amplitude of the pair potential is much
S(r=r"yho(r") A(r—=r") u,(r’) smaller than the Fermi energye .
f dr’ A , s NRE(r ~ In the superconductors, we assume that all potentials are
—AR(r=r) = Sr=rHhg (r) ] Loa(r’) uniform. The BdG equation in Eq10) is given in the Fou-
) ). o rier representation
() §koo ACK) [fue| |ug].
" ~ A~ [=|~ |Ex: (21
When the wave function —A*(=Kk) —&oollvi] Lvk
- where&,=k?/(2m) — ug and
ux(r)
. (11 - L :
ox(r) Ar=rn=2 Aget =), (22
K
belongs to an eigenvalug, , the wave function R .
. ido(k) oy (singley,
0¥ (1) Ak)=1 R ) (23
oA (12) i[d(k)- o]o, (triplet).
ux (r) Since relations
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do(—k)=dg(k), (24) A ekiz
Kp(k,Z): 0 eikzz y (36)
d(—k)=—d(k) (25
are satisfied in the momentum space, we find 0. - Oy 0 37)
A A + 0 Qz'i 3
—AY(—k)=A(k). (26)
) . eiag 0
Whenz<z'<0, the Green function can be calculated to = R (39
be 0 e Yoy
G (1.1)==iMwn 2 xp(p)xp (P )DL Xp(p)=w, (39
P =
l]i . fﬂ . . where¢; for j=L or R is the phase of the superconductor,
e h J
X se Kp(ki,2)+ o Kp(ki,2)ay p=(Kky.k,), andp=(x,y). The amplitude of the pair poten-
+ + tial for unitary states is defined by
ue ) . N :
+1 . K (—k® ,z)bl] Ko (—k&,z") B _[ldox| (singled,
P G A L|=]AL]= . 4
(Ue |Ar=[=8-] |d.|  (triplet). 40
ki, O -1 . Gi ' In the unitary states, these amplitudes are independeht of
X 0 k& + | ~e wherel represents the spin configuration of a quasiparticle.
2.+ U+ The amplitude of the pair potential depends on the spin con-
~h ~e figuration of a quasiparticle in nonunitary states,
u-\ . h u-\ . o ~
+ Ky(—k + K,(—k
oh p( 4 se p( °,2)a, |A | { /|d:|2+|Qt| (1=1), )
.= 41
i Ve Pas] (=2).
+ h ~
+( ~p | Kp(k ’Z)bZ] In Egs.(28) and (29), kf™ is the wave number in the elec-
U+ tron (hole) branch forlth spin channel. In the following, we
oo Ki_ o\7? approximately describe thad® ~k,= 2m[ue—e(p)] as
XKp(k,z") 0 K shown in Egs.(32) and (33), where {,*k,) is the wave
2= number on the Fermi surface. Theéh column of
~h T
A u- . A
xQ7H L]t @7 ug”
v’ selh) (42
with - . .
corresponds to the wave function of thte spin state in the
ke, =2m — i, L 28 electron(hole) branch. The reflection coefficients from the
= vami e~ €(p) =] 28 left superconc:rgsctor to the left superconductor are defined in
- the matrix for
k.= V2m[ue—e(p) = i€ -], (29
Q) 2= Vol +[A L% (30 aj-1= a(2) a(22) (43
P’ bi(L,D) bi(1,2
P =5 (3D 6._12:( (LD byl ’))_ (44)
=241 0i(2,) bi(2,2)
do+=do(p, *k,), (320  The ARC from thdth spin state in the electrdhole) branch
to thel’th spin state in the holéelectron branch is denoted
d.=d(p,*k,), (33 byay(l",N[ax(1",1)]. In the same wayh,(I",1)[b,(I",1)] is
the normal reflection coefficient from thith spin state in the
. idg .« (}2 (singlet, electron(hole) branch to thd’th spin state in the electron
A=y, I triolet (34) (hole) branch. These reflection coefficients are the function
i(d+- )0, (tripley), of p which indicates the propagating channel at the left NS
_ . interface. By substituting Eq27) into Eq. (19), the Joseph-
q.=id.xdZ, (39 son current becomes
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The expression of the Josephson current in @§) corre-

sponds to the Furusaki-Tsukada formtia.

(49

Throughout this paper, we use the representation

. u.o

us iAi

l’;e = Ai 1

A

. A
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(0
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for unitary states. In these state, . is independent of

becauseg=0. For nonunitary states,we use
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FIG. 2. The reflection coefficients ifa) contribute to the Jo-
sephson current. In this paper, we neglect the higher-order pro-
cesses involving multiple Andreev reflection more than twice. The
Josephson current calculated from the four reflection processes in
(a) is summarized in the reflection processeshin

(60)

flzl}o‘i‘&g,

(61)

t2:O'0_0'3.

In this paper, we consider the four reflection processes to

calculatea; anda, as shown in Fig. @) and neglect the

higher-order terms. This approximation is justified when the
potential barrier at the NS interfaces is large enough and/or
the transmission probability in the normal segment is low
enough. Thus we consider the insulators and the dirty normal

metals in the normal segment. In order to estinstanda,,

we calculate the transmission and the reflection coefficients
at the single NS interface for fixgal as shown in Appendix

A. The 64 coefficients are obtained from the continuity con-
dition of the wave function at the NS interface since there are
eight incoming and eight outgoing channels for eacihe
ARC's in Fig. Aa) are given by

a’(p)=2 tep.L)- Ty
p/

X R)-Bp o tRPL), (62
afl(p)=2 tp.L) 15,

pl

XTRR(p' R)-T), - TRE(p.L), (63)
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R " " che _Jfreh *

a(zl)(p):E’ tg?\](prl—)tg,p rNN( p’L) {rNN(p!L)} (72)
P are satisfiedsee Appendices A and)Bthe Josephson current
XPRNe R)-1, I p L), (64  resultsin

. . o . J=—2elm>, >, T> Tr
aP(p)=2 TE\(p.L)-Tp o TP’ R)-T5, - TE(p,L), P Y e
p’ . . . .
(69 X[PRNPL)- B o TRA(PVR)-E5, o) (73)
whereAggr’?) is the transmission coefficient of the electronlike The formula in Eq(73) can be applied to various Josephson
(holelike) quasiparticle in the normal conductor, aptlin- junctions. For instance, it is possible to calculate the Joseph-

dicates the propagating channel at the right NS interface. Thson current in clean SIS junctions by substitutiﬁgg?

transmission coefficients in the normal metal are describe ~
4 dp,p To- We also note that the two superconductors are not

by necessarily identical to each other.

fg,'p:ivpe*ikétwf d”f dp’ IIl. JOSEPHSON CURRENT FORMULA II

~ Since Josephson current is described by the ARC'’s at the
XQT,;]e(P’,LN:P,O)X;r(P')Xp(P), (66) NS interface in Eq(73),we represent ARC’s of the spin-
singlet, the spin-triplet unitary, and the spin-triplet nonuni-
R , tary superconductors in the following.
tg’p,=ivp,eikzLNJ dpf dp’ When the superconductor has spin-singlet Cooper pairs,
the coefficients are given by

X G (.00 L)Xy (P xp(p),  (67) . ] |
o PPN TP FRpL) =~ T (pL)e, (74
where@D‘;ﬂe(h)(r,r’) is the Green function of the normal con- T § .
ductor in the electroithole) branch and,, is the velocity in run(p,R)=—ilg(p,R)e™'¥R, (795
thez direction of a quasiparticle belonging to the propagating . o A
channelp.®® We assume that the NS interface is sufficiently Fsy(pj)=iTsy(p.j)o2, (76)
clean so thap is conserved while at the transmission and the .
reflection at the interface. Ifa(ll) in Eq. (62), a quasiparticle T (pj)= kK. do— ] 77
wave is initially incident into the normal segment from the sulP.J Be V'
left superconductor through the channel specifiegh bifter
the Andreev reflection at the right NS interface, we assume 2= (H2+K2)dg dg_ + HZK K _, (78)
that the reflected wave transmits to the left superconductor
through the initial _channel op bec_ause of the retroactive_ Ki=0Q.—|w,, (79)
property of a quasiparticle under time-reversal symmetry in
the normal segmenit. The two ARC's in Eq.(45) are given —
k=K, /Kg, (80)

by a;=a{P+al? anda,=al"+al?, respectively.
By using Eqs(45) and(62)—(65), we can derive the gen- whereH=mV,/kg represents the potential barrier height at
eral expression of the Josephson current, the NS interface ang=L or R symbolically denote the char-
acter of the superconductors such as the symmetry of the pair
) A o - . potential and orientation angle.
J=ieX, 2 > Tr[rﬁ'h(p,L)~tE,per%(p’,R>~t§r,p When the superconductor is in spin-triplet unitary states,
Popren the ARC's are given by

“he te  ceh .. th
_rNN(pal—)'t /'rNN(p ’R)t ’ ]! (68) ~ A .
PP o TRA(pL) = —iT(p,L)e', (81)
without further approximations. The reflection processes in
Eq. (68) are summarized in Fig.(B). Since the relations rhe(p,R)=—il! (p,R)e¢r, (82)
~e . Ah A ~ o~
Cpp=llppd™ (69) Pu(pi)=iTw(p.j)- 002, (83
=i (70 o, Eudo—(HZHK)(d% xd_)xd_
F(p,j) =kK — :
~eh ~he " :tu_Dtu' Dy i
run( =P R)={ran(p. R}, (71 (84

224515-5
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Eo= (H2+K2)d% - d_+H2K K _, (85) 2H?A| (v=1),

nu(l)*) - _
kilal  (v=-1).

_ _ In the absence of the ZES € 1), the reflection coefficients
In the unitary statesd. often has a single component. In are proportional to H?. On the other hand in the presence

i1l

(109
Dyu=—i(H2+K2)(d* xd_). (86)

such a case, we find of the ZES = —1), the reflection coefficients are indepen-
q dent of the barrier height. Thus the ARC describes the low-
Ftu(p,i)=E§K+~—_ ’ (87)  temperature anomaly of the Josephson'cur'rent.
Etul: In the normal metal, the Green function in E¢86) and

j
67) satisfy a relation as shown in Appendix B,
becausad* xd_=0. 67 fy pp

Finally we show the ARC’s in the nonunitary states, NN == o[ GV i) T, (102
Fﬁﬁ\,(p,L)z —iT,u(p,L)e'e, (89 because of time-reversal symmetry. The transmission coeffi-
cients can be parametrized by
rRn(P,R)= —iT' ) (p,R)e ™o, (89) . . .
" 7(p'.p)=7o(p",P) oo+ 7(p'.p)- &
Lou=iTou(p.j)- 0y, (90)
:\/Upvp’f dpf dp’ X (") xp(P)
D
hu(pj) =Ko 91 A
P =K Con o XGye(p' Lnip0). (103
Since the amplitude of the spin-orbit scattering is much
D —(H2+?2) 1 E D+ +H2 1 E Ki,-Di,+ smaller than that of the spin-independent transmission prob-
nu 2129 K4 29 A, 2 ' ability, we assume that
(92)
| 7o/ >| . (104
di Xg. .
Dy, =df +i— q- , (93) The conductance of the normal metalTat 0 is given by
' 19| o2
d* xq Gy= lim +Tr>, 7(p’.p)7'(p’.p)
Dzi:df_—i _ (94) w,—0 p.p
' - 19| 262
= lim —— > [7o(p’,p)|2. (105
Ki+=Q +—|wp|. (95 w0 N pp 0

The detail of the calculation is shown in Appendix A. The
expression of the ARC’s in nonunitary states is rather mor
complicated than that in the unitary states. But if the rela-

By using Eq.(103), the Josephson current is rewritten to

tions A ) ) )
J=—2eIm>, > T, Tréh(p.L)- op{rh oo+ 7 o}
d=d,=vd_, (96) P o on
v=1 or —1 97) X 0 TP R) {000+ 7 0. (106)

- . . At first we consider the Josephson junction where the two
are satisfied, the ARC can be reduced to a simple expression L .
superconductors have spin-singlet Cooper pairs. The Joseph-

2 2 r son current is given by
~eh kS P A
NCABESS > = Al e, (99)
2|q| I=1 :nu(l) _ . ’ ’ 2
L Jss=4desingT> X Toy(p',R)|7o(p’.p)|°Tsy(p,L),
“n p,p’
0 2 2
k P ) (107
“he - At z | —ie
P RI= A [2|q| 2 anum} 9 herep=g — op.

Second, we consider the junction where the spin-triplet
and spin-singlet superconductors are on the left- and right-

= —2 _ 1,2
Enu()=HH 1= v)|wp[+ 1+ ) Qi+ k(o] +2). hand sides, respectively. The Josephson current results in

(100

The effects of the ZES’s on the ARC’s can be easily con- —deT Imre T (o’ RYW(p' 0)-T.(b.L
firmed in Egs.(78), (85), and (100. For instance in Eq. Jrs=4e ;n E mLe TP, RIW(p",p)-Ti(p.L)],
(100), we find in the limit ofH>>1 andw,—0, (108

224515-6
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Superconductor Normal Conductor >0. In the normal metal, the wave function of the quasipar-
o ticle can be described by
A A -~ A ~

S C A o a . 0 . A .

% N W(p,2)= e k24| ekt | el
AN A B 0 B 0
8 . .

A N A 0 —ik,z

o ;‘\S‘.\ a + B e 7z Xp(P)r (A1)
7 D B s
z=90

wherea andg (A andB) are the amplitudes of the incoming
FIG. 3. The transmission and the reflection coefficients at thdOutgoing waves in the electron and hole channels, respec-
left NS interface. There are eight incoming and outgoing channelgively. In the same way, the wave function in the supercon-
ductor is given by
ar oL (Ao
e'kzzy+ R e—|k225
Alo, u*

W(p’,p)= (75 7+ o7 +i7* X 7)(p’,p), (109

whereTI’; representd’,, in Eq. (84) or I',,, in Eq. (91). As p(p*z) i
shown in EQ.(109), the J;5 vanishes when the spin-orbit
scattering does not occur in the normal métaf*

Finally when the two superconductors have spin-triplet +
Cooper pairs, the Josephson current can be expressed to be

(A2)

_ j ’ ! 2 ~ A A ~
Jrr=4eTX > Im[e'“T'y(p,L)- T (p",R)| 7o(p",P) ] wherey and § (C andD) are the amplitudes of incoming

e (110  (outgoing waves in the electron and hole channels, respec-
tively.
The obtained formulas in Eq6107), (108), and(110) are The two wave functions satisfy the continuity condition at

essentially the same as those in the previous reSudew-  the left NS interfacdi.e., z=0),
ever in the presence of the ZES’s at the NS interfaces, the

dependence of the Josephson current on the temperature is ‘I’EI(P!O):‘I’ﬁ(P:O)’ (A3)
drastically different from that in the previous results. The

ARC's (I'g,,I't,, and I';,) describe the low-temperature i N _ 9.0

anomaly of the Josephson current in the SNS junctions of the 7Y (P.2)|z=0~ 2mV,W(p, 0=~ ‘1’ (P,Z) i
anisotropic superconductors. - (A4)

From Egs.(A3) and (A4), we obtain the transmission and
reflection coefficients,
We derive a formula of the dc Josephson current between

IV. CONCLUSION

the two anisotropic superconductors based on mean-field t2%(p,L)=k, k U_1Z}E] , e, (A5)
theory of superconductivity. The Josephson current is ex-
pressed by the Andreev reflection coefficients at the junction fgh p,L) :E H ﬁ:lAZE eloL2 (AB)

interfaces. The contribution of the zero-energy bound states
formed at the NS interfaces to the Josephson current is taken

the N 0*\V—15 a—ie /2
into account. The formula can be applied to SIS and SNS tsnp.L) KpH(UY) = Z, e (A7)
junctions of the anisotropic superconductors with spin- “hh _ o 1n _—
singlet and spin-triplet Cooper pairs. tan(P,L) =K, k™ (UY) 772165 - €115, (A8)
H2
ACKNOWLEDGMENTS repL)=—0"*A_p* _,_u BV AV R
The author is indebted to N. Tokuda, H. Akera, and Y. (A9)

Tanaka for useful discussions.
2

H
rhe — (xRt s nx-15 0Ty
APPENDIX A: TRANSMISSION AND REFLECTION rsdpL)==(u%) "Asv, i wn(u+) Za(u2) "

COEFFICIENTS AT THE NS INTERFACE (A10)
We derive the transmission and reflection coefficients of i
the NS interface at=0 for a spin-triplet nonunitary super- rNN(p L)= Z e (ALD)
conductor as shown in Fig. 3. In what follows, we calculate “he A
the coefficients after analytic continuatioBiw,) for , rap,L)=—ik3Z e, (A12)
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5(p L)_ ZT§2+( 1)71Q+ eiqoL/Z,

typ.L) = Zh(uh) 0 _ea?
n

k,H
the __Z
tns(p,L) on

Zy(1) 1, e,

’t\rllls(p L)_

e —p,L)=[rh(p,L)]*.

Here we define

Z152 (u,)t0 e el

(A13)

(A14)

(A15)

(Al6)

(A17)

(A18)

(A19)

(A20)
(A21)

(A22)
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FIG. 4. The reflection processes included in the coefficiants

anda,. These processes, however, do not contribute to the Joseph-
son current.

The ARC'’s of superconductors in the unitary states can be
calculated in the same way. The derivation of the transmis-
sion and reflection coefficients in the unitary states is much
simpler than that in the nonunitary states.

In addition to the four reflection processes shown in Fig.

In the same way, the ARC’s at the right NS interface are2(a), six reflection processes can be consideredfoanda,

2
R 1 Kie o |
= — P —+ A+,
f1z (Zlmlzlm.m ) .
2 ~
~ 1 P|+ ~
+ = — A+,
2 2|9- | ;1 Ki«) ~
21:[H2%1,++|K|2%2,7]71,
22:[H2%1,7+|K|2%2,+]71,
K=E+iH.
given by
rNN(p R)=—ik2 Zze oR,
rn(—P.R) =[P, R)T*.

On the derivation, we use identities,

sTt'S”iZZQZ S 1rs
B
P &t l,*
+ r T 0) "y
S "~ 2[g.]Q% N
l’:\)|+ P|/+ 2|q |P|+5||/
SIT:'A: AT: ’::|2|éz| 4o,

o T
AL'SI,t T’i Atzzlq | 2 I*Jr 5I,I"

(A23)

(A24)

(A25)

(A26)

(A27)

(A28)

(A29)

(A30)

(A31)

as shown in Fig. 4. By using the coefficients in EG&5)—
(A16), it is possible to show that these six processes do not
contribute to the Josephson current.

APPENDIX B: TRANSMISSION COEFFICIENTS IN THE
NORMAL METAL

Since the amplitude of the pair potential in the normal
metal is taken to be zero, the BdG equation in Ed) is
decoupled into the two equations,

ho(r)u,=U,E, (B1)

The Green function in the normal metal obeys the equation,

[iwaoo—ho(N)1GLS(r,r")=8(r=1")ag,  (B3)

[ionoot+h5(NIGE"(rr")=8(r—r")ao. (B4

The Green function in the two branches is represented by

Gul(rr') =2 i(Dlionoro— BT, (B9)

Gun(rr)==[Gyer,r1*, (B6)
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where we use the complex conjugate of ER1) for the
Green function in the hole branch. By using E¢86) and
(67), we can show the relations

Te _r%h

i, =l 1%, (B7)
~h

= (88)

.
[t 1~

When time-reversal symmetry holds in the normal metal,

we find
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h% (iU, =i0,0\E,y . (B9)

The Green function in the hole branch is described by that in
the electron branch,

N n=—a G ite,. (810
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