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Local quasiparticle density of states in ferromagnéfsuperconductor nanostructures
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We study the proximity effect in superconductor/ferromagr@t] systems and propose a detailed theo-
retical description of the damped-oscillatory behavior of the quasiparticle local density of states in a ferromag-
net. It is demonstrated that impurities play a very important role in determining the amplitude and the shape of
spatial and energy dependance of the density of states. Bearing in mind the possible comparison with experi-
ments, we investigate different types $fF structures as well as temperature variation of the local density of
states.
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[. INTRODUCTION tronic mean-free path is of the order magnitude of the thick-
ness of thé= layer. The purpose of this work is to present the
Usually a superconducting transition occurs in a stateletailed analysis of the modification of density of states in a
where the phase of the superconducting order parameter figrromagnetic layer due to the proximity effect. The general
constant all over the system. There are only a few examplefrmalism is briefly overviewed in Sec. Il. In Sec. I, we
when the phase of the superconducting order parameter catudy the clean limit and the influence of weak-impurity scat-
vary. One of those examples is the Fulde and Fetratid  tering. The dirty limit is studied in Sec. IV, which allows us
Larkin and Ovchinniko% superconducting-state predicted to describe recent experimental d&ta.
more than thirty years ago. The authidtsuggested that the
superconducting order parameter may be modulated in real Il. GENERAL FORMALISM
space by an exchange field acting on the electron spins. Until
now, however, there are no unambiguous experimental evi- The very convenient set of equations describing inhomo-
dences of this modulated-state formation. A superconductddeneous —superconductivity has been elaborated by
(S in contact with a ferromagné&t’ (F) presents another Eilenberget® They are transportlike equations for the
possibility when the modulation of the phase of the superenergy-integrated Green’s functiofsand g, assuming that
conducting order parameter should appear. Indeed, in theelevant length scales are much larger than atomic length
case of arB/F bilayer, a Cooper pair entering a ferromagnetscales. For simplicity, we restrict ourselves to the case when
will feel the magnetic exchange fieldand as a result, it will  all quantities depend only on one coordinatehe distance
produce a phase modulation with the characteristic period difom the interface. If we consider the Cooper pairing of elec-
the order ofé;, the coherence length scale in a ferromagnettrons in the presence of the ferromagnetic exchange field
In a clean ferromagnef; ~v/h,2 while in the dirty limit  acting on the electron spins, the Eilenberger equations take
&~lvg/h,*® wherel is the electron mean-free path. It has the form(see for example Ref. 14
been predicted that such a phase-modulation effect must re-
sult in the oscillatory behavior of the critical temperattige
of S/F multilayerd® and of the perpendicular critical
current® as a function ofF-layer thickness. These oscilla-
tions may be_ interpreted in term; @zf-phase shift of the =(A+if_(x,w))g(x,0,w),
superconducting order parameter in adjacglayers. Oscil- 27
lations of the critical temperature i8/F multilayers have
been found experimentally in Nb/Gd multilayBrand very — dQ — dQ
recently the most direct proof ef-phase formation has been g(X,w)=ng(X,0,w), f(x'“’):jﬂf(x'e'“’)'
obtained by critical-current measurements in Nb/Cu-Ni/Nb
Josephson junctiorts. f(X,0,0)f* (X, 0,0)+ 04X, 0,0)=1, (1)
The oscillatory damping of induced superconducting cor-
relation inS/F systems leads also to the similar behavior ofwhere f*=f*(vg——vg,h——h) and 7=I/vg, elastic-
the local quasiparticle density of states. In the framework ofcattering time. The Eilenberger Green’s functidrsnd g
diffusive approximation this effect has been predicted in Refdepend on Matsubara frequencies-w,==T(2n+1) at
10 and found experimentally in Ref. 11, where the density otemperaturel, coordinatex, and oné, the angle between the
states induced in a ferromagnet bysdayer has been mea- x axis and the direction of the Fermi velocitieg . In the
sured by planar-tunneling spectroscopy. The theoreticefollowing, we will consider that Cooper pairing is always
analysis of the proximity effect i8/F structure in a quasi- absent in the= layer and then the corresponding supercon-
ballistic regime made in Ref. 12 has also revealed the oscilducting order parametek is equal to zero in the ferromag-
latory behavior of the density of states as a function ofnetic region. The geometry of the system we consider is
F-layer thickness. Note that in this case the effective elecpresented in Fig. {a superconducting electrode connected to

If(X,0,w)
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w+ih+ Z—Tg(x,w)
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4 IIl. CLEAN LIMIT AND INFLUENCE
OF WEAK-IMPURITY SCATTERING

Let us study first the density of states in ferromagnetic
region in the limitr—oe. In this clean limit, the Eilenberger
equations in a ferromagnet can be written as

S-layer F-layer
: m ) 1 If(X,0,w)
d; (w+ih)f(x,0,w)+ EUFXTZO,
e 1 9f"(x,6,w)
d, (w+ih)f (X,t‘),w)—vaXT:O, 2
FIG. 1. Geometry of th&/F system. f(x,0,w)f+(x,6,w)+gz(x,0,w)=1. (3)

a thin ferromagnetic rocenables us to suppose that the prox-  Supposing the length of the ferromagnetic rod to be much
imity of the ferromagnetic metal affects only slightly the larger than the characteristic distanceSF proximity ef-
superconductivity in thé layer. In fact the similar situation fect, we may use the conditiof(x, #,w)—0 asx—o and

is realized in the usu&@/F bilayer geometry if the parameter the condition of continuity of the Eilenberger Green func-
v, which characterizes the strength of the proximity efféct tions at theS/F interface demonstrated in Ref. 16. Thus for
is small, see also Eq13) below. Thus, the superconducting a weak proximity effect, the solution of Eilenberger equa-
order parameter in th& layer may be taken equal to its tions can be readily found i% and F regions(see for ex-

unperturbed valueA = const. ample Ref. 1y and forvg,>0 we have
x<0, x>0,
f_A 1+Q—w 20X _2A w+ih
0_5 Q+wex UEx ' 0_Q+ exp ~ UEx X
A 20X
F=—l1— fg=0, 4
fo Q1 exp(UFX), 0 (4
while for vg,<0
x<0, x>0,
. A L F{—ZQX f 0o
ey ex D ) o=Y,
£ A 1+Q—w —2Q0x L 2A 2w+ih 5
0 5 Q+a)ex UVEx ' O_Q+a)ex UEy X ( )

where QO =/AZ+ w?. These results permit us to conclude first-order correctiorfon the parameter hir<1) to the den-
that in the ferromagnet, the normal Eilenberger functionsity of states it is useful to use the following exact equation
g(x,0,w)=1—f(x,0,w)f7(x,0,0)=sgn(w,) does not Ny

have any dependance on the spatial coordirafdote that vFXa_x(ff )=r (I =17hg, ©)
similar behavior has been reported for the p&& case  \hich can be readily derived from E@L). Further on we
treated in Ref. 18. Consequently, in pure limit, the density ofmay substitute on the right-hand sifland f* by the solu-
states does not present any spatial variatéord even energy tionsf, andf of the system of Eilenberger equatio(® in
dependencein spite of oscillating decaying behavior 6f the clean limit and pug=sgn(w,). Finally, we obtain two
andf™ functions. This is a somewhat artificial situation be- first-order equations for different orientations of the Fermi
cause in reality the impurity scattering is always present andelocities with respect to th&/F interface(and for positive
plays an important role i&/F proximity effect. To obtain the Matsubara frequencigs
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FIG. 2. Variation of the normalized density of states at low energy 0.1h) in the ferromagnet as a function of the normalized distance
x/ & to the S/F interface. The different curves correspond to different values of the parameférr=1hr=2h7r=3hr=4hr=5). The

paramete = A/h is chosen to be 0.05.

Ve >0, Ve <O, that the predicted damped oscillations have a period of the
P P order of magnitude ob/h, the coherence length in the
ety _FH T ofet T st ferromagnet in the clean limit. Note also that far away from
VR (1) fofo, P9 (f1)=fofo. (7 the interface, the total density of states decreases ag/sf(
compared to expfx)sin(x) dependence in the dirty-limit
Solving Eq.(7), we find the following analytical expres- case® and see Sec. IV,
sion for the producff™

IV. DIRTY LIMIT
2A2 exp( _ M The quasiclassical equations describing a dirty supercon-
ft _ Vg ductor has been derived by Usadedtarting from the Eilen-
(X,a))— 3 . . .
H(w+ih)(Q+w)? berger equationgl) and supposing that the electronic mean-
free path of the electrons is short enough compared to the
2(w+ih)x_ [2(w+ih)x coherence length to produce an isotropization of movement
X Ve El Ve of electrons. Previously, the density of states in $#/N bi-
. ) layer in the dirty limit has been calculated in Ref. 20 using
eX;<2(w+lh)X _1} ® Usadel equations and proved to give a good description of
vE : relevant experimental dafa.The analysis of the density-of-

states oscillations i®/F system based on Usadel equations
where Ei is the exponential-integral function Ei(  has been performed in Ref. 10. In this section we extend this
=[; “[exp(~xt)tldt. Using the relation g(x,6,0)  approach taking into account the modification of diffusion
=J1-1f(x,0,0)f"(x,0,0) and performing analytical con- coefficient due to relatively strong exchange field in ferro-
tinuation over Matsubara frequeney,—iw we directly ob- ~ magnet b>T.). In case of strong impurity-scattering Eilen-
tain the density of states for the spin-up orientatidn  berger functions can be written d¢x, 6,0)=F(x,0)+f;
=R g(x,w—iw)]. The density of states for spin-down ori- andg(x, 6, w)=G(x,»)+g;, where the angular dependence
entation follows from the substitutidm— —h. We have plot- is present inf; andg; functions only,G=g, F=f, and the
ted in Fig. 2 the total density of states as a function of theconditionsg,<G, f;<F hold. Similar to the standard deri-
distance from the interface for different values of the paramvation of Usadel equations, we may perform the averaging
eterhr. We obviously see that when the cleanliness of thg1) over the angled[ fd(cos6)]
sample increasd@ncreasingh7), the amplitude of the oscil- -
lations of the density of states goes to zero in accordance 1 oty

with the oscillations disappearance in the clean limit. We see (0+ih)F+ Zve cosh o =AG. ©
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0.1 \\‘ FIG. 3. Variation of the real part of the
) \\ anomalous Green functioh at zero energy as a
\\"._'\‘3 function of the normalized distance to ti8F
\‘-'\“‘- interface. The different curves are obtained for
‘ different values of the parametérr (h7=0h7
1 =0.1h7=0.2h7=0.25).
-0.1

After multiplying Eq. (1) by vcosé and averaging once dF¢
again over angle we obtain Fs=Fit & (14)

JF

E— F\—— wherey= / , is the conductivity of thé=
ve cosOf,+ gvéa—X:<A+ E_) 910r COSE. y=(osé1)/(o1€s), o1(oy) y

layer (S layer aboverl,), &= +D¢/(2h), é&,=+Dg/(2T,) is

(10 the superconducting coherence length of $layer, the pa-
rametery,= (Ryo)/ &, whereR, is the S/F boundary re-

Now for simplicity we may restrict ourself to the situation sjstance. The parametey, is directly related to the transpar-

near the critical superconducting temperature where we magncy of the interfacel = 1/(1+ y;,).2? The conditionT=0

put G=sgn(wn), and the combination of Eq$9) and (10) (=) corresponds to a vanishingly small-boundary trans-

leads immediately to parency, and the conditioh=1 (y,=0) corresponds to a

perfectly transparent interface. In our geometry, the proxim-

w+ih+

27

cos 0(9_f1__ vE <92_F (12) ity effect is weak, consequently close to the interface on
UF X . 1) gx2’ distances of the order of magnitudg the variations of the
6| o+ih+ 27 Green functiorFg are small. Thus, considering a weak prox-

imity effect is equivalent to taking a limi<1 in Eq.(193).

In this part, we only consider perfectly transparent interfaces
and infinite S/F layers to avoid unnecessary mathematical
complications. The corresponding generalization for the case
of arbitrary transparency is straightforward. Thus the anoma-
lous Green function may be written directly as

and finally we obtain the following Usadel equation

D(1-2ih7) ¢°F

(o+ih)F— 5 porialy (12)

with the diffusion coefficienIsz(rv,%/3). More generally

we may demonstrate that in the dirty limit in strong ferro- ~~ A ~ . .
magnets, the standard Usadel equafidase applicable with F(x,0)= \/ﬁexq—x(lJr D(1+ih7)], (15
the renormalizatio ;—D¢(1—2ih7) andw— w+ih. Note AHo

that in the ugual §|tuat|on the 'condmon Of. applicability of if we introduce the dimensionless coordin&texlff, and
Usadel equations isT.<1, but in our case in the presence

of strong exchange field it becomes more restrictive<1 ~ Parameterso=w/h and A=A/h. The real part of the
[or |<&=D;/(2h)]. Due to conditionh>T, we have anomalous Green function in the ferromagnet, which plays in
kept in Iqu.(lzf) only fhe most-important correcctions of the SOM€ SeENSE the role of superc_on_ducting order-paramet_er in-
orderhr and neglected the terms proportionalda. As in duced in a ferromagnet by proximity effect has the following
our model the superconducting order parameter is equal t%)rm
zero in theF layer, the anomalous Green functiénis the ~ %
co
{ 1-hr
(16)
(13) For illustration, we present in Fig. 3 its damped-

solution of the Eq(12) with A=0. General boundary con-
oscillatory behavior for different scattering ratesWe see

- X
R F(x, = ———6exp —
ditions in the dirty limit for Usadel equations have been de- dFx0)] /ZZJFZ)Z F{ 1+hr
rived by Kuprianov and Lukichév

dF¢ dF
7 o T8
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that the spatial period of the oscillatiogg(1—h7) and the  —4 grctafitan(g,/4) expxy2 Vi + ) 1.2 In the case of per-

damping length of the oscillatior(1+hr) are both of the  fectly transparent interfaces the normal Green function can
order of magnitude of the superconducting coherence lengthe readily written as

in the ferromagnet. However, the spatial period decreases
with increasinghr, whereas the damping length increases 1 1
with increasingh 7. The similar behavior is characteristic for G(X,»)=cog 4 arctan tan —arcsin———

spatial dependance of the density of states . In the strong Vi+(w/A)?
dirty limit (h7—0), we get the simple damped oscillatory
}. (20

behavior REF (X, »)]<exp(—x)cosk) already found in Ref. ~ -
BF (%, @) ] exp(-X)cosf) already NN e
Note that in the limitT close toT. (A—0), this expres-

10
In this section, we examine the behavior of the density okjon gives the same formula for the normal Green function

states in the infinite ferromagnet at arbitrary temperatureG(;( Z)) as in Ref. 10. To calculate the density of states
assuming that the dirty-limit conditions are held. We may us '

the complete set of Usadel equations

A. Infinite ferromagnet length

el\IT(T(,Z)), we perform, as usual the analytical continuation
w,— 1w of the normal Green functio®, and the density of

_ Bfﬁ[G(x,w,h)ﬁF(x,w,h) _ F(x,w,h)ﬁG(x,w,h)] states for the spin-down orientatiog if found by substituting
) by —h in the expression givin§l;(x,»). Note that the pe-
+2[w+ih(x)]F(X,w,h)=0, (17 riod of these oscillations is always of the order of magnitude

) . of the coherence length; whereas the amplitude of these
G(x,0,h) +F(x,0,h)F*(x,—h,0)=1, (18 oscillations strongly depends on the rafidw. The ampli-
tude of the oscillations increases when the ratibn get

whereD;=D¢(1—2ih7) is the renormalized diffusion coef- | dd hen the rafi d
ficient in the ferromagnetic region. However, due to the con 10Ser to one and decreases when the rafio tends to zero

dition h7<<1 of applicability of Usadel equations this renor- or to infinity. In Fig. 4, we present the norm{:\lized density of
malization is small and we will omit it further in this paper states as a functlon of temperature for different distances
(as it has been demonstrated before it only weakly modified©m the S/F interface.

the ratio between decaying length and period of oscillation

Equationg17) and(18) naturally suggest the parametrization B. Finite ferromagnet length
of F and G by a function ©(x,w), such asF(x,,h) In the experiments the superconducting density of states
=sinB(x,w,h) and G(x, w,h) =cosO(x,w,h). Under this pa-  pas peen measured in a thin ferromagnetic film with thick-
rametrization the Eq(17) may be written as nessd; in the range of 50—100 A. To describe the situation
2032 we may take into account the usual boundary conditions at a
_ (3;"”) +2(@+1)sinO (X, ) =0, (199  vacuum interfaqe_ (E(F/ax)_(x=df)=0. It is possible to
X present the explicit analytical results near the superconduct-

. - o ing transition temperature. The solution of linearized Usadel
with x=x/¢; and o= w/h. For infinite F and S layers, the  equation fitting the general boundary condition at Si€
solution of this Sine-Gordon equatiofl9) is O (X,w) boundary(14) and vacuum-interface condition is

1 coshi V2 Vi + @(x—d0)]

F(x)= (22)

/1 w2 costiv2 Vi + wd]— V2 Vi + @y sin{ V2 Vi + od ]
+_
ZZ

where the following dimensionless parameters are udedA/h, w=w/h,x=x/&;, andd;=df/& . As usual, the density of
states for the spin-up direction is found by performing the analytical continuatjeni o of the normal Green functio®

. 1 cosH[(1+i) V1+w(x—d)]
N; (X, @)=N(0)Re 1-——; — = — (22
1_w_{cosr[(1+i) 1+ wdi]— (1+i) V1+ oy, sinb (1+i) V1+ wd]}?
“A‘z
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N(©0)

2.051
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x/&, =0.65

0.5

0.6

1.9 -

FIG. 4. Variation of the normalized local density of statB.f) for »=0.2h as a function of the ratid=A/h that gives an idea of the
density-of-states variation with the temperature. We suppose that the only temperature-dependant patffgtehite the exchange field
h is constant. The different curves are obtained for different values of the distaficeom the interface X=0.5¢; andx=1.7&;).

FIG. 5. Variation of the normalized local density of statdg.() at zero energy as a function of tkelayer thickness normalized by the
The different curves are obtained for different values of the transparency -coeffigigiity,=0.2

coherence lengthé;.

Y= O.6,’yb: 1.1,’)’b: 15) .
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FIG. 6. Low-energy dependangplotted as a function ofo/A) of the normalized local density of stateN(,) for y,=1.5 and for
different values of thé= layer thicknessi;= 0.8, andd;=3. The parameteA is chosen to be 0.1.

whereN(0) is the density of states per spin in the normaling coherence length). This characteristic length is almost
state. The density of states for the opposite direction of theonstant for all values of the transparency parameter,
spinN, is simply found by substituting by —h in Eq.(22).  whereas the amplitude of the oscillations is very sensitive to
The characteristic spatial dependanceNgf,(d;,), for o  the value ofy,. The low-energy ¢~A) dependance of
<1 (see Fig. 5 is a damped-oscillatory behavior with a Ny, (d,w/A) is presented in Fig. 6. One should notice that
characteristic lengtlj; (much smaller than the superconduct- the shape of the density of states in the region close to the

N,+N

- W FIG. 7. The experimental
2.005 points correspond to the measure-
ment of the tunneling conduc-
tance, done by Kontost al.*! at
zero energy vs the PdNi thickness
normalized by the coherence
length¢; . The theoretical curve is
the best fit obtained by using for-
mula(22), with transparency coef-
ficient y,=1.5. The resistivityp¢

down

2.000 ' '

1.995|

of the 50-A thick PdNi layer is of
the order of magnitude of
50 wQ) cm, the coherence length
1.990 is of the order of magnitude of

’ i 50 A and the sample has a sur-
face of area 10Q:mx100 pm.
So our fit gives an interface resis-
J tance of the order of magnitude of
1.985 4x1077Q, which is compatible
with the low-energy dissipation
measurement of Nb/PdNi/Nb
junctions.

1.980
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S/F interface(atd;<&;), is similar to the density of states of theoretical approach we have neglected the influence of the
a conventional superconductor. There are divergencies of tHerromagnet on thé layer. If the corresponding conditions
density of states ab=*+A and also at much-higher ener- are not fulfilled in the experiment a notable modification of
gies, whenw= *h. It should be underlined that these diver- the superconducting order parameter near the interface can
gencies would be in fact limited by the inelastic processe$e produced.

that have not been considered in our model. In addition, in

tunneling measurements at finite temperatures, the fine struc- V. CONCLUSION

ture of density of states always contributes in some “ther-
mally averaged” form and the peak at=*h is so narrow
that it certainly exceeds actual experimental resolution.

In the Kontoset al. experiment?! an S layer of Niobium
and anF layer of PdNi have been used. The typical gap
energy isAy,=1, 40x10 2 eV, the measurement of the
conductance of theS/F junction has been made akt
=0.3 K. So the resolution of this experiment is of the order
of magnitude of 10* eV=A,,/10, which is sufficient to

give an idea of the shapgz of the density of stateswat large number of parameters, such as the exchangerfidhe:
NA(“j‘b‘ tWe ha\:e fitted their mfeg]sursénl\??lilgft the tlu.nnel,:.ngtransparency of the interface, and the thickness of the ferro-
conductance at zero energy ot tne VIND tunnet junc Ior?ﬂagnetic layer. The existence of these oscillations under al-
with our theoretical expression O.f the density of states. Th?‘nost all conditions is quite important and means that the
only_lf;]ttlné; pta;zt;\met%rt IS tgef flnrc:eitrsanspargncy pa:jar.?et%xperimental conditions needed to fabricate Josephson junc-
Y. The best fit is obtained foy,=~1.5 (see Fig. 7 and i tions with am-phase shift, as suggested in Ref. 24, are prob-

reproduces well the experimental data for thicknesses largefy, o ; .
. much-| restrictive than it w. reviousl| .
than the coherence length. Indeed, close to the interface, t%{eby uch-iess restrictive tha as previously supposed

experimental density of states can differ from our theoretical ACKNOWLEDGMENTS

predictions for several reasons. First for experimental rea-
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We have calculated the superconducting density-of-states
induced in a ferromagnet by the proximity effect in a rich
variety of situations that could be useful for further experi-
mental studies of peculiar proximity effect 8iF structures.

Our results clearly show that the appearing damping density-
of-states oscillations are quite robust and disappear only in
the nonrealistic extremely clean limit. The characteristic pe-

riod of these oscillations is much shorter than the supercon-
ducting coherence length and its precise form depends on a
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