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Reflectionless tunneling in ballistic normal-metalsuperconductor junctions
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We investigate the phenomenon of reflectionless tunneling in ballistic normal-metal—supercoriN&gtor
structures using a semiclassical formalism. It is shown that applied magnetic field and superconducting phase
difference both impair the constructive interference leading to this effect, but in a qualitatively different way.
This is manifested both in the conductance and in the shot noise properties of the system considered. Unlike
diffusive systems, the features of the conductance are sharp and enable fine spatial control of the current, as
well as single-channel manipulations. We discuss the possibility of conducting experiments in ballistic
semiconductor-superconductor structures with smooth interfaces and some of the phenomena, specific to such
structures, that could be measured. A general criterion for the barrier at NS interfaces, though large, to be
effectively transparent to pair current is obtained.
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[. INTRODUCTION superconductor interfaces specular reflection is sacrificed for
the purpose of lowering the barrier at the interface, thus in-
One of the most interesting phenomena in hybrid diffu-creasing the Andreev reflection probability. We here raise the
sive normal-metal—superconductor structures is reflectionpossibility ~to  conduct experiments in  ballistic
less tunneling. This phenomenon manifests itself as a zerg@emiconductor-superconductor structures with a sharp inter-
bias peak in the differential conductance of a diffusiveface and a long elastic mean free path. Though indeed the
normal metal slab connected to a superconductor via a tunnélgnsmission probability of the barrier would then be small,
barrier with low transmission probability’.*> van Wees the electron-hole coherence over long trajectories results in a
et al® used a path integral picture to suggest and explain théarge Andreev reflection probability, as we show below.
effect of reflectionless tunneling. They show that the en-Thus, one can have strong proximity while preserving the
hanced conductance at zero bias is due to electron-hole callistic nature of the system. Other systems which seem
herence in trajectories that, due to the disorder in the norméavorable for the realization of ballistic NS structures with
metal, hit the barrier at the normal-metal—superconductoppecular reflection at the interface are the recently investi-
(NS) interface many times. This results in the barrier beingdated organic molecular crystdfs:*In these systems the NS
effective|y transparent to pair current. transition could be realized by applylng a space-dependent
In this paper we show that the phenomenon of reflectiongate voltage.
less tunneling exists also in ballistic systems, the requirement The paper is arranged as follows: In Sec. Il we introduce
being the existence of multiple reflections from the NS interthe formalism and the structure we consider, obtain the ex-
face due to the geometry of the structure. As in diffusivePressions for the three-terminal conductances in terms of
systems, we find an enhanced NS conductance for zero bi&ge(N), the Andreev reflection probability of a trajectory
and zero magnetic field. We show that the magnetic fie|dhat hits the interfacé& times, and calculate this probability
(H), finite energy and Vo|taQE, and superconducting phast:pr Zero magnetic field. In Sec. Ill we show that for a short
difference (b)) impair the constructive interference leading Slab the NS conductance has shpgaksas channels open.
to the enhanced NS conductance, but applying the supercol? Secs. IV and V we calculat®,(N) and the linear con-
ducting phase difference has qualitatively different conseductances as a function éf (IV) and @ in a similar SNS
quences than applying a finite magnetic field or voltage. structure(V). In Sec. VI we calculate the shot noise in both
We show that the ballistic nature of the system gives risétructures, as a function ¢f and®. In Sec. VII we con-
to pronounced and delicate features, which are not averagédder diffusive systems and demonstrate the connection be-
over as in the case of diffusive systems. This results in neviween the effect of reflectionless tunneling in diffusive and
measurable phenomena, such as sipegksin the NS con-  ballistic systems. Throughout the paper we consider zero
ductance as new channels open and quasiperiodicity of tHémperature and use the model in which the superconducting
conductance as a function of magnetic field. We also demorPrder parameted is constant in the superconductor and zero
strate the possibility, specific to ballistic systems, to conductn the normal metal.
detailed manipulations such as extracting out a single chan-
nel from a normal metalsemiconductgrwaveguide or ex- Il. CONDUCTANCE OF A LONG NORMAL SLAB
tracting the current at a given position along the waveguide. ATTACHED TO A SUPERCONDUCTOR
The ballistic regime in semiconductor-superconductor hy-
brid structures was investigated recently experimentafl§.
Unlike the case in normal-metal-superconductor structures, We consider a ballistic normal-metal or semiconductor
where sharp boundaries are made that enable specular refletab between two normal reservoirs. The slab is separated by
ton at the NS interfacE'? in semiconductor- an infinite barrier from a region denoted as vacuum, except

A. Model
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3 S electron entering the normal slab from the left reservoir, ap-
u=0 proaching the region of the slab with the NS interf@¢S
/ region”) at a given distance from the NS interface and angle
1 AN N 2 0; with respect to it. If the electron is only normally reflected
from the NS interface, it follows a certain trajectory in the
H>0 6 u=0 slab until exiting it to the right reservoir after hitting the NS
vacuum interfaceN times(“ N trajectory”). Due to the finite Andreev
reflection amplitude at each point it hits the NS interface, the
FIG. 1. Vacuum-—ballistic normal-metal—superconductor junc-€lectron has a probabiliti,(N) to be reflected as a hole to
tion with a barrier at the NS interface. Each time the particle hits thehe left reservoir. In this model, due to the interfaces being
NS interface it can be reflected either normally or in an Andreevparallel and smooth, there is zero probability for an electron
process. Here 1 and 2 are normal reservoirs and 3 is a supercote be reflected back to the left reservoir or to be transmitted
ducting reservoird is the angle of incidence. Solihpen arrows  as a hole to the right reservoir. TherefoRg,e(N) + Too(N)
designate electrongoles. In Sec. V a similar structure is consid- =1, whereT.«(N) is the probability of an electron coming
ered, with a second superconductor attached to the ¢ltver)  from the left reservoir to be transmitted as an electron to the
side of the slab, so the structure has up-down symmetry. right reservoir.
For each open channel in the slab the number of times a
in a region of length., at which a superconductor is attachedtrajectory hits the NS interface is eithilf or Nj+ 1, where
to the slab(Fig. 1). At the NS interface the barrier is finite, N; equals the integer part df tan 6;/(2W), with L being
with transmission probability’. The opening of the normal the length of the NS interface. The fraction of trajectories in
slab to the two normal reservoirs is taken to be adiabatic andhannelj that hit the NS interfacé;+ 1 times is given by
the length of the slab between the reservoirs and the N$;=L tan ¢;/(2W)—N;. The Andreev reflection probability
interface to be long enough such that channels are formedf an electron in channglis then given by
with homogeneous distribution in the transverse directfon.
We also assume that the change from infinite barrier to finite
barrier of transmissio’ at the end points of the NS inter-
face is not abrupt, but smeared over a lengguch that\
<s<W, whereW is the width of the slab in the direction  We define byl,, I, andl; the currents emerging from
perpendicular to the interface. In this way the change is adiathe left terminal, right terminal, and superconducting termi-
batic but the smearing can be neglected in our calculationg)al, respectively. Due to current conservatiofs —1,—15.
We denote this structure as a Vacuum_norma|-meta|we then define the NN, NS, and total linear conductances of
superconductoVNS) structure, as opposed to a similar the system as
structure with another superconductor attached symmetri-

Rhe=pjRne(Nj+ 1)+ (1= p))Rne(N)). 1)

cally to the other side of the slab, which will be denoted an l, 2€? _
SNS structure. Go=— limy = —— 2 O(K)(1-Rl,), 2
The superconductor is connected to a third reservoir ex- v—0 !

cept when explicitly mentioned otherwise. We consider the

case where the electrochemical potentials of the right and I, 4e? _
superconducting reservoirs are equal, and the left reservoir is Gz=—lim v-oh Z @(kaH)R#e, 3
biased by an infinitesimal voltage, and calculate the three- V=0 ]

terminal linear conductances of the system. Previous works

concerning similar structur&s*® considered the NS inter- and

face either as fully transparent or concentrated on effects of

channel mixing due to the roughness of the barrier when it | 22

exists. We consider the NS interfaces to have a smooth bar- G;= Iim—l=621+ G31:T 2 O(k3)(1+ the): (4)
J

rier, so that normal reflection is specular and the Andreev v—oV i
reflected hole retraces the electron’s trajectory. We assume
specular reflection from the VN interface as well. where®(x) is the Heaviside theta function.

Our model is two dimensional. While assumirg<<W,
therefore having many channels, we assume for simplicity

that the thickness of the sldthe third dimensionis small, B. Andreev reflection probability of an N trajectory
having one transverse mode in this direction. The generali- The calculation of the conductances is therefore reduced
zation of our treatment to thicker slabs is trivial. to the calculation oR,¢(N)=|rn(N)|?> wherer¢(N) is the

We use a semiclassical formalism and consider the propasorresponding amplitude. For a single hit at the NS bound-
gation of electrons in each channel to be described by theiry, we denote by, (re;) the amplitude for an electron
classical deterministic trajectofy® For each channgl we  (hole) to be Andreev reflected and by, (y,,) the amplitude
define kjj= V2mEg/4°—j*w*/W* and calculate the angle for an electron(hole) to be normally reflected. By dividing
0j=tan*1[j m/(KjW)] between the classical trajectory of an anN trajectory to anlN—1 trajectory and a 1 trajectory, we
electron in this channel and the NS interface. We consider aabtain a recursion formula
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vacuuin

FIG. 2. Vacuum-ballistic normal-metal—-superconductor junc-

tion where a part of the normal metal is removedly the relevant
region is shown

Me(N)=TpetTed ne(N=1)rpp
FredneN=D)reprne(N=21)rpp+- - -

led ne(N—1)rpp
1-repne(N—1)°

=The (5)

Using the relationgwhich are exact a€g) ree=rpp,
Fen="rne, and|rqy2+|r.d?=1, we assume, and then show
by induction, thatr,o(N) is imaginary for allN and can be
written as

rhe(N=1)|+[rnl

el = S dreN— D] ©

The solution of this equation is given by
rne(N)=itanq N tanh (|r,,d)]. (7)
For a barrier with small transmission probability we find
Rpe(N)=tantf(Nr)~tantf(NI'/2), (8)

where we defing=|r,/=T/(2-T).

Using Eq.(7) to obtain the values oR,,o(N) for all the
channel-dependem; andN;+ 1 in the conductance formu-
las [Egs. (2)—(4)], we obtain the linear conductanc€s,,
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tem in which the superconductor is floating and the above
condition is fulfilled for all the channels, one can show that
the current between the left and right reservoirs flows inside
the superconductor and a part from the middle of the normal
slab can be taken ogsee Fig. 2 without affecting the con-
ductance of the system.

Equationg7) and(8) are far more general than the above
model and hold in any case where an electron in the normal
metal can hit the NS interface more than once before
electron-hole coherence is lost. This is true in various geom-
etries in ballistic systems, and also in diffusive systems,
which are considered in Sec. VII. In all these cases, (BY.
results in a criterion for the effectiveness of a barrier with
small transmission probabilityConsider a physical property
which is determined by a certain set of trajectories; the cri-
terion for the barrier at the NS interface not to be effective is
that most of these trajectories hit the interface more than
I' ! times before electron-hole coherence is ldstSec. VIl
we will show how this general criterion reduces, in diffusive
systems, to the known conditions for the barrier, though high
(I'<l), not to affect the conductance and the density of
states of a diffusive NIS junction.

C. Comparison to an incoherent structure

In order to show that Eq@8) is a result of constructive
interference, which is due to electron-hole coherence, we
compare our result to the case where, due to strong dephas-
ing, there is no electron-hole coherence, i.e., where the phase
between two consecutive hits of the interface is lost. In this
case the problem is reduced to a random walk problem, with
forward-backward asymmetry. At each hit at the NS interface
the electron(hole) has a probabilityl'?><1 to be Andreev
reflected, in which case the direction of propagation is re-
versed and the probability to move forward is-I'?. The
size of the step is channel dependent and is giverdjpy
=2W cot ¢;, the distance between two consecutive points a
trajectory in channej hits the interface. This gives a mean

Gy, and Gr. In this paper we are interested in the casefree path ofl;=d;/T'?. For L<I; the Andreev reflection
whereI'<1 and, therefore, in some of the formulas, and inprobability is Rye=L/l;, and forL>1; it is 1—1;/L (the

the qualitative discussions, we take this limit.

probability for a transmitted electronlis/L). Thereford; is

Before considering further the conductances of the systhe saturation length, beyond which the Andreev reflection

tem, we would like to dwell on the physical aspects of Eq.

probability is close to unity. On the contrary, in the case of

(8). This formula reflects the essence of the physics behingoherent scattering, using Ed8) and the relationN;
“reflectionless tunneling.” It states that electrons in trajecto-=L/d;, we find that the saturation lengthds/I'=1;T". Due

ries that hit the NS interfachl>1/" times are Andreev re-
flected with probability close to unity, even though<1,

to the scattering being coherent, it is smallerlbgompared
to the noncoherent case. Moreover, for short slabs|;T",

thus making a barrier having a low transmission coefficienRne~L?/(4l;d;), larger by L/(4d;) than the non-
effectively transparent to pair current. This is a result ofcoherent case. For long slab&t|;I') one obtainsRy,
electron-hole coherence in the normal metal. For an incom=1— exp(-L/y2l;d;), and the probability for a transmitted

ing electron, the different paths resulting in a hole returningelectron is exponentially small, and not linearljiL as in

to the reservoir interfere constructively, while the differentthe noncoherent case. The difference between the two cases
paths resulting in an electron transmitted to the right reseris most notable for slabs with intermediate lengths between
voir interfere destructively. The constructive interference forthe two saturation lengthgI"<L <I;, which corresponds to

a returned hole competes with the small Andreev amplitudd/I'<N<1/"?. Without coherencé;,.<1, and with coher-

at each encounter with the interface, which is proportional tenceR,~ 1.

I', and thereforeR,o(N)~1 only for N>TI' 1. This means
that for channels in which ta®2W/(I'L) the barrier at the

It is instructive to compare Ed8) to a similar system, in
which the superconductor is not attached to the slab on its

NS interface is not effective. In fact, if one considers a sysside, but part of the slab itself, of length is superconduct-
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FIG. 3. (a) The conductancén units of 4e?/h) between the left normal reservoir and the superconductor is plotted as funcipn iof
units of 12/(mW?)] for LT/(4W)=0.1. (b) Enlarging the first peak we see that the conductance at the peak is unity, and the width of the
peak is approximatelyLT'/(4W)]?>=0.01 of the value oE¢ at the peak.

ing. In this case and assuming no barrier at the NS interface$\; times, since as the channel opeNs>1. Defining ¢

the Andreev reflection probability of an incoming electron is:ﬁZ(ij)Z/(zm) ande=[LT'/(4W)]?Eg we find that for 0

given by tanR(AL/2%v ) =tantf(L/2&,) .22 Here it is&s, the et
ballistic superconducting coherence length, which is the
length scale for pairing. In our system, E§) can be written
as =
- 4e? \F 4e?
sing_ __ ~ . e —[1— -2 ﬁﬁ
Rne(L)~tani[LT/(2d,)], ) G3t=ptanf\ o= r[1-4e™val @y

with the saturation lengtt; /I" as the length scale for pairing
in the normal slab due to the proximity to the attached suWhile in a normal quantum point contact connected to a
perconductor. superconductor in series the linear NS conductance as func-
tion of the Fermi energy in the slab would show st&pi
Il. CHANNEL OPENING our case, where a superconductor is attached to the point
contact on its side, with a barrier at the interface, the NS
Using Egs.(3) and(7) the NS linear conductance can be conductance as a function &: has sharpeaksat the en-
calculated as function d&g, I', L, andW. We now concen-  ergies where channels open. The magnitude of these peaks is

trate on a special case of these parameters, which results intimes the quantum conductance, and the scale of their en-
sharp resonances of the NS linear conductance as a functi gy width is e. With the conditon given above,

of the Fermi energy. While in all the other cases considere Lk /W<=1, these peaks are narrower than the energy dif-

e et ac s oo oo ravsslFTeEe betuEen the opening of adacent channes 5o
~W this condition reduces tb <\ Ag/W. Under the semi-

and therefore consider cases in which electrons in at Iea%ﬁass'cal approximation we make the conductance peaks are
some of the channels hit the interfae>1/" times, we are : PProxI lon w u P

: . . . . — nonanalytical as a function of Fermi energy at energies
how mtere;ted Ina d|fferent limit, in whicBL vke/W-<1. where transverse channels are opened, as can be seen both in
The generic behavior in such a structure would be that th

current flow to the superconductor is small, since the numbe%q' (11 and Fig. 3. This is due to the fact that the number of
. P ' ; times an electron hits the interface divergesas 0. These
of times an electron in any transverse channel hits the barrier

is smaller than 7. However, if we change the Fermi energy nonanalyticities are a consequence of the semiclassical
(e.g., by a back gatesuch that the channel of the highest model, and one has to take into account that the validity of

transverse mode has iust opened. then the traiectory of tge semiclassical approximation is limited by the condition
o . I P ' . ; y Kj>1/L*, whereL* is the range of the potential variation.
particle in this channel is almost perpendicular to the inter-

face. As a result, the number of times a particle in this chanwe est|matd__* _by K, /Vk%:W* S/()‘F.‘/F)’ Fakmg Into ac-
nel hits the interface is much larger thari' ldnd the contri- count _the varlat|o:| PRL W'.th the spatial varLatlonz 021". The
bution of this channel to the NS conductance is significan£ONditionk;>1/L* is equivalent toe;>[I'\¢/(Ws%) ]Ee,
and given by which is consistent with the conditios;<e given thatl’
>\¢/(L%s?). One can therefore expect that with this condi-
o 4e? ) jmLl tion fulfilled, going beyond the semiclassical approximation
Gg'lnng(@(ij)tanl'?—zk. (100 would smoothen the above nonanalyticities, but will not alter
AWk the other features of the peakiseight and width For e;
In this equation we assumed tHa& 1 and neglected the fact > the contribution of theith channel to the NS conduc-
that a fraction of the trajectories hit the barriér+ 1 and not  tance is proportional to &/ and is given by
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Rhe Rhe

A A

-2 27 Dy -2 2 Sy
(2) (b)

FIG. 4. Ryo(N,®y) as obtained from Eq17) for (&) N= 10 trajectory andb) N=50 trajectory in a VNS systertFig. 1) for a barrier
transmission probability’=0.2. Notice the narrow large peaks periodicdip, and the small oscillations between each such peaks, having
in (@ N—1=9 nodes. In(b) the magnitude at the high peaks is approximately unity, and the oscillations between them are hardly visible.

402 % In order to obtain an explicit formula for,(N,®) it is
Gly=—7——. (12)  useful to define
h €
]
In this section we described the effect of channel opening Bn

on the NS conductance of the system. The behavi@-ofs Fne(N,®p) = fhe™ (14)

similar, only the peaks at the energies where channels open

are h"?"f the n;agmt_ude and_ are on top of the step fujnc_t|on 0\];vhere,8N and yy are alsod,, dependent. Inserting this defi-

magnitude 2°/h (sinceGy is similar 10 Ggy, only 2RneiS  hition for N and N—1 into Eq. (13) we obtain the matrix

replaced by ¥R} .). The NN conductance is given by the equation

complementary of half the NS conductance to a step function

(2R}, is replaced by +R},.). In the next sections we mostly ® NC1

considerGs;, and analogies t&+ andG,, can be made in a (BN) e 1) (1)

similar way. N r2e'®s 1 1)
(15

-

r2e®n 1)\ ynoy

IV. MAGNETOCONDUCTANCE OF A LONG NORMAL
SLAB ATTACHED TO A SUPERCONDUCTOR Here we used the fact that at the Fermi enargyis imagi-
) ) . “nary. By and yy are in principal defined up téthe samg
In this section we consider the same VNS structure as ifytiplication constant, which we dictate by the chojge

Secs. Il and 11l with a magnetic field applied perpendicular to_ y,=1. Diagonalizing the matrix and taking it to the power
the slab. We investigate the effect of the magnetic field ony_1 we obtain

the transmission probability of ax trajectory, as well as on
the linear conductances in the system. Magnetic field pen-
etration into the superconductor is neglected. Fhe(N, Pp)

We considerH<®,/(A2W3/2) where @, is the flux by
guantum. Under this condition the curving of the trajectories  _ e
of the particles in the normal slab can be negleéfetihe Jb
number of timesN; (or N;+1), a trajectory of an electron in —isin(®y/2)+ \/E coth Ntanh ! PP
channelj hits the NS interface stays unchanged, and so do cogP1/2)
Egs.(2)—(4), except that the Andreev reflection probabilities (16
Rpe(N) now depend also o, the phase acquired by an
electron and a hole moving in opposite directions betweeRyhere b=r2- sir?(®,/2). Using the fact that the second
two consecutive points the trajectory hits the NS interfacgerm in the denominator is always rdalso wherb is nega-
(“trajectory section”. This phase is given by®dy tive) we obtain
=47HA/®,, whereA is the area of the triangle enclosed by
the trajectory section and the interface.

2

We now turn to the calculation d®,,o(N,® ). Repeating Ruo(NDy,) = r
the same procedure leading to Ef), but keeping track of e H . Jb '
the phase introduced by the magnetic field, we obtain Sinf(®/2) +b coth?|N tanh | ————-
cogdy/2)
Fed ne(N—1,0p)e  Hry, (7
rhe(Naq)H):rhe+ . (13 . .
1—reprne(N—1,0)e'™H which, for b<<0, can be written as
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netic field for any junction parameter$ (L,W,E). If the
parameters of the structure are such thafW=1, then at
zero magnetic field the NS dimensionless conductance is
H much larger than unity, since there are many channels for
which NI'>1. We choose such a case and plot in Fig. 5 the
NS dimensionless conductance as a functiof oAt H=0
the conductance has a sharp peak, of magnitude of the order
of the number of channels and width of orderAs H is
increased, the constructive interference leading to the en-
hanced Andreev reflection is destroyed in one channel after
, . . . . the other and the NS conductance becomes small. However,
0.5 1 1.5 2 2.5 3 the conductance of each channel is periodicHinwith a

H period given by the area of the triangle between a trajectory
section in this channel and the interface. This quasiperiodic-
ity is reflected in the peak spectrum of the NS conductance
of ®o/W2). The plot is given for LIW=50, I'=0.1, and as function ofH (Fig. 5. Periods of largeH reflect ch_annels

with a smaller triangle, which corresponds to a trajectory of

2mE-W?/£2=1000, which corresponds to ten open channels. .
Peaks higher than unity are a result of overlapping resonances +<’f1rger N, and thereforgsee Eq.(8)] the peak heights are

two or more channels. Apparent periodstbfare 0.29, 0.37, 0.48, arger. Using this quasiperiodicity one can obtain “magnetic
and 0.65. AtH=0 the peak is significantly higher than the others SWitching.” By choosing the magnetic field such thdt},
(G3,=5, not showi = 2kr| for one channel only, one can remove only electrons
propagating in this channel from the normal slab to the su-
perconductor and have the electrons in all the other channels

Gy !

N Y N

o o O o

FIG. 5. The conductancén units of 4e2/h) between the left
normal reservoir and the superconductor as a functids @h units

2

_ r propagate to the right reservoir with probability close to
Rhe(Nyq)H)_ ,_—b . Unity.

Sin(d/2)+(—b)cot Ntanl( —> Though the results in this section were given for the linear

cogdy/2) conductance at finite magnetic field, it is straightforward to

(180  generalize our results to be valid for finite subgap voltage,
thus obtaining the differential conductance as a function of
These formulas hold for ani¥, r(I'), and H. We now  voltage. One can also incorporate a constant phase gradient
consider the case af<1 andNr>1. For sif(®4/2)>r? V¢ in the superconductor in parallel to the NS interface,
(which holds for most values oby whenr<1), we see generated by a constant supercurrent. The Andreev reflection
from Eq. (18) that R,¢(N,Py)<1. In the opposite limit, of amplitude from arlN trajectory would then be given by Eq.
sirf(d,/2)<r?, one obtains from Eq(17) that R o(N,®y)  (16) with @, replaced by
~1. This leads to the conclusion that the Andreev reflection
probability from anN trajectory is small for almost all values Oy =D+ Ved;+ cD}r(e), (19
of perpendicular magnetic field, except those special values
that result in|®,—2kw|=<r (Fig. 4. Between every two Hered)}r(e):(km—km)W/sin g,+ardrednnl is the relative
such peaks the function oscillates, havihg-2 smaller electron-hole phase accumulated due to finite energy in one
peaks(andN—1 node$. These peakénodeg correspond to  triangle, wherekﬁzkj|‘(EF—>EFt €). Note that there is a
integer(half integer flux quanta through an area of an inte- complete analogy between applying a perpendicular mag-
ger number of triangles in the trajectory of the specific channetic field and constant gradient of the superconducting
nel. phase, with the relatioV®=27HW/®,. For H=0 and
The magnetic field not only impairs the constructive in-Vd=0, we obtain a zero-bias peak in the differential NS
terference leading to large Andreev reflection at zero fieldconductance as a function of voltage, similar to the lw-
but causes destructive interference. This can be seen by copehavior of the NS conductance as shown in Fig. 5.
sidering @, =®y/2. Then,R,«(N)=0 for evenN and for
odd N it equalsr?, the Andreev reflection probability from a
single hit. Therefore, for any given chanrfl, is of order
r2. In the cases discussed in Sec. Il C, of no interference and
of constructive interference, there werdifferent) saturation We now consider a system in which a second supercon-
lengths beyond which the Andreev reflection probability wasductor is attached symmetrically to the other side of the slab,
close to unity. Here, however, due to destructive interferenceso the structure has up-down symmetry. We consider the case
there is no such length scale and Andreev reflection is smaih which the two barriers between the normal slab and the
(r?) for any length of NS interfac&his is true also when the superconductors have the same transmission probability
destructive interference is due to a superconducting phasehen, one can apply the same approach we used in the pre-
difference in an SNS structure, as is discussed in Sec. V. vious sections, only count the number of hits of each trajec-
Inserting Eq.(17) in the conductance formuld&gs.(2)—  tory at both interfaces. The calculation &.(N,®) is
(4)] we obtain the linear conductances as function of maggiven in Appendix A. It is done in the same spirit as the

V. CONDUCTANCE PARALLEL TO THE INTERFACE
IN AN SNS SYSTEM
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FIG. 6. R,e(N,®) in an SNS structure foN=50 andl’=0.2. FIG. 7. G, (in units of 4e%/h) as a function ofb,. The solid
Note the narrow dips, in comparison to the narrow peaks in Figcurve is given for the same parameters as in Fig. 5 to enable com-
4(b), which is drawn for the samid andI’, as a function oH. parison. In contrast with the case of applied magnetic field, the

conductance is periodic i, has narrow dips at odd multiples of

calculation ofR,¢(N,®y), but is more elaborate since one 7 and the oscillations as a function @& are of the order of the
has to distinguish between even and odd times a trajector&‘/‘" conductance(giany. The dashed line is plotted for the same

hits the interface, and the recursion relations are more confarameters, except hefe=0.25. The larger conductance and the
plicated. The result for eveN is narrower dips are both a result N’ being larger for each channel.

These differences can be understood by examining the
two mechanisms of the destruction of the constructive inter-
ference between different paths of the same trajectory that

={z+(1—z) result in a hole returning to the left reservoir. Indeed, the
phase difference between a hole resulting from an Andreev

Rne(2N, @)

reflection at the first hit of the NS interface and a hole re-

-1
« cott?| N tanf-1 2r cogP¢/2)V(1-2) 20 sulting from an Andreev reflection at the second hit of the
1+r2cosd, NS interface is similar in both case®(; and ®), but the

phase difference between this hole and a hole resulting from
wherez=r2sir¥(®/2). The result for odd\ is similar and is ~ a" Andreev reflection at thBth hit of the NS interface is

given in Appendix A. These results are evendn and, VerY differenF fo-r the two cases. It idN(- .1)<I>_H fo_r the case
therefore, the same for a trajectory hitting first either of the®f @ magnetic field ans or 0 (depending ifN is even or
two superconductors. For<1 we obtain Ry (2N,®) _odd) for the case of superconductlng phase difference. This
—tant[2Nr cos@y2)]. For Nr>1 we see that mtroduc_es a Iarg_e amplification factor in the _electron-hole
Rne(2N,®)~1 unless |®— (2k+1)m|=/(Nr), while phase qwference introduced by the magnetic field c_ompared
Ry(2N,d)=0 for ®.=(2k+1)w. As a result, in this to that introduced by the superconducting phase difference.
As a result, the magnetic field is far more efficient in destroy-

ing the constructive interference leading to the enhanced An-
dreev reflection.

The linear conductances as functiond®f are calculated

limit, the Andreev reflection probability from aNetrajectory
as a function ofb¢ has sharglipsnear® = (2k+ 1) of an
approximate width of 1/(Rr) (Fig. 6. The transmission

probability of electrons to the right reservoir is given by 1_by inserting the results for the Andreev reflection probabili-

—Rpe(2N,d,) and has sharp resonant peaks, which indi-; .
cates that there is a transverse Andreev level shiftdg}-tat ties[Egs.(20) and(A10)] in the conductance formuI@Eqs.

®,=(2k+1)7, similar to the case in standard SNS (2)—(4)]. N; in the VNS structure is now replaced By
junctions®® As in the case of perpendicular magnetic field, Which equals the integer part &f tan 6;/W and p; is re-
Rne(2N,®) has a maximum ab,=0 (or multiples of 2r),  placed byp;=L tan §;/W—N;. In Fig. 7 we plot(solid line

but there are two major differences between the dependentee NS conductance as a function of the superconducting
of Rye(N) onH and ondg: (i) In a period of 2rR;,o(N,d) phase difference for a system with the same parameters as
has one minima, wher@¢(N,® ) hasN minima.(ii) while  the one in Fig. 5, for comparison. The NS conductance for a
Rpe(N, @) exhibits sharppeaksnear ®,=27n, and for  similar structure with a larger barrier transmission probabil-
most values of magnetic fielthenerically constructive in- ity (I'=0.25) is also plotteddashed lingto demonstrate the
terference is lost, and Andreev reflection is small, the situanarrowing of the width of the dips a$I" grows. Here we see
tion for Rpe(N,®;) is opposite. It is close to unity for most another marked difference between applying a perpendicular
values of phase difference, and exhibits shaigs near®;  magnetic field in the VNS structure and a phase difference in
=+ 27k. the SNS structure. In the case of the applied magnetic field
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FIG. 8. SNS junction where the bottom superconductor is di-
vided to pieces with controllable phase of the order parantetay
the relevant region is shown

there is a large peak d=0, to which all the channels
contribute due to the constructive interference, but the peri-
odic peaks at higher fields appear for each channel ata dif -3m7-27m -7 a2 37 ®,
ferentH. If the parameters of the junction are such that the
separations between conductance peaks are smaller than theirFIG. 9. Py, in units of Py as a function ofb for the geometry
width, the result will be a smooth oscillatory behavior of the where the normal slab is attached to two superconductors. The pa-
conductance as function &f. On the other hand, in the case rameters of the system are the same as those in Rtashed ling
of SNS structure, the dips at ali,;=(2k+ 1) are common ] )
to all the channels, and therefore the conductance oscillatiord superconducting phase difference are reflected remark-
as a function ofb ¢ show sharp features of magnitude of the @bly in the shot noise properties of the systems.
order of the total conductance. We define the quantitie®; =27 _ dt(Al,(t)Al,,(0))
Recently, Petrashoet al. measured large conductance os-(wherel,l’ are normal terminal indicgswhich give both the
cillations as a function of the magnetic field and superconshot noise and the cross correlators between current fluctua-
ducting phase difference in a normal slab connected to “sutions at the two normal terminals. Anantram and Diattan-
perconducting mirrors?2 Our results cannot be directly sidered the case where an arbitrary number of superconduct-
applied to the experimental structures studied by Petrashang and normal terminals exist, with the restriction that the
et al, since in the experiment the structures are different, thehemical potential in all the superconducting terminals is the
superconductor is floating, and there is finite scattering in theame, and obtained general equations for the current correla-
normal slab. However, some features appear to be more getors. Using their equations for our system we obtain
eral and exist both in the experimental results and in our
calculations. These are the much larger magnitude and sharp-
ness of the oscillations as a function of superconducting

phase difference compared to the oscillations as a function of ) ) ) )
magnetic field. where Py=2¢e|V|(2e*/h). This formula is applicable for

To conclude this section we now apply the results obPoth the VNS and SNS structures, and the specific param-

tained above to show how one can get controlled curren@t€rs of the junction as well as ti¢ and @ dependence
withdrawal from an electronic waveguide. Here we use theenter only intoR}.. Notice the full positive noise correla-
fact that as long as the phase difference between the supdions between the two normal terminafswhich is a result
conductors ist, the electrons move in the slab as in a wave-Of zero normal reflection to the same reservoir and Andreev
guide. By replacing the bottom superconductor with a serie§@nsmission to the other reservoir in our model. _

of superconductoréFig. 8), each with a controllable phase  Due to the dependence of the shot noise on the functions
4 and interface length with the slab, we can create a Rhe(1~Rhe), it shows peaks at points where the Andreev

sgwitch” in which we can control the location where the '€flection amplitude is neither close to zero or unity. For the
SNS structure we consider, this results in a sharp feature near

icnucrcr)?nnizls drlawtn. Wef Seﬁi*ﬁtih_ﬁaf?q‘ﬁi_o‘ Forl alli 7&“'1 afr; the values of® corresponding talips in the NS conduc-

9 eeg ron from the et in-an :_;mge w _n tance[ @ = (2k+1)w], which are common to all the chan-
>(2WILT) will be normally reflected as in a waveguide. nejs, The form of the sharp feature is two double peaks sepa-
However, when it reaches theh superconductor Andreev rated by a very sharp dif,as can be seen in Fig. 9. As
reflection occurs, adding a Cooper pair to the superconfunction of H, in the case of one channel, a sharp feature
ductor. One can therefore inject a current from the left resappears near each valuetdfcorresponding to aeakin the
ervoir and draw it at any one of the superconducting slabs.conductance. However, these points are channel dependent,

and as was the case for the conductance, the presence of
VI. SHOT NOISE many channels smears the sharp fea}tures as a functildn. o_f
Our results for the noise are easily generalized to finite
In this section we calculate the shot noise as a function ofubgap energydifferential shot noise as a function of bias
H in the VNS structure andg in the SNS structure, and voltage and gradient of the superconductor phase in the
show that the differences between applying magnetic fieldame manner discussed at the end of Sec. IV.

Pll: P22: P12: PO; ®(k12|\)R]he(l_ RLQ)’ (21)
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FIG. 10. Geometry of the modéRef. 3, an example of a tra-
jectory withN=2.

VII. DIFFUSIVE NS JUNCTIONS

The semiclassical approach, introduced by van Vétes.

PHYSICAL REVIEW B 64 224513

2e’n T'?
— r<T),
h T (<D
G(V—0H=0)= (23)
2e?n/ 1 1\1 >
Thol2T' T -

Unlike ballistic systems, in this case multiple reflections
from the interface are enabled by the disorder. For small
disorderI'<T, the conductance is proportional 17, re-
flecting the fact that Andreev reflection is a two-particle pro-
cess. Already in this limit the disorder increases the conduc-
tance by a factor of T. For T<I' the disorder is large
enough to generate, with high probability, trajectories with
N>1/T", as we show below, and therefore the barrier is not
effective and the conductance is lineafTinThe conductance
has a maximum for T=I', where G=~(2e?n/h)I’

to explain the phenomenon of reflectionless tunneling in dif'~(2e2n/h)T.

fusive NS junctions,was used to analyze numerically other

experimental results as weléee, e.g., Refs. 8 and.9This

approach has proved useful in obtaining a qualitative unde

Equation(23) differs in thel'’>T,T—0 limit by a factor
of 2 from the analogous formula obtained by Beenakker

'at al 32 for short-range disorder. A detailed discussion of how

standing of the physical phenomena in various geometrieg,is giscrepancy results from the different assumptions in the

which make use of the standard methg¢gsasiclassical for-
malism, BdG equationdifficult. As Eq. (8) applies to any

two models is given in Appendix B.
As the essence of the effect of reflectionless tunneling is

NS system, ballistic or diffusive, it can be used to obtaine tact that the barrier, though high, is transparent to pair

analytical results within this approach. In this section we

. . j current, the condition for the barrier to be ineffective was
apply the semiclassical formalism to treat both the phenom; iscussed for this phenomeridfi* as well as for other phe-
enon of reflectionless tunneling and the reduction of the locagomena as the reduction of the DOS on the normal side of
density of statesDOS) across a diffusive NS junction. We an N-insulator-S(NIS) semi-infinite junctior’® We now

show that both of these phenomena are a result of the largg, s\, ysing random walk theory, that the criterion stated in
transparency of the barrier to pair currefaithoughl’<1  goc | B, for the barrier to be ineffective, can be reduced in

and under the conditions given by the general criterion at the, o iffysive case to the different known conditions for each
end of Sec. Il B and thus stem from the same physical ef'phenomenon.

fect. We also demonstrate the connection between the effect In Appendix C it is shown that the typical length of a

of. reflectionless tunnelling_ in pallistic systems discussed iyt sive trajectory betweeN consecutive times it hits the
this paper, to the onein d|ﬁu5|_ve ,systgms. ) barrier isLy~N?l,, wherel, is the elastic mean free path in
Since we consider the particle’s trajectory in the normaly,e normal metafinterestingly, there is no average length for
metal to be deterrr_unl_stlc, our approach can be expected tg trajectory; see Appendix \CThis is also the order of
give correct quantitative resulf€qgs. (22) and (23)] when  agnitude of the length of the longest loop in such a trajec-
the scattering potential varies slowly on a scale of &3 |00p is a part of a trajectory between two consecutive
V\{avlelengtﬁ' _ and_ltlhe samplells Sh?\” enough such that clasy s it hits the interfade Using this result fot, and since
sical dynamics will not develop phase space structures ofyqe contributions to Andreev reflection arise from trajecto-

scales smaller tha.” For short-range disorder, this ap- (a5 that hit the interfaceN>T ! times before losing

Ecr)??eccrl:*’ls expected to give results which are qualitativelyg|ectron-hole coherend®), only when coherent trajectories

llowing th f Ref : vt IWith total lengths larger thahp=I,/I'* occur with high
Following the treatment of Ref. 3, but using our analytica probability will the barrier not be effective. This requires the
result for the Andreev reflection probability from a&htra-

, . i lectrons and hol herent over istaficex |
jectory, Eq.(7), we obtain the linear conductance ofanormaleect ons and holes to be coherent over a distaricer |,

. . . =1,/ from the interface. Therefore, the general condition
slab connected via a barrier to a superconducting reservoll  itusive systems for the barrier to be ineffective ds
(see Fig. 10 which forI'<1 is given by

>|,/T", where¢ is the distance from the interface at which
electrons and holes are still coherent. The coherence distance
¢ is determined by the length of the slab, energy of the elec-
tron, or magnetic field, depending on the physical case con-
sidered. When measuring the conductance of an NS junction,
then for zero energy and zero magnetic field, the length of
the normal metald, is what limits the trajectories to lengths

of orderd?/l, (since a particle that reaches a distaddeom

the interface enters the reservoir, where phase coherence is
lost). Therefore, the barrier is not effective whéw1,,/d.

4e°n
> T2(1-T)N"! tant?(NI/2).

G(V—0H=0)=—= 2,
(22)

Heren is the number of channels afids the average trans-
mission probability of the normal slafthe mean free path
divided by its length In the two limits wherel'<T andI’
>T Eq. (22 reduces to
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Since the transmission probability through the diffusive nor-from a normal meta(semiconductgrwaveguide or extract-
mal part is roughlyT~I,/d, this condition reduces to the ing the current at a given position along the waveguide.
known conditiori® for the barrier to be ineffectivd;>T [in By obtaining explicit formulas for the three-terminal con-
accordance with Eq$22) and(23)]. ductances of the system as a functiortbénd of the super-
Following the same considerations one can obtain theonducting phase differenckg, we have shown that both
condition for the barrier to be ineffective in various cases,and ® impair the constructive interference leading to the
noting the different mechanism impairing electron-hole co-enhanced NS conductance, but in a qualitative different way.
herence in each case. We consider, for example, the loc&Vhile as a function oH the enhanced NS conductance is
DOS in a semi-infinite NS junction. The reduction of the limited to a small range of magnetic field and is channel
local DOS in the normal side of an NS interface is closelyspecific, as a function @b the enhanced NS conductance is
related to the averaged amplitude of an electron near thgeneric and is destroyed only near specific valueb ofodd
interface to return to the same point as a hole through thenultiples of 7) for all the channels, leading to giant conduc-
pair amplitude(y, c,//T>.23 At zero energy and assuming the tance oscillations. This difference is also reflected clearly in
normal metal is semi-infinite, there is no mechanism thathe shot noise behavior as a function of both quantities.
limits the length of coherent trajectories. The electron hits By demonstrating the possibility to obtain large Andreev
the barrier as many times as needse; I' "1, without losing  reflection in clean semiconductor-superconductor interfaces
electron-hole phase coherence, and according t@¢&tqtis  and the new possibilities such structures open, we hope to
finally Andreev reflected. This results in a finite pair ampli- encourage experimental work in this regime.
tude throughout the normal part, even in the presence of a Our results were obtained using a semiclassical formal-
barrier (at e=0 there is no reduction of the pair amplitude ism, with which we reduced a two-dimensional nonseparable
due to phase averagingand in a zero DOS at zero energy. problem to an effective one-dimensional problem. We have
At finite energye, the electron and hole moving in oppo- demonstrated the usefulness of this formalism in a few situ-
site directions in a trajectory of lengthaccumulate a rela- ations, and hopefully it can be used in the future to solve
tive phase oL e/(%vg), which limits the length of coherent other problems which are hard to tackle using the conven-
trajectories to orderfive/e and to distance ¢=¢, tional techniques.
= /4D, /e from the interfacdtrajectories that traverse a dis-  We used this approach also for diffusive NS systems and
tance longer thag, result in phase difference of ordetr2. demonstrated the connection between the effects of reflec-
The condition for having a large Andreev reflection ampli- tionless tunneling in ballistic and diffusive NS junctions. We
tude is thereford>1,/&, .3 This condition assures that the then considered the phenomena of reflectionless tunneling
total phase accumulated by the ingoing electron and outgaand the reduction in the density of states in diffusive NS
ing hole is less than 2, and therefore the averaging in junctiqns .and showed that both can be obtained from a gen-
(4, 4,) results in finite pair amplitude and the local DOS is ere_\l criterion for the barrier, though large, to be transparent to
reduced. Similar considerations result in the width of thepair current.
zero-bias anomaly in reflectionless tunneling being propor-
tional to the Thouless energy. ACKNOWLEDGMENTS
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We have demonstrated the effect of reflectionless tunneIWith N. Argaman, .N' M. Chtchelkatc;hgv, M. H. Devoret, Y.
ing in a ballistic NS system in which the multiple reflections M. Gariﬁgr'rfl’_?' KncEevsky, R. de;P&cgot:rc]), 'AI‘ S'I\lli ar:jd .
from the interface are due to the geometry. We considered S;'s. n. b |sﬂ\1/vorG was SlIJpporl'eF yd temslgae gi emy
normal slab with superconductors attached to its sides, so t cience, by the German-Israeli Foundatl@1F), and by

normal current flows in parallel to the NS interface. The eAIb_ert Einstein Minerva Center for Theoretical Physics at
barrier at the NS interface was taken to be smooth, so tha{pe Weizmann Institute.
normal reflection is specular, and with transmission probabil-
ity '<1. We obtained a formula for the Andreev reflection APPENDIX A: ANDREEV REFLECTION FROM
amplitude from a trajectory that hits the barrier at the NS AN N TRAJECTORY IN SNS JUNCTIONS
interfaceN times and showed that, whéte-T"", the barrier In this appendix we describe the recursion formalism
is transparent to pair currefthoughl’<1), leading to good  |4ding to Eq.(20) and obtain a similar equation for trajec-
proximity. _ tories that hit the NS interfaces an odd number of times.

We have shown that having a smooth rather than rough - \ve choose the phase of the upper superconductor to be
barrier at the interface is advantageous in giving rise to morq)slz and the phase of the lower superconductor to be

pronoun_ced and Qelicate features, which are not averageg(bslz_ The Andreev reflection amplitude of an electron hit-
over. This results in new measurable phenomena, such as tlﬂﬁg the upper(lowen boundary is

sharppeaksin the NS conductance as new channels gfiren
contrast to the usual step functjoand quasiperiodicity of r (1) =jre T (ivs2 (A1)
. . . he '
the conductance as a function of magnetic fiéld The
smoothness of the barrier also enables one to conduct dend the Andreev reflection amplitude of an incoming hole is
tailed manipulations such as extracting out a single channgjiven by ro,(1)=—r},(1). Throughout this appendix we
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consider trajectories that hit the NS interfaces any number ofJsing the relations written after E¢), we obtain
times, with the last hit occurring at the top interface. This is
done for simplifying the calculation, and since the final result Ban-2F Yan-2

is even ind, it does not depend on this assumption. How- 12Bon- 2+ Yon_o
ever, the treatment for trajectories that hit the interfaces an ] ) ) ]
odd or an even number of times has to be done separatelynich we insert into Eq(A3), and obtain the equation

rhe(ZN_l):rﬁ—e(l) ) (A6)

For an odd trajectory, the recursion relation is (,82N> B 1+r2ei%s 1+ei¢s><B2N2)
N e Drhe(2N=2)r/(1) yon) \r?(1+€'®s)  1+r%e'®s)| oy,
Mhe(2N—1) =T (1) + - Con
1-ro(Drpe(2N—2) 1+re™'™s 1+e '%s 0
(AZ) - r2(1+ei¢'s) l+rZeiCI>S 1/’ (A7)
+ . -
Wherer gy (1) is the normal reflection of an electrémole) o6 the Jast equation is obtained by explicitly finding that
from the upper NS interface. For an even trajectory the re- _
cursion relation is Bo 1+e s
N - Y2 "\ 1412 (A8)
s 2N = 1 1)+ 2 DD g owing th te for the odd btai
he he 11 (Drre2N—1) ollowing the same roug or the o .case, we obtain
We define Ban+1| 1+r2e|<-1>s 1+e'¢_s Ban-1
YanN+1 rA(1+e '®s) 1+r2%e s/
rhe(zN—l)zrge(l)BZN‘l (Ad) 1+r2% 146 \N/ gl
Y2N-1 =, s > ik .
r<(1+e'®s) 1+4r<e'®s 1
and
(A9)
Mhe(2N) =T (1)@. (a5)  Diagonalizing the matrices in EqA7) and(A9) we obtain
7N for the odd case
|
-1
2rcogd2)\(1-z
Rhe(2N+1®) =1 z+(1—z)cothf| y +N tanh—l( a > )W1=2) , (A10)
1+rccosdg
|
where 462 " T2
G — . T [} Bl
NS h mE:l (2—Tm)2 ( )

whereT,, is the mth transmission eigenvalue of the normal
slab.

The total transmission probability through the normal slab
and for the even case E(R0). These equations are similar, 'S 9IVen byT:,EHm=1Tm-, In our approximation of the long-
only in the lattery=0. range scattering poten_t|al, each elegtron entering the slab is

predetermined, according to the position and direction at the
entrance, to be either transmitted through the slab or re-

APPENDIX B: VALIDITY OF THE CONDUCTANCE flected back to the normal reservdieterministic scatter-

FORMULA FOR THE DIEFUSIVE SLAB ing). The transmission eigenvalues of the normal slab are
therefore all zero and unity and in this case

In Sec. VIl we obtain the linear conductance of a diffusive

rVi1-2) ) (A11)

=tanh | —
Y (e"bs’2+irzsin(d>s/2)

NIS junction using the approximation that the electron’s mo- n -|-2m n
tion in the normal slab is deterministic. However, for a nor- > — = > Tn=T (B2
mal slab with short range disorder Beenakkerl>? obtain m=1(2=Ty)" m=1
a formula which differs in thd’>T,T—0 limit by a factor and
of 2 from Eq.(23).
In order to understand the factor of 2 difference between 5 n 5
the two cases we use the conductance formula for zero tem- G =4i Z T =Ai-|- (B3)
22 NS m .
perature of Beenakkest al. h =1 h
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Since Gy=(2€?/h)=" _,T.,, we obtain the relatiorGys large k, f,=(27k®?) 1. Therefore, there is no average
=2Gy. However, in general',l’zm/(z—Tm)2‘<Tm for all 0 length for the first returnX_ kf, diverges. This peculiar
<T,<1. In the case of short-range disorder the distributionresult leads to a nonlinear dependence of the length of the
of the transmission eigenvalues is such thd}_,T2/(2  trajectory on the number of times it hits the interfaé.
_Tm)Zz%zgq:le: 1T,% and thereforeGys=(2e?/h)T there were an average return length then the average
=Gy. This results in a factor of 2 difference in tie—0  length of a trajectory that hits the interfalsetimes would be
limit between our conductance formtﬂm) and the formula aN) It is further shown that the prObabl“ty to hit the inter-
obtained by Beenakkest al. face N times in a trajectory of length smaller thanis a
function of L/N2l=w, wherel is the mean free path and is
APPENDIX C: LENGTH OF A DIFFUSIVE N given by
TRAJECTORY: RANDOM WALK THEORY

We are interested in the question of how long a trajectory (W)= \Efm o-5/24s (C1)
in the normal metal has to be in order to hit the interface ™ w12 '

times. Looking at random walk in two dimensions on a lat-

tice which is rotated by 45° from the coordinate axes, it isThis means that in order to hit the interfaddimes a particle
easy to see that, since we are not interested at the exact polias to travel a length of ordé¥?l. A typical trajectory of
the trajectory hits the interface, there is a one-to-one corrdength Nl that hits the interfaceN times is not made of
spondence between returning to the interface in two dimenN—1 loops of similar length. The main contribution to the
sions and returning to the origin in the one-dimensional ranlength of such a trajectory comes from one or two of its
dom walk. The question of return probabilities in one longest loops, whose lengths are of ordél. This arises
dimension is addressed in Ref. 35, Chap. 3, using randorffom the fact that2, _y2"f,~1/N, which means that if we
walk path theory. This approach is elementary and very inhaveN returns to the origin, about one of them is going to be
structive, and here we will just state its main results concernlonger tharN?l. As N increases, we have probability of order
ing our problem. Using path theory, Feller shows that in al to have a loop of lengtN?l, and therefore the length of the
one-dimensional random walk model, the probability of alongest loop, as well as the length of the whole trajectory, is
first return to the origin aftek steps is approximately, for of orderN?.
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