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Quasiparticle Hall transport of d-wave superconductors in the vortex state
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We present a theory of quasiparticle Hall transport in strongly type-Il superconductors within their vortex
state. We establish the existence of integer quantum spin Hall effect in clean unconvestiopakupercon-
ductors in the vortex state from a general analysis of the Bogoliubov—de Gennes equation. The spin Hall
conductivityaiy is shown to be quantized in units 8. This result does not rest on linearization of the BdG
equations around Dirac nodes and therefore includes inter-nodal physics in its entirety. In addition, this result
holds for a generic inversion-symmetric lattice of vortices as long as the magnetiBfsdtisfiesH ., <B
<H,.,. We then derive the Wiedemann—Franz law for the spin and thermal Hall conductivity in the vortex
state. In the limit ofT— 0, the thermal Hall conductivity satisfies, = (47213) (kg /ﬁ)zTaiy. The transitions
between different quantized valuesat)jy as well as relation to conventional superconductors are discussed.
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I. INTRODUCTION These experiments were carried out over a wide range of
magnetic fields(up to ~14 T) and at temperatures from
One of the fundamental characteristics of high temperaT~12.5 K to above the superconducting transitidiy
ture superconductorHTS) is the apparent applicability of ~90 K. Unfortunately, the experiments are resolution lim-
the d-wave' BCS based phenomenology to the broad rangéted below 12.5 K as signal becomes too weak. At tempera-
of quasiparticle properties in the superconducting states  tures up to 25 K and for al( dependentrange of magnetic
is far from trivial property for materials known to exhibit fields yH/Tesla<T/25K the experiments seem to suggest a
strong electron correlations. Although the horizon is still notrather simple scaling forfrfor Kyy "
entirely clear and there remain few unresolved issues, ex-
amples being the temperature dependence of quasiparticle
lifetimes or the penetration depth in the underdoped
regime??® the cumulative weight of evidence indicates that
the low energy properties of cuprate superconductors are inAle will return later to this simple scaling form and its pos-
deed governed by nodal quasiparticles with Dirac-like dis-sible relation to the theory presented here.
persion, as seen in assorted spectroséopitd transport On the theoretical front, the initial interest, largely in-
measurements These and other experiments serve as thepired by Gorkov and Schriefféand, in a somewhat differ-
foundation for the “BCS-liked-wave paradigm” as it is cur- ent context, by Andersohwas directed at the formation of
rently used in both theory and interpretation of experimentsiDirac Landau levels” and their signatures in the quasipar-
A natural question is how does this picture hold togethetticle thermodynamics and transpdttii This picture of Dirac
in a mixed phase, in the presence of an external magneticandau level quantization, while theoretically elegant and
field and an array of superconducting vortices and, if it doesappealing, relies on the minimal coupling of the nodal BCS-
are there some special features of thevave quasiparticle like quasiparticles to the electromagnetic vector poterial,
phenomenology which could be used to deepen our undeifhe assumption of such minimal coupling seems innocent
standing of high temperature superconductivity? Recent adut it is not, on fundamental grounds. The physics behind the
tivity on the experimental front appears most encouraging innteraction of nodal quasiparticles with the external magnetic
this regard. In particular, measurements of the thermal Halfield and vortices was elucidated by Franz andafesic'?
conductivity ,, in cuprate superconductors are currently These authors devised a singular gauge transformation which
viewed as especially informative probes of quasiparticle dyallows one to recast the original problem of BCS-like quasi-
namics. These measurements provide a clean way of extragiarticles, moving under the combined influence of an exter-
ing quasiparticle contribution te,, since phonons, the other nal magnetic field and a superflow arising from vortex array,
source of significant thermal conduction, do not couple to thénto that of Bloch particles moving in an effective nonuni-
magnetic field by virtue of being neutral. In addition, con-form and periodic magnetic field, the spatial average of
trary to what takes place in an ordinary electrical Hall con-which equals zero. This approach clearly demonstrates that
ductivity experiment, vortices do not experience strong Lo-the low energy portion of the quasiparticle spectrum can be
renz force since there is only heat current and no netlescribed as that of a relativistic Dirac particle minimally
electrical supercurrent to which vortices are stronglycoupled to a fictitious) (1) gauge potential, i.e., the “Berry”
coupled. Thus, vortices tend to remain stationary and theigauge fielda, which supplies the needetl= winding in the
transport does not serve as a significant channel for heauantum mechanical phase of a quasiparticle as it encircles a
conduction. vortex. Such half-flux Aharonov—Bohm scattering arises en-
Recently, measurements ef, were conducted by Ong's tirely through interaction of quasiparticles with vortices and
groug® on YBCO samples with a very long mean free path.it does not involve the external magnetic field explicitly.

Kxy(H, T)=constx VHT. (1.2)
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Thus, the cyclotron motion in a Dirac cone is caused excluguantum numbéf and it is natural to ask what is the spin
sively by atime-reversal invariantBerry” gauge field and  Hall conductivity in the vortex state of an extreme type-lI|
cannot lead to any Dirac Landau level quantization. Furthesuperconductd® Moreover, every channel of spin conduc-
progress came through the work of Marinelli, Halperin, andtion simultaneously transports entrépy**°and we would
Simont® who analyzed the quasiparticle excitation spectra ofXpect some variation on Wiedemann—Franz law to hold be-
different vortex lattices and provided analytic symmetry ar-tween spin and thermal conductivity. _
guments regarding the presence of nddato energypoints As one of our main results, we derive the Wiedemann—
in such spectra. These authors also devised a perturbati¢f@nZ law connecting the spin and thermal Hall transport in
theory in the vicinity of nodal points which can be used to e vortex stateof a d-wave superconductor. In the process,
derive various results by analytic means. Various analytiéve show that the spin Hall conductivitys,, just like the
results were also derived in the large anisotropy Ihi€ electrical Hall conductivity of a normal state in a magnetic
Finally, the intricacies of Dirac equation in presence of half-field, is topological in nature and can be explicitly evaluated
flux Bohm—Aharonov scattering were addressed in Ref. 162S @ first Chern number characterizing the eigenstates of our
where the tight-binding regularization was introduced to re-Singularly gauge transformed probléf:*?° Consequently,
store the exact singular gauge symmetry in numerical calctas T—0, the spin Hall conductivity is quantized in the units
lations using the low energgfinearized theory. Such regu- ©0f #/8m when the energy spectrum is gapped, which, com-
larization describes a lattiadwave superconductor and is a Pined with the Wiedemann—Franz law, implies the quantiza-
natural choice for cuprates: after all, most of the microscopidion of y,/T. We then explicitly compute the quantized val-
theories of HTS start from tight-binding effective Hamilto- ues ofor, for a sequence of gapped states using our lattice
nians. We should note that similar results for the quasipartid-wave superconductor model in the case of an inversion-
cle spectra were also found in fully self-consistent calculasymmetric vortex lattice. Within this model one is naturally
tions on the original Bogoliubov—deGenne$BdG) led to consider thd8CS-Hofstadterproblem: the BCS pair-
equations, using the basis formed by eigenstates of the matpg problem defined on a uniformly frustrated tight-binding
netic translation group’8 lattice. We find a sequence of plateau transitions, separating
In this paper, we present a detailed analytical study of thg@apped states characterized by different quantized values of
guasiparticle Hall transport in a vortex state complementedriy. At a plateau transition, level crossings take place and
by explicit numerical calculations. We consider a lattice oiy changes by an even intedéBoth the origin of the gaps
d-wave superconductor of Ref. 16. This is important andin guasiparticle spectra and the sequence of Valueg—ipr
necessary since the straightforward linearization of BdGare rather different than in the normal state, i.e., in the stan-
equations drops curvature terms and results,ip=0."*°We  dard Hofstadter probleif In a superconductor, the gaps are
employ the Franz and Tasovic (FT) transformation so that ~ strongly affected by the pairing and the interactions of qua-
we can use the familiar Bloch representation of the translasjparticles with a vortex array. The sequencerdf changes
tion group in which the overall chirality of the problem van- a5 a function of the pairing strengtand therefore interac-
ishes. This should be contrasted with the original problemjons), measured by the maximum value of the gap function
where the overall chirality is finite and the magnetic transla- 2° Finally, we discuss the relation of our results to those
tion group states must be used instead. Naively, it mighpptained within the continuum low energglinearized
appear that after an FT singular gauge transformation thﬁheory.
effects of the magnetic field have somehow been transformed
away since the new problem is found to have zero average
effective magneFic field.. Of course, this is not true. The pres- Il BOGOLIUBOV —DeGENNES HAMILTONIAN
ence of magnetic field in the original problem reveals itself
fully in the FT transformed quasiparticle wave functions. Al-  The experimental evidence points toward well defined
ternatively, there is an “intrinsic” chirality imposed on the d-wave quasiparticles in cuprate superconductors in the ab-
system which cannot be transformed away by a choice of theence of the external magnetic field. This suggests that to
basis. One manifestation of this chirality is the Hall effect.zeroth order fluctuations can be ignored and that one can
The utility of the singular gauge transformation in the calcu-think in terms of an effective BCS Hamiltonian, the simplest
lation of the electrical Hall conductivity in theormal 2D  of which is written on the 2D tight-binding lattice with the
electron gas in &honuniform magnetic field was realized by nearest neighbor interaction thus naturally implementing
Nielsen and Hedegd.?* They demonstrated that using sin- dy2_y2 pairing. In question is then the response of such a
gularly gauge transformed wave functions one still obtainssuperconductor to an externally applied magnetic fieléll
the correct result, giving the electrical Hall conductancehigh temperature superconductors are extreme type-Il form-
quantized in units o&?/h if the chemical potential lies in the ing a vortex state in a wide range of magnetic fields. This
energy gap. In a superconductor, the question of Hall reimmediately sets up the contrast betweRs0 and B#0
sponse becomes rather interesting as there is a strong mixirsituations: first, the problem is not spatially uniform and
between particles and holes. Evidently, the electrical Haltherefore momentum is not a good quantum number and sec-
response is very different from the normal state, since chargend, the array of lfc/2e) vortex fluxes poses topological
is not conserved in the state with brokel{1) symmetry. constraint on the quasiparticles encircling the vortices.
Therefore, as pointed out in Ref. 22, charge cannot be trang-herefore, despite ignoring any fluctuations, the problem is
ported by diffusion. On the other hand, the spin is still a goodfar from trivial and demands careful examination.
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The natural starting point is therefore the mean-field BCS

Hamiltonian written in second quantized forfh: A= 2—2{0)( {9x ,A(x)}}—zl—z{&y A0y AX) I—ZA(X)
PF Pr 8pr
2 2 2
- | dx%(x)( (p_ EA) . XL(336) = (3561, 29
2m* ¢ but for convenience we will keep the lattice definition Eq.
(2.3) throughout. One can always define continuum as an
+f dxf dy[A(X,Y) M(X) ,pI(y) appropriate limit of the tight-binding lattice theory. With the
above definitions, the Hamiltonian E@2.1) can now be
+A*(,Y) ¢ (V) ¢ (0], (2.1  written in the Nambu formalism as
where A(x) is the vector potential associated with the uni- H:f dx¥ T (x)HoW(x), (2.6)
form external magnetic fieldB, single electron energy is

measured relative to the chemical potenfialys,(x) is the  \where the Nambu spinoIsz(g/;}r ,¢) and the matrix dif-
fermion field operator with spin indew, andA(x,y) is the  ferential operator

pairing field. For convenience we will define an integral op-

eratorA such that: . h A
Ho= A% 2.7
Atp(x):fdyA(x,y)zp(y). (2.2 In the continuum formulationﬁ=(1/2m*)(p—(e/c)A)2

— i, while on the tight-binding lattice:
In the strictest sense, on the mean-field level this problem
must be solved self-consistently which renders any analytical h= _,[2 el %o SA)~dI_ L. 2.9
solution virtually intractable. On the other hand, in the case >
at hand the vortex lattice is dilute for a wide range of mag-, . . . . .
netic fields, and by the very nature of cuprate superconduc{-IS th_e hopping constant andis the c_hem|cal poten.tlal. The
ors having short coherence length, the size of the vortex Cor%quatlons of motion of the Nambu fielts are then:
can be ignored relative to the distance between the vortices. i =[W H]=Fw 2.9
Thus, to the first approximation, all essential physics is cap- ' 0% '
tured by fixing the amplitude of the order paramelewhile Note, that the Hamiltonian in E¢2.1) is our starting
allowing vortex defects in its phase. Moreover, on a tight-ynperturbedHamiltonian. In order to compute the linear re-
binding lattice the vortex flux is concentrated inside thegponse to externally applied perturbations we will have to
plaquette and thus the length-scale associated with the coredgig terms to Eq(2.1). In particular, we will consider two
implicitly the lattice spacingé of the underlying tight-  types of perturbations in the later sections: First, partly for
binding lattice. As shown in Ref. 16, under these approximatheoretical convenience, we will consider a weak gradient of
tions thed-wave pairing operator in the vortex state can bemagnetic field(VB) on top of the uniformB already taken
written as a differential operator: into account fully by Eq.(2.1). The VB term induces spin
current in the superconducttrThe response is then charac-
terized by spin conductivity tenser® which in general has
nonzero off-diagonal components. Second, we consider per-
turbing the system by pseudo-gravitational field, which for-

The sums are over nearest neighbors and on the square tigft@!ly induces flow of energysee Refs. 32—-3%nd allows

. . L ) . us to compute thermal conductivity, via linear response.
binding lattice ‘i_ XY th? vortex phase fields satisfy The advantage of these formal considerations are made clear
VXV p(X)=27zZ; 5(X—x;) with x; denoting the vortex po- iy sec. IV.
sitions andé(x—x;) being a 2D Dirac delta functiorp is a
momentum operator, and

A= A()zﬁ 75 € 90/26i 5Pl 6072 2.3

A. Particle-hole symmetry

The equations of motiofR.9) for stationary states lead to

1 ifé==x Bogoliubov—de Gennes equatidhs

75— _ - (2.9
? =1 if 6=xy. -
Ho®,=€,P,. (2.10
The operator 5 follows from the.d-wave pair.ing: A The solution of these coupled differential equations are
=2Aq[ cosfd) —cosk,d)]. For notational convenience we guasi-particle wave functions that are rank two spinors in the
will use units wherei=1 and return to the conventional Nambu spacep™(r)=(u(r),v(r)). The single particle exci-

units_when necessary. _ _ . tations of the system are completely specified once the qua-
It is straightforward to derive the continuum version of siparticle wave functions are given, and as discussed later,
the tight binding lattice operatak (see Ref. 1§ transverse transport coefficients can be computed solely on
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the basis ofb’s. It is a general symmetry of the BdG equa- ) .
tions that if (uy(r),v,(r)) is a solution with energy,,, then magnetic unit cell
there is always another solutidr-v (r),u’ (r)) with en- \
ergy — e, (see, for example, Ref. 30 O

In addition, on the tight-binding lattice, if the chemical
potentialw =0 in the above BdG Hamiltonian E(R.7), then
there is aparticle-holesymmetry in the following sense: if
(un(r),vn(r)) is a solution with energy,, then there is
always another solutiog' ""x™"y)(u,(r),v,(r)) with energy
—€,. Thus we can choose:

US;)(I’) im(rytry) u$‘+)(r)
0((r) =ex yuﬁkm’ (211

where+ (—) corresponds to a solution with positiveega-
tive) energy eigenvalue. We will refer to this as particle hole

transformationP,, . O O @)

— Q@

.
@

} o

B. Franz—Teganovic transformation and translation symmetry FIG. 1. Example ofA and B sublattices for the square vortex
arrangement. The underlying tight-binding lattice, on which the

In order to elucidate another important symmetry of theelectrons and holes are allowed to move, is also indicated.

Hamiltonian Eq.(2.7), we follow FT**®and perform a “bi-
partite” singular gauge transformation on the Bogoliubov—de

Gennes Hamiltonian Eq2.10), v=1iVe— SA; a=3(Var—V¢B), (2.16
el el 0 2.12 o ando; are Pauli matrices operating in Nambu space, and
’ ' the sum is again over the nearest neighbors. Note that the

- integrand of Eq(2.19 is proportional to the superfluid ve-
where¢e(r) and ¢n(r) are two auxiliary vortex phase func- |gcities

tions satisfying

N -11 —
Fo—U"tAeU, u—( 0 et

1 e
Bel(r)+ (1) = (r). (213 VSZF(W’&_ 5A>, «=AB (217

This transformation eliminates the phase of the order paramy
eter from the pairing term of the Hamiltonian. The phased
fields ¢¢(r) and ¢y (r) can be chosen in a way that avoids
multiple valuedness of the wave functions. The way to ac-
complish this is to assign the singular part of the phase fiel
generated by any given vortex to eithgg(r) or ¢n(r), but
not both. Physically, a vortex assigneddgg(r) will be seen
by electrons and be invisible to holes, while vortex assigne
to ¢y (r) will be seen by holes and be invisible to electrons. R
For periodic Abrikosov vortex array, we implement the Bas=B— ¢OZE S(r—r{"), a=A,B, (2.18
above transformation by dividing vortices into two groups :
andB, positioned a{r/'} and{r?}, respectivelysee Fig. L ~ where B=VXA is the physical magnetic field and,
We then define two phase fields\(r) and ¢B(r) such that =hc/e is the flux quantum. We observe that quasi-electrons
and quasi-holes propagate in the effective field which con-
sists of (almos}) uniform physical magnetic fiel® and an
array of opposing delta function “spikes” of unit fluxes as-
sociated with vortex singularities. The latter are different for
and identify .= ¢” and ¢, = $B. On the tight-binding lat- electrons and holes. As discussed in Refs. 12,16 this choice
tice the transformed Hamiltonian becomes guarantees that the effective magnetic field vanishes on av-
erage, i.e.{Bg:) =0 since we have precisely one flux spike
(of A andB type) per flux quantum of the physical magnetic
field. Flux quantization guarantees that the right hand side of
Eqg. (2.18 vanishes when averaged over a vortex lattice unit

+01A0,75€ifﬁ+"a~dlei5~p}’ (2.15  cell containing two physical vortices. It also implies that

there must be equal numbers Afand B vortices in the

where system.

nd is therefore explicitly gauge invariant as are the off-
iagonal pairing terms.

From the perspective of quasiparticle@ and VSB can be
hought of aseffectivevector potentials acting on electrons
nd holes, respectively. Corresponding effective magnetic
field seen by the quasiparticlesBS;= —(m*c/e)(V Xvg),

&md can be expressed using E@s14) and(2.15 as

VXVgi(r)=2mz), 8(r—rf), a=AB, (2.19

A . O .
Hszﬁ {03(_te|f{* (a—(r3v)~dle|5~p_ﬂ)
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The essential advantage of the choice with vanishingn Eq. (3.2) the spatial average of the spin currg®(tr) is
(Bgg) is thatv@ andvsB can be chosen periodic in space with implicit, since we are looking for dc response of spatially
periodicity of the magnetic unit cell containing an integerinhomogeneous system. In the next section we derive the
number of electronic flux quantac/e. Notice that vector spin current and evaluate the above formulas.
potential of a field that does not vanish on average can never
be periodic in space. ConditigiBg;) =0 is therefore crucial A. Spin current
in this respect. The singular gauge transformation(Ed.2
thus maps the original Hamiltonian of fermionic quasiparti-
cles in finite magnetic field onto a new Hamiltonian which is
formally in zero average field and has only “neutralized”
singular phase windings in the off-diagonal components.

The resulting new Hamiltonian now commutes with trans-
lations spanned by the magnetic unit cell, i.e.,

In order to find the dc spin conductivity, we must first find
the spin current. More precisely, since we are looking only
for the spatial average of the spin currgtftr) we just need
its k—0 component. In direct analogy with thB=0
situation®* we can define the spin current by the continuity
equation:

[Tr.Hn]=0, (2.19 p*+V-j°=0, (3.4

. A where pS=#/2(1 1= ¥l ) is the spin density pro-
where the translation operatdg=exp(R-p). We can there-  jected ontoz-axis. We can then use equations of motion for

fore label eigenstates with a “vortex” crystal momentum the y fields, Eq.(2.9), and compute the current density
quantum numbek and use the familiar Bloch states as the from Eq. (3.4).

natural basis for the eigenproblem. In particular we seek the |, the limit of g— 0 the spin current can be written @ee
eigensolution of the BAG equatidfy = ey in the Bloch Appendix B
form

h
s _apt
Vi) where the Nambu field "= (] 4,) and the generalized
where U, V) are periodic on the corresponding unit cell, velocity matrix operatoV, satisfies the following commu-
nis a band index, ankl is a crystal wave vector. Bloch wave tator identity:
function ®,(r) satisfies the “off-diagonal” Bloch equation

H(K)P = enc® i With the Hamiltonian of the form VM:%[XM Hol. (3.6)

wnkm=eik'f<1>nk<r>=eik'f( ) (2.20

H(k)=e " Hye' ", (2.2 Equation(3.6) is a direct restatement of the fact that spin can
be transported by diffusion, i.e., it is a good quantum number
in a superconductor, and that the average velocity of its
propagation is just the group velocity of the quantum me-
chanical wave.

In the clean limit, the transverse spin conductivity,
defined in Eq(3.1) is

Note that the dependence knwhich is bounded to lie in the
first Brillouin zone, is continuous. This will become impor-
tant when topological properties of spin transport are dis
cussed in the Sec. Il C.

IIl. SPIN CONDUCTIVITY

2 mm ,nm

Within the framework of linear-response thedfyspin dc X

conductivity can be related to the spin current—current re- Uiy(T): 40 % (fn_fm)(e_ye—ﬂo)z’ 3.7)
tarded correlation functiod;, through: ' noom
wheref ,=(1+exp(Be,)) ! is the Fermi—Dirac distribution
S . . 1 = R function evaluated at energy, . For details of the derivation
o= lim - lim - —==(D7,(01,02,2) = D},(01,42.0)-  gee Appendix B. The indicem andn label quantum numbers

O—0 ,0o—0 . .
2 (3.1) of particular states. The matrix elemefwtg‘“ are

The retarded correlation functioBEV(Q) can in turn be mn R n
related to the Matsubara finite temperature correlation func- Vi :<m|VM|”>:J dx (U vm)Vy o)’ (3.8
tion
where the particle-hole wave functions,,v,, satisfy the
o B e s, s Bogoliubov—deGennes equatié®.10. Note that unlike the
Du(iQ)=— fo e (T,(7),(0))dr 3.2 longitudinal dc conductivity, transverse conductivity is well
defined even in the absence of impurity scattering. This dem-
as onstrates the fact that the transverse conductivityoisdis-
sipative in origin. Rather, as will be discussed in Sec. IlIC,
lim D%,(01,0,,0)=D,(iQ—Q+i0). (3.3 its nature is topological.
d1.d2—0 In the limit of T—0 the expressiof3.7) for aiy becomes
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52 \/mm/nm_y mm nm We will first rewrite the velocity matrix elementy’"
Ty a7 ) 5 (3.9 using the singularly gauge transformed basis as discussed in
i eni0<en  (€m—€n) Sec. I B. Inserting unity in the form of the FT gauge trans-

formation Eq.(2.12
The summation extends over all states below and above the
Fermi energy which, by the nature of the superconductor, is VIt=(m|V, Iny=(mUU~*V,UU Y n). (3.10
automatically set to zero.
The transformed basis statels [n) can now be written in
o _ o N the Bloch form a%'®"|n,) and therefore the matrix element
B. Vanishing of the spin conductivity at half filling (u=0) becomes
It is useful to contrast theemiclassicahpproach with the , )
full quantum mechanical treatment of transverse spin con- Vi =(mgle ™ UV, Ue™ [ni)=(my|V . (k)|ny).
ductivity. In semiclassical analysis the starting unperturbed (3.11)
Hamiltonian is usually defined in thabsenceof magnetic We used the same symbolffor both bra and ket because the

field B. One then assumes semiclassical dynamics and NQyqta| momentum in the first Brillouin zone is conserved.
interband transitions. In this picture, if there is particle-hole

. o o .~ ~The resulting velocity operator can now be simply expressed
symmetry in the originalB=0) Hamiltonian, then there will g y op ply &xp

be no transverse spitherma) transport, since the number of

carriers with a given spitenergy will be the same in oppo-

site directions. In this context, similar argument was put \V;
forth in Ref. 7. However, the problem ofdawave supercon-

ductor is not so straightforward. As pointed out in Ref. 16, in

the nodalDirac fermion approximation, the vector potential whereH (k) was defined in Eq(2.21). Furthermore the ma-
is solely due to the superflow while the uniform magnetictrix elements of the partial derivatives bf(k) can be sim-
field enters as a Doppler shift, i.e., Dirac scalar potentialplified according to

Semiclassical analysis must then be started from this vantage

1 oH(K)
M(k)—gwi (3.12

point and the above conclusions are not straightforward (k) 0om any
since the quasiparticle motion is irreducibly quantum me-\ Mk~ Nk = (&= &)\ M| =~
chanical. # [
Here we present an argument for the full quantum me- amy
chanical problem, without relying on the semiclassical analy- =— (e~ &) Tk [N/ (3.13
"

sis. We show that spin conductivity tensor E8.7) vanishes
at u=0 due to particle-hole symmetry E.11). First note  for m+n. Utilizing Egs.(3.12 and(3.13, Eq. (3.9 for U>S<y
that the Fermi—Dirac distribution function satisfigee) =1 can now be written as

—f(—¢€). Therefore, the factof,,—f,, changes sign under

the particle-hole transformatio®y, Eq. (2.11), while the de- s N dk amy amy
nominator €,,— €,)? clearly remains unchanged. In addition, Ty~ ai (277'_)2 s (9_kx Nk nko—’_ky

e <0<e
each of the matrix eIemenM;‘j“ changes sign unde®,, .
Thus the double summation over all states in Bq7) yields amy amy 31
zero. REAAR e 3.19

Consequently the spin transport vanishes for a clean
strongly type-Il BCSd-wave superconductor on a tight bind- The identity= m_o an(|mi)(my| +[ni){ny[) =1, can be fur-

ing lattice at half filling. Due to Wiedemann—Franz law, ther used to s|mp||fy the above expression to read
which we derive in the next section, thermal Hall conductiv-

ity also vanishes at half filling at sufficiently low tempera- m N1 amy | Imy amy | amy

tures. Note that this result is independent of the vortex ar-  Oxy T87 2 ( ok Lok T 7\ ok ok )
rangement, i.e., it holds even for disordered vortex array and e i

does not rely on any approximation regarding inter- or intra- (3.19

nodal scattering. where oi'ym is a contribution to the spin Hall conductance

from a completely filled band, well separated from the rest

of the spectrum. Therefore the integral extends over the en-

tire magnetic Brillouin zone that is topologically a two-torus
In order to elucidate the topological nature @f,, we T2 | et us define a vector field in the magnetic Brillouin

make use of the translational symmetry discussed in Sec. ll Bone as

and formally assume that the vortex arrangement is periodic.

However, the detailed nature of the vortex Ie_lttlce will not be_z A(K)=(m V,|my), (3.16

specified and thus any vortex arrangement is allowed within

the magnetic unit cell. The conclusions we reach are therenhere V is a gradient operator in thie space. From Eq.

fore quite general. (3.15 this contribution becomes

C. Topological nature of spin Hall conductivity at T=0
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o1 . where F incorporates the interaction with the perturbing
o= | VAR, (1D fela
where[ ], represents the third component of the vector. The 1 " - -
topological aspects of the quantity in E§.17) were exten- F=35] dx¥ () (Hox+xHo)¥(X). 4.4
sively studied in the context of integer quantum Hall effect ) ) ) )
(see e.g., Ref. 37and it is a well known fact that Since y is a small perturbation, to the first order jnthe
HamiltonianH+ can be written as
1 J R
— | dk[VXA(k)],=Cq, (3.18 N
2 ) MVIANIL=Cy HT=de 14+ 2] W 0A0| 1+ 5| W (x), @45

whereC, is a first Chern number that is an integer. There- o o ) )
fore, a contribution of each filled band te,, is i.e., the application of the pseudo-gravitational field results in
Y rescaling of the fermion operators:

f
sm_
Ty —871_N, (3.19
where N is an integer. The assumption that the band must be
separated from the rest of the spectrum can be relaxed. If two If we measure the energy relative to the Fermi level, the
or more fully filled bands cross each other the sum total ofransport of heat is equivalent to the transport of energy. In
their contributions to spin Hall conductance is quantizedanalogy with the Sec. lllA, we define the heat currgft
even though nothing guarantees the quantization of the indthrough diffusion of the energy-density. From conserva-
vidual contributions. The quantization of the total spin Hall tion of the energy-density the continuity equation follows:
conductance requires a gap in the single particle spectrum at

the Fermi energy. As discussed in Sec. V, the general single hi+V-jQ=0. 4.7
particle spectrum of thd-wave superconductor in the vortex
state with inversion-symmetric vortex lattice is gapped an
therefore the quantization @ff(y is guaranteed.

X

V= 1+§)~1f. (4.6)

dn the limit of g— 0 the thermal current is

i9=5 (T, T -V, ). .8

IV. THERMAL CONDUCTIVITY

. . N For details see Appendix C. Note that the quantum statistical

Before dl_scussmg the hature of the quasiparticle Specéverage of the current has two contributions, both linegt,in

trum, we will establish a Wiedemann—Franz law between

spin conductivity and thermal conductivity fordawave su- iQy_—/:iQ Qv— _ (k@ Q

perconductor. This relation is naturally expected to hold for a =0 (0=~ (KL M) dx. - (4.9

very general system in which the quasiparticles form a deThe first term is the usual Kubo contributionlIQV while the

generate assembly, i.e., it holds even in the presence of elasecond term is related to magnetization of the saffifit

tically scattering impuirities. transverse components ef,, and vanishes for the longitu-
Following Luttinger’? and Smrka and Sted&* we intro-  dinal components. In Appendix C we show thafTat 0 the

duce a pseudo-gravitational potentigkx-g/c? into the term related to magnetization cancels the Kubo term and

Hamiltonian Eq.(2.6) whereg is a constant vector. The pur- therefore the transverse componentxgf, is zero atT=0.

pose is to include a coupling to the energy density on thelo obtain finite temperature response, we perform Sommer-

Hamiltonian level. This formal trick allows us to equate sta-feld expansion and derive Wiedemann—Franz law for spin

tistical (TV(1/T)) and mechanical d) forces so that the and thermal Hall conductivity.

thermal curren®, in the long wavelength limit given by As shown in Appendix C
1 2\2 df(¢)~
iQ— Q i Q - = 2" 2°7s
jo=10m| 793 vy @1 um=-[7] [ae"i 50, @10
will vanish in equilibrium. Therefore it is enough to consider where
only the dynamical force to calculate the phenomenologi-
cal coefficientLSV. Note that thermal conductivity,, is ~ h? V= vtV
WE=7 2 T (41D
1, em<~t<en  (€m—€n)
T)==L:(T). 4.2 ~
“udT) T alT) 42 Note thato,,(é=0)=073,,(T=0). For a superconductor at

L ) low temperature the derivative of the Fermi—Dirac distribu-
When the BCS Hamiltoniahi introduced in E2.1) be-  4ion function is

comes perturbed by the pseudo-gravitational field, the result-
ing HamiltonianH¢ has the form (&) 2 d2

O o+ kT s+ (412
Hr=H+F, 4.3 gg 29T g kel G0 4
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Substituting Eq(4.12 into Eqg. (4.10 we obtain IvA(r)=vA(—r)=—VvB(r). (5.2
A2 Recall that the tight-binding lattice Bogoliubov—de Gennes
LSV(T)z %(kBT)Zoiy, (4.13  Hamiltonian written in the Bloch basis E(.21) reads:
wherec?,, is evaluated af =0. Finally, using Eq(4.2), in Ak)=>, {03(—te‘fﬁa(a‘%")'d'e“"(k+p)—,u)
the limit of T—0 °
4% (kg\? +(Tle’?éeif:Ma'dlei5'(k+p)}, (5.3
Ku(T)= —(— TO’ZV. (4.19
3 \ A where

We recognize the Wiedemann—Franz law for the spin and V(=AM +VvEB(r));  an)=3vAr)—ve(r)).
thermal conductivity in the above equation. As mentioned, (5.4)

this relation is quite general in that it is independent of the i _ o

spatial arrangement of the vortex array or elastic impuritiesS beforeo,; anda; are Pauli matrices operating in Nambu
Thus, quantization of the transverse spin conductiw@ space and the sum is again over the nearest neighbors. It can

implies quantization ok, /T in the limit of T—0. be easily seen that upon applying the space invergito
H (k) followed by complex conjugatio@ andi o, we have a

V. QUASIPARTICLE SPECTRUM AND QUANTIZED symmetry that for every, there is— e, that is:

CONDUCTIVITY , - ! .
General feafures O.f the quasiparticle spectrym can be UWhich holds for every point in the Brillouin zone. Therefore,
derstood on the basis of symmetry alone. Since the time-

. . in order for the spectrumot to be gapped, we would need
reversal symmetry is broken, the Bogoliubov—de Genne . . )
I : and crossing at the Fermi level. But by the noncrossing
HamiltonianH,, Eq. (2.10, must be, in general, complex.

. ) LS theorem this cannot happen general Thus, the quasi-
According to the “noncrossing” theorem of von Neumann . . . . o

! 9 A article spectrum of inversion symmetric vortex lattice is
and Wigner® a complex Hamiltonian can have degenerat

eigenvalues unrelated to symmetry only if there are at Iea&apped, unless an external parameter, other Kaamdk,

three parameters which can be varied simultaneously. 'S flne-tuned.'As was establlshgd " the previous section,
gapped quasiparticle spectrum implies quantization of the

Since the system is two dimensional, with the vortices : ductivie® I IT for T suf
arranged on the lattice, there are two parameters in th |ggsn\t/§/rfoewspm conductivity,y as well askyy /T for T suf-

HamiltonianH (k) Eq.(2.22): vortex crystal momentk, and Precisely at half-filling f=0) O-iy must vanish on the

l;%ovz::jlcnhot\/:;yelcnt ;26 Jgsénir:gzu'?o écc);ﬁ' eEZ?;?fSr:?e’slve basis of particle-hole symmetfgee Sec. Ill B. We can then
; P y degeneracy Ug vary the chemical potential so that#0 and break particle-
there is some symmetry which protects it. Away from half- hole symmetry. Hence, the chemical potentiatan serve as

f'”'ng (n#0) qnd V\."th unspecn‘l_ed arrangement of vor'ucesthe third parameter necessary for creating the accidental de-
in the magnetic unit cell there is not enough symmetry to

cause degeneracy. There is onjobal Bogoliubov—de generacy, i.e., at some special valuesudf the gap at the

. L Fermi level will close(see Fig. 2 This results in a possibil-
Gennes symmetry relating quasiparticle eneegyat some ity of changing the quantized value of, by an integer in
pointk in the first Brillouin zone to—e_,. y ging q y oY 9

In order for every quasiparticle band to be either com-units Ofﬁ/8.77 (Fig- 2.7 In contrast to the integer quantum
pletely below or completely above the Fermi energy, it iSHaII effect in the normal state, the very nature of the super-

sufficient for the vortex lattice to have inversion symmetry. conductor forces the gap to ladwayscentered at the Fermi

This can be readily seen by the following argument: Con_IeveI. This holds even when the effects of the tight-binding

sider a vortex lattice with inversion symmetry. Then, by thel"’}tt'tCe ac;e talrfgnnmto ::ct%oun:] arz? clonSSqnli;aTtly we achieve
very nature of the superconducting vortex carryifg/@e) plateaudependence on the chemical potential.

flux, there must be even number of vortices per magnetic Similarly, we can change the strength of the electron—

unit cell and we are then free to choose Franz—Tesanovi‘élec'{ron atiraction, WhiCh. is proportional o th? maximum
labelsA andB in such a way thavA(—r)= —vE(r). To see value of the superconducting order parameétgwhile keep-

this note that the explicit form of the superfluid velocities Ing the chemical pot.entlak fixed. Again, as can be seen in
can be written as® Fig. 3, at some special valuas the spectrum is gapless and

the quantized Hall conductance undergoes a transition.

a

vs(r)

2wk [’k IKXZ o
= 5 > ek =) (5.0 VI. SCALING FUNCTIONS
m* J (27)° k i

Y N As shown in the previous section, the quasiparticle spec-
wherea=A or B andr{* denotes the position of the vortex trum of ad-wave superconductor in vortex state is gapped, in
with label «. If the vortex lattice has inversion symmetry general. Therefore, at temperaturBsvhich are much less

then for everyr * there is a corresponding r £ such that than theA ,, (magnetic fieldB induced gap T-dependence of

riA= —r iB. Therefore, under space inversidn thermal conductivityk,, can be determined uniquely. More-
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FIG. 2. The mechanism for changing the quantized spin Hall FIG. 3. The upper panel displays spin Hall conductiviy as a
conductivity is through exchanging the topological quanta(tae-  function of the maximum superconducting order paramatefThe

cidental”) gap closing. The upper panel displays spin Hall conduc-lower panel shows the magnetic field induced gap in the quasipar-
tivity o5, as a function of the chemical potentjal The lower panel  ticle spectrum. The change in the spin Hall conductivity occurs at
shows the magnetic field induced gAp, in the quasiparticle spec- those values ol at which the gap closes. The parameters for the
trum. Note that the change in the spin Hall conductivity occursabove calculation were: square vortex lattice, magnetic lehgth
precisely at those values of chemical potential at which the gap= 46, ©=2.2.

closes. Hence the me.Chan'Sm behind the change:i_ps the ex- scaling form Eq.6.3) to hold. Furthermore, the Simon and
change of the topological quanta at the band crossings. The param., scaling form Eq(6.2), derived under the assumption of
eters for the above calculation were: square vortex lattice, magnetiltlznear massless Dirac'di’spersion at the nodes. will itself be-
Iﬂ%th |=45, A=0.1t or equivalently the Dirac anisotropyp come suspect in presence of a small mass gap necessary for
' the low temperature quantization. Still, one should never risk
dismissing experimentally observed scaling laws, particu-
larly not the one so simple as E@.J). It is conceivable that
the “staircase” structure of quantized and oscillating,(B)

over,B-dependence of,, comes entirely from the spin con-
ductivity o(B). That is:

472 [ Ka) 2 has a guiding “envelope” exhibiting an approxima{® de-

ny=T(%B To$,(B). (6.1  pendence and that the Simon and Lee scaling form(&g)
holds to a good approximation at temperatures low enough
Curiously, if the above equation is naively combined withfor linear dispersion at the nodes to become apparent while
Simon and Lee scalifg still high or comparable to the much lower energy scale of
the Dirac mass gap. If this were the case, the experimentally

JB observed scaling Eq6.3 would still hold to a good ap-
_T2 v= . . : L. ) -

Kyy(T,B)=TFy, T (6.2 proximation. Further investigation of these issues is left for

future study.

the scaling function would be determined up to a proportion-
ality constantC: VIl. CONTINUUM VERSUS LATTICE THEORY

_ The previous discussion concentrated on the tight-binding

KXV(T’B)_CT\/E' ©.3 formulation of the problem which is important if the mag-

In the recent experiments of Oreg al® this is precisely the netic field is relatively large and if there is a strong interac-

scaling seen in the temperature range up-25 K. tion between the underlying ionic lattice and the quasiparti-
While the above arguments are tempting in their simplic-cles. In usual experimental situations, however, the magnetic

ity, one must hesitate before proclaiming that they providdength is much longer than the inter-ionic spacing and we

the explanation for the scaling observed by @Gnal® First,  would expect that the length-scale associated with the ionic

the experiments are done at rather high temperatures and itlgttice becomes unimportant at low energies. This leads to a

unlikely that the ultimate low temperature scaling regime, incontinuum formulation of the theorisee Sec.)!

which we expect our Eq6.1) to be rigorously satisfied, has

been reached. Second, and even more glaring, is an intrinsic A. Linearized continuum theory

theoretical problem: once the low temperature scaling regime On the basis of th8=0 problem, we expect that the low

is reached and Ed6.1) holds we have argued thaf, (@and  energy physics is confined ik-space around four nodal

therefore x,, as wel) will be quantized as a function of points on the Fermi surface. In order to treat the effect of the

magnetic field, rather than obeyimgiyoc B required for the  magnetic field and of the vortex lattice on the low energy
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properties of the spectrum, we would ideally like to constructstring*?**We will restrict ourselves to the case of a massless
a Hamiltonian which treats each of the four nodes indepenbirac particle and lic/2e) flux carried by the string. The
dently. A natural way to do this was suggested by Simon and¢Hamiltonian
Lee’ and later extensively used by othéfd315:16

As was pointed out in Ref. 16 there is a subtle problem (ib—eNy=0 (7.3
associated with numerical implementation of the continuump, yhis case is axially symmetric and after separation of vari-
linearized version of the theory. On the physical grounds anYples
given problem involving charge (quas)particle interacting
with a + (hc/2e) vortex must lead to an identical eigenvalue Xt
spectrum as for a (hc/2e) vortex as long as the wave func- gl/(r,¢)=( ié 2) elne (7.9
tion of the particle vanishes precisely at the vortex. This is an ex
exact singular gauge symmetry of our physical problem anéne obtains the equation for the radial wave functions:
therefore it should be present at all stages of any approxima-

tion. Extensive numerical study of the linearized {d v+l

approximatio® pointed out that this symmetry is weakly 0 Nar Ty

violated in the quasiparticle spectra. The problem persistsH, y= x(r)=Ex(r),
irrespective of the techniques chosen to diagonalize the lin- —i(i— Z) 0

earized Hamiltonian, i.e., it is present in real space as well as dr r

momentum space representation. The issue was resolved in (7.9

Ref. 16 by regularizing the problem on the tight-binding lat'whereu=%+n is a half-integer. The solutions of this equa-
tice which offered many advantages, some of which are Utifion can be expressed through Bessel functions as

lized in this paper. On the other hand, the concept of single
node physics is lost in a tight binding formulation as the J(IEN)
latter naturally describes the physics of all four nodes. It Xro| )

would be desirable to formulate a properly regularized |JE(V+1)(|E|r)

Hamiltonian describing single node physics only. From theyheree=+1. The square integrability condition determines
work of Franz and Tesanovféthe most natural candidate is sign of e for all v exceptr=—1/2. Both choices o€ result in

(7.6

a free, anisotropic, massless Dirac Hamiltonian a wave function diverging as {f while still remaining
. . square integrable. The requirement of regularity for all the
[ UrPx  UaPy solutions ar =0 turns out to be too restrictive and results in
0™ UAE)y —— 7. numerous pathologies such as incompleteness of the basis.

The problem is solved by using von Neumann theory of
perturbed by scalar and vector potentials defined in Egself-adjoint extension®** Since the radiaH, operator in
(2.17: Eq. (7.5 defined in the domain of regular functions has de-
ficiency indices(1,1), one is forced to extend the Hilbert

v,:v?x %UA(UQy_UsBy) space by relaxing the condition of regularity and allowing for
H'=m| A B 5 . (7.2 the wave functiorf¥
EUA(Usy_Usy) UFUsx
. " . 1 [isin®
ve andv, are Fermi and gap velocities, respectivEiyve X(r)oc—( ) (7.7
wish to argue that the above Hamiltonian is well defined and 2| cos®

that suitable boundary conditions and their transformation Zevi?gf(zoerém ‘;’gri :artgr)i’zéj:tt(rem:amslgﬁ?ag%itrneeggﬁgiso r?f
are also specified. The discrepancies encountered in the nu- The ener 'ip nstates for — 1/2 ar Jiv b '
merics are believed to result from neglecting the boundary € energy eigenstates 1o are given by

conditions and the effect of the singular gauge transforma- (sin,u.]1,2(|E|r)+(—1)“cos,uJ1,2(|E|r)

does not suffer from singular gauge asymmetry, provide%‘

tion on them.
In the context of high energy physics, a similar problem

was studied extensively. It was found that the Dirac—typewhere the parameter=0 if n is even, while forn odd

equations in the presence of a single Aharonov—Bohm strin —7—0. In addition. for some values @ there is a bound
require self-adjoint extensions which enlarge the Hilbertg, .42 ' ’

space by the wave functions with*% radial behavior. In We encounter a peculiar situation in which the long dis-
addition, the wave functions depend on a dimensionless pdance physics governed by E@J..3 still depends on bound-
rameter® which specifies the boundary conditions at theary conditions imposed at the core. Linearization of the
core. A consistent procedure enabling one to construct theriginal BdG problem neglects terms “small” in conven-
needed self-adjoint extension involves the theory of vortional sense which, nevertheless, remain effectively present
Neumann deficiency indicé$:* in ® dependence of Eq7.8) . Although the linearized equa-
The above considerations can be illustrated on a weltion (7.3) has no length scale, the core physics, now effec-
studied problem of a Dirac particle in the field of a singletively shrunk to a circle with vanishing radius around the

. , 7.8
SlnM31/2(|E|r)_(—1)nC03MJ1/2(|E|r)) 7.8
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singularity, manifests itself in the wave functions E@.7) rectly generalized to conventional 2bwave superconduct-
with the long power law tails. In general, there are only twoors in the vortex state: the transverse spin Hall conductivity
values of® corresponding to the puré&function magnetic aiy is quantized in units of/87 and by Wiedemann—Franz
field.*® However, in the case of other contact interactionsiaw ny=(4772/3)(k3/ﬁ)2'rg§y as T—0. At low magnetic
present in the core, the paramegrcan be arbitrarg? fields, the quasiparticle spectrum is gapped by the virtue of
Various regularizations of the problem were studied leadthe lowest Caroli-Matricon—de Gennes vortex core bound
ing to different choices of the self-adjoint extensf§rOne  state having energy A%/ er . In the vortex lattice the CMdG
possibility is to put an impenetrable cylinder of small but hound states are extended and form bands. If the vortices are
finite radiusp around a vortex thus forcing the wave func- disordered, the states in the band tails will be localized and
tions to vanish on the surface of the cylinder. Such a boundhe effective quasiparticle gap will be increased because the
ary condition specification will immediately restore the |ocalized states do not contribute to transport. As the mag-
= (hc/2e) vortex invariance because the value of the wavenetic field is increased, the spectrum becomes progressively
function at the surface of the Cylinder will not transform altered and at some critical fieBf* it deve|ops nodal points
under singular gauge transformation. Of course, the trugsee Ref. 48 The transition between states with two differ-
boundary conditions must descend from the original physicagnt guantized values iny happens at th® induced gap
problem, in this case from the self-consistent solution of the;|osings. Therefore, a series of transitions between different

full Bogoliubov—de Gennes equation including the core re-spin Hall states is predicted to occur in the conventional
gion. The quasiparticle wave functions do not, in generalgyperconductors as well.

vanish around the vortéX. Therefore, not only the quasipar-
ticle wave functions but also the constraints imposed on
them must be properly transformed under singular gauge IX. CONCLUSIONS

transformation. ) )
In conclusion, we examined a general problem of 2D

B. Beyond the linearized theory type-ll syperconductprs in thg vortex state wi_th !nversion
symmetric vortex lattice. The single particle excitation spec-
trum is typically gapped and results in quantization of trans-
verse spin conductivitys, in units of#/8x.>’ The topologi-

As pointed out by Simon and Léand then later by Y&°
linearized theory predicts vanishing transverse conductivi

ties. In order to include f[he descript'ion of Hall effec.ts, thecal nature of this phenomenon is discussed. The size of the
curvature terms must be included. Without regularization, thefnagnetic field induced gap,, in unconventionald-wave
m

perturbative analysis of the curvature terms are far fromsuperconductors is not universal and in principle can be as

%;%'ghg?g;gfs' ;25 h:rstutrga?iznvgltgrct)ti dfiﬁen(s;grgf lklgottr?large as several percent of the maximum superconducting
P ' ap Ay By virtue of the Wiedemann—Franz law,

regularization is taken into account and the wave functiong ="\ o derive for thed-wave Bogoliubov—de Gennes

are forced to vanish _at some radlplsarou.nd the core, the equation in the vortex state, the thermal conductivity,
new length scale will break the scale invariance of the — (47213) (kg /1) ?ToS, asT—0. Thus atT <A, the quan-
Dirac equation. Moreover, the perturbative analysis of the. B xy ' m d

continuum equation would predict that the contribution oftization Of sy /T will be observgble in clean samplgs with
each node tarS, can be either 0 or-2 in units of #/8.1° negligible Landeg factor and with well ordered Abrikosov
Xy "

. . . vortex lattice. In conventional rconductors, the size of
Thus, if all four nodes are included, the only possible valueso ex ‘attice conventional superconductors, the size o

of a3, are 0 or+2. On the other hand, explicit evaluation of ﬁtgtéssngz?: by Matricon-Caroli-deGennes vortex bound

aiy via the tight-binding lattice regularization indicates that | 1ag exgerimental situations, Langddactor is not nec-

a wide range of values fary, is possible(see Figs. 2 and)3  essarily small. In fact it is close to 2 in cuprafd&he Zee-

An interesting question remaining for future study is how toman effect must therefore be included in the analysis. Nev-

implement the picture presented in Ref. 19, of individualertheless, detailed numerical examination of the quasiparticle

Dirac nodes changingy, by =1 through action of the per- spectra reveals that the spectrum remains gapped for a wide

turbatively determined mass term as an “elementary buildingange of physically realizable parameters eveyrf2. Thus,

block™ of more complicated band crossings. although the Zeeman splitting is a competing effect, in gen-
One way to reach the continuum limit is to make theera] it is not strong enough to prevent the quantizationyf

magnetic length much longer than the tight-binding lattice anq consequently of,,/T.

consltanté. The Sriwbaclzlassociated ]:Nith trr:e t]ight-bri]ndink? We have explicitly evaluated the quantized valuesrff

regularization of the problem stems from the fact that the ; P ;

co?]tinuum limit is not I;mooth and unless an exact analyticaggrg;iéggtc;?milﬁg Jg‘:ttlgf STac;ge;nc;l);zﬁé\zﬂ-/\évg \':ﬁaltaiis S |

SO I X i principle

solution is found it is complicated to analyze numerically. 5 \yide range of integer values can be obtained. This should

The similar situation occurs in a tight-binding .Hofstadter be contrasted with the notion that the effect of a magnetic

problem of a 2D normal electron gas on the lattice. field on ad-wave superconductor is solely to generatd a

+id state for the order parameter, as in that aagg= =2 in

units of /8. In the presence of a vortex lattice, the situa-
Although the previous analysis was focused on unconvention appears to be more complex.

tional d-wave superconductors, the main results can be di- By fine-tuning some external parameter, for instance the

VIII. CONVENTIONAL SUPERCONDUCTORS
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strength of the electron—electron attraction which is proporwhere T, denotes imaginary time ordering operator amad
tional to A, or the chemical potentigk, the gap closing is =1,2 denotes components of a Nambu spifd(1) which
achieved, i.e.A,,=0. The transition between two different is a shorthand fOFPT(rlle)z(’r//‘]r(rlle)a(/fl(rlaTl))-
values ofay, occurs precisely when the gap closes and to- Due to the time independence of the Hamiltonian Eq.
pological quanta are exchanged. The remarkable new feature. 1), the Green's function Eq(A1) depends only on the
is theplateaudependence afy,, on theA, or w. Itis quali-  imaginary time differencer= 7, — 7,. Therefore, its Fourier
tatively different from the plateaus in the ordinary integertransform is given by

guantum Hall effect. In superconductors, the physical origin

of the plateaus is the gap in the quasiparticle spectrum gen-

erated by the superconducting pairing interactions and al- R B

ways automatically centered at the Fermi energy. G(ry,ryim)= fo €'“7G(rq,ry,7)dr,
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Using the above relations, it is straightforward to derive
the spectral representation of the following correlation func-
tions between¥ and its imaginary time derivativeg, ¥
The one-particle Green’s function mafthis defined as =+

APPENDIX A: GREEN'S FUNCTIONS: DEFINITIONS
AND IDENTITIES

Gop(r1m1:12m)=—(T W ()W (2)), (A1)

(T (D)V](2)) i
l T
<TT\PQ(1)‘_I’B(2)>_ 1 L Arre | —e
(T (OW2)" g © fdfﬁ te (A3)
(T (H)¥](2)) — ¢

The spectral functiorf\(rl,rz;e) can be written in terms of eigenfunctioms,(r)=(u,(r),v,(r))" of the Bogoliubov—
deGennes HamiltoniaH, in the form:

Aaﬁm,rz;e):; S(e— €q)P(r) P 4(r2), (A4)

wheree, is the eigen-energy associated with an eigenstate labeled by the quantum mui@bbstituting Eq(A4) into Eq.
(A3) we can write the above correlation functions solely in terms of the eigenfuncliQ(y:

TW (1)Wh2
< T' a( ) f( )> +1
TV (L)W ,(2
(T )./3( )>__E e_iWTcpm(rl)q)zB(rZ) — € 5
(TVLVE2) g4 7 o—e | +e
(T (1) ¥)(2)) — e
|
In the calculations that follow we will also encounter 1 2 1
Matsubara summations over the fermionic frequencies Sim(iQ)= = 2, =—— o)’ (A6)
= (21 +1)mlB, | eZ, of the form: Ao (lo—e)(iQtioen)
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where O =27k/B, ke Z, is an outside bosonic frequency. .
The sum Eq.(A6) can be evaluated using standard tech- p°= 5

nigues(see, e.g., Ref. 3Gand yields:

—f
€, €nTiQ)’

Shm(i€2)= (A7)

Here f,, is a short hand for the Fermi—Dirac distribution

function f(e,) = (1+exp(Be,) L.
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*\2
(2m) viw, - qr*—qflmqﬁqu ViAW,
772 ( *)2
+A*WIW, WA, — «Ifzqf2+\1r* =W,
(B2)

Using the identities Eq9A11),(A12) it is easy to show

In order to derive spin and thermal currents we will needthat

the explicit form of the generalized velocity operatrin-
troduced in Eq(3.6):

A
e AN
V= . | (A8)
. ’\* 77
A
where the gap velocity operator is given by
i\7A= i Aon656i¢(r)/2(ei Sp_g-id p)ei¢(r)/2 (A9)
and the canonical momentum equals
i i rrs
w=— §5eﬁfr (P=cA);dlphe. (A10)

The following identities for operatons, and a will be used
in the next section:

V.2V = iV (VTav)+ v PP

. All
V. gV = —iaV-(7VT)+ (7)Y, (ALL)
PIAY - AV O =iV.(PTV,T-v,¥TP)  (A12)

pS=— Zvﬂ(wTquf+v;\IfT«1r)= ~-V.j, (B3
where the generalized velocity operatdy is defined in Eq.
(A8), and the last equality follows from the continuity equa-
tion (3.4) relating the spin density® and the spin current.
Upon spatial averaging and utilizing EGA13) we find the
g—0 limit of the spin current

(B4)

Vu

'S—hqﬂv 30
=3 R2

The evaluation of the spin current—current correlation
function Eq.(3.2) is straightforward and yields:

h2 (B
D,.(i0)= - ["e v, 2 v,(0

x(T ‘IfT(l)‘lf(z)\pT(g)q;(4)>1 zﬁgx 8]0'

(B5)
HereW(1)=¥(r,,7,) and similarly the operatdr ,(2) acts

only on functions ofr,. Using Wick’s theorem, identity Eq.
%AS), and upon spatial averaging oveandy we obtain

where all the differential operators act only on the adjacen
functions unless otherwise specified. The above equations
are straightforward to derive in continuum, while on the

tight-binding lattice Eqs(A11) and(A12) imply a symmetric
definition of the lattice divergence operator.

The identities Eqs(A11l) and(A12) explicitly ensure that
the generalized velocity operatdr, is Hermitian, i.e., it sat-
isfies the following identity:

f drv*wi(nw(r)= J'drv "V HNW ()

:f dr (Vi (r). (A13)

APPENDIX B: SPIN CURRENT AND SPIN
CONDUCTIVITY TENSOR

The time derivative of spin densityps= ﬁ/2(¢T Wy
- ¢L¢i) can be written in Nambu formalism as

i i .
ps=%[H,pS]=§(‘PT‘~P+‘I’T\I’). (B1)

Using equations of motiori2.9) together with the explicit
form of H, operator Eq(2.7) we obtain

) h? .
D,uu(i)= 7 2, (n|V,Im}(m|V,[n)S(i2). (B6)
The double summation extends over the eigenstatesand
In) of the Hamiltonian Eq(2.7), and S,,(iQ2) is given in
Eq. (A7). Analytically continuingiQ)—Q +i0 we finally ob-
tain the expression for the retarded correlation function:

ﬁz Vnmvmn
M v _
(Q) 4 % en—em+Q+i0(fn fm),  (B7)

where V4, is defined in Eq.(3.8) and f,, is a short hand
for the Fermi—Dirac distribution functionf(e,)=(1
+exp(Be,)) L. Finally, we substitute the last equation into
Eqg. (3.1) to obtain

VLV
oS = > — T (f

—fm).
K" 41 Tn (eq— ent+i0)2 0~

(B8)

APPENDIX C: THERMAL CURRENT AND THERMAL
CONDUCTIVITY TENSOR

In order to calculate thermal currents and thermal conduc-
tivity in the magnetic field we introduce a pseudo-
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gravitational potentiak =r - g/c?.32-35This formal procedure

is useful because it illustrates that the transverse thermal re-

sponse is not given just by Kubo formula, but in addition it
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—E(\I’TVM\I’—\I’TV#‘P). (C?)

iz

includes corrections related to magnetization. Throughoublote that the expression fgf contains two terms

this sectionh=1. The pseudo-gravitational potential enters

the Hamiltonian, up to linear order i, as

HT: f dX

where H, is the Bogoliubov—deGennes Hamiltonian Eq.
(2.7). The equations of motion for the fields thus become

1+§ W0, v(x), (CD

X
1+§

i =[W Hq]= 1+§ Ao

2

1+5)\If

=(1+x)HoV —iV ,xV,¥. (C2)
The last equality follows from the commutation relation Eq.
(3.6). [Note that fory# 0 the Eq.(C2) differs from Eq.(2.9).

Throughout this sectio® will refer to Eq.(C2) unless ex-
plicitly stated otherwisg.

To find thermal currenj® we start with the continuity
equation

hi+V-jQ=0. (C3)

The Hamiltonian densiti; follows from Eq.(C1) and reads

h
T 2m*

(WZ@IWH‘I'l—WMqIZ 'u~
L @A A, T ca
+§( a=af ﬁ+ aB*t a ﬁ)! ( )

where \Tf=(1+§)\lf. Taking the time derivative of the
Hamiltonian densityh; and using Eq$A11) and equations
of motion (C2) we obtain

. i . e
hT=i[HT,hT]=mVﬂ(\PTHﬂ\I’—H:‘L\I’T\P)

1 ~ ~ ~ ~
T

+%(Aa5~?;ﬁfﬁ—Aaﬁﬁfﬁfﬁ), (C5)
where we introduced matrix operators
0 A m, O
Aaﬁz(ﬁ* ol ngﬁ:( 0 77;) (C6)

Herel = (1+ x/2)¥ and, is defined in Eq(A10). Finally
we use Eq(A12) to extractj? from Eq.(C5). Upon spatial
averaging and using the Hermiticity &f, Eq. (A13) the
thermal currenf® reads

j°=ig+iz, (C8)

WherejoQ is independent of andj? is linear iny. Explicitly:

SN =3¥"{V,Ho}w (C9)
and
Qe t DX ot
J,u,l(r) - ZaVX\P (V[.LVV_VVV;L)\I’—i_ 4 v ((XVVM
+3V,x,) Ho+ FHo(3%,V,+V,x,) ¥, (C10

where{a,b}=ab+ba. Analogously to the situation in the
normal metal, the thermal averagej@fdoes not in general
vanish in the presence of the magnetic fi&ld.

The linear response of the system to the external pertur-
bation can be described by

G9=e)+ (%)== (K, +M,,)d,x=—L%,d,x,
(C11
where
8.

1Y%

PR,(Q)—PR,(0)
iQ

Q—

72 (C12)
0

is the standard Kubo formula for a dc respoffs@;,(Q)

being the retarded current—current correlation function, and

K%
wy 89,

=3 efulnl{V, %)

i

+2 7 a(nllV,,Valin) (C13
is a contribution from “diathermal” current® Note that the
latter vanishes for the longitudinal response while it remains
finite for the transverse response. As we will show later in
this section, affT=0 there is an important cancellation be-
tween Eqs(C12 and(C13) which renders the thermal con-
ductivity «,,, well-behaved and prevents the singularity from
the temperature denominator in Eg.2).

The retarded thermal current—current correlation function
PEV(Q) can be expressed in terms of the Matsubara finite
temperature correlation function

, L , :
P,W(IQ)=—JO d7e'(T,j,(r,Dj,(r',0) (C14

QO

S
PR (Q)=P, (i10—Q+i0). (C15
The currentj ,(r,7) in Eq. (C14) is given by

(D=3 N(1)V,0,¥ (1) =, ¥ (1)V, V(7).
(C16
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As pointed out by Ambegaokar and Griffthtime ordering
operatorT . and time derivative operators do not commute

PHYSICAL REVIEW B 64 224508

M,,=MD+M> (C24)

and neglecting this subtlety can lead to formally divergentvhereM () andM ) refer to the first and second term in Eq.

frequency summatiorfé.Taking heed of this subtlety, substi-
tution of Eq.(C16) into Eg. (C14) amounts to

P 10k iQ v
Puli)==7 | dre' Vi (2)Vy(4)

(T D)W R(2)WH(3)W 4(4)
— U)W (2 (3) ¥ 4(4)
—WHD)W4(2)W](3) W 4)

+W D)WL W(3) ¥ 4)), (C1D)

where the notation follows EqB5) and Eq.(2.9). Upon
utilizing the identities Eqs(A5) and (A13) and performing
the standard Matsubara summation we have

oL .
P iQ)=7 2 (n]V,[my(mV*In) (et em)?Sm(i ),
(C19

where S, is given by Eq.(A7). Analytically continuing
iQ—Q+i0 we obtain

>

nm

(€nt em)zvzmvr;ln
en—€nt+Q+i0

1
Pad)=7 (fa=fm). (C19

Note that the only difference between the Kubo contribution

to the thermal response E@19 and the spin response Eq.

(B7) is the value of the coupling constant. In the case of B(7)=

thermal response EqC19), the coupling constant isef,

+€,)/2 which is eigenstate dependent, while in the case of

spin response EdB7) it is /2 and eigenstate independent.
Using Eq.(C12 we find that the Kubo contribution to the
thermal transport coefficient is given by

[ ('En“'em)2

ViV (f = ).

lald _Z nm (en—€m+i0)2 a
(C20
This can be written as
Ku=KH+KE), (C21)
where
i de €
(1 _ M \nmymneg g
y7ad 4 o (en—em+i0)2 o v ( n m)
(C22
and
i
=7 2 VIVt tn). (C23)

Similarly, we can separate the “diathermal” contribution Eq.
(C13 as

(C13), respectively. Using the completeness relation

Smlmy(m|=1 it is easy to show that

i
(2)— _ _
ME=7 ; (fa—f) VO™V, (C25

Comparison of Eqs(C23 and (C25) yields M?)+ K,

y7a
=0. Therefore the thermal response coefficient is given by

L, =KD+ME). (C26)

1) can

Utilizing commutation relationships Eq3.6), M,

be expressed in the form:

M= f () Tr(S(—HFo) (X*V*'—x"V#))d 7,
(c27)

where the integral extends over the entire real line. The rest
of the section follows closely Sika and Steda>* We de-
fine the resolvent&=:

G*=(p*xi0—Hg)* (C28
and operators
A —'TVdG+V5 Ho)—V, o HvdGi
(7])—| r ) d77 v (77 0) s (7’ O) v d77 '
(C29

i Tr(V, GV, 8(n—Ho)—V,8(n—Ho)V,G "),

To facilitate Sommerfeld expansion we note that response
coefficientSKE})(T), Mﬁ}V)(T), afw(T) have generic form

14

L(T)=f f(m)l(n)dn, (C30
and after integration by parts
L(T)=—fﬂt( )d (C31)
d7 7)d7.
HereL (¢) is defined as
~ é
L= 1y (32

Note thatL(T=0)=L(£=0) and in particular the spin con-
ductivity at T=0 satisfieso, (T=0)=07,,(£=0). Identi-
ties (C31) and (C32 will enable us to express the coeffi-
cients at finite temperature through the coefficients at zero
temperature. For example, it follows from E&27) that

~ § -
M(l)(é)ZJ 7 Tr(8(n—Ho) (X*V"=x"V¥)) (C33

and from Eqgs(B8), (C29
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~ 1 ¢
w.0-7 Ay (C34

Similarly, coefficientk () from Eq.(C22) can be written as

K§}3=—ij dnf(m) 72 87— e€n)em

Vnmvmn anvnm
X £ £ 7 (C39
(7= emti0)? (7~ €n—10)®
so that
~ (1) N
Ria(@=—1] dny2 o(7—enem
Lo )
(n—emti0)? (7~ €n—i0)?
(C36)

Using definitions(C29), K(M)(&) can be expressed as

~ ¢ ¢
ko= | wacmdy+ [ sBndn. (can

After integration by parts one obtains

~ 3 3
ko= amdn+ [ (-8

1dB

A(n
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As shown in Ref. 34 the last term in this expression is ex-

actly compensated biyl V)(&): This becomes evident after
noting that definitions in Eq.C29 imply

1dB(7)

1 dé(7—Ho)
2 dpg

dn

1
_Er

(XHV¥—

o]
(C39

Substituting the last identity into the EG38) and integrat-
ing the second term by parts we obtain

~ 3 3
K$3(§)=§2f_xA(n)d77—f

7 Tr(8(n—Ho)
X (XMVP—=x"V#))d 7. (C40
The second term here is equal {oM(l) from Eq. (C33.
After the cancellation the result S|mply reads:

- ~ 13
L2,(6)=KQe+MB(&)=¢ J A(m)dy. (C4D

Or, using Eq.(C34)

- 2¢\%
L2.(6)= (;) 3. (C42
Finally, from Eq.(C32 we find
df(#)
o(T)=~— ﬁ an 7 205, (mdn.  (C43
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