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Quasiparticle Hall transport of d-wave superconductors in the vortex state
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We present a theory of quasiparticle Hall transport in strongly type-II superconductors within their vortex
state. We establish the existence of integer quantum spin Hall effect in clean unconventionaldx22y2 supercon-
ductors in the vortex state from a general analysis of the Bogoliubov–de Gennes equation. The spin Hall
conductivitysxy

s is shown to be quantized in units of\/8p. This result does not rest on linearization of the BdG
equations around Dirac nodes and therefore includes inter-nodal physics in its entirety. In addition, this result
holds for a generic inversion-symmetric lattice of vortices as long as the magnetic fieldB satisfiesHc1!B
!Hc2. We then derive the Wiedemann–Franz law for the spin and thermal Hall conductivity in the vortex
state. In the limit ofT→0, the thermal Hall conductivity satisfieskxy5(4p2/3)(kB /\)2Tsxy

s . The transitions
between different quantized values ofsxy

s as well as relation to conventional superconductors are discussed.

DOI: 10.1103/PhysRevB.64.224508 PACS number~s!: 74.72.2h, 74.60.Ec
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I. INTRODUCTION

One of the fundamental characteristics of high tempe
ture superconductors~HTS! is the apparent applicability o
the d-wave1 BCS based phenomenology to the broad ran
of quasiparticle properties in the superconducting state.2 This
is far from trivial property for materials known to exhib
strong electron correlations. Although the horizon is still n
entirely clear and there remain few unresolved issues,
amples being the temperature dependence of quasipa
lifetimes or the penetration depth in the underdop
regime,2,3 the cumulative weight of evidence indicates th
the low energy properties of cuprate superconductors are
deed governed by nodal quasiparticles with Dirac-like d
persion, as seen in assorted spectroscopic4 and transport
measurements.5 These and other experiments serve as
foundation for the ‘‘BCS-liked-wave paradigm’’ as it is cur-
rently used in both theory and interpretation of experimen

A natural question is how does this picture hold toget
in a mixed phase, in the presence of an external magn
field and an array of superconducting vortices and, if it do
are there some special features of thed-wave quasiparticle
phenomenology which could be used to deepen our un
standing of high temperature superconductivity? Recent
tivity on the experimental front appears most encouraging
this regard. In particular, measurements of the thermal H
conductivity kxy in cuprate superconductors are curren
viewed as especially informative probes of quasiparticle
namics. These measurements provide a clean way of ext
ing quasiparticle contribution tokxy since phonons, the othe
source of significant thermal conduction, do not couple to
magnetic field by virtue of being neutral. In addition, co
trary to what takes place in an ordinary electrical Hall co
ductivity experiment, vortices do not experience strong L
renz force since there is only heat current and no
electrical supercurrent to which vortices are stron
coupled. Thus, vortices tend to remain stationary and t
transport does not serve as a significant channel for
conduction.

Recently, measurements ofkxy were conducted by Ong’s
group6 on YBCO samples with a very long mean free pa
0163-1829/2001/64~22!/224508~17!/$20.00 64 2245
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These experiments were carried out over a wide range
magnetic fields~up to ;14 T! and at temperatures from
T;12.5 K to above the superconducting transitionTc
;90 K. Unfortunately, the experiments are resolution lim
ited below 12.5 K as signal becomes too weak. At tempe
tures up to 25 K and for a (T dependent! range of magnetic
fields AH/Tesla,T/25K the experiments seem to sugges
rather simple scaling form7 for kxy :

kxy~H,T!5const.3AHT. ~1.1!

We will return later to this simple scaling form and its po
sible relation to the theory presented here.

On the theoretical front, the initial interest, largely in
spired by Gorkov and Schrieffer8 and, in a somewhat differ-
ent context, by Anderson,9 was directed at the formation o
‘‘Dirac Landau levels’’ and their signatures in the quasipa
ticle thermodynamics and transport.10,11This picture of Dirac
Landau level quantization, while theoretically elegant a
appealing, relies on the minimal coupling of the nodal BC
like quasiparticles to the electromagnetic vector potential,A.
The assumption of such minimal coupling seems innoc
but it is not, on fundamental grounds. The physics behind
interaction of nodal quasiparticles with the external magne
field and vortices was elucidated by Franz and Tesˇanović.12

These authors devised a singular gauge transformation w
allows one to recast the original problem of BCS-like qua
particles, moving under the combined influence of an ex
nal magnetic field and a superflow arising from vortex arr
into that of Bloch particles moving in an effective nonun
form and periodic magnetic field, the spatial average
which equals zero. This approach clearly demonstrates
the low energy portion of the quasiparticle spectrum can
described as that of a relativistic Dirac particle minima
coupled to a fictitiousU(1) gauge potential, i.e., the ‘‘Berry’
gauge fielda, which supplies the needed6p winding in the
quantum mechanical phase of a quasiparticle as it encircl
vortex. Such half-flux Aharonov–Bohm scattering arises
tirely through interaction of quasiparticles with vortices a
it does not involve the external magnetic field explicitl
©2001 The American Physical Society08-1
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Thus, the cyclotron motion in a Dirac cone is caused exc
sively by atime-reversal invariant‘‘Berry’’ gauge field and
cannot lead to any Dirac Landau level quantization. Furt
progress came through the work of Marinelli, Halperin, a
Simon13 who analyzed the quasiparticle excitation spectra
different vortex lattices and provided analytic symmetry
guments regarding the presence of nodal~zero energy! points
in such spectra. These authors also devised a perturb
theory in the vicinity of nodal points which can be used
derive various results by analytic means. Various anal
results were also derived in the large anisotropy limit.14,15

Finally, the intricacies of Dirac equation in presence of ha
flux Bohm–Aharonov scattering were addressed in Ref.
where the tight-binding regularization was introduced to
store the exact singular gauge symmetry in numerical ca
lations using the low energy~linearized! theory. Such regu-
larization describes a latticed-wave superconductor and is
natural choice for cuprates: after all, most of the microsco
theories of HTS start from tight-binding effective Hamilto
nians. We should note that similar results for the quasipa
cle spectra were also found in fully self-consistent calcu
tions on the original Bogoliubov–deGennes~BdG!
equations, using the basis formed by eigenstates of the m
netic translation group.17,18

In this paper, we present a detailed analytical study of
quasiparticle Hall transport in a vortex state complemen
by explicit numerical calculations.19 We consider a lattice
d-wave superconductor of Ref. 16. This is important a
necessary since the straightforward linearization of B
equations drops curvature terms and results inkxy50.7,20We
employ the Franz and Tesˇanović~FT! transformation so tha
we can use the familiar Bloch representation of the tran
tion group in which the overall chirality of the problem va
ishes. This should be contrasted with the original probl
where the overall chirality is finite and the magnetic trans
tion group states must be used instead. Naively, it mi
appear that after an FT singular gauge transformation
effects of the magnetic field have somehow been transfor
away since the new problem is found to have zero aver
effective magnetic field. Of course, this is not true. The pr
ence of magnetic field in the original problem reveals its
fully in the FT transformed quasiparticle wave functions. A
ternatively, there is an ‘‘intrinsic’’ chirality imposed on th
system which cannot be transformed away by a choice of
basis. One manifestation of this chirality is the Hall effe
The utility of the singular gauge transformation in the calc
lation of the electrical Hall conductivity in thenormal 2D
electron gas in a~nonuniform! magnetic field was realized b
Nielsen and Hedega˚rd.21 They demonstrated that using si
gularly gauge transformed wave functions one still obta
the correct result, giving the electrical Hall conductan
quantized in units ofe2/h if the chemical potential lies in the
energy gap. In a superconductor, the question of Hall
sponse becomes rather interesting as there is a strong m
between particles and holes. Evidently, the electrical H
response is very different from the normal state, since cha
is not conserved in the state with brokenU(1) symmetry.
Therefore, as pointed out in Ref. 22, charge cannot be tr
ported by diffusion. On the other hand, the spin is still a go
22450
-

r

f
-

ion

ic

-
6,
-
u-

ic

i-
-

g-

e
d

d

-

-
t
e

ed
e
-
f

e
.
-

s
e

-
ing
ll
ge

s-
d

quantum number22 and it is natural to ask what is the sp
Hall conductivity in the vortex state of an extreme type
superconductor.23 Moreover, every channel of spin condu
tion simultaneously transports entropy22,24,19 and we would
expect some variation on Wiedemann–Franz law to hold
tween spin and thermal conductivity.

As one of our main results, we derive the Wiedeman
Franz law connecting the spin and thermal Hall transpor
the vortex stateof a d-wave superconductor. In the proces
we show that the spin Hall conductivity,sxy

s , just like the
electrical Hall conductivity of a normal state in a magne
field, is topological in nature and can be explicitly evaluat
as a first Chern number characterizing the eigenstates of
singularly gauge transformed problem.25,23,26 Consequently,
asT→0, the spin Hall conductivity is quantized in the uni
of \/8p when the energy spectrum is gapped, which, co
bined with the Wiedemann–Franz law, implies the quanti
tion of kxy /T. We then explicitly compute the quantized va
ues ofsxy

s for a sequence of gapped states using our lat
d-wave superconductor model in the case of an inversi
symmetric vortex lattice. Within this model one is natura
led to consider theBCS–Hofstadterproblem: the BCS pair-
ing problem defined on a uniformly frustrated tight-bindin
lattice. We find a sequence of plateau transitions, separa
gapped states characterized by different quantized value
sxy

s . At a plateau transition, level crossings take place a
sxy

s changes by an even integer.27 Both the origin of the gaps
in quasiparticle spectra and the sequence of values forsxy

s

are rather different than in the normal state, i.e., in the st
dard Hofstadter problem.28 In a superconductor, the gaps a
strongly affected by the pairing and the interactions of q
siparticles with a vortex array. The sequence ofsxy

s changes
as a function of the pairing strength~and therefore interac
tions!, measured by the maximum value of the gap funct
D.29 Finally, we discuss the relation of our results to tho
obtained within the continuum low energy~linearized!
theory.

II. BOGOLIUBOV –DeGENNES HAMILTONIAN

The experimental evidence points toward well defin
d-wave quasiparticles in cuprate superconductors in the
sence of the external magnetic field. This suggests tha
zeroth order fluctuations can be ignored and that one
think in terms of an effective BCS Hamiltonian, the simple
of which is written on the 2D tight-binding lattice with th
nearest neighbor interaction thus naturally implement
dx22y2 pairing. In question is then the response of such
superconductor to an externally applied magnetic fieldB. All
high temperature superconductors are extreme type-II fo
ing a vortex state in a wide range of magnetic fields. T
immediately sets up the contrast betweenB50 and BÞ0
situations: first, the problem is not spatially uniform an
therefore momentum is not a good quantum number and
ond, the array of (hc/2e) vortex fluxes poses topologica
constraint on the quasiparticles encircling the vortic
Therefore, despite ignoring any fluctuations, the problem
far from trivial and demands careful examination.
8-2
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The natural starting point is therefore the mean-field B
Hamiltonian written in second quantized form:30

H5E dxca
†~x!S 1

2m*
S p2

e

c
AD 2

2m D ca~x!

1E dxE dy@D~x,y!c↑
†~x!c↓

†~y!

1D* ~x,y!c↓~y!c↑~x!#, ~2.1!

whereA~x! is the vector potential associated with the u
form external magnetic fieldB, single electron energy is
measured relative to the chemical potentialm, ca(x) is the
fermion field operator with spin indexa, andD~x,y! is the
pairing field. For convenience we will define an integral o
eratorD̂ such that:

D̂c~x!5E dyD~x,y!c~y!. ~2.2!

In the strictest sense, on the mean-field level this prob
must be solved self-consistently which renders any analyt
solution virtually intractable. On the other hand, in the ca
at hand the vortex lattice is dilute for a wide range of ma
netic fields, and by the very nature of cuprate supercond
ors having short coherence length, the size of the vortex c
can be ignored relative to the distance between the vorti
Thus, to the first approximation, all essential physics is c
tured by fixing the amplitude of the order parameterD while
allowing vortex defects in its phase. Moreover, on a tig
binding lattice the vortex flux is concentrated inside t
plaquette and thus the length-scale associated with the co
implicitly the lattice spacingd of the underlying tight-
binding lattice. As shown in Ref. 16, under these approxim
tions thed-wave pairing operator in the vortex state can
written as a differential operator:

D̂5D0(
d

hd eif(x)/2ei d•peif(x)/2. ~2.3!

The sums are over nearest neighbors and on the square
binding lattice d56 x̂,6 ŷ; the vortex phase fields satisf
¹3¹f(x)52p ẑ( id(x2xi) with xi denoting the vortex po-
sitions andd(x2xi) being a 2D Dirac delta function;p is a
momentum operator, and

hd5H 1 if d56 x̂

21 if d56 ŷ.
~2.4!

The operator hd follows from the d-wave pairing: D
52D0@cos(kxdx)2cos(kydy)#. For notational convenience w
will use units where\51 and return to the conventiona
units when necessary.

It is straightforward to derive the continuum version
the tight binding lattice operatorD̂ ~see Ref. 16!:
22450
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2
$]x ,$]x ,D~x!%%2

1

2pF
2
$]y ,$]y ,D~x!%%1

i

8pF
2

D~x!

3@~]x
2f!2~]y

2f!#, ~2.5!

but for convenience we will keep the lattice definition E
~2.3! throughout. One can always define continuum as
appropriate limit of the tight-binding lattice theory. With th
above definitions, the Hamiltonian Eq.~2.1! can now be
written in the Nambu formalism as

H5E dxC†~x!Ĥ0C~x!, ~2.6!

where the Nambu spinorC†5(c↑
† ,c↓) and the matrix dif-

ferential operator

Ĥ05S ĥ D̂

D̂* 2ĥ*
D . ~2.7!

In the continuum formulationĥ5(1/2m* )(p2 (e/c) A)2

2m, while on the tight-binding lattice:

ĥ52t(
d

ei *x
x1d(p2

e
c A)•dl2m. ~2.8!

t is the hopping constant andm is the chemical potential. The
equations of motion of the Nambu fieldsC are then:

i\Ċ5@C,H#5Ĥ0C. ~2.9!

Note, that the Hamiltonian in Eq.~2.1! is our starting
unperturbedHamiltonian. In order to compute the linear re
sponse to externally applied perturbations we will have
add terms to Eq.~2.1!. In particular, we will consider two
types of perturbations in the later sections: First, partly
theoretical convenience, we will consider a weak gradien
magnetic field~“B! on top of the uniformB already taken
into account fully by Eq.~2.1!. The “B term induces spin
current in the superconductor.31 The response is then chara
terized by spin conductivity tensorss which in general has
nonzero off-diagonal components. Second, we consider
turbing the system by pseudo-gravitational field, which f
mally induces flow of energy~see Refs. 32–35! and allows
us to compute thermal conductivitykxy via linear response
The advantage of these formal considerations are made
in Sec. IV.

A. Particle-hole symmetry

The equations of motion~2.9! for stationary states lead t
Bogoliubov–de Gennes equations16

Ĥ0Fn5enFn . ~2.10!

The solution of these coupled differential equations
quasi-particle wave functions that are rank two spinors in
Nambu space,FT(r )5(u(r ),v(r )). The single particle exci-
tations of the system are completely specified once the q
siparticle wave functions are given, and as discussed la
transverse transport coefficients can be computed solely
8-3
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the basis ofF ’s. It is a general symmetry of the BdG equ
tions that if„un(r ),vn(r )… is a solution with energyen , then
there is always another solution„2vn* (r ),un* (r )… with en-
ergy 2en ~see, for example, Ref. 30!.

In addition, on the tight-binding lattice, if the chemic
potentialm50 in the above BdG Hamiltonian Eq.~2.7!, then
there is aparticle-holesymmetry in the following sense: i
„un(r ),vn(r )… is a solution with energyen , then there is
always another solutioneip(r x1r y)

„un(r ),vn(r )… with energy
2en . Thus we can choose:

S un
(2)~r !

vn
(2)~r !

D 5eip(r x1r y)S un
(1)~r !

vn
(1)~r !

D , ~2.11!

where1 (2) corresponds to a solution with positive~nega-
tive! energy eigenvalue. We will refer to this as particle ho
transformationP̂H .

B. Franz–Tešanović transformation and translation symmetry

In order to elucidate another important symmetry of t
Hamiltonian Eq.~2.7!, we follow FT12,16 and perform a ‘‘bi-
partite’’ singular gauge transformation on the Bogoliubov–
Gennes Hamiltonian Eq.~2.10!,

Ĥ0→U21Ĥ0U, U5S eife(r ) 0

0 e2 ifh(r )D , ~2.12!

wherefe(r ) andfh(r ) are two auxiliary vortex phase func
tions satisfying

fe~r !1fh~r !5f~r !. ~2.13!

This transformation eliminates the phase of the order par
eter from the pairing term of the Hamiltonian. The pha
fields fe(r ) and fh(r ) can be chosen in a way that avoid
multiple valuedness of the wave functions. The way to
complish this is to assign the singular part of the phase fi
generated by any given vortex to eitherfe(r ) or fh(r ), but
not both. Physically, a vortex assigned tofe(r ) will be seen
by electrons and be invisible to holes, while vortex assign
to fh(r ) will be seen by holes and be invisible to electron
For periodic Abrikosov vortex array, we implement th
above transformation by dividing vortices into two groupsA
andB, positioned at$r i

A% and$r i
B%, respectively~see Fig. 1!.

We then define two phase fieldsfA(r ) andfB(r ) such that

¹3¹fa~r !52p ẑ(
i

d~r2r i
a!, a5A,B, ~2.14!

and identifyfe5fA andfh5fB. On the tight-binding lat-
tice the transformed Hamiltonian becomes

ĤN5(
d

$s3~2tei * r
r1d(a2s3v)•dlei d•p2m!

1s1D0hde
i * r

r1da•dlei d•p%, ~2.15!

where
22450
e
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e

-
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.

v5 1
2 ¹f2

e

c
A; a5 1

2 ~¹fA2¹fB!, ~2.16!

s1 ands3 are Pauli matrices operating in Nambu space, a
the sum is again over the nearest neighbors. Note that
integrand of Eq.~2.15! is proportional to the superfluid ve
locities

vs
a5

1

m*
S ¹fa2

e

c
AD , a5A,B ~2.17!

and is therefore explicitly gauge invariant as are the o
diagonal pairing terms.

From the perspective of quasiparticlesvs
A and vs

B can be
thought of aseffectivevector potentials acting on electron
and holes, respectively. Corresponding effective magn
field seen by the quasiparticles isBeff

a 52(m* c/e)(“3vs
a),

and can be expressed using Eqs.~2.14! and ~2.15! as

Beff
a 5B2f0ẑ(

i
d~r2r i

a!, a5A,B, ~2.18!

where B5“3A is the physical magnetic field andf0
5hc/e is the flux quantum. We observe that quasi-electro
and quasi-holes propagate in the effective field which c
sists of ~almost! uniform physical magnetic fieldB and an
array of opposing delta function ‘‘spikes’’ of unit fluxes a
sociated with vortex singularities. The latter are different
electrons and holes. As discussed in Refs. 12,16 this ch
guarantees that the effective magnetic field vanishes on
erage, i.e.,̂ Beff

a &50 since we have precisely one flux spik
~of A andB type! per flux quantum of the physical magnet
field. Flux quantization guarantees that the right hand side
Eq. ~2.18! vanishes when averaged over a vortex lattice u
cell containing two physical vortices. It also implies th
there must be equal numbers ofA and B vortices in the
system.

FIG. 1. Example ofA and B sublattices for the square vorte
arrangement. The underlying tight-binding lattice, on which t
electrons and holes are allowed to move, is also indicated.
8-4
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The essential advantage of the choice with vanish
^Beff

a & is thatvs
A andvs

B can be chosen periodic in space wi
periodicity of the magnetic unit cell containing an integ
number of electronic flux quantahc/e. Notice that vector
potential of a field that does not vanish on average can n
be periodic in space. Condition̂Beff

a &50 is therefore crucial
in this respect. The singular gauge transformation Eq.~2.12!
thus maps the original Hamiltonian of fermionic quasipa
cles in finite magnetic field onto a new Hamiltonian which
formally in zero average field and has only ‘‘neutralize
singular phase windings in the off-diagonal components.

The resulting new Hamiltonian now commutes with tran
lations spanned by the magnetic unit cell, i.e.,

@ T̂R ,ĤN#50, ~2.19!

where the translation operatorT̂R5exp(iR•p). We can there-
fore label eigenstates with a ‘‘vortex’’ crystal momentu
quantum numberk and use the familiar Bloch states as t
natural basis for the eigenproblem. In particular we seek
eigensolution of the BdG equationĤNc5ec in the Bloch
form

cnk~r !5eik•rFnk~r !5eik•rS Unk~r !

Vnk~r !
D , ~2.20!

where (Unk ,Vnk) are periodic on the corresponding unit ce
n is a band index, andk is a crystal wave vector. Bloch wav
function Fnk(r ) satisfies the ‘‘off-diagonal’’ Bloch equation
Ĥ(k)Fnk5enkFnk with the Hamiltonian of the form

Ĥ~k!5e2 ik•rĤNeik•r. ~2.21!

Note that the dependence onk, which is bounded to lie in the
first Brillouin zone, is continuous. This will become impo
tant when topological properties of spin transport are d
cussed in the Sec. III C.

III. SPIN CONDUCTIVITY

Within the framework of linear-response theory,36 spin dc
conductivity can be related to the spin current–current
tarded correlation functionDmn

R through:

smn
s 5 lim

V→0
lim

q1 ,q2→0
2

1

iV
„Dmn

R ~q1 ,q2 ,V!2Dmn
R ~q1 ,q2,0!….

~3.1!

The retarded correlation functionDmn
R (V) can in turn be

related to the Matsubara finite temperature correlation fu
tion

Dmn~ iV!52E
0

b

ei tV^Tt j m
s ~t! j n

s~0!&dt ~3.2!

as

lim
q1 ,q2→0

Dmn
R ~q1 ,q2 ,V!5Dmn~ iV→V1 i0!. ~3.3!
22450
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In Eq. ~3.2! the spatial average of the spin currentj s(t) is
implicit, since we are looking for dc response of spatia
inhomogeneous system. In the next section we derive
spin current and evaluate the above formulas.

A. Spin current

In order to find the dc spin conductivity, we must first fin
the spin current. More precisely, since we are looking o
for the spatial average of the spin currentj s(t) we just need
its k→0 component. In direct analogy with theB50
situation,24 we can define the spin current by the continu
equation:

r ṡ1¹• j s50, ~3.4!

where rs5\/2(c↑x
† c↑x2c↓x

† c↓x) is the spin density pro-
jected ontoz-axis. We can then use equations of motion f
the c fields, Eq.~2.9!, and compute the current densityj s

from Eq. ~3.4!.
In the limit of q→0 the spin current can be written as~see

Appendix B!

j m
s 5

\

2
C†VmC, ~3.5!

where the Nambu fieldC†5(c↑
† ,c↓) and the generalized

velocity matrix operatorVm satisfies the following commu
tator identity:

Vm5
1

i\
@xm ,Ĥ0#. ~3.6!

Equation~3.6! is a direct restatement of the fact that spin c
be transported by diffusion, i.e., it is a good quantum num
in a superconductor, and that the average velocity of
propagation is just the group velocity of the quantum m
chanical wave.

In the clean limit, the transverse spin conductivitysxy
s

defined in Eq.~3.1! is

sxy
s ~T!5

\2

4i (
m,n

~ f n2 f m!
Vy

mnVx
nm

~en2em1 i0!2
, ~3.7!

where f m5„11exp(ben)…
21 is the Fermi–Dirac distribution

function evaluated at energyem . For details of the derivation
see Appendix B. The indicesm andn label quantum numbers
of particular states. The matrix elementsVm

mn are

Vm
mn5^muVmun&5E dx~um* ,vm* !VmS un

vn
D , ~3.8!

where the particle-hole wave functionsum ,vn satisfy the
Bogoliubov–deGennes equation~2.10!. Note that unlike the
longitudinal dc conductivity, transverse conductivity is we
defined even in the absence of impurity scattering. This de
onstrates the fact that the transverse conductivity isnot dis-
sipative in origin. Rather, as will be discussed in Sec. III
its nature is topological.

In the limit of T→0 the expression~3.7! for sxy
s becomes
8-5
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sxy
s 5

\2

4i (
em,0,en

Vx
mnVy

nm2Vy
mnVx

nm

~em2en!2
. ~3.9!

The summation extends over all states below and above
Fermi energy which, by the nature of the superconducto
automatically set to zero.

B. Vanishing of the spin conductivity at half filling „µÄ0…

It is useful to contrast thesemiclassicalapproach with the
full quantum mechanical treatment of transverse spin c
ductivity. In semiclassical analysis the starting unperturb
Hamiltonian is usually defined in theabsenceof magnetic
field B. One then assumes semiclassical dynamics and
interband transitions. In this picture, if there is particle-ho
symmetry in the original~B50! Hamiltonian, then there will
be no transverse spin~thermal! transport, since the number o
carriers with a given spin~energy! will be the same in oppo-
site directions. In this context, similar argument was p
forth in Ref. 7. However, the problem of ad-wave supercon-
ductor is not so straightforward. As pointed out in Ref. 16,
the nodal~Dirac fermion! approximation, the vector potentia
is solely due to the superflow while the uniform magne
field enters as a Doppler shift, i.e., Dirac scalar potent
Semiclassical analysis must then be started from this van
point and the above conclusions are not straightforwa
since the quasiparticle motion is irreducibly quantum m
chanical.

Here we present an argument for the full quantum m
chanical problem, without relying on the semiclassical ana
sis. We show that spin conductivity tensor Eq.~3.7! vanishes
at m50 due to particle-hole symmetry Eq.~2.11!. First note
that the Fermi–Dirac distribution function satisfiesf (e)51
2 f (2e). Therefore, the factorf m2 f n changes sign unde
the particle-hole transformationP̂H Eq. ~2.11!, while the de-
nominator (em2en)2 clearly remains unchanged. In additio
each of the matrix elementsVm

mn changes sign underP̂H .
Thus the double summation over all states in Eq.~3.7! yields
zero.

Consequently the spin transport vanishes for a cl
strongly type-II BCSd-wave superconductor on a tight bind
ing lattice at half filling. Due to Wiedemann–Franz la
which we derive in the next section, thermal Hall conduct
ity also vanishes at half filling at sufficiently low temper
tures. Note that this result is independent of the vortex
rangement, i.e., it holds even for disordered vortex array
does not rely on any approximation regarding inter- or int
nodal scattering.

C. Topological nature of spin Hall conductivity at TÄ0

In order to elucidate the topological nature ofsxy
s , we

make use of the translational symmetry discussed in Sec.
and formally assume that the vortex arrangement is perio
However, the detailed nature of the vortex lattice will not
specified and thus any vortex arrangement is allowed wi
the magnetic unit cell. The conclusions we reach are th
fore quite general.
22450
he
is

-
d

no

t

l.
ge
d,
-

-
-

n

-

r-
d
-

B
ic.

in
e-

We will first rewrite the velocity matrix elementsVm
mn

using the singularly gauge transformed basis as discusse
Sec. II B. Inserting unity in the form of the FT gauge tran
formation Eq.~2.12!

Vm
mn5^muVmun&5^muUU21VmUU21un&. ~3.10!

The transformed basis statesU21un& can now be written in
the Bloch form aseik•runk& and therefore the matrix elemen
becomes

Vm
mn5^mkue2 ik•rU21VmUeik•runk&5^mkuVm~k!unk&.

~3.11!

We used the same symbolk for both bra and ket because th
crystal momentum in the first Brillouin zone is conserve
The resulting velocity operator can now be simply expres
as

Vm~k!5
1

\

]Ĥ~k!

]km
, ~3.12!

whereĤ0(k) was defined in Eq.~2.21!. Furthermore the ma-
trix elements of the partial derivatives ofĤ(k) can be sim-
plified according to

K mkU ]Ĥ~k!

]km
UnkL 5~ek

n2ek
m!K mkU]nk

]km
L

52~ek
n2ek

m!K ]mk

]km
UnkL , ~3.13!

for mÞn. Utilizing Eqs.~3.12! and~3.13!, Eq. ~3.9! for sxy
s

can now be written as

sxy
s 5

\

4i E dk

~2p!2 (
em,0,en

K ]mk

]kx
UnkL K nkU]mk

]ky
L

2 K ]mk

]ky
UnkL K nkU]mk

]kx
L . ~3.14!

The identity(ek
m,0,ek

n(umk&^mku1unk&^nku)51, can be fur-

ther used to simplify the above expression to read

sxy
s,m5

\

8p

1

2p i E dkS K ]mk

]kx
U]mk

]ky
L 2 K ]mk

]ky
U]mk

]kx
L D ,

~3.15!

where sxy
s,m is a contribution to the spin Hall conductanc

from a completely filled bandm, well separated from the res
of the spectrum. Therefore the integral extends over the
tire magnetic Brillouin zone that is topologically a two-toru
T2. Let us define a vector fieldÂ in the magnetic Brillouin
zone as

Â~k!5^mku“kumk&, ~3.16!

where“k is a gradient operator in thek space. From Eq.
~3.15! this contribution becomes
8-6
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sxy
s,m5

\

8p

1

2p i E dk@“k3Â~k!#z , ~3.17!

where@ #z represents the third component of the vector. T
topological aspects of the quantity in Eq.~3.17! were exten-
sively studied in the context of integer quantum Hall effe
~see e.g., Ref. 37! and it is a well known fact that

1

2p i E dk@“k3Â~k!#z5C1 , ~3.18!

whereC1 is a first Chern number that is an integer. The
fore, a contribution of each filled band tosxy

s is

sxy
s,m5

\

8p
N, ~3.19!

where N is an integer. The assumption that the band mus
separated from the rest of the spectrum can be relaxed. If
or more fully filled bands cross each other the sum tota
their contributions to spin Hall conductance is quantiz
even though nothing guarantees the quantization of the i
vidual contributions. The quantization of the total spin H
conductance requires a gap in the single particle spectru
the Fermi energy. As discussed in Sec. V, the general si
particle spectrum of thed-wave superconductor in the vorte
state with inversion-symmetric vortex lattice is gapped a
therefore the quantization ofsxy

s is guaranteed.

IV. THERMAL CONDUCTIVITY

Before discussing the nature of the quasiparticle sp
trum, we will establish a Wiedemann–Franz law betwe
spin conductivity and thermal conductivity for ad-wave su-
perconductor. This relation is naturally expected to hold fo
very general system in which the quasiparticles form a
generate assembly, i.e., it holds even in the presence of
tically scattering impurities.

Following Luttinger,32 and Smrcˇka and Strˇeda34 we intro-
duce a pseudo-gravitational potentialx5x•g/c2 into the
Hamiltonian Eq.~2.6! whereg is a constant vector. The pu
pose is to include a coupling to the energy density on
Hamiltonian level. This formal trick allows us to equate s
tistical (T¹(1/T)) and mechanical (g) forces so that the
thermal currentjQ, in the long wavelength limit given by

jQ5LQ~T!S T¹
1

T
2¹x D , ~4.1!

will vanish in equilibrium. Therefore it is enough to consid
only the dynamical forceg to calculate the phenomenolog
cal coefficientLmn

Q . Note that thermal conductivitykxy is

kmn~T!5
1

T
Lmn

Q ~T!. ~4.2!

When the BCS HamiltonianH introduced in Eq.~2.1! be-
comes perturbed by the pseudo-gravitational field, the res
ing HamiltonianHT has the form

HT5H1F, ~4.3!
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where F incorporates the interaction with the perturbin
field:

F5
1

2E dxC†~x!~Ĥ0x1xĤ0!C~x!. ~4.4!

Sincex is a small perturbation, to the first order inx the
HamiltonianHT can be written as

HT5E dxS 11
x

2DC†~x!Ĥ0S 11
x

2DC~x!, ~4.5!

i.e., the application of the pseudo-gravitational field results
rescaling of the fermion operators:

C→C̃5S 11
x

2DC. ~4.6!

If we measure the energy relative to the Fermi level,
transport of heat is equivalent to the transport of energy
analogy with the Sec. III A, we define the heat currentjQ

through diffusion of the energy-densityhT . From conserva-
tion of the energy-density the continuity equation follows

ḣT1¹• jQ50. ~4.7!

In the limit of q→0 the thermal current is

j m
Q5

i

2
~C̃†VmĊ̃2Ċ̃†VmC̃!. ~4.8!

For details see Appendix C. Note that the quantum statist
average of the current has two contributions, both linear inx,

^ j m
Q&5^ j 0m

Q &1^ j 1m
Q &[2~Kmn

Q 1Mmn
Q !]nx. ~4.9!

The first term is the usual Kubo contribution toLmn
Q while the

second term is related to magnetization of the sample38 for
transverse components ofkmn and vanishes for the longitu
dinal components. In Appendix C we show that atT50 the
term related to magnetization cancels the Kubo term
therefore the transverse component ofkmn is zero atT50.
To obtain finite temperature response, we perform Somm
feld expansion and derive Wiedemann–Franz law for s
and thermal Hall conductivity.

As shown in Appendix C

Lmn
Q ~T!52S 2

\ D 2E djj2
d f~j!

dj
s̃mn

s ~j!, ~4.10!

where

s̃xy
s ~j!5

\2

4i (
em,j,en

Vx
mnVy

nm2Vy
mnVx

nm

~em2en!2
. ~4.11!

Note thats̃mn
s (j50)5smn

s (T50). For a superconductor a
low temperature the derivative of the Fermi–Dirac distrib
tion function is

2
d f~j!

dj
5d~j!1

p2

6
~kBT!2

d2

dj2
d~j!1••• ~4.12!
8-7
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Substituting Eq.~4.12! into Eq. ~4.10! we obtain

Lmn
Q ~T!5

4p2

3\2
~kBT!2smn

s , ~4.13!

wheresmn
s is evaluated atT50. Finally, using Eq.~4.2!, in

the limit of T→0

kmn~T!5
4p2

3 S kB

\ D 2

Tsmn
s . ~4.14!

We recognize the Wiedemann–Franz law for the spin
thermal conductivity in the above equation. As mention
this relation is quite general in that it is independent of
spatial arrangement of the vortex array or elastic impurit
Thus, quantization of the transverse spin conductivitysxy

s

implies quantization ofkxy /T in the limit of T→0.

V. QUASIPARTICLE SPECTRUM AND QUANTIZED
CONDUCTIVITY

General features of the quasiparticle spectrum can be
derstood on the basis of symmetry alone. Since the ti
reversal symmetry is broken, the Bogoliubov–de Gen
HamiltonianH0, Eq. ~2.10!, must be, in general, complex
According to the ‘‘noncrossing’’ theorem of von Neuman
and Wigner,39 a complex Hamiltonian can have degener
eigenvalues unrelated to symmetry only if there are at le
three parameters which can be varied simultaneously.

Since the system is two dimensional, with the vortic
arranged on the lattice, there are two parameters in
HamiltonianĤ(k) Eq. ~2.21!: vortex crystal momentakx and
ky which vary in the first Brillouin zone. Therefore, w
should not expect any degeneracy to occur,in general, unless
there is some symmetry which protects it. Away from ha
filling ( mÞ0) and with unspecified arrangement of vortic
in the magnetic unit cell there is not enough symmetry
cause degeneracy. There is onlyglobal Bogoliubov–de
Gennes symmetry relating quasiparticle energyek at some
point k in the first Brillouin zone to2e2k .

In order for every quasiparticle band to be either co
pletely below or completely above the Fermi energy, it
sufficient for the vortex lattice to have inversion symmet
This can be readily seen by the following argument: Co
sider a vortex lattice with inversion symmetry. Then, by t
very nature of the superconducting vortex carrying (hc/2e)
flux, there must be even number of vortices per magn
unit cell and we are then free to choose Franz–Tesan
labelsA andB in such a way thatvA(2r )52vB(r ). To see
this note that the explicit form of the superfluid velociti
can be written as:16

vs
a~r !5

2p\

m*
E d2k

~2p!2

ik3 ẑ

k2 (
i

eik•(r2r i
a), ~5.1!

wherea5A or B and r i
a denotes the position of the vorte

with label a. If the vortex lattice has inversion symmetr
then for everyr i

A there is a corresponding2r i
B such that

r i
A52r i

B . Therefore, under space inversionI
22450
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Iv A~r !5v A~2r !52v B~r !. ~5.2!

Recall that the tight-binding lattice Bogoliubov–de Genn
Hamiltonian written in the Bloch basis Eq.~2.21! reads:

Ĥ~k!5(
d

$s3~2tei * r
r1d (a2s3v)•dlei d•(k1p)2m!

1s1D0hde
i * r

r1da•dlei d•(k1p)%, ~5.3!

where

v~r ![ 1
2 „v

A~r !1v B~r !…; a~r ![ 1
2 „v

A~r !2v B~r !….
~5.4!

As befores1 ands3 are Pauli matrices operating in Namb
space and the sum is again over the nearest neighbors. I
be easily seen that upon applying the space inversionI to
Ĥ(k) followed by complex conjugationC andis2 we have a
symmetry that for everyek there is2ek , that is:

2 is2CIĤ ~k!ICis252Ĥ~k! ~5.5!

which holds for every point in the Brillouin zone. Therefor
in order for the spectrumnot to be gapped, we would nee
band crossing at the Fermi level. But by the noncross
theorem this cannot happenin general. Thus, the quasi-
particle spectrum of inversion symmetric vortex lattice
gapped, unless an external parameter, other thankx andky ,
is fine-tuned. As was established in the previous sect
gapped quasiparticle spectrum implies quantization of
transverse spin conductivitysxy

s as well askxy /T for T suf-
ficiently low.

Precisely at half-filling (m50) sxy
s must vanish on the

basis of particle-hole symmetry~see Sec. III B!. We can then
vary the chemical potential so thatmÞ0 and break particle-
hole symmetry. Hence, the chemical potentialm can serve as
the third parameter necessary for creating the accidenta
generacy, i.e., at some special values ofm* the gap at the
Fermi level will close~see Fig. 2!. This results in a possibil-
ity of changing the quantized value ofsxy

s by an integer in
units of \/8p ~Fig. 2!.27 In contrast to the integer quantum
Hall effect in the normal state, the very nature of the sup
conductor forces the gap to bealwayscentered at the Ferm
level. This holds even when the effects of the tight-bindi
lattice are taken into account and consequently we ach
plateaudependence on the chemical potential.

Similarly, we can change the strength of the electro
electron attraction, which is proportional to the maximu
value of the superconducting order parameterD0 while keep-
ing the chemical potentialm fixed. Again, as can be seen i
Fig. 3, at some special valuesD0* the spectrum is gapless an
the quantized Hall conductance undergoes a transition.

VI. SCALING FUNCTIONS

As shown in the previous section, the quasiparticle sp
trum of ad-wave superconductor in vortex state is gapped
general. Therefore, at temperaturesT which are much less
than theDm ~magnetic fieldB induced gap!, T-dependence of
thermal conductivitykxy can be determined uniquely. More
8-8
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over,B-dependence ofkxy comes entirely from the spin con
ductivity sxy

s (B). That is:

kxy5
4p2

3 S kB

\ D 2

Tsmn
s ~B!. ~6.1!

Curiously, if the above equation is naively combined w
Simon and Lee scaling7

kxy~T,B!5T2FxySAB

T D , ~6.2!

the scaling function would be determined up to a proporti
ality constantC:

kxy~T,B!5CTAB. ~6.3!

In the recent experiments of Onget al.6 this is precisely the
scaling seen in the temperature range up to;25 K.

While the above arguments are tempting in their simp
ity, one must hesitate before proclaiming that they prov
the explanation for the scaling observed by Onget al.6 First,
the experiments are done at rather high temperatures and
unlikely that the ultimate low temperature scaling regime,
which we expect our Eq.~6.1! to be rigorously satisfied, ha
been reached. Second, and even more glaring, is an intr
theoretical problem: once the low temperature scaling reg
is reached and Eq.~6.1! holds we have argued thatsxy

s ~and
thereforekxy as well! will be quantized as a function o
magnetic field, rather than obeyingsxy

s }AB required for the

FIG. 2. The mechanism for changing the quantized spin H
conductivity is through exchanging the topological quanta via~‘‘ac-
cidental’’! gap closing. The upper panel displays spin Hall cond
tivity sxy

s as a function of the chemical potentialm. The lower panel
shows the magnetic field induced gapDm in the quasiparticle spec
trum. Note that the change in the spin Hall conductivity occ
precisely at those values of chemical potential at which the
closes. Hence the mechanism behind the changes ofsxy

s is the ex-
change of the topological quanta at the band crossings. The pa
eters for the above calculation were: square vortex lattice, magn
length l 54d, D50.1t or equivalently the Dirac anisotropyaD

510.
22450
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scaling form Eq.~6.3! to hold. Furthermore, the Simon an
Lee scaling form Eq.~6.2!, derived under the assumption o
linear, massless Dirac dispersion at the nodes, will itself
come suspect in presence of a small mass gap necessa
the low temperature quantization. Still, one should never r
dismissing experimentally observed scaling laws, parti
larly not the one so simple as Eq.~6.3!. It is conceivable that
the ‘‘staircase’’ structure of quantized and oscillatingsxy

s (B)
has a guiding ‘‘envelope’’ exhibiting an approximateAB de-
pendence and that the Simon and Lee scaling form Eq.~6.2!
holds to a good approximation at temperatures low eno
for linear dispersion at the nodes to become apparent w
still high or comparable to the much lower energy scale
the Dirac mass gap. If this were the case, the experimen
observed scaling Eq.~6.3! would still hold to a good ap-
proximation. Further investigation of these issues is left
future study.

VII. CONTINUUM VERSUS LATTICE THEORY

The previous discussion concentrated on the tight-bind
formulation of the problem which is important if the mag
netic field is relatively large and if there is a strong intera
tion between the underlying ionic lattice and the quasipa
cles. In usual experimental situations, however, the magn
length is much longer than the inter-ionic spacing and
would expect that the length-scale associated with the io
lattice becomes unimportant at low energies. This leads
continuum formulation of the theory~see Sec. I!.

A. Linearized continuum theory

On the basis of theB50 problem, we expect that the low
energy physics is confined ink-space around four noda
points on the Fermi surface. In order to treat the effect of
magnetic field and of the vortex lattice on the low ener

FIG. 3. The upper panel displays spin Hall conductivitysxy
s as a

function of the maximum superconducting order parameterD0. The
lower panel shows the magnetic field induced gap in the quasi
ticle spectrum. The change in the spin Hall conductivity occurs
those values ofD0 at which the gap closes. The parameters for
above calculation were: square vortex lattice, magnetic lengl
54d, m52.2t.
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properties of the spectrum, we would ideally like to constr
a Hamiltonian which treats each of the four nodes indep
dently. A natural way to do this was suggested by Simon
Lee7 and later extensively used by others.12,13,15,16

As was pointed out in Ref. 16 there is a subtle probl
associated with numerical implementation of the continu
linearized version of the theory. On the physical grounds
given problem involving chargee ~quasi!particle interacting
with a 1(hc/2e) vortex must lead to an identical eigenvalu
spectrum as for a2(hc/2e) vortex as long as the wave func
tion of the particle vanishes precisely at the vortex. This is
exact singular gauge symmetry of our physical problem
therefore it should be present at all stages of any approxi
tion. Extensive numerical study of the linearize
approximation16 pointed out that this symmetry is weak
violated in the quasiparticle spectra. The problem pers
irrespective of the techniques chosen to diagonalize the
earized Hamiltonian, i.e., it is present in real space as we
momentum space representation. The issue was resolv
Ref. 16 by regularizing the problem on the tight-binding la
tice which offered many advantages, some of which are
lized in this paper. On the other hand, the concept of sin
node physics is lost in a tight binding formulation as t
latter naturally describes the physics of all four nodes
would be desirable to formulate a properly regulariz
Hamiltonian describing single node physics only. From
work of Franz and Tesanovic,12 the most natural candidate
a free, anisotropic, massless Dirac Hamiltonian

H05S vFp̂x vDp̂y

vDp̂y 2vFp̂x
D ~7.1!

perturbed by scalar and vector potentials defined in
~2.17!:

H85mS vFvsx
A 1

2 vD~vsy
A 2vsy

B !

1
2 vD~vsy

A 2vsy
B ! vFvsx

B D . ~7.2!

vF and vD are Fermi and gap velocities, respectively.12 We
wish to argue that the above Hamiltonian is well defined a
does not suffer from singular gauge asymmetry, provid
that suitable boundary conditions and their transformati
are also specified. The discrepancies encountered in the
merics are believed to result from neglecting the bound
conditions and the effect of the singular gauge transform
tion on them.

In the context of high energy physics, a similar proble
was studied extensively. It was found that the Dirac-ty
equations in the presence of a single Aharonov–Bohm st
require self-adjoint extensions which enlarge the Hilb

space by the wave functions withr 2
1
2 radial behavior. In

addition, the wave functions depend on a dimensionless
rameterQ which specifies the boundary conditions at t
core. A consistent procedure enabling one to construct
needed self-adjoint extension involves the theory of v
Neumann deficiency indices.40,41

The above considerations can be illustrated on a w
studied problem of a Dirac particle in the field of a sing
22450
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string.42,43We will restrict ourselves to the case of a massle
Dirac particle and (hc/2e) flux carried by the string. The
Hamiltonian

~ i ]”2eA” !c50 ~7.3!

in this case is axially symmetric and after separation of va
ables

c~r ,f!5S x1

eifx2D einf ~7.4!

one obtains the equation for the radial wave functions:

Hrx[S 0 2 i S d

dr
1

n11

r D
2 i S d

dr
2

n

r D 0
D x~r !5Ex~r !,

~7.5!

wheren5 1
2 1n is a half-integer. The solutions of this equ

tion can be expressed through Bessel functions as

x r}S Jen~ uEur !

iJe(n11)~ uEur !
D , ~7.6!

wheree561. The square integrability condition determin
sign ofe for all n exceptn521/2. Both choices ofe result in
a wave function diverging as 1/Ar while still remaining
square integrable. The requirement of regularity for all t
solutions atr 50 turns out to be too restrictive and results
numerous pathologies such as incompleteness of the b
The problem is solved by using von Neumann theory
self-adjoint extensions.42,44 Since the radialHr operator in
Eq. ~7.5! defined in the domain of regular functions has d
ficiency indices~1,1!, one is forced to extend the Hilber
space by relaxing the condition of regularity and allowing f
the wave functions42

x~r !}
1

r 1/2S i sinQ

cosQ
D . ~7.7!

The angleQP(p/4,p/41p), determined by the details o
the vortex core, parameterizes the self-adjoint extension

The energy eigenstates forn521/2 are given by

S sinmJ21/2~ uEur !1~21!ncosmJ1/2~ uEur !

sinmJ1/2~ uEur !2~21!ncosmJ21/2~ uEur !
D , ~7.8!

where the parameterm5Q if n is even, while forn odd
m5p2Q. In addition, for some values ofQ there is a bound
state.42

We encounter a peculiar situation in which the long d
tance physics governed by Eq.~7.3! still depends on bound
ary conditions imposed at the core. Linearization of t
original BdG problem neglects terms ‘‘small’’ in conven
tional sense which, nevertheless, remain effectively pres
in Q dependence of Eq.~7.8! . Although the linearized equa
tion ~7.3! has no length scale, the core physics, now eff
tively shrunk to a circle with vanishing radius around t
8-10
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singularity, manifests itself in the wave functions Eq.~7.7!
with the long power law tails. In general, there are only tw
values ofQ corresponding to the pured-function magnetic
field.45 However, in the case of other contact interactio
present in the core, the parameterQ can be arbitrary.45

Various regularizations of the problem were studied le
ing to different choices of the self-adjoint extension.46 One
possibility is to put an impenetrable cylinder of small b
finite radiusr around a vortex thus forcing the wave fun
tions to vanish on the surface of the cylinder. Such a bou
ary condition specification will immediately restore th
6(hc/2e) vortex invariance because the value of the wa
function at the surface of the cylinder will not transfor
under singular gauge transformation. Of course, the
boundary conditions must descend from the original phys
problem, in this case from the self-consistent solution of
full Bogoliubov–de Gennes equation including the core
gion. The quasiparticle wave functions do not, in gene
vanish around the vortex.47 Therefore, not only the quasipa
ticle wave functions but also the constraints imposed
them must be properly transformed under singular ga
transformation.

B. Beyond the linearized theory

As pointed out by Simon and Lee7 and then later by Ye,20

linearized theory predicts vanishing transverse conduc
ties. In order to include the description of Hall effects, t
curvature terms must be included. Without regularization,
perturbative analysis of the curvature terms are far fr
straightforward. This has to do with the fast rise of bo
wave functions and perturbations around the core. If
regularization is taken into account and the wave functi
are forced to vanish at some radiusr around the core, the
new length scaler will break the scale invariance of th
Dirac equation. Moreover, the perturbative analysis of
continuum equation would predict that the contribution
each node tosxy

s can be either 0 or61
2 in units of \/8p.19

Thus, if all four nodes are included, the only possible valu
of sxy

s are 0 or62. On the other hand, explicit evaluation
sxy

s via the tight-binding lattice regularization indicates th
a wide range of values forsxy

s is possible~see Figs. 2 and 3!.
An interesting question remaining for future study is how
implement the picture presented in Ref. 19, of individu
Dirac nodes changingsxy

s by 61 through action of the per
turbatively determined mass term as an ‘‘elementary build
block’’ of more complicated band crossings.

One way to reach the continuum limit is to make t
magnetic lengthl much longer than the tight-binding lattic
constantd. The drawback associated with the tight-bindi
regularization of the problem stems from the fact that
continuum limit is not smooth and unless an exact analyt
solution is found it is complicated to analyze numerical
The similar situation occurs in a tight-binding Hofstadt
problem of a 2D normal electron gas on the lattice.

VIII. CONVENTIONAL SUPERCONDUCTORS

Although the previous analysis was focused on unconv
tional d-wave superconductors, the main results can be
22450
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rectly generalized to conventional 2Ds-wave superconduct
ors in the vortex state: the transverse spin Hall conductiv
sxy

s is quantized in units of\/8p and by Wiedemann–Fran
law kxy5(4p2/3)(kB /\)2Tsxy

s as T→0. At low magnetic
fields, the quasiparticle spectrum is gapped by the virtue
the lowest Caroli–Matricon–de Gennes vortex core bou
state having energy;D2/eF . In the vortex lattice the CMdG
bound states are extended and form bands. If the vortices
disordered, the states in the band tails will be localized a
the effective quasiparticle gap will be increased because
localized states do not contribute to transport. As the m
netic field is increased, the spectrum becomes progressi
altered and at some critical fieldB* it develops nodal points
~see Ref. 48!. The transition between states with two diffe
ent quantized values ofsxy

s happens at theB induced gap
closings. Therefore, a series of transitions between diffe
spin Hall states is predicted to occur in the conventio
superconductors as well.

IX. CONCLUSIONS

In conclusion, we examined a general problem of 2
type-II superconductors in the vortex state with inversi
symmetric vortex lattice. The single particle excitation spe
trum is typically gapped and results in quantization of tra
verse spin conductivitysxy

s in units of\/8p.27 The topologi-
cal nature of this phenomenon is discussed. The size of
magnetic field induced gapDm in unconventionald-wave
superconductors is not universal and in principle can be
large as several percent of the maximum superconduc
gap D0. By virtue of the Wiedemann–Franz law
which we derive for thed-wave Bogoliubov–de Genne
equation in the vortex state, the thermal conductivitykxy

5(4p2/3)(kB /\)2Tsxy
s asT→0. Thus atT!Dm the quan-

tization of kxy /T will be observable in clean samples wit
negligible Landeg factor and with well ordered Abrikosov
vortex lattice. In conventional superconductors, the size
Dm is given by Matricon–Caroli-deGennes vortex bou
states;D2/eF .

In real experimental situations, Landeg factor is not nec-
essarily small. In fact it is close to 2 in cuprates.49 The Zee-
man effect must therefore be included in the analysis. N
ertheless, detailed numerical examination of the quasipar
spectra reveals that the spectrum remains gapped for a
range of physically realizable parameters even ifg52. Thus,
although the Zeeman splitting is a competing effect, in g
eral it is not strong enough to prevent the quantization ofsxy

s

and consequently ofkxy /T.
We have explicitly evaluated the quantized values ofsxy

s

on the tight-binding lattice model ofdx22y2-wave BCS su-
perconductor in the vortex state and showed that in princ
a wide range of integer values can be obtained. This sho
be contrasted with the notion that the effect of a magne
field on ad-wave superconductor is solely to generate ad
1 id state for the order parameter, as in that casesxy

s 562 in
units of \/8p. In the presence of a vortex lattice, the situ
tion appears to be more complex.

By fine-tuning some external parameter, for instance
8-11
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strength of the electron–electron attraction which is prop
tional to D0 or the chemical potentialm, the gap closing is
achieved, i.e.,Dm50. The transition between two differen
values ofsxy

s occurs precisely when the gap closes and
pological quanta are exchanged. The remarkable new fea
is theplateaudependence ofsxy

s on theD0 or m. It is quali-
tatively different from the plateaus in the ordinary integ
quantum Hall effect. In superconductors, the physical ori
of the plateaus is the gap in the quasiparticle spectrum g
erated by the superconducting pairing interactions and
ways automatically centered at the Fermi energy.
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APPENDIX A: GREEN’S FUNCTIONS: DEFINITIONS
AND IDENTITIES

The one-particle Green’s function matrix36 is defined as

Ĝab~r1t1 ;r2t2![2^TtCa~1!Cb
†~2!&, ~A1!
er

22450
r-

-
re

r
n
n-
l-

e

t

where Tt denotes imaginary time ordering operator anda
51,2 denotes components of a Nambu spinorC†(1) which
is a shorthand forC†(r1 ,t1)5„c↑

†(r1 ,t1),c↓(r1 ,t1)….
Due to the time independence of the Hamiltonian E

~2.1!, the Green’s function Eq.~A1! depends only on the
imaginary time differencet5t12t2. Therefore, its Fourier
transform is given by

Ĝ~r1 ,r2 ; iv!5E
0

b

eivtĜ~r1 ,r2 ,t!dt,

~A2!

Ĝ~r1 ,r2 ;t!5
1

b (
iv

e2 ivtĜ~r1 ,r2 ; iv!.

Here b51/(kBT), T is temperature, and the fermionic fre
quencyv5(2l 11)p/b, l PZ.

Using the above relations, it is straightforward to deri
the spectral representation of the following correlation fun
tions betweenC and its imaginary time derivatives]tC

[Ċ:
5
^TtCa~1!Cb

†~2!&

^TtĊa~1!Cb
†~2!&

^TtCa~1!Ċb
†~2!&

^TtĊa~1!Ċb
†~2!&

52
1

b (
iv

e2 iwtE de
Â~r1 ,r2 ;e!

iv2e 5
11

2e

1e

2e2

. ~A3!

The spectral functionÂ(r1 ,r2 ;e) can be written in terms of eigenfunctionsFn(r )5(un(r ),vn(r ))T of the Bogoliubov–
deGennes HamiltonianĤ0 in the form:

Âab~r1 ,r2 ;e!5(
n

d~e2en!Fna~r1!Fnb
† ~r2!, ~A4!

whereen is the eigen-energy associated with an eigenstate labeled by the quantum numbern. Substituting Eq.~A4! into Eq.
~A3! we can write the above correlation functions solely in terms of the eigenfunctionsFn(r ):

5
^TtCa~1!Cb

†~2!&

^TtĊa~1!Cb
†~2!&

^TtCa~1!Ċb
†~2!&

^TtĊa~1!Ċb
†~2!&

52
1

b (
iv,n

e2 iwt
Fna~r1!Fnb

† ~r2!

iv2en 5
11

2en

1en

2en
2

. ~A5!
In the calculations that follow we will also encount
Matsubara summations over the fermionic frequenciesv
5(2l 11)p/b, l PZ, of the form:
Snm~ iV!5
1

b (
iv

1

~ iv2en!~ iV1 iv2em!
, ~A6!
8-12
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where V52pk/b, kPZ, is an outside bosonic frequenc
The sum Eq.~A6! can be evaluated using standard tec
niques~see, e.g., Ref. 36! and yields:

Snm~ iV!5
f n2 f m

en2em1 iV
. ~A7!

Here f n is a short hand for the Fermi–Dirac distributio
function f (en)5„11exp(ben)…

21.
In order to derive spin and thermal currents we will ne

the explicit form of the generalized velocity operatorV in-
troduced in Eq.~3.6!:

V5S p

m
i v̂D

i v̂D*
p*

m

D , ~A8!

where the gap velocity operator is given by

i v̂D5 iD0hd d eif(r )/2~ei d•p2e2 i d•p!eif(r )/2 ~A9!

and the canonical momentum equals

p52
i

2
d e

i
\ * r

r1d(p2
e
c A)•dl1h.c. ~A10!

The following identities for operatorsv̂D andp will be used
in the next section:

H p* C†
•pC 5 i\¹•~C†pC!1C†p2C

p* C†
•pC 5 2 i\¹•~p* C†C!1~p* !2C†C,

~A11!

C†DC2DC†C5 1
2“•~C†v̂DC2 v̂DC†C!, ~A12!

where all the differential operators act only on the adjac
functions unless otherwise specified. The above equat
are straightforward to derive in continuum, while on t
tight-binding lattice Eqs.~A11! and~A12! imply a symmetric
definition of the lattice divergence operator.

The identities Eqs.~A11! and~A12! explicitly ensure that
the generalized velocity operatorVm is Hermitian, i.e., it sat-
isfies the following identity:

E drV * C†~r !C~r ![E drV ab* Cb
†~r !Ca~r !

5E drC†~r !VC~r !. ~A13!

APPENDIX B: SPIN CURRENT AND SPIN
CONDUCTIVITY TENSOR

The time derivative of spin densityrs5\/2(c↑
†c↑

2c↓
†c↓) can be written in Nambu formalism as

ṙs5
i

\
@H,rs#5

\

2
~Ċ†C1C†Ċ!. ~B1!

Using equations of motion~2.9! together with the explicit
form of Ĥ0 operator Eq.~2.7! we obtain
22450
-

t
ns

ṙs5
i

2 S ~p* !2

2m
C1

†C12C1
† p2

2m
C11D̂C1

†C22C1
†D̂C2

1D̂* C2
†C12C2

†D̂* C12
p2

2m
C2

†C21C2
† ~p* !2

2m
C2D .

~B2!

Using the identities Eqs.~A11!,~A12! it is easy to show
that

ṙs52
\

4
¹m~C†VmC1Vm* C†C!52¹• j s, ~B3!

where the generalized velocity operatorVm is defined in Eq.
~A8!, and the last equality follows from the continuity equ
tion ~3.4! relating the spin densityrs and the spin currentj s.
Upon spatial averaging and utilizing Eq.~A13! we find the
q→0 limit of the spin current

j m
s 5

\

2
C†VmC. ~B4!

The evaluation of the spin current–current correlati
function Eq.~3.2! is straightforward and yields:

Dmn~ iV!52
\2

4 E
0

b

ei tV@Vm~2!Vn~4!

3^TtC
†~1!C~2!C†~3!C~4!&1,2→(x,t)

3,4→(y,0)
#dt.

~B5!

HereC(1)[C(r1 ,t1) and similarly the operatorVm(2) acts
only on functions ofr2. Using Wick’s theorem, identity Eq
~A5!, and upon spatial averaging overx andy we obtain

Dmn~ iV!5
\2

4 (
mn

^nuVmum&^muVnun&Snm~ iV!. ~B6!

The double summation extends over the eigenstatesum& and
un& of the Hamiltonian Eq.~2.7!, and Smn( iV) is given in
Eq. ~A7!. Analytically continuingiV→V1 i0 we finally ob-
tain the expression for the retarded correlation function:

Dmn
R ~V!5

\2

4 (
mn

Vm
nmVn

mn

en2em1V1 i0
~ f n2 f m!, ~B7!

where Vmn
m is defined in Eq.~3.8! and f n is a short hand

for the Fermi–Dirac distribution function f (en)5„1
1exp(ben)…

21. Finally, we substitute the last equation in
Eq. ~3.1! to obtain

smn
s 5

\2

4i (
mn

Vm
nmVn

mn

~en2em1 i0!2
~ f n2 f m!. ~B8!

APPENDIX C: THERMAL CURRENT AND THERMAL
CONDUCTIVITY TENSOR

In order to calculate thermal currents and thermal cond
tivity in the magnetic field we introduce a pseud
8-13
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gravitational potentialx5r•g/c2.32–35This formal procedure
is useful because it illustrates that the transverse therma
sponse is not given just by Kubo formula, but in addition
includes corrections related to magnetization. Through
this section\51. The pseudo-gravitational potential ente
the Hamiltonian, up to linear order inx, as

HT5E dxS 11
x

2DC†~x!Ĥ0S 11
x

2DC~x!, ~C1!

where H0 is the Bogoliubov–deGennes Hamiltonian E
~2.7!. The equations of motion for the fieldsC thus become

i Ċ5@C,HT#5S 11
x

2D Ĥ0S 11
x

2DC

5~11x!Ĥ0C2 i¹mxVmC. ~C2!

The last equality follows from the commutation relation E
~3.6!. @Note that forxÞ0 the Eq.~C2! differs from Eq.~2.9!.
Throughout this sectionĊ will refer to Eq. ~C2! unless ex-
plicitly stated otherwise.#

To find thermal currentjQ we start with the continuity
equation

ḣT1¹• jQ50. ~C3!

The Hamiltonian densityhT follows from Eq.~C1! and reads

hT5
1

2m*
~pm* C̃1

†pmC̃12pmC̃2
†pm* C̃2!2mC̃a

†sab
3 C̃b

1
1

2
~C̃a

†DabC̃b1DabC̃a
†C̃b!, ~C4!

where C̃5(11
x

2
)C. Taking the time derivative of the

Hamiltonian densityhT and using Eqs.~A11! and equations
of motion ~C2! we obtain

ḣT5 i @HT ,hT#5
i

2m
¹m~Ċ̃†PmC̃2Pm* C̃†Ċ̃ !

1
1

2
~C̃aDabĊ̃b2Ċ̃a

†DabC̃b!

1
1

2
~DabĊ̃a

†C̃b2DabC̃a
† Ċ̃b!, ~C5!

where we introduced matrix operators

Dab5S 0 D̂

D̂* 0
D , Pab

m 5S pm 0

0 pm*
D . ~C6!

HereĊ̃5(11x/2)Ċ andpm is defined in Eq.~A10!. Finally
we use Eq.~A12! to extractjQ from Eq. ~C5!. Upon spatial
averaging and using the Hermiticity ofVm Eq. ~A13! the
thermal currentjQ reads
22450
e-
t
ut

.

.

j m
Q5

i

2
~C̃†VmĊ̃2Ċ̃†VmC̃!. ~C7!

Note that the expression forjQ contains two terms

jQ5 j0
Q1 j1

Q , ~C8!

wherej0
Q is independent ofx andj1

Q is linear inx. Explicitly:

j0
Q~r !5 1

2 C†$V,Ĥ0%C ~C9!

and

j m,1
Q ~r !52

i

4
]nxC†~VmVn2VnVm!C1

]nx

4
C†

„~xnVm

13Vmxn!Ĥ01Ĥ0~3xnVm1Vmxn!…C, ~C10!

where $a,b%5ab1ba. Analogously to the situation in the
normal metal, the thermal average ofj1

Q does not in genera
vanish in the presence of the magnetic field.38

The linear response of the system to the external per
bation can be described by

^ j m
Q&5^ j 0m

Q &1^ j 1m
Q &52~Kmn1Mmn!]nx[2Lmn

Q ]nx,

~C11!
where

Kmn52
d^ j 0m

Q &
d]nx

52 lim
V→0

Pmn
R ~V!2Pmn

R ~0!

iV
~C12!

is the standard Kubo formula for a dc response,36 Pmn
R (V)

being the retarded current–current correlation function, a

Mmn52
d^ j 1m

Q &
d]nx

52(
n

enf n^nu$Vm ,xn%un&

1(
n

i

4
f n^nu@Vm ,Vn#un& ~C13!

is a contribution from ‘‘diathermal’’ currents.38 Note that the
latter vanishes for the longitudinal response while it rema
finite for the transverse response. As we will show later
this section, atT50 there is an important cancellation b
tween Eqs.~C12! and~C13! which renders the thermal con
ductivity kmn well-behaved and prevents the singularity fro
the temperature denominator in Eq.~4.2!.

The retarded thermal current–current correlation funct
Pmn

R (V) can be expressed in terms of the Matsubara fin
temperature correlation function

Pmn~ iV!52E
0

b

dteiVt^Tt j m~r ,t! j n~r 8,0!& ~C14!

as

Pmn
R ~V!5Pmn~ iV→V1 i0!. ~C15!

The currentj m(r ,t) in Eq. ~C14! is given by

j m~t!5 1
2 „C

†~t!Vm]tC~t!2]tC
†~t!VmC~t!….

~C16!
8-14



en
i-

io
.
o

o
t.

e

q.

q.
on

by

rest

nse

-

-
ero

QUASIPARTICLE HALL TRANSPORT OFd-WAVE . . . PHYSICAL REVIEW B 64 224508
As pointed out by Ambegaokar and Griffin50 time ordering
operatorTt and time derivative operators]t do not commute
and neglecting this subtlety can lead to formally diverg
frequency summations.24 Taking heed of this subtlety, subst
tution of Eq.~C16! into Eq. ~C14! amounts to

Pmn~ iV!52
1

4E0

b

dteiVtVab
m ~2!Vgd

n ~4!

3^TtĊa
†~1!Cb~2!Ċg

†~3!Cd~4!

2Ċa
†~1!Cb~2!Cg

†~3!Ċd~4!

2Ca
†~1!Ċb~2!Ċg

†~3!Cd~4!

1Ca
†~1!Ċb~2!Cg

†~3!Ċd~4!&, ~C17!

where the notation follows Eq.~B5! and Eq. ~2.9!. Upon
utilizing the identities Eqs.~A5! and ~A13! and performing
the standard Matsubara summation we have

Pmn~ iV!5
1

4 (
nm

^nuVmum&^muVnun&~en1em!2Snm~ iV!,

~C18!

where Smn is given by Eq.~A7!. Analytically continuing
iV→V1 i0 we obtain

P mn
R ~V!5

1

4 (
nm

~en1em!2Vm
nmVn

mn

en2em1V1 i0
~ f n2 f m!. ~C19!

Note that the only difference between the Kubo contribut
to the thermal response Eq.~C19! and the spin response Eq
~B7! is the value of the coupling constant. In the case
thermal response Eq.~C19!, the coupling constant is (en
1em)/2 which is eigenstate dependent, while in the case
spin response Eq.~B7! it is \/2 and eigenstate independen

Using Eq.~C12! we find that the Kubo contribution to th
thermal transport coefficient is given by

Kmn52
i

4 (
nm

~en1em!2

~en2em1 i0!2
Vm

nmVn
mn~ f n2 f m!.

~C20!

This can be written as

Kmn5Kmn
(1)1Kmn

(2) , ~C21!

where

Kmn
(1)52

i

4 (
nm

4enem

~en2em1 i0!2
Vm

nmVn
mn~ f n2 f m!

~C22!

and

Kmn
(2)52

i

4 (
nm

Vm
nmVn

mn~ f n2 f m!. ~C23!

Similarly, we can separate the ‘‘diathermal’’ contribution E
~C13! as
22450
t

n

f

f

Mmn5Mmn
(1)1Mmn

(2) ~C24!

whereMmn
(1) andMmn

(2) refer to the first and second term in E
~C13!, respectively. Using the completeness relati
(mum&^mu51 it is easy to show that

Mmn
(2)5

i

4 (
mn

~ f n2 f m!Vm
nmVn

mn . ~C25!

Comparison of Eqs.~C23! and ~C25! yields Mmn
(2)1Kmn

(2)

50. Therefore the thermal response coefficient is given

Lmn
Q 5Kmn

(1)1Mmn
(1) . ~C26!

Utilizing commutation relationships Eq.~3.6!, Mmn
(1) can

be expressed in the form:

Mmn
(1)5E h f ~h!Tr„d~h2Ĥ0!~xmVn2xnVm!…dh,

~C27!

where the integral extends over the entire real line. The
of the section follows closely Smrcˇka and Strˇeda.34 We de-
fine the resolventsG6:

G6[~h6 i02Ĥ0!21 ~C28!

and operators

A~h!5 i TrS Vm

dG1

dh
Vnd~h2Ĥ0!2Vmd~h2Ĥ0!Vn

dG2

dh D ,

~C29!

B~h!5 i Tr~VmG1Vnd~h2Ĥ0!2Vmd~h2Ĥ0!VnG2!,

To facilitate Sommerfeld expansion we note that respo
coefficientsKmn

(1)(T), Mmn
(1)(T), smn

s (T) have generic form

L~T!5E f ~h!l ~h!dh, ~C30!

and after integration by parts

L~T!52E d f

dh
L̃~h!dh. ~C31!

Here L̃(j) is defined as

L̃~j![E
2`

j

l ~h!dh. ~C32!

Note thatL(T50)5L̃(j50) and in particular the spin con
ductivity at T50 satisfiessmn

s (T50)5s̃mn
s (j50). Identi-

ties ~C31! and ~C32! will enable us to express the coeffi
cients at finite temperature through the coefficients at z
temperature. For example, it follows from Eq.~C27! that

M̃ (1)~j!5E
2`

j

h Tr„d~h2Ĥ0!~xmVn2xnVm!… ~C33!

and from Eqs.~B8!, ~C29!
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s̃mn
s ~j!5

1

4E2`

j

A~h!dh. ~C34!

Similarly, coefficientKmn
(1) from Eq. ~C22! can be written as

Kmn
(1)52 i E dh f ~h!h( d~h2en!em

3S Vm
nmVn

mn

~h2em1 i0!2
2

Vm
mnVn

nm

~h2em2 i0!2D ~C35!

so that

K̃mn
(1)~j![2 i E

2`

j

dhh( d~h2en!em

3S Vm
nmVn

mn

~h2em1 i0!2
2

Vm
mnVn

nm

~h2em2 i0!2D .

~C36!

Using definitions~C29!, K̃ (1)(j) can be expressed as

K̃mn
(1)~j!5E

2`

j

h2A~h!dh1E
2`

j

hB~h!dh. ~C37!

After integration by parts one obtains

K̃mn
(1)~j!5j2E

2`

j

A~h!dh1E
2`

j

~h22j2!

3S A~h!2
1

2

dB

dh Ddh. ~C38!
F
d-

.

nd

30

22450
As shown in Ref. 34 the last term in this expression is e
actly compensated byM̃ (1)(j): This becomes evident afte
noting that definitions in Eq.~C29! imply

A2
1

2

dB~h!

dh
5

1

2
TrFdd~h2Ĥ0!

dh
~xmVn2xnVm!G .

~C39!

Substituting the last identity into the Eq.~C38! and integrat-
ing the second term by parts we obtain

K̃mn
(1)~j!5j2E

2`

j

A~h!dh2E
2`

j

h Tr„d~h2Ĥ0!

3~xmVn2xnVm!…dh. ~C40!

The second term here is equal to2Mmn
(1) from Eq. ~C33!.

After the cancellation the result simply reads:

L̃mn
Q ~j!5K̃mn

(1)~j!1M̃mn
(1)~j!5j2E

2`

j

A~h!dh. ~C41!

Or, using Eq.~C34!

L̃mn
Q ~j!5S 2j

\ D 2

s̃mn
s ~j!. ~C42!

Finally, from Eq.~C31! we find

Lmn
Q ~T!52

4

\2E d f~h!

dh
h2s̃mn

s ~h!dh. ~C43!
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