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Ferromagnetic—spin-glass transition in a four-dimensional random-bond Ising model
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The four-dimensionai- J random-bond Ising model is studied using ground-state calculations. System sizes
up to N=6* spins are considered. Here it is found that the ferromagnetic—spin-glass transition occurs at a
critical concentratiorp,=0.28(1) of the antiferromagnetic bonds, which is comparable to values found pre-
viously by high-temperature series expansions. The transition is characterized by a correlation-length exponent
v=1.0(1) and an order-parameter expongnt0.4(1).Thus, this transition is in a different universality class
from four-dimensional bond percolation, where=0.678(50) and3=0.639(20).
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INTRODUCTION The value ofp. has not been determined so far. It is only
known that the line connecting the multicritical point

The study of how order arises in nature is the center of p*,T*) with (p=p.,T=0) starts vertically'° at the mul-
interest in several areas of physics, especially in thermodyticritical point. Thereforep.~p* can be expected. This is
namics and statistical physics. A special focus is on the quessonsistent with a recent conjecttiréor the critical concen-
tion as to how order can emerge, even in or due to the pregration of ad-dimensional >2) hypercubic random-bond
ence of quenched disorder. One type of system, which hasystem:p.(d)=0.5(1— 1/d)?, which givesp.~0.281 in four
attracted a lot of attention during the last decades, is spidimensions. The value found in the present workpis
glasses. =0.291).

In this work, the transition from one ordered phase, the Beyond the determination @f, it is interesting to deter-
ferromagnetic phase, to another ordered phase, the spin-glastine the critical exponents describing the behavior around
phase, is studied for a four-dimensional random-bond Isinghe critical point. Very often, phase transitions can be ex-
model. The model is studied by means of ground-state cablained by means of percolation transitidAsThus, always
culations, using thegenetic cluster-exact approximation the question arises whether the values of the exponents are
(CEA) method. This approach has the advantage that onequal to the exponents of the corresponding percolation tran-
does not encounter ergodicity problems or critical slowingsitions. Phase transitions induced by percolation can be
down like when using algorithms which are based on Montgfound even in very unphysical models. For example, recently
Carlo methods. To the author’s knowledge, there are no nuthe onset of replica-symmetry breakifidn the solution of a
merical studies of the four-dimensional random-bond Isingcombinatorial optimization problem, the vertex-cover
model (except atp=0.5). However, for twd* and threé  problem'* has been relatédto a new type of percolation
dimensions, the random-bond Ising model has been studiadansition for random graphs. In the case of the random-bond
numerically atT=0 already, resulting in critical valugs’  model, for twé and thre&® dimensions the results obtained
=0.10 for square lattices amﬁ“bz 0.22 for cubic lattices, at the multicritical point are very close to the results for bond
respectively. percolationt’ while in four dimensions the resufts’ dis-

The model treated here consists ML (Ref. 4 Ising  agree. For the ground-state calculations, the exponents ob-
spinso;=*1 on a hypercubic lattice. The Hamiltonian of tained in twd dimensions are also compatible with percola-
this system is given by tion, while for thre@ dimensions some deviations occur. In
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paramagnetic
where(i,j) denotes a sum over a pair of nearest neighbors.
Systems with quenched disorder of the bonljs= =1, are

studied. The ferromagnetic—spin-glass transition is driven by

increasing the fractiorp of antiferromagnetic(AF) (J;; ferro- ]

=—1) bonds. For low concentratiqn the system is ferro- magnetic sG |
magnetically ordered, while for intermediate values pf | |
spin-glass order arises. For very high concentration, the sys- P, 05 p

tem shows AF ordering.

In previous work, the model has been studied using high- F|G. 1. Schematic phase diagram of the four-dimensional
temperature series expansiond.In Fig. 1 the schematic random-bond model. The diagram is symmetric with respegt to
phase diagram is presented. The values previously obtainedo s, with an antiferromagnetically ordered phase for lgig6G
for the concentration at the multicritical point ap& ~0.3  denotes the spin-glass phase. The multicritical point is denoted by
(Ref. 6, p*=0.28(1) (Ref. 7, andp* =0.290(1) (Ref. 8. (p*,T*).
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this paper it is shown that also @t=0 the four-dimensional where the two configurations differ. Each parent is replaced
result is clearly not compatible with a percolationlike transi-if its energy is not lowefi.e., bettey than the corresponding
tion. offspring.

The rest of the paper is organized as follows: Next, the After this creation of offspring has been performed
algorithm to generate spin-glass ground states in four dimenx M; times, the population is halved: From each pair of
sions is briefly explained. Then, the results describing theneighbors the configuration which has the higher energy is
ferromagnetic—spin-glass transition are presented and finallgliminated. If not more than four individuals remain, the pro-
a summary is given. cess is stopped and the best individual is taken as result of
the calculation.

The whole algorithm is performendy times and all final
configurations which exhibit the lowest energy are stored,

From the computational point of view, the calculation of resulting inng statistically independent ground-state configu-
spin-glass ground states is very demanding, because it beations. By comparison with an exact method, it was shiwn
longs to the class of the NP-hard probletid® This means that the genetic CEA, with an appropriate choice of the pa-
that only algorithms are available for which the running timerameters ¥;, v, Nyin, Pm), indeed calculates true ground
on a computer increases exponentially with system sizeStates.

Only for the special case of a planar system without a mag- The probability that a certain ground-state configuration is
netic field, e.g., a square lattice with periodic boundary confound by this method is not equal for all ground statése.,

ditions in at most one direction, do there exist efficientthe algorithm imposes a bias. In this work, the magnetization
polynomial-time “matching” algorithm§.° is the main quantity of interest. To test how large the influ-

For higher dimensions, one must rely on exact method€nce of this bias is, fot =6, p=0.27, where fluctuations of
like the branch-and-bouRt?® and branch-and-cut the magnetization are the largest, 64 realizations were con-
methods;>**which are able to treat only small systems. Forsidered. For each realizati¢hiased ground states were gen-
that reason, recently some heuristics have been introduceglrated using 200 independent runs. Next, for each realization
By using a hierarchical approachone can calculate true & (thermodynamically corregset of ground states was gen-
ground states in four dimensions up to size 5, while for erated in such a way that each configuration contributes with
L=6 it is not clear whether true ground states were fotfhd. the same probabilit} For both sets of ground states the

The method applied hefeis able to calculate ground Mmagnetization was evaluated. For the biased set an average
states in four dimensions up to size=7. The technique is Vvalue ofm=0.501(11) was obtained, while the correct ther-
based on a special genetic algoriffiif® and oncluster-exact ~modynamic result isn=0.504(12). This shows that the in-
approximatiori® which is an optimization method designed fluence of the bias on the result of the magnetization is small.
especially for spin-glasses. Now a brief description of thePlease note that that is in contrast to other quantities like the
techniques is given. distributionP(q) of overlaps: The overlag®? between two

Genetic algorithms are biologically motivated. An optimal independent ground state§s"}, {of} is given by g
solution is found by treating many instances of the problemz(l/N)Eiof'of. When measuring the fractiorx(0.5)
in parallel, keeping only better instances and replacing bad:fg'g_sP(q)dq of small overlaps, one obtains an average
ones by new onegsurvival of the fittest The genetic algo-  value x(0.5)=0.051(7) for the biased set of states, while
rithm starts with an initial population d¥l; randomly initial- ~ from correct thermodynamic treatment one obtains quite a
ized spin configurationg= individualg, which are linearly  different result 0.01¢48).
arranged in a ring. Themx M; times two neighbors fromthe ~ Hence, when restricting the measurement to quantities de-
population are takeicalled parentg and twooffspringare  pending solely on the magnetization, it is sufficient to use the
created using the so called triadic crossovefhen a muta-  biased data. This allows much shorter running times, because
tion with a rate ofp,, is applied to each offspring; i.e., @ only a few ground states per realization are needed.
fraction p,, of the spins is reversed. Next, for both offspring
the energy is reduced by applying the CEA. This algorithm RESULTS
constructs iteratively and randomly a nonfrustrated cluster of
spins, whereas spins with many unsatisfied bonds are more With the genetic cluster-exact approximation, it is
likely to be added to the cluster. The noncluster spins act likgossiblé” to obtain ground states for four-dimensional sys-
local magnetic fields on the cluster spins. For the spins of théems up toL=7. Since the study of the transition involves
cluster, an energetic minimum state can be calculated ithe calculation of a Binder cumulant, it is necessary to aver-
polynomial time by using graph-theoretical methdéis*an  age over many samples of the disorder. For that reason, only
equivalent network is constructédthe maximum flow is sizesL<6 were considered in this work. A mutation rate of
calculated®®3’ and the spins of the cluster are set to thep,=0.05 was used. The other simulation parameters are
orientations leading to a minimum in energy. This minimiza-shown in Table I.
tion step is performed,,, times for each offspring. Systems with concentrations of the antiferromagnetic

Afterwards each offspring is compared with one of itsbonds in the range €[0,0.32 were treated. For each real-
parents. The pairs are chosen in the way that the sum of thHeation ng=5 independent runs were performed. The result-
phenotypic differences between them is minimal. The pheing ground-state energy as a function of the parametsr
notypic difference is defined here as the number of spinshown in Fig. 2 for different system sizes. For small concen-
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TABLE |. Simulation parameterst=system sizeM;=initial
size of populationy=average number of offspring per configura-
tion, npi,=number of CEA minimization steps per offspring,
T=typical computer time per ground state on a 80-MHz PPC601,
and N =total number of realizations of the random variables.

L M; v Nmin 7 (sec) N, >
3 16 4 4 3 16 %
4 16 4 4 14 15000

5 256 6 10 4800 13000

6 256 6 10 7300 20500

7 512 12 20 14000 -

trationsp, the ground state is mainly ferromagnetic. It fol-
lows that all the AF bonds are not satisfied, so the ground-

state energy increases linearly wiphlike e(p)~—4+8p.
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FIG. 3. Binder cumulang(p,L) of the ground-state magnetiza-

For larger concentrations, the ground-state energy @on as a function of the AF-bond concentratiprior system sizes

proaches th@= 0.5 limit. With increasind- the ground-state

L=3,4,5,6. For clarity, only the largest error bar occurring in the

energy decreases, because the periodic boundary conditiofig s shown. Lines are guides for the eyes only.
impose less constraints on the system. Eer~ and p

=0.5 a ground-state energy @f.(0.5)=—2.095(1) was

found?’

cal concentratiorp,, where the ferromagnetic behavior dis-

appears. For this purpose the Binder cumdfaftit

1
g(p,L)E§(3

(MY,
[(M?)]3

Only few studies concerning the four-dimensional

random-bond model have been performed before. Using

From Fig. 2 is clear that the energy as function of con-high-temperature series expansions for the location of the
centration is not a suitable quantity for determining the criti- yyticritical point (p*,T*), values ofp* ~0.3 (Ref. 6), p*

=0.28(1) (Ref. 7, and p* =0.290(1) (Ref. 8 were deter-

mined. These results compare well with the valuggbb-
tained here, indicating that the the line connecting,@)

)

with (p*,T*) is vertical, or nearly so, as expectetf,

For the Binder cumulant the following finite-size scaling
relation is assumetf:

for the magnetizatioM =(1/N)Z,0; is evaluated. The aver-
age(- - -y denotes the average over different ground states of
a realization, whilg - - - ]; is the average over the disorder. In

F|g 3 the Binder cumulant is shown far= 3,4,5,6. To keep By p|ott|ng g(p'L) againsﬂ_ll’/(p_ pc) with correct param-

the figure clear, only the largest error bar is shown. Allgtersp,,» the data points for different system sizes should

curves intersect negp.=0.28+0.01. Because of the huge collapse onto a single curve negr{p,)=0. The best re-
numerical effort, the simulations are restricted to small syssyts were obtained fop.=0.28 and »=1.0. In Fig. 4 the

tem sizes, which prevents a more accurate result.

—2 15 T T
-2.5 | b
- -
8 -3t o—olL=3 . 2
T e---aL=4 ©
O L =5
r~——AL=6
-3.5 1
-4 & 1 1 1
0 0.1 0.2 0.3
p

FIG. 2. Ground-state energs(p,L) as a function of the AF-
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FIG. 4. Scaling plot of the Binder cumulant as a function of

bond concentratiom for system sized =3,4,5,6. Error bars are (p—p.)LY" with p,=0.28 andr=1.0. The series of segments is a
much smaller than symbol sizes. Lines are guides for the eyes onlguide for the eyes only.
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FIG. 6. Scaling plot of the rescaled absolute vatug,L)L?”
FIG. 5. Average absolute valum(p,L) of the ground-state of the magnetization as a function ap+ p)L " with p,=0.28,
magnetization as a function of the AF-bond concentrafiofor »=1.0, andB=0.4. Lines are guides for the eyes only.
system sizes = 3,4,5,6. All error bars are much smaller than sym-
bol size. Lines are guides for the eyes only. SUMMARY

resulting scaling plot is shown. It is possible to change the The ferromagnetic—spin-glass transition of the four-
value of v in a wide range without large effects on the scal-dimensional random-bond Ising model was studied a0
ing plot. Thus, here a value of=1.0(1) is estimated. This is Using ground-state calculations. The genetic cluster-exact ap-
compatible with the valuer=0.8(1) found by a high- Pproximation method was applied. Because of the high com-
temperature series expandat the multicritical point. Al-  putational effort, only small systems of sike<6“ could be
though there is no direct Correspondence betweernTth® studied. Since the ground-state problem is NP hard, it is very
fen’omagnetic_spin-g|ass transition and the finite-un”ke|y that Significantly Iarger sizes can be studied in the
temperature §=0.5) paramagnetic—spin-glass transition atnear future.
T.=2.033), it is remarkable that by Monte Carlo By evaluating the Binder cumulant, a critical concentra-
simulationé® of four-dimensional spin glasses ne@r a  tion of p.=0.28(1) was found, which is comparable to val-
similar value ofy=1.0(1) was found. Finally, it should be ues which were obtained by high-temperature series expan-
pointed out that the result given above is not compatible witHS0NS.
the Corresponding exponent for four-dimensional bond USing a ﬁnite'size Scaling ana|ySiS, the Cl’itica| eXponentS
percolationt’ of »=0.678(50). for the divergence of the correlation length=1.0(1) and

In Fig. 5 the behavior of the average absolute value of théor the magnetization3=0.4(1) were determined. Hence,
magnetizatiorm=[{|M|}], is shown as a function qf for  the transition is clearly in a different universality class than
different system sizes. four-dimensional bond percolation.

This quantity has the standard finite-size scaling ffrm
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