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Ferromagnetic–spin-glass transition in a four-dimensional random-bond Ising model
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The four-dimensional6J random-bond Ising model is studied using ground-state calculations. System sizes
up to N564 spins are considered. Here it is found that the ferromagnetic–spin-glass transition occurs at a
critical concentrationpc50.28(1) of the antiferromagnetic bonds, which is comparable to values found pre-
viously by high-temperature series expansions. The transition is characterized by a correlation-length exponent
n51.0(1) and an order-parameter exponentb50.4(1).Thus, this transition is in a different universality class
from four-dimensional bond percolation, wheren50.678(50) andb50.639(20).
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INTRODUCTION

The study of how order arises in nature is the center
interest in several areas of physics, especially in thermo
namics and statistical physics. A special focus is on the qu
tion as to how order can emerge, even in or due to the p
ence of quenched disorder. One type of system, which
attracted a lot of attention during the last decades, is s
glasses.1

In this work, the transition from one ordered phase,
ferromagnetic phase, to another ordered phase, the spin-
phase, is studied for a four-dimensional random-bond Is
model. The model is studied by means of ground-state
culations, using thegenetic cluster-exact approximatio
(CEA) method. This approach has the advantage that
does not encounter ergodicity problems or critical slow
down like when using algorithms which are based on Mo
Carlo methods. To the author’s knowledge, there are no
merical studies of the four-dimensional random-bond Is
model ~except atp50.5). However, for two2–4 and three5

dimensions, the random-bond Ising model has been stu
numerically atT50 already, resulting in critical valuespc

sq

50.10 for square lattices andpc
cub50.22 for cubic lattices,

respectively.
The model treated here consists ofN5L ~Ref. 4! Ising

spinss i561 on a hypercubic lattice. The Hamiltonian o
this system is given by

H[2(
^ i , j &

Ji j s is j , ~1!

where^ i , j & denotes a sum over a pair of nearest neighb
Systems with quenched disorder of the bonds,Ji j 561, are
studied. The ferromagnetic–spin-glass transition is driven
increasing the fractionp of antiferromagnetic~AF! (Ji j
521) bonds. For low concentrationp, the system is ferro-
magnetically ordered, while for intermediate values ofp,
spin-glass order arises. For very high concentration, the
tem shows AF ordering.

In previous work, the model has been studied using hi
temperature series expansions.6–8 In Fig. 1 the schematic
phase diagram is presented. The values previously obta
for the concentration at the multicritical point arep* '0.3
~Ref. 6!, p* 50.28(1) ~Ref. 7!, andp* 50.290(1) ~Ref. 8!.
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The value ofpc has not been determined so far. It is on
known that the line connecting the multicritical poin
(p* ,T* ) with (p5pc ,T50) starts vertically9,10 at the mul-
ticritical point. Therefore,pc'p* can be expected. This i
consistent with a recent conjecture11 for the critical concen-
tration of ad-dimensional (d.2) hypercubic random-bond
system:pc(d)50.5(121/d)2, which givespc'0.281 in four
dimensions. The value found in the present work ispc
50.28(1).

Beyond the determination ofpc , it is interesting to deter-
mine the critical exponents describing the behavior arou
the critical point. Very often, phase transitions can be
plained by means of percolation transitions.12 Thus, always
the question arises whether the values of the exponents
equal to the exponents of the corresponding percolation t
sitions. Phase transitions induced by percolation can
found even in very unphysical models. For example, rece
the onset of replica-symmetry breaking13 in the solution of a
combinatorial optimization problem, the vertex-cov
problem,14 has been related15 to a new type of percolation
transition for random graphs. In the case of the random-b
model, for two8 and three16 dimensions the results obtaine
at the multicritical point are very close to the results for bo
percolation,17 while in four dimensions the results8,17 dis-
agree. For the ground-state calculations, the exponents
tained in two4 dimensions are also compatible with perco
tion, while for three5 dimensions some deviations occur.

FIG. 1. Schematic phase diagram of the four-dimensio
random-bond model. The diagram is symmetric with respect tp
50.5, with an antiferromagnetically ordered phase for largep. SG
denotes the spin-glass phase. The multicritical point is denoted
(p* ,T* ).
©2001 The American Physical Society30-1
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this paper it is shown that also atT50 the four-dimensiona
result is clearly not compatible with a percolationlike tran
tion.

The rest of the paper is organized as follows: Next,
algorithm to generate spin-glass ground states in four dim
sions is briefly explained. Then, the results describing
ferromagnetic–spin-glass transition are presented and fin
a summary is given.

ALGORITHM

From the computational point of view, the calculation
spin-glass ground states is very demanding, because i
longs to the class of the NP-hard problems.18,19 This means
that only algorithms are available for which the running tim
on a computer increases exponentially with system s
Only for the special case of a planar system without a m
netic field, e.g., a square lattice with periodic boundary c
ditions in at most one direction, do there exist efficie
polynomial-time ‘‘matching’’ algorithms.20

For higher dimensions, one must rely on exact meth
like the branch-and-bound21,22 and branch-and-cu
methods,23,24 which are able to treat only small systems. F
that reason, recently some heuristics have been introdu
By using a hierarchical approach25 one can calculate true
ground states in four dimensions up to sizeL55, while for
L56 it is not clear whether true ground states were foun26

The method applied here27 is able to calculate ground
states in four dimensions up to sizeL57. The technique is
based on a special genetic algorithm28,29and oncluster-exact
approximation30 which is an optimization method designe
especially for spin-glasses. Now a brief description of
techniques is given.

Genetic algorithms are biologically motivated. An optim
solution is found by treating many instances of the probl
in parallel, keeping only better instances and replacing
ones by new ones~survival of the fittest!. The genetic algo-
rithm starts with an initial population ofMi randomly initial-
ized spin configurations~5 individuals!, which are linearly
arranged in a ring. Thenn3Mi times two neighbors from the
population are taken~called parents! and twooffspring are
created using the so called triadic crossover.31 Then a muta-
tion with a rate ofpm is applied to each offspring; i.e.,
fraction pm of the spins is reversed. Next, for both offsprin
the energy is reduced by applying the CEA. This algorith
constructs iteratively and randomly a nonfrustrated cluste
spins, whereas spins with many unsatisfied bonds are m
likely to be added to the cluster. The noncluster spins act
local magnetic fields on the cluster spins. For the spins of
cluster, an energetic minimum state can be calculated
polynomial time by using graph-theoretical methods:32–34an
equivalent network is constructed,35 the maximum flow is
calculated,36,37 and the spins of the cluster are set to t
orientations leading to a minimum in energy. This minimiz
tion step is performednmin times for each offspring.

Afterwards each offspring is compared with one of
parents. The pairs are chosen in the way that the sum o
phenotypic differences between them is minimal. The p
notypic difference is defined here as the number of sp
22443
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where the two configurations differ. Each parent is replac
if its energy is not lower~i.e., better! than the corresponding
offspring.

After this creation of offspring has been performedn
3Mi times, the population is halved: From each pair
neighbors the configuration which has the higher energ
eliminated. If not more than four individuals remain, the pr
cess is stopped and the best individual is taken as resu
the calculation.

The whole algorithm is performednR times and all final
configurations which exhibit the lowest energy are stor
resulting inng statistically independent ground-state config
rations. By comparison with an exact method, it was show38

that the genetic CEA, with an appropriate choice of the
rameters (Mi , n, nmin , pm!, indeed calculates true groun
states.

The probability that a certain ground-state configuration
found by this method is not equal for all ground states;39 i.e.,
the algorithm imposes a bias. In this work, the magnetizat
is the main quantity of interest. To test how large the infl
ence of this bias is, forL56, p50.27, where fluctuations o
the magnetization are the largest, 64 realizations were c
sidered. For each realization~biased! ground states were gen
erated using 200 independent runs. Next, for each realiza
a ~thermodynamically correct! set of ground states was gen
erated in such a way that each configuration contributes w
the same probability.40 For both sets of ground states th
magnetization was evaluated. For the biased set an ave
value ofm50.501(11) was obtained, while the correct the
modynamic result ism50.504(12). This shows that the in
fluence of the bias on the result of the magnetization is sm
Please note that that is in contrast to other quantities like
distributionP(q) of overlaps: The overlapqab between two
independent ground states$s i

a%, $s i
b% is given by q

5(1/N)( is i
as i

b . When measuring the fractionx(0.5)
5*20.5

0.5 P(q)dq of small overlaps, one obtains an avera
value x(0.5)50.051(7) for the biased set of states, wh
from correct thermodynamic treatment one obtains quit
different result 0.014(8).

Hence, when restricting the measurement to quantities
pending solely on the magnetization, it is sufficient to use
biased data. This allows much shorter running times, beca
only a few ground states per realization are needed.

RESULTS

With the genetic cluster-exact approximation, it
possible27 to obtain ground states for four-dimensional sy
tems up toL57. Since the study of the transition involve
the calculation of a Binder cumulant, it is necessary to av
age over many samples of the disorder. For that reason,
sizesL<6 were considered in this work. A mutation rate
pm50.05 was used. The other simulation parameters
shown in Table I.

Systems with concentrations of the antiferromagne
bonds in the rangepP@0,0.32# were treated. For each rea
ization nR55 independent runs were performed. The resu
ing ground-state energy as a function of the parameterp is
shown in Fig. 2 for different system sizes. For small conc
0-2
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FERROMAGNETIC–SPIN-GLASS TRANSITION IN A . . . PHYSICAL REVIEW B64 224430
trationsp, the ground state is mainly ferromagnetic. It fo
lows that all the AF bonds are not satisfied, so the grou
state energy increases linearly withp like e(p)'2418p.
For larger concentrations, the ground-state energy
proaches thep50.5 limit. With increasingL the ground-state
energy decreases, because the periodic boundary cond
impose less constraints on the system. ForL→` and p
50.5 a ground-state energy ofe`(0.5)522.095(1) was
found.27

From Fig. 2 is clear that the energy as function of co
centration is not a suitable quantity for determining the cr
cal concentrationpc , where the ferromagnetic behavior di
appears. For this purpose the Binder cumulant41,42

g~p,L ![
1

2 S 32
@^M4&#J

@^M2&#J
2D ~2!

for the magnetizationM[(1/N)( is i is evaluated. The aver
age^•••& denotes the average over different ground state
a realization, while@•••#J is the average over the disorder.
Fig. 3 the Binder cumulant is shown forL53,4,5,6. To keep
the figure clear, only the largest error bar is shown.
curves intersect nearpc50.2860.01. Because of the hug
numerical effort, the simulations are restricted to small s
tem sizes, which prevents a more accurate result.

TABLE I. Simulation parameters:L5system size,Mi5initial
size of population,n5average number of offspring per configur
tion, nmin5number of CEA minimization steps per offspring
t5typical computer time per ground state on a 80-MHz PPC6
andNL5total number of realizations of the random variables.

L Mi n nmin t (sec) NL

3 16 4 4 3 105

4 16 4 4 14 15 000
5 256 6 10 4800 13 000
6 256 6 10 7300 20 500
7 512 12 20 14 000 -

FIG. 2. Ground-state energye(p,L) as a function of the AF-
bond concentrationp for system sizesL53,4,5,6. Error bars are
much smaller than symbol sizes. Lines are guides for the eyes
22443
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Only few studies concerning the four-dimension
random-bond model have been performed before. Us
high-temperature series expansions for the location of
multicritical point (p* ,T* ), values ofp* '0.3 ~Ref. 6!, p*
50.28(1) ~Ref. 7!, and p* 50.290(1) ~Ref. 8! were deter-
mined. These results compare well with the value ofpc ob-
tained here, indicating that the the line connecting (pc,0)
with (p* ,T* ) is vertical, or nearly so, as expected.9,10

For the Binder cumulant the following finite-size scalin
relation is assumed:42

g~p,L !5g̃„L1/n~p2pc!…. ~3!

By plotting g(p,L) againstL1/n(p2pc) with correct param-
eterspc ,n the data points for different system sizes shou
collapse onto a single curve near (p2pc)50. The best re-
sults were obtained forpc50.28 and 1/n51.0. In Fig. 4 the

,

ly.

FIG. 3. Binder cumulantg(p,L) of the ground-state magnetiza
tion as a function of the AF-bond concentrationp for system sizes
L53,4,5,6. For clarity, only the largest error bar occurring in t
data is shown. Lines are guides for the eyes only.

FIG. 4. Scaling plot of the Binder cumulant as a function
(p2pc)L

1/n with pc50.28 andn51.0. The series of segments is
guide for the eyes only.
0-3
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ALEXANDER K. HARTMANN PHYSICAL REVIEW B 64 224430
resulting scaling plot is shown. It is possible to change
value ofn in a wide range without large effects on the sc
ing plot. Thus, here a value ofn51.0(1) is estimated. This is
compatible with the valuen50.8(1) found by a high-
temperature series expansion8 at the multicritical point. Al-
though there is no direct correspondence between theT50
ferromagnetic–spin-glass transition and the fini
temperature (p50.5) paramagnetic–spin-glass transition
Tc52.03(3), it is remarkable that by Monte Carl
simulations43 of four-dimensional spin glasses nearTc a
similar value ofn51.0(1) was found. Finally, it should b
pointed out that the result given above is not compatible w
the corresponding exponent for four-dimensional bo
percolation17 of n50.678(50).

In Fig. 5 the behavior of the average absolute value of
magnetizationm[@^uM u&#J is shown as a function ofp for
different system sizes.

This quantity has the standard finite-size scaling form44

m~p,L !5L2b/nm̃„L1/n~p2pc!…. ~4!

By plotting Lb/nm(p,L) againstL1/n(p2pc) with correct pa-
rameterspc ,b,n the data points for different system siz
should collapse onto a single curve near (p2pc)50. The
best result was obtained usingpc50.28, 1/n51.0, andb/n
50.4. It is shown in Fig. 6 forL53,4,5,6. From variations o
the valueb/n, the value of the exponentb50.4(1) is esti-
mated. Again, this value significantly differs from the exp
nent b50.693(20) found17 for the order parameter of th
four-dimensional bond percolation.

FIG. 5. Average absolute valuem(p,L) of the ground-state
magnetization as a function of the AF-bond concentrationp for
system sizesL53,4,5,6. All error bars are much smaller than sy
bol size. Lines are guides for the eyes only.
-
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SUMMARY

The ferromagnetic–spin-glass transition of the fou
dimensional random-bond Ising model was studied atT50
using ground-state calculations. The genetic cluster-exact
proximation method was applied. Because of the high co
putational effort, only small systems of sizeN<64 could be
studied. Since the ground-state problem is NP hard, it is v
unlikely that significantly larger sizes can be studied in t
near future.

By evaluating the Binder cumulant, a critical concentr
tion of pc50.28(1) was found, which is comparable to va
ues which were obtained by high-temperature series exp
sions.

Using a finite-size scaling analysis, the critical expone
for the divergence of the correlation lengthn51.0(1) and
for the magnetizationb50.4(1) were determined. Hence
the transition is clearly in a different universality class th
four-dimensional bond percolation.
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FIG. 6. Scaling plot of the rescaled absolute valuem(p,L)Lb/n

of the magnetization as a function of (p2pc)L
1/n with pc50.28,

n51.0, andb50.4. Lines are guides for the eyes only.
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