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Plaquette-singlet solid state and topological hidden order in a spin-1 antiferromagnetic
Heisenberg ladder

Synge Todd;?* Munehisa Matsumotd; Chitoshi Yasuda;* and Hajime Takayant&
Lnstitute for Solid State Physics, University of Tokyo, Kashiwa 227-8581, Japan
°Theoretische Physik, Eidgéssische Technische Hochschule, CH-8098chy Switzerland
(Received 5 June 2001; published 20 November 2001

Ground-state properties of the spin-1 two-leg antiferromagnetic ladder are investigated precisely by means
of the quantum Monte Carlo method. It is found that the correlation length along the chains and the spin gap
both remain finite regardless of the strength of interchain coupling, i.e., the Haldane state and the spin-1 dimer
state are connected smoothly without any quantum phase transitions between them. We propose a plaquette-
singlet solid state, which qualitatively describes the ground state of the spin-1 ladder quite well, and also a
corresponding topological hidden order parameter. It is shown numerically that the proposed hidden order
parameter remains finite up to the dimer limit, though the conventional string order defined on each chain
vanishes immediately when infinitesimal interchain coupling is introduced.
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[. INTRODUCTION Introduction of nonzero interchain couplitgis known to
drastically change the ground state, at least for the $pin-
Quantum spin-ladder systems have been studied theorettaset For small K, either antiferromagnetic or ferromag-
cally and experimentally over the last decade as materialfetic, it immediately opens a spin gap ©f|K|) with some
with a novelspin-gapstate, as well as by their relevance to |ogarithmic correctiond® That is,K=0 is the special point
the high-temperature superconductivitspecially, the two-  at which there occurs a quantum second-order phase transi-
leg Iadde_zr H_eisenberg antiferromagnet, which is defined byjon petween the dimer phask £ 0) and the spin-1 Haldane
the Hamiltonian phase K<0). Again, from the viewpoint of VBS picture,
one can understand this phase transition as a global rear-
H:JE {S1i-S1i+1+ S - Spivat+ KE S-S, (D rangement of dimer pattern. For larger half-odd-integer spins
‘ S o P (S=%, 5,-..), the criticality atk =0 should be essentially

has been studied most extensively. HSg; is the spin op- "€ Same as in the spincase.
erator at sité on theath chain (@=1,2), and the intrachain In the case ofnteger-spinchains, on the other hand, ef-
and interchain coupling constants are denoted]@nd K, fects of mterphaln coupling have.been kn0\_/vn little so far.
respectively. In the following, we restrict our attention only Recently, Seechal and Allen studied the spin-1 ladder by
to the case in which the intrachain coupling is antiferromag-mapping it to the nonlinearr modet* and also by the
netic (J>0). On the other hand, the interchain coupling con-bosonization techniqué. They found that in contrast with
stantK can be either positivéantiferromagneticor negative  the spini case, small interchain coupling reduces the mag-
(ferromagneti. nitude of the spin gap in both of antiferromagnetic and fer-
At K=0, the system consists of two decoupled antiferro-romagnetic regimes. In addition, their analyses as well as
magnetic Heisenberg chains. In this case, it is well knowrtheir complemental Monte Carlo calculation suggest that
that the ground-state properties can be classified into twthere is no critical point between the Haldane and the spin-1
universality classes depending on the parity 8f PlereSis  dimer phases. This may seem paradoxical since these two
the spin size. In the case whe$ds a half-odd integer, the phases have apparently different dimer patterns from each
ground state isritical, i.e., the system has gapless low-lying other.
excitation and the antiferromagnetic correlation function In this paper, we present the results of our extensive quan-
along the chain decays in an algebraic way as the distandem Monte Carlo simulation on the spin-1 ladder. After re-
increases. On the other hand, it is conjectured by Hafdanesiewing details of our simulation using the efficient
that the antiferromagnetic Heisenberg chain of integer spinsontinuous-time loop algorithm in Sec. I, we present our
has a finite excitation gap above itaiqueground state, and numerical data on the uniform susceptibility, staggered sus-
the correlation function decays exponentially with a finite ceptibility, antiferromagnetic correlation length, etc. in Sec.
correlation length. Its ground-state properties can be undettl, which convincingly demonstrate the continuity of the
stood quite well from the viewpoint of the valence-bondtwo limiting case K=0 andK=«), and thus support the
solid (VBS) picture? in which the ground state is essentially conjecture by the previous analytical approachedin Sec.
represented as direct products of spirdimers (AKLT IV, we propose gplaquette-singlet solid stateghat is con-
state. In addition, a topological order parameter characterizstructed as products of local singlet states of Bsr3 spins.
ing the AKLT state, as well as the Haldane state, so called’he Haldane state and the spin-1 dimer state are naturally
the string order parameterhas been proposédihe validity  included as special limits. In addition, we propose a kind of
of Haldane’s conjecture has been confirmed preciselySfor hidden order parameter, which can detect the topological hid-
=1, 2, and 3 by several numerical methdds3. den order exsisting in the plaquette-singlet solid state. We
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(@ duce a set of projection operators, each of which acts on a
7 o pair of subspins and projects out the state V@ith0 (Fig. 1).

K J J After transformation into a path-integral representation, the

J projection operators are converted to special boundary con-

ditions in the imaginary-time directioh® for each pair of
subspins, the totab” is required to be conserved across the
imaginary-time boundary.

For the mapped system, the sgircontinuous-time loop
algorithm~*% can be applied without any modification ex-
cept that we need to introduce additional graphs and labeling
rules for the boundaries in the imaginary-time direcidf.
FIG. 1. (@ Original spin-1 ladder andb) equivalent system Ve use the multicluster variant of the loop algorithm. The

represented bﬁ:% spins(subspin% The spin_l ladder of |ength I’esulting algorithm iS found to Work quite We” as the same

(2L spins and & bonds is mapped onto the spib-system on a  as the original algorithm developed 6 3; the integrated

lattice of 4L subspins and 12 bonds. Each oval irth) denotes a  autocorrelation time for the physical quantities we measure

pair of subspins which is symmetrized by being applied speciaremains of order unity, and there is observed no significant

boundary conditions in the imaginary-time direction. sign of its growth even in the largest system in the present
simulation L =1024 andT/(J+K)=2/1024=0.001 95).

show numerically that the hidden order parameter we pro-

pose remains finite in the whole parameter rangeKG<x, B. Physical quantities

while the conventional string order parameter vanishes ex-

cept atk=0. In Sec. V, we consider in turn the case where . . . . .
using the corresponding subspin representations. First, for

the interchain coupling is ferromagnetik€0), and show lat . introd thaoi timed ;
that the spin-1 Haldane state and thatSef2 also continue arcr CONVENience, we introduce theaginary-timedynami-
cal correlation functionC=(x,7) and its Fourier transform

to each other without any singularity on the way to the other.”/ . : o
We give a summary of our results and some discussions ifr (K,@). The former is defined explicitly in the path-

The physical quantities of interest can be measured by

the final section. integral representation by
1 B
Il. QUANTUM MONTE CARLO METHOD Co(x,7)= m< fo At {S1i(1) = S,(0)}
I

A. Continuous-time loop algorithm for spin-1 system

The recently developed continuous-time loop X{S1jx(t+ 1) ESyj4x(t+ 1)} ), 2
algorithm-%is one of the most efficient methods for simu-
lating quantum spin systems. It is a variant of the world-linewhere is the inverse temperature )/ The spin configu-
Monte Carlo method, which is based on the path-integratation at sitei on the ath chain and at imaginary time (0
representation by means of the Suzuki-Trotter<r<p) is denoted by5, ;(7), which takes—1, O, or 1. The
discretizationt® However, the continuous-time loop algo- bracket(---) in Eq. (2) denote the average over Monte
rithm works directly in the imaginary-time continuuimand  Carlo steps(MCS). In the present subspin representation,
thus is completely free from the systematic error in theS, (7) is simply given by a sum of” of two subspins at
Suzuki-Trotter discretization. In addition, the correlation be-(«,i, 7).
tween successive spin configurations is greatly reduced, In terms of the imaginary-time dynamic structure factor
sometimes by orders of magnitude, since it flips effectivelyg=(k «), the uniform susceptibility and the staggered sus-
clusters of spins, otoops whose linear sizes correspond ceptibility are simply given by
directly to the length scale of relevant spin fluctuations. The
algorithm has already been applied to various spin systems x=2LBC*(0,0) 3
with great succes¥.

The Hamiltonian we consider is given by EG) with S
=1. The linear size along the chain is denoted.bynd we xs=2LBC (m,0), (4)
adopt periodic boundary conditions in this direction, I'e"respectively. We also calculate the static structure factor at
Sei+L.=S,; for a=1 and 2. In order to apply the momentumsr as
continuous-time loop algorithm to the present spin-1 system,
first we represent the spin-1 Hamiltonian in terms of sub- 1 <

> (= D)IIS;5(0) = 85(0)]

1)

spins. In this representation, each spin-1 operator in(Eq. S(m)= oL
is decomposed into a sum of two spineperators® Simul-

taneously, each bond of strengtltor K) is transformed into

four bonds of the same strength connecting subspins. The X[Sl,i(o)_sz,j(o)]>- ®)
lattices before and after the subspin transformation are

shown in Fig. 1. Note that in order to recover dimensions ofin order to calculate the correlation length along the chains,
the original spin-1 Hilbert space £93), one needs to intro- we use the second-moment mett8d:;
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L 'éi( 0) TABLE I. Convergence of physical quantities &t 0.7 andK
&= — \/~—7T 1. (6) =0.3. The temperature is taken 84 J+K)=2/L for eachL. The
2m N C*(w+27/L,0) figure in parentheses denotes the statistical errot) (2 the last

o ] o ] ) digit. No significant differences are observed among the data with
Similarly, the spin gap, which is defined as the inverse of the =256, 512, and 1024.

correlation length in the imaginary-time direction, is mea-

sured by L MCS  (I+K)xs  S(m) Al(J+K) £
50 8 3x10° 16.483) 4.951) 0.38636) 4.571)
P # 1 7) 16 6x10° 49.728) 7.741) 0.212G3) 8.50(1)
2m N C*(m,2ml B) 32 7x10° 138.02) 11.392) 0.12182) 14.862)

. _ 64  1x10° 31594) 14.972) 007931) 22.813)

In qus'(6)| ﬁ”d (Z])'r‘]"’e tbake the m'guﬁp'us) sign for K>0 o128 D10 46878 1623 0.066029) 27.374

(K<0). Although the above second-moment estimates su (:é X1 48085 16192 006487 27.014
12

decaying modes i the cortelaton functon.  should be su?12 10 49033 16172) 00647T8)  27.039
ficiently small(at K= 0 the systematic error for the spin gap 1024 21C°  49042) 16.172) 0.064764) 27.922)
is known to be about 0.2% Ref),%nd thus we expect that it
would be irrelevant to the following discussions. We will tities, such as the staggered susceptibility, should exhibit
also present our results for the string order pararfieted a  power-law behavior with some exponents depending on their
proposed hidden order parameter in Sec. IV. Their explicipwn anomalous dimensions.
definitions will be given later. On the other hand, if the systemgapful (this is the case
In practice, all the physical quantities we will show in the for the present system as we will see belptere exist finite
following, including the hidden order parameters, are meaintrinsic correlation lengthst andA 1. As long as the sys-
sured by using so-callednproved estimators-or example,  tem size and the inverse temperature are smaller enough than
the staggered susceptibility fé¢>0 is simply represented these intrinsic correlation lengths, the critical behavior men-
as the sum of squared length of each loop, divided b8 tioned above is still observed. However, once bbtand 3
Similarly, the imaginary-time dynamic structure factor canexceed them enougl§(L,T) andA(L,T), as well as other
be measured directly as physical quantities, no longer exhibit system-size depen-
dence. Strictly speaking, the systematic error due to the fi-
2 niteness of the system decreases exponentially as the system
>’ size increases, and it becomes much smaller than the statis-
) tical error due to the finiteness of MCS.

In Table I, we show the system-siZand temperatuje
where the integration is performed along a closed path odlependence of the physical quantities atk()=(0.7,0.3).
each loop, and the summation runs over all loops. As seen clearly, the data with=256 (and with T/(J+K)
=<2/256=0.007 8125) exhibit no system-size dependence.
Thus, in this case, one can safely conclude that the system is
gapful and also that the physical quantities obtained are those
of the infinite lattice at zero temperature besides the statisti-

In the present method, the system dizand the tempera- cal error. Empirically, we find thatL/&(L,T)>6 with
ture T are restricted to be finit€. Since we are mainly inter-  BA(L,T)>6 is a reasonable condition to guarantee the con-
ested in the ground-state properties of the infinite lattice, &ergence in the present numerical accuracy.
proper extrapolation scheme for taking the thermodynamic One of the advantages of the present scheme is that it
limit (L—<c) as well as the zero-temperature ofe{0) is  depends omo numerical extrapolation techniques, such as
required. In the present study, we adopt the following stratieast-squares fitting, the Shanks transform, etc. Final results
egy, which is the same as was used in Ref. 9 for the estimaare simply obtained from those of the largest system at the
tion of the Haldane gap of the antiferromagnetic Heisenbergowest temperature in the simulation. Therefore, this method
chain withS=1, 2, and 3. is quite stable and the error estimation is also quite reliable.

For each parameter set,K), we start with a small lattice It should be emphasized that the final results are not affected
at relatively high temperature, e.d.=8 and T/(J+K)  at all by the value chosen for the aspect ratid(J+K) 8
=0.25. Then, we increase the system size exponentially stef=2 in the present cageHowever, if one chooses a too small
by step, e.g.L. =16, 32, 64, 128, ... Simultaneously, the or too large value, the physical memory of the computer
temperature is decreased so as to kedp(J+K)=L/(J system might be exhausted before reaching the thermody-
+K) B constant. In other words, thaspect ratioof the (1 namic limit or the zero-temperature one.
+1)-dimensional space is kept unchanged forlad. If the In what follows, we will mainly present the data with
system is gapless, tlimite-size scalindnolds; the correlation =256 andT/(J+ K)=2/256 unless otherwise noted. A mea-
length in the real-space directiof(L,T), and that in the surement of physical quantities is performed fox 50°—1
imaginary-time directiorA ~*(L,T) both would grow being x10° MCS after 1§ MCS for thermalization. Typically,
proportional tol.?? Simultaneously, the other physical quan- simulation of this system requires about 7 MB of physical

1

C*(k,w)= T

<E ’% % (il)aei(kx+wt)d|
p

C. Taking the thermodynamic limit and the zero-temperature
limit
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memory, and 1 MCS takes about 0.33 s on a single CPU of

SGI 2800 (MIPS R12000 400 MHEe This system size is
somewhat exaggerated for certain sets of parametis) (
However, in such cases, the system can be considerad as
statistically independergamples simulated in parallel, where
N~(L/€) X (AB). Therefore, we gain better statistics pro-
portional to A, which completely compensates for the
growth of CPU time (Lg for largeL and 8).2% Thus, we

loose nothing besides the memory requirement. This is al-

ready manifested in the figures presented in Table I.

IIl. NUMERICAL RESULTS

A. Parametrization

The ground state of the present system is parametrized b
the ratio of the interchain coupling constant to the intrachain

one,x=K/J. Hereafter, we mainly usk, which is defined
by
R K X
CJ+HIK] 14X

9

Since we consider only the antiferromagnetic intrachain cou-

pling (J=0), —1<R=<1. At R=0, the system consists of
two independent antiferromagnetic chaifspin-1 Haldane
chaing. On the other hand, a@R=1, it is decoupled into
dimers sitting on each rung. The linlR— —1 corresponds
to a single spin-2 antiferromagnetic chain. We also introduc
the reduced temperatuiie=T/(J+K), reduced susceptibili-
ties y=(J+K)x, and ys=(J+K)xs, and the reduced gap,
A=A/(J+K). In this section and Sec. IV, we consider only
the case where 9R=<1, i.e., the interchain coupling is
antiferromagnetic.

B. Uniform susceptibility

Before investigating the zero-temperature properties o

PHYSICAL REVIEW B 64 224412
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FIG. 2. Temperature dependence of the uniform susceptibility
for R=0 (squarep 0.2 (circles, 0.3 (upward triangles 0.4 (dia-
monds, 0.6 (downward triangles and 0.8(pentagons The exact
result forR=1 [Eq. (10)] is indicated by a solid line. In the inset,

the same data are plotted against the logarithri.of

However, it should be noted that at temperatures lower
than T=0.4, the uniform susceptibility isot a monotonic
function of R. It is greatly enhanced by orders of magnitude
aroundR=0.3, in comparison with those &=0 and 1. It

éndicates that in the intermediate regionRfthe spin gap is

strongly suppressed, and on the other hand long-range anti-
ferromagnetic fluctuations are enhanced due to the competi-
tion between the intrachain and the interchain antiferromag-
netic couplings.

In addition, in the temperature profile of the uniform sus-
ceptibility for 0.2<R=<0.6, one can see a cleahoulder
structure aff =0.1 (see also the inset of Fig),avhich indi-
cates existence of some additional anomalies in the excita-
fion spectrum of the system.

the spin-1 ladder, first we briefly discuss finite-temperature

behavior of the uniform susceptibility, which gives a rough
profile of the excitation spectrum of the system. In Figy2,
is plotted as a function of for R=0, 0.2, 0.3, 0.4, 0.6, 0.8,
and 1. AtR=1, i.e.,J=0, since the system consists of in-
dependent dimers, the exact form of the uniform susceptibil
ity is easily obtained as

~_1
T3

exp(— 1/T)+5 exg — 3/T)
1+3 exf — 1) + 5 exp — 3/T)

1 ~ ~
z?exq—ll‘r) for T<1. (10
At R=0, y is also known to vanish at low temperatures

exponentially as exp(A/T) with A=0.41050(2)(Ref. 6
besides a prefactor of some powersTofAs seen clearly in

C. Quantities at zero temperature

The temperature dependences of the staggered suscepti-
bility, xs, and the static structure fact¢) are found to be
qualitatively very similar to those of the single Haldane
thain (R=0); they grow rapidly around=1 and are satu-
rated to finite values at low temperatures, though the satura-
tion temperature strongly depends Bn(see theR depen-
dence ofA shown below. As for S(7), in addition, it makes
a weak peak before saturating to the zero-temperature value,
which indicates a short-range antiferromagnetic order.

In Fig. 3, the zero-temperature valuesyafand S() are
plotted as a function oR. The value ofys at R=0 is con-
sistent with that obtained in the previous worl}gs
=18.4048(7)° On the other hand, @&=1, they coincide
the exact valuesy.=2 and S(7)=4%, respectively, within

Fig. 2, the temperature dependence of the uniform susceptihe statistical error. One sees in Fig. 3 that they are smooth

bility does not depend on the value Bfstrongly; it has a
very broad peak arountl=1, and decreases quite rapidly at
lower temperatures. It suggesgin-singlet ground statee-
gardless of the value @R

functions ofR, and thus there is no indication of singularities
in the whole range oR.
Thenonexistencef phase transitions is also confirmed by

the R dependence of the spin gdpand the inverse correla-
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1000 3 T T T T 3 (a) R=0
; ] - S
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100 £ (b) R=1

Trrne
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FIG. 5. Schematic picture of plaquette-singlet solid stéde.
AKLT state atR=0. (b) Spin-1 dimer state &=1. (c) Plaquette-
R singlet solid state for &R<1.

10

:

FIG. 3. R dependence of the staggered susceptibildpen
squares and the static structure factor at momentum (solid
circles. The statistical error of each data point is much smaller than
the symbol sizes. A. Breakdown of AKLT picture

tion length&~* (Fig. 4). These results convincingly support As we have already mentioned in Sec. | that the ground
the conjecture made in the previous analytic studfigé.t stgte of the spin-1 antlferromagnetlc chain is understood
should be recalled that by using the method we explained iguit€ well by means of the VBS pictufedctually, the AKLT
detail in Sec. Il C, the convergence to the thermodynami¢tate, which is the exact ground state of the so-called AKLT
and the zero-temperature limits of the data has been check&gPdel; shares many common properties, such as spin-
for all the values oR we simulated. Therefore, the data can 'Otation symmetry, finite correlation length, etc., with the
be identified with those at = and T=0 besides the sta- ground state of the spin-1 Heisenberg chain. These two states
tistical errors, which are much smaller than the symbol size&'® hbe“ﬁved to belong to the same universality class with
in Figs. 3 and 4. each other.

Although there are no singularities betweRr:0 and 1, The AKLT state is essentially constructed as direct prod-

. 1 . . . .
long-range antiferromagnetic fluctuations are greatly enYCts Of spinz dimers sitting on each boniFig. 3&]. On

hanced in the intermediate region Bf This is consistent €ach site, two edgé=3 spins are symmetrized to form an
with the temperature dependence of the uniform susceptibils‘zz_1 spin. An important feature of this state is that a sum of
ity presented in Sec. Ill B. Especially, note that all the physi-> " @ny interval[i,j] can take only 1, 0, or -1. This fact is
cal quantities we calculated have their maxim(on mini- |mmed|ately followed by the QX|stence of a topological hid-
mum) at R=0.3 (see also Table)l They could be compared denzorder; if one removes spins$it=0 state, the sequence
with those of the spin-2 antiferromagnetic Heisenberg chain®f S° Of the remaining spins has a perfect antiferromagneti-

Lo~ . < 9 clike ordering(1, -1, 1, -1, ...)although the original one
le., xs=1164.42), £=49.491), andA=0.089 174). has no “true” antiferromagnetic long-range order at all.

. . . . The above topological order in the AKLT state can be
detected quantitatively by means of thatring order
parametey* which is defined by

(Oz)= lim (Oi,j)) (11)

li=jl—e

IV. PLAQUETTE-SINGLET SOLID STATE AND HIDDEN
ORDER PARAMETER

in terms of the string correlation operator

St (12)

j-1

Oz<i,j>=—8.2ex+w > S

k=i+1

whose expected value §s=0.444 - - for any|i—j|>1. The
string order parametéfl) is also finite in the spin-1 Heisen-
0.01 ! ! ! ! berg chain. Its value is estimated to be 0.3243n the ther-
modynamic limit R=0 in Fig. 6. In practice, the string
order parameter of a finite chain of lendths calculated as
FIG. 4. Rdependence of the inverse correlation length along the

chains(solid circleg and the spin gafopen squargsThe statistical <@2>L:1 2 (O,(i,i +L12)). (13
error of each data point is much smaller than the symbol sizes. L 5
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0.7 T T T . ferent from each other. This observation leads us to a pro-
posal of the following generalized state, which connects
7 these two VBS states smoothly.

First, we define a local state of plaquette consisting of
four S=1 spins, which is expressed explicitly as

T [p(0))i=ag cost{|T)ail L) riva=IL)uilT)riva}

- XM 2il Daiva= 12l 121}

_ +sinO{[ 1)1l L) 2i = [l T)2i}

X{ M i+l D2ivr= Dl 2irat], (19

where a, is the overall normalization factor aj*

=4+ 2 sin 2)). This state is constructed as a superposition

of two S=0 states. The first term of right-hand side in Eg.

(15) is the product of the dimers sitting on legs, and the
FIG. 6. R dependence of the hidden order paramet@s)  S€cond one is the product of the rung dimers. The parameter

(open symbolsand \{O,) (solid circleg. The statistical error of ¢ (0= 0=/2) controls the proportion of these two constitu-

each data point is much smaller than the symbol sizes. The horizor2nts. Note that the wave functidii5) is the exact ground

tal dashed line denotes the exact valgg 6f \{O,) in the dimer ~ Stal€ of the following four-body spig-Hamiltonian:

limit (R=1). A scaling plot fo{O,) with exponente=2.5 is also J

shown in the inset. szzp(o'l,i Oy 1t 0, 04 1)

0.6

0.5

04
03

02

0.1

Although the string correlation functiofiL2) is a nonlocal K
guantity, one can construct an improved estimator even for it. + —p(0'1i Ot O 0214 1), (16)
For details, see Ref. 24. 4 T ' '

In the presence of the interchain coupling, however, thgyhereJ =0, K,>0, ande, ; denotes the spii-Pauli op-
above AKLT picture breaks down immediately. As shown in grator. |pn this cpase, the parametein Eq. (15) can be ex-

Fig. 6, the string order parameté®,), , defined on one of pressed explicitly as a function af=K,/J, as
the two chains, decreases quite rapidlyRascreases. Fur-

thermore, in contrast with the other quantities shown before, 6= arctarix,— 1+ x/l—xp+x§), (17)
the value of(,), exhibits strong system-size dependence
for R>0. Actually, as shown in the inset of Fig. 6, one finds @"d the gap above the ground state never closes throughout

that these finite-size data scagponentiallyquite well as while oge va\r/ilesxp from 0 (6=0) to= (6= m/2), as we will
see in Sec. VI.

<02>L:}'(R|na|_) (14) f By using the Iopal singlet stafd5), we construct a wave
unction of the spin-1 ladder
with @=2.5, wheref(x) is a scaling function, and it van-
ishes forx— . This strongly suggests that the string order |‘1’(9)>ps:H P, iH (), (18)
parameter(1l) is essentially singulamt R=0, and is van- ai
ished by infinitesimal interchain coupling, though we have

whereP,, ; is a projection operator acting on tv&-= 3 spins
no account for the value of the exponentat the moment. P prol b g 2 SP

at site (@,i). The schematic picture of this state is presented
_ _ in Fig. 5(c). We refer to it as th@laquette-singlet solid state
B. Plaquette-singlet solid state One sees that by varying the paramefeirom 0 to /2, it

As we have seen above, the AKLT pictufEig. 5a]  connects smoothly the AKLT state &=0 [Fig. 5a)] and
breaks down immediately foR>0. Actually, in theR=1  the spin-1 dimer state &=1 [Fig. Sb)]. We expect the
limit, the ground state is represented schematically by a paground state of the present system can be described well by
tern of sping dimers, in which two dimers are sitting on the plaguette-singlet solid state wigttuned for each specific
each rundFig. 5(b)]. There is no overlap between these two value of R?®
VBS states. Furthermore, it is possible to definefaur-body string

However, if we focus our attention on a plaquette contain-correlation operator
ing four spins at &,x)=(1j), (1ji+1), (2i), and (2 ji—1
+1), it !s found that these two states share a remarkable O4(i,j)=5%;S5; ex;{iw 2 (St +S5p) Si,jsé,j’
feature, i.e., the sum & of these four spins can take only 0, k=i+1
+1, or =2, and its absolute value never exceeds 2 in both (19
cases. In other words, folB=3 spins, each of which be- which characterizes the plaquette-singlet solid stb8 It is
longs to anS=1 spin at one of four corners of a plaquette, easy to prove that the expectation value®f(i,j) remains
form an S=0 state, though their fine structure is quite dif- finite for any value ofé for the plaquette-singlet solid state
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(18). Especially{O,4(i,j))=35 at 6=m/2 (R=1). It is inter-
esting to see tha®,(i,j) can be expressed as a product of
the conventional string correlationd?2) defined on each
chain, O,(i,j, @)

O4(|,J):Oz(|,J,l)XOZ(|,J,2) (20)

Therefore, in the decoupled-chain cag&<0) we have

(O4(i,1))=(0a(i.))?, (21)

where we omit the indexy, since the expectation value of
the string correlation operatd?,(i,j;«) does not depend on
a. For R>0, such a simple relation does not hold, and in
general they take different values with each other.

In Fig. 6, we show theR dependence of our proposed
hidden order parameter

1
(Oa)=[ 2 (Oa(i,i+LI2)), (22
calculated for the present model. We pl&t®,), instead of
(O,4), itself to demonstrate the relatig@1) atR=0. In con-
trast with the conventional string order parametér), ,
which vanishes immediately fdR>0, the proposed string
order parametef,), is found to be a smooth function &
and remains finite up to the dimer limiR&1).

It should be emphasized that although the long-range spi

fluctuations are greatly enhanced rouRe& 0.3 as discussed
in Sec. lll,{O,), remains remarkably large even in this re-
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FIG. 7. Demonstration of topological hidden order in the
plaquette-singlet solid state(@) Spin configuration on each
plaquette. Arrows denote the configuratioh i) of Sz% spins. On
each plaquette, the sum of configurations of four spins is restricted
to be zero.(b) Spin configuration of corresponding spin-1 ladder.
(c) SequencesS;} and{7;} calculated from the configuratidiy) as
§=5{;+S5; and 7;=S5};S5;, respectively.(d) Sequence off;'s
obtained by being removed elements satisfying botlf;ef0 and
|Si|# 1, and replaced 1 ane 1 by (1,0) and ¢ 1,0), respectively,
in which all positive(negative 7;’s sit on one(anothey sublattice
of the sequence.

fprmed into one bond of strength=J/2 connecting twoS
=2 spins. The spin-2 antiferromagnetic chain has a finite

spin gapA/J=0.089 174), which is much smaller than that

gion. This strongly supports that the ground state of theof the spin-1 chain, and also a longer correlation length,

spin-1 ladder is actually described quite well by the
plaquette-singlet solid statd8) in the whole range oR.
Before closing this section, it might be worth noting that
the plaquette-singlet solid staEq. (18) and Fig. %c)] has
the following topological antiferromagnetic long-range or-
der, though its definition is slightly complicated than its
counterpart in the AKLT state for the single spin-1 chain;
first, for a given spin configuratiogS;, ;} («=1,2 andi
=1,2,3...), define two sequencesS{,S,,S3, ...) and
(71,75, 73, .. . ), where §;’'s and 7;’s are calculated as;
=S[;+S;; and T,=S{;S;;, respectively. Next, choose a
nearest pair of nonvanishirig's, say7; and7. If the num-
ber of §’s satisfying|S;|=1 in the intervalj <l <k is even
(odd), then7; and 7, has a sameopposit¢ sign. In other
words, in the sequence @f’s, if one removes elements sat-
isfying both of ;=0 and|S;|# 1, and replaces 1 and 1 by
(1,0) and (1,0), respectively, then one finds the resulting

sequencd7;} has an antiferromagnetic long-range order re-

garding nonzero elements, i.e., all positiveegative 7;'s sit

on one(anothey sublattice of the sequence. A demonstration

of this topological order is presented in Fig. 7.

V. FERROMAGNETIC INTERCHAIN COUPLING

. . . 001
So far, we consider only the case where the interchain

coupling is antiferromagneticR>0). In this section, we
consider, in turn, the ferromagnetic case. In RRe-—1
limit, two S=1 spins connected by an infinitely strong fer-
romagnetic rung bond for8=2. Thus, two intrachain anti-
ferromagnetic coupling of strength in Eqg. (1) are trans-

£=49.491)°

The spin-2 Haldane state is also explained by a VBS pic-
ture, in which two dimers sit on each bond. Therefore, one
would expect naturally that the two independent spin-1
Haldane state @&=0 and the spin-2 oneR— —1) is con-
nected smoothly without any singularities between them. In-
deed, as shown in Fig. 8, the spin gayJ, as well as the
correlation lengthé decreases monotonically &does, and
seems to converge smoothly to the values of the spin-2

1 ¢ T T T T

-1

FIG. 8. R dependence of the spin gdppen squargsand the
inverse correlation length along the chagolid circles in the fer-
romagnetic K<0) case. The dashed lines denote the respective
values in theR— —1 limit (Ref. 9.
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Haldane chain. Note that the spin gap presented in Fig. 8 iduces quite small=£0.004)) antiferromagnetic coupling be-

not the reduced gap. SinceX vanishes as-1/K| for R tween ladderd® It should be noted that the critical
<0, we normalize the gap as/J, which remains finite in intérladder coupling is smaller by an order of magnitude than
the R— — 1 limit. At R=—0.8 and— 0.9, we need. =512 the spin gap. This situation is the same as the critical inter-
. chain couplingJ; of the two-dimensional array of spin-1

e oo e o T 1€ Zero-lemperauire VLS Wenains, 3:/9-0.0436488) 2 while A/J=04105¢2)°

Although the decoupled-chain poink&0) is not a criti- g.he pr_eus:a grogn:—_stateb phaset.f diagram otf ;hesbe two-
cal point, the spin gap is stilonanalyticat this point. In Fig. imensional Spin-L neisenberg antiterromagnets has been re-

9, we show theK/J dependence oA/J nearK=0 (|K/J| ported in defail in Ref. 26.

=<0.01) both in the antiferromagnetic and ferromagnetic re i-r:tlle ?h};ﬂ ?/Ivzgr%uvr\gzlctg \gg;i gg'\}fﬂvﬁlmgaggls'?r?lﬁw
gimes. One sees a clear cusp jusKat0. In both regimes, P ! Y

A/J decreases linearly d&/J| increases. Furthermore, we Pre>ence of interchain coupling. We proposed the plaquette-
find that the absolute value of its slope is the same Witt,1in th singlet solid state to describe the ground state qualitatively

error on both sidef3.723) for K>0 and 3.783) for K<0], for the whole range oR. The plaguette-singlet solid state has

We should remark that this is completely consistent with the® topological hidden order. The hidden order parameter

. : b {O,4), which characterizes the plaquette-singlet solid state,
conjecture by the previous bosonization stiy. was shown to be finite up to the dimer imiRE1). This

strongly supports that the ground state of the spin-1 ladder is
VI. SUMMARY AND DISCUSSIONS described quite well by the present plaguette-singlet solid
) ) . . picture.

In this paper, we investigated precisely the ground-state | js quite interesting to see that the local Hamiltonian of
properties of the spin-1 antiferromagnetic Heisenberg tWogpint plaquette, Eq(16), itself can reproduce qualitatively
leg ladder by means of the quantum Monte Carlo simulation,q rect behavior of the spin gap observed in the present
We found that the system is gapful regardless of the strengtgpin_l ladder. The Hamiltoniafilé) has a singlet ground
of interchain coupling, that is, the Haldane state in the degiaie regardless of the value Qf=K,/J, (—x=x,=).

coupled chains and the spin-1 dimer state are connect ex, dependence of the spin gap can be written explicitly

smoothly and there is no quantum phase transition betweefy toliows:

them. We conclude that the behavior of the spin gap as a

function of R we observ_ed, including the cusp Iat=_0, is \/1—xp+x,2) for x,=0
completely consistent with the recent analytic studies based A B (29
on the mapping to the nonlinearmodef* and the bosoniza- Jo Xp+ /1_Xp+xf> for x,=<0.

tion techniqué?
Although there is no quantum phase transition in the
present system, the spin gap is greatly suppressed, and at tﬁ
same time the long-range antiferromagnetic fluctuations are
enhanced in the intermediate regioR=0.3), e.g.,A/(J
+K)=0.06476(4) andJ+K) xs=490.1(2) aR=0.3. This
explains the reason why the spin-1 ladder wihk-0.3 ex-
hibits an antiferromagnetic long-range order, if one intro-

ne can find easily the following features.
€(i) There always exists a finite gap ferc<x,=c.
(i) Forx,>0 (K,>0), A/(Jp,+Kp) has a minimum at a
finite value ofx,.
(i) On the other hand, fok,<0 (K,<0), A/J, is a
monotonically decreasing function pf|, and converges to
a finite value aix,= — .
(iv) Finally, atx,=0, A/J, has a cusp, and it decreases
linearly with the same slope on both sides.
- 1 The last behavior is simply due to the crossing of the
041 | -~ 4 second- and third-lowest eigenvalues. All of these features
LN are qualitatively the same as the present spin-1 ladder.
- o m _
o “m The plaquette-singlet solid picture proposed in the present
04 | slope=3.75(3) \\\\?1°Pe='3~72(3) il paper might be generalized to wider classes of the spin-1
ya . Heisenberg ladder. Indeed, for the ferromagnetic interchain
039 F J coupling case discussed in Sec. V, our hidden order param-
’ ) eter(O,) was found to remain at a finite value=(0.089) in
B . the limit K— —oo. Furthermore, the present plaquette-singlet
038 - 7/ ST solid picture might be applied even in the presence of bond
L 5" ferromagnetic antiferromagnetic g - alternation(forced dimerizationin the intrachain coupling,
0.37 ) . . N i.e., J;=(1+(—1)'8)J, where § denotes the strength of
-0.01 -0.005 0 0.005 0.01 dimerization. We have observed that there is no singularity
K/J for the whole range o6 (0=<6=<1), and(O,) remains finite
FIG. 9. K/J dependence of the spin gdpJ in the antiferro-  Up to the decoupled-plaquette limif€ 1). Note that as for
magnetic K>0) and ferromagnetic {<0) cases. The dotted the decoupled dimerized chaii €0), the 6 dependence of
straight lines are obtained by least-squares fitting feekdJ ~ (O,) is qualitatively different from that foK>0. There ex-
<0.025 and—0.025<K/J<0, respectively. ists a critical point ats,=0.260014)2" and the conven-

042 T T T T

AlT

224412-8



PLAQUETTE-SINGLET SOLID STATE AND . ..

tional string order parameté©,) vanishes fors= 5. Since
the relation(21) holds forK =0, the proposed hidden order
parametef O,) also vanishes fos=5.. The existence of
nonzero hidden order paramet@,) in the cases with fer-
romagnetic couplings and with alternating bonds implie

local singlet states similar to the present plaguette-sing|

solid state, though the structure of local singlet state shoul

be quite different from the present one.

Very recently a new nitroxide material, abbreviated as
BIP-TENO, has been synthesized, and its magnetic proper-

ties have been investigated precis@ly® The tetraradical

BIP-TENO molecule consists of two pairs of ferromagneti-

cally coupledS= 3 spins, and relatively weak antiferromag-

netic coupling exists between the pairs. The crystalline stat
of BIP-TENO is thus expected to be described effectively byth

S
their ground states are also well described by products o

PHYSICAL REVIEW B34 224412

from the magnetization cur/@.Unfortunately, its magnitude
is more than twice as large as the present rdsuf{J +K)
=0.07392(6) aR=0.45. See Fig. §

Interestingly, the shoulder in the temperature dependence
of the uniform susceptibilityFig. 2) has also been observed
ven in the real materiaf This anomaly in the excitation
pectrum might be related to tHeplateau observed in the
agnetization process of BIP-TEN® However, it is be-
ond the scope of the present study, and remains as a future
problem.
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