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Plaquette-singlet solid state and topological hidden order in a spin-1 antiferromagnetic
Heisenberg ladder
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Ground-state properties of the spin-1 two-leg antiferromagnetic ladder are investigated precisely by means
of the quantum Monte Carlo method. It is found that the correlation length along the chains and the spin gap
both remain finite regardless of the strength of interchain coupling, i.e., the Haldane state and the spin-1 dimer
state are connected smoothly without any quantum phase transitions between them. We propose a plaquette-
singlet solid state, which qualitatively describes the ground state of the spin-1 ladder quite well, and also a
corresponding topological hidden order parameter. It is shown numerically that the proposed hidden order
parameter remains finite up to the dimer limit, though the conventional string order defined on each chain
vanishes immediately when infinitesimal interchain coupling is introduced.
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I. INTRODUCTION

Quantum spin-ladder systems have been studied theo
cally and experimentally over the last decade as mate
with a novelspin-gapstate, as well as by their relevance
the high-temperature superconductivity.1 Especially, the two-
leg ladder Heisenberg antiferromagnet, which is defined
the Hamiltonian

H5J(
i

$S1,i•S1,i 111S2,i•S2,i 11%1K(
i

S1,i•S2,i , ~1!

has been studied most extensively. Here,Sa,i is the spin op-
erator at sitei on theath chain (a51,2), and the intrachain
and interchain coupling constants are denoted byJ and K,
respectively. In the following, we restrict our attention on
to the case in which the intrachain coupling is antiferrom
netic (J.0). On the other hand, the interchain coupling co
stantK can be either positive~antiferromagnetic! or negative
~ferromagnetic!.

At K50, the system consists of two decoupled antifer
magnetic Heisenberg chains. In this case, it is well kno
that the ground-state properties can be classified into
universality classes depending on the parity of 2S. HereS is
the spin size. In the case whereS is a half-odd integer, the
ground state iscritical, i.e., the system has gapless low-lyin
excitation and the antiferromagnetic correlation functi
along the chain decays in an algebraic way as the dista
increases. On the other hand, it is conjectured by Halda2

that the antiferromagnetic Heisenberg chain of integer sp
has a finite excitation gap above itsuniqueground state, and
the correlation function decays exponentially with a fin
correlation length. Its ground-state properties can be un
stood quite well from the viewpoint of the valence-bo
solid ~VBS! picture,3 in which the ground state is essential
represented as direct products of spin-1

2 dimers ~AKLT
state!. In addition, a topological order parameter characte
ing the AKLT state, as well as the Haldane state, so ca
thestring order parameter, has been proposed.4 The validity
of Haldane’s conjecture has been confirmed precisely foS
51, 2, and 3 by several numerical methods.5–9
0163-1829/2001/64~22!/224412~9!/$20.00 64 2244
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Introduction of nonzero interchain couplingK is known to
drastically change the ground state, at least for the sp1

2

case.1 For small K, either antiferromagnetic or ferromag
netic, it immediately opens a spin gap ofO(uKu) with some
logarithmic corrections.10 That is,K50 is the special point
at which there occurs a quantum second-order phase tra
tion between the dimer phase (K.0) and the spin-1 Haldane
phase (K,0). Again, from the viewpoint of VBS picture
one can understand this phase transition as a global r
rangement of dimer pattern. For larger half-odd-integer sp
(S5 3

2 , 5
2 ,•••), the criticality atK50 should be essentially

the same as in the spin-1
2 case.

In the case ofinteger-spinchains, on the other hand, e
fects of interchain coupling have been known little so f
Recently, Se´néchal and Allen studied the spin-1 ladder b
mapping it to the nonlinears model11 and also by the
bosonization technique.12 They found that in contrast with
the spin-12 case, small interchain coupling reduces the m
nitude of the spin gap in both of antiferromagnetic and f
romagnetic regimes. In addition, their analyses as well
their complemental Monte Carlo calculation suggest t
there is no critical point between the Haldane and the sp
dimer phases. This may seem paradoxical since these
phases have apparently different dimer patterns from e
other.

In this paper, we present the results of our extensive qu
tum Monte Carlo simulation on the spin-1 ladder. After r
viewing details of our simulation using the efficien
continuous-time loop algorithm in Sec. II, we present o
numerical data on the uniform susceptibility, staggered s
ceptibility, antiferromagnetic correlation length, etc. in Se
III, which convincingly demonstrate the continuity of th
two limiting case (K50 andK5`), and thus support the
conjecture by the previous analytical approaches.11,12 In Sec.
IV, we propose aplaquette-singlet solid state, that is con-
structed as products of local singlet states of fourS5 1

2 spins.
The Haldane state and the spin-1 dimer state are natu
included as special limits. In addition, we propose a kind
hidden order parameter, which can detect the topological
den order exsisting in the plaquette-singlet solid state.
©2001 The American Physical Society12-1
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TODO, MATSUMOTO, YASUDA, AND TAKAYAMA PHYSICAL REVIEW B 64 224412
show numerically that the hidden order parameter we p
pose remains finite in the whole parameter range, 0<K<`,
while the conventional string order parameter vanishes
cept atK50. In Sec. V, we consider in turn the case whe
the interchain coupling is ferromagnetic (K,0), and show
that the spin-1 Haldane state and that ofS52 also continue
to each other without any singularity on the way to the oth
We give a summary of our results and some discussion
the final section.

II. QUANTUM MONTE CARLO METHOD

A. Continuous-time loop algorithm for spin-1 system

The recently developed continuous-time lo
algorithm13–15 is one of the most efficient methods for sim
lating quantum spin systems. It is a variant of the world-li
Monte Carlo method, which is based on the path-integ
representation by means of the Suzuki-Trot
discretization.16 However, the continuous-time loop algo
rithm works directly in the imaginary-time continuum,15 and
thus is completely free from the systematic error in t
Suzuki-Trotter discretization. In addition, the correlation b
tween successive spin configurations is greatly reduc
sometimes by orders of magnitude, since it flips effectiv
clusters of spins, orloops, whose linear sizes correspon
directly to the length scale of relevant spin fluctuations. T
algorithm has already been applied to various spin syst
with great success.17

The Hamiltonian we consider is given by Eq.~1! with S
51. The linear size along the chain is denoted byL, and we
adopt periodic boundary conditions in this direction, i.
Sa,i 1L5Sa,i for a51 and 2. In order to apply the
continuous-time loop algorithm to the present spin-1 syst
first we represent the spin-1 Hamiltonian in terms of su
spins. In this representation, each spin-1 operator in Eq.~1!
is decomposed into a sum of two spin-1

2 operators.18 Simul-
taneously, each bond of strengthJ ~or K) is transformed into
four bonds of the same strength connecting subspins.
lattices before and after the subspin transformation
shown in Fig. 1. Note that in order to recover dimensions
the original spin-1 Hilbert space (32L), one needs to intro-

FIG. 1. ~a! Original spin-1 ladder and~b! equivalent system
represented byS5

1
2 spins~subspins!. The spin-1 ladder of lengthL

(2L spins and 3L bonds! is mapped onto the spin-1
2 system on a

lattice of 4L subspins and 12L bonds. Each oval in~b! denotes a
pair of subspins which is symmetrized by being applied spe
boundary conditions in the imaginary-time direction.
22441
-

x-

r.
in

l
r

-
d,
y

e
s

,

,
-

he
re
f

duce a set of projection operators, each of which acts o
pair of subspins and projects out the state withS50 ~Fig. 1!.
After transformation into a path-integral representation,
projection operators are converted to special boundary c
ditions in the imaginary-time direction;9,19 for each pair of
subspins, the totalSz is required to be conserved across t
imaginary-time boundary.

For the mapped system, the spin-1
2 continuous-time loop

algorithm13–15 can be applied without any modification ex
cept that we need to introduce additional graphs and labe
rules for the boundaries in the imaginary-time direction.9,19

We use the multicluster variant of the loop algorithm. T
resulting algorithm is found to work quite well as the sam
as the original algorithm developed forS5 1

2 ; the integrated
autocorrelation time for the physical quantities we meas
remains of order unity, and there is observed no signific
sign of its growth even in the largest system in the pres
simulation (L51024 andT/(J1K)52/1024.0.001 95).

B. Physical quantities

The physical quantities of interest can be measured
using the corresponding subspin representations. First,
later convenience, we introduce theimaginary-timedynami-
cal correlation functionC6(x,t) and its Fourier transform
C̃6(k,v). The former is defined explicitly in the path
integral representation by

C6~x,t!5
1

2Lb K E
0

b

dt(
i

$S1,i~ t !6S2,i~ t !%

3$S1,i 1x~ t1t!6S2,i 1x~ t1t!%L , ~2!

whereb is the inverse temperature (1/T). The spin configu-
ration at sitei on theath chain and at imaginary timet (0
<t<b) is denoted bySa,i(t), which takes21, 0, or 1. The
bracket ^•••& in Eq. ~2! denote the average over Mon
Carlo steps~MCS!. In the present subspin representatio
Sa,i(t) is simply given by a sum ofSz of two subspins at
(a,i ,t).

In terms of the imaginary-time dynamic structure fact
C̃6(k,v), the uniform susceptibility and the staggered su
ceptibility are simply given by

x52LbC̃1~0,0! ~3!

and

xs52LbC̃2~p,0!, ~4!

respectively. We also calculate the static structure facto
momentump as

S~p!5
1

2L K (
i , j

~21! u i 2 j u@S1,i~0!2S2,i~0!#

3@S1,j~0!2S2,j~0!#L . ~5!

In order to calculate the correlation length along the cha
we use the second-moment method;20

l
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PLAQUETTE-SINGLET SOLID STATE AND . . . PHYSICAL REVIEW B64 224412
j5
L

2p
A C̃6~p,0!

C̃6~p12p/L,0!
21. ~6!

Similarly, the spin gap, which is defined as the inverse of
correlation length in the imaginary-time direction, is me
sured by

D215
b

2p
A C̃6~p,0!

C̃6~p,2p/b!
21. ~7!

In Eqs.~6! and ~7!, we take the minus~plus! sign for K.0
(K,0). Although the above second-moment estimates su
from systematic error due to the existence of subdomin
decaying modes in the correlation function, it should be s
ficiently small~at K50 the systematic error for the spin ga
is known to be about 0.2% Ref. 9!, and thus we expect that
would be irrelevant to the following discussions. We w
also present our results for the string order parameter4 and a
proposed hidden order parameter in Sec. IV. Their exp
definitions will be given later.

In practice, all the physical quantities we will show in th
following, including the hidden order parameters, are m
sured by using so-calledimproved estimators. For example,
the staggered susceptibility forK.0 is simply represented
as the sum of squared length of each loop, divided by 8Lb.
Similarly, the imaginary-time dynamic structure factor c
be measured directly as

C̃6~k,v!5
1

4L2b2 K (p
U12 R ~61!aei (kx1vt)dlU2L ,

~8!

where the integration is performed along a closed path
each loop, and the summation runs over all loops.

C. Taking the thermodynamic limit and the zero-temperature
limit

In the present method, the system sizeL and the tempera
tureT are restricted to be finite.21 Since we are mainly inter
ested in the ground-state properties of the infinite lattice
proper extrapolation scheme for taking the thermodyna
limit ( L→`) as well as the zero-temperature one (T→0) is
required. In the present study, we adopt the following st
egy, which is the same as was used in Ref. 9 for the esti
tion of the Haldane gap of the antiferromagnetic Heisenb
chain withS51, 2, and 3.

For each parameter set (J,K), we start with a small lattice
at relatively high temperature, e.g.,L58 and T/(J1K)
50.25. Then, we increase the system size exponentially
by step, e.g.,L516, 32, 64, 128, . . . .Simultaneously, the
temperature is decreased so as to keepLT/(J1K)5L/(J
1K)b constant. In other words, theaspect ratioof the ~1
11!-dimensional space is kept unchanged for allL ’s. If the
system is gapless, thefinite-size scalingholds; the correlation
length in the real-space directionj(L,T), and that in the
imaginary-time directionD21(L,T) both would grow being
proportional toL.22 Simultaneously, the other physical qua
22441
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tities, such as the staggered susceptibility, should exh
power-law behavior with some exponents depending on t
own anomalous dimensions.

On the other hand, if the system isgapful ~this is the case
for the present system as we will see below!, there exist finite
intrinsic correlation lengths,j andD21. As long as the sys-
tem size and the inverse temperature are smaller enough
these intrinsic correlation lengths, the critical behavior me
tioned above is still observed. However, once bothL andb
exceed them enough,j(L,T) and D(L,T), as well as other
physical quantities, no longer exhibit system-size dep
dence. Strictly speaking, the systematic error due to the
niteness of the system decreases exponentially as the sy
size increases, and it becomes much smaller than the s
tical error due to the finiteness of MCS.

In Table I, we show the system-size~and temperature!
dependence of the physical quantities at (J,K)5(0.7,0.3).
As seen clearly, the data withL>256 ~and with T/(J1K)
<2/25650.007 812 5) exhibit no system-size dependen
Thus, in this case, one can safely conclude that the syste
gapful and also that the physical quantities obtained are th
of the infinite lattice at zero temperature besides the stat
cal error. Empirically, we find thatL/j(L,T).6 with
bD(L,T).6 is a reasonable condition to guarantee the c
vergence in the present numerical accuracy.

One of the advantages of the present scheme is th
depends onno numerical extrapolation techniques, such
least-squares fitting, the Shanks transform, etc. Final res
are simply obtained from those of the largest system at
lowest temperature in the simulation. Therefore, this meth
is quite stable and the error estimation is also quite relia
It should be emphasized that the final results are not affe
at all by the value chosen for the aspect ratio,L/(J1K)b
~52 in the present case!. However, if one chooses a too sma
or too large value, the physical memory of the compu
system might be exhausted before reaching the thermo
namic limit or the zero-temperature one.

In what follows, we will mainly present the data withL
5256 andT/(J1K)52/256 unless otherwise noted. A me
surement of physical quantities is performed for 53105–1
3106 MCS after 103 MCS for thermalization. Typically,
simulation of this system requires about 7 MB of physic

TABLE I. Convergence of physical quantities atJ50.7 andK
50.3. The temperature is taken asT/(J1K)52/L for eachL. The
figure in parentheses denotes the statistical error (2s) in the last
digit. No significant differences are observed among the data w
L5256, 512, and 1024.

L MCS (J1K)xs S(p) D/(J1K) j

8 33105 16.48~3! 4.95~1! 0.3863~6! 4.57~1!

16 63105 49.72~8! 7.74~1! 0.2120~3! 8.50~1!

32 73105 138.0~2! 11.39~2! 0.1218~2! 14.86~2!

64 13106 315.9~4! 14.97~2! 0.0793~1! 22.81~3!

128 13106 468.7~8! 16.23~2! 0.06602~9! 27.37~4!

256 73105 489.8~5! 16.19~2! 0.06487~7! 27.91~4!

512 33105 490.3~3! 16.17~2! 0.06477~8! 27.93~3!

1024 23105 490.1~2! 16.17~2! 0.06476~4! 27.92~2!
2-3
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memory, and 1 MCS takes about 0.33 s on a single CPU
SGI 2800 ~MIPS R12000 400 MHz!. This system size is
somewhat exaggerated for certain sets of parameters, (J,K).
However, in such cases, the system can be consideredN
statistically independentsamples simulated in parallel, whe
N;(L/j)3(Db). Therefore, we gain better statistics pr
portional to AN, which completely compensates for th
growth of CPU time (;Lb for largeL andb).23 Thus, we
loose nothing besides the memory requirement. This is
ready manifested in the figures presented in Table I.

III. NUMERICAL RESULTS

A. Parametrization

The ground state of the present system is parametrize
the ratio of the interchain coupling constant to the intrach
one,x[K/J. Hereafter, we mainly useR, which is defined
by

R5
K

J1uKu
5

x

11uxu
. ~9!

Since we consider only the antiferromagnetic intrachain c
pling (J>0), 21<R<1. At R50, the system consists o
two independent antiferromagnetic chains~spin-1 Haldane
chains!. On the other hand, atR51, it is decoupled into
dimers sitting on each rung. The limitR→21 corresponds
to a single spin-2 antiferromagnetic chain. We also introd
the reduced temperatureT̃5T/(J1K), reduced susceptibili-
ties x̃5(J1K)x, and x̃s5(J1K)xs, and the reduced gap
D̃5D/(J1K). In this section and Sec. IV, we consider on
the case where 0<R<1, i.e., the interchain coupling i
antiferromagnetic.

B. Uniform susceptibility

Before investigating the zero-temperature properties
the spin-1 ladder, first we briefly discuss finite-temperat
behavior of the uniform susceptibility, which gives a rou
profile of the excitation spectrum of the system. In Fig. 2x̃

is plotted as a function ofT̃ for R50, 0.2, 0.3, 0.4, 0.6, 0.8
and 1. AtR51, i.e., J50, since the system consists of in
dependent dimers, the exact form of the uniform suscept
ity is easily obtained as

x̃5
1

T̃

exp~21/T̃!15 exp~23/T̃!

113 exp~21/T̃!15 exp~23/T̃!

.
1

T̃
exp~21/T̃! for T̃!1. ~10!

At R50, x̃ is also known to vanish at low temperatur
exponentially as exp(2D̃/T̃) with D̃.0.410 50(2) ~Ref. 6!
besides a prefactor of some powers ofT. As seen clearly in
Fig. 2, the temperature dependence of the uniform susc
bility does not depend on the value ofR strongly; it has a
very broad peak aroundT̃.1, and decreases quite rapidly
lower temperatures. It suggestsspin-singlet ground statere-
gardless of the value ofR.
22441
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However, it should be noted that at temperatures low
than T̃.0.4, the uniform susceptibility isnot a monotonic
function of R. It is greatly enhanced by orders of magnitu
aroundR50.3, in comparison with those atR50 and 1. It
indicates that in the intermediate region ofR, the spin gap is
strongly suppressed, and on the other hand long-range
ferromagnetic fluctuations are enhanced due to the comp
tion between the intrachain and the interchain antiferrom
netic couplings.

In addition, in the temperature profile of the uniform su
ceptibility for 0.2<R<0.6, one can see a clearshoulder

structure atT̃.0.1 ~see also the inset of Fig. 2!, which indi-
cates existence of some additional anomalies in the exc
tion spectrum of the system.

C. Quantities at zero temperature

The temperature dependences of the staggered susc
bility, x̃s, and the static structure factorS(p) are found to be
qualitatively very similar to those of the single Haldan
chain (R50); they grow rapidly aroundT̃.1 and are satu-
rated to finite values at low temperatures, though the sat
tion temperature strongly depends onR ~see theR depen-
dence ofD shown below!. As for S(p), in addition, it makes
a weak peak before saturating to the zero-temperature va
which indicates a short-range antiferromagnetic order.

In Fig. 3, the zero-temperature values ofx̃s andS(p) are
plotted as a function ofR. The value ofx̃s at R50 is con-
sistent with that obtained in the previous work,x̃s
518.4048(7).9 On the other hand, atR51, they coincide
the exact values,x̃s5

8
3 and S(p)5 4

3 , respectively, within
the statistical error. One sees in Fig. 3 that they are smo
functions ofR, and thus there is no indication of singularitie
in the whole range ofR.

Thenonexistenceof phase transitions is also confirmed b
the R dependence of the spin gapD̃ and the inverse correla

FIG. 2. Temperature dependence of the uniform susceptib
for R50 ~squares!, 0.2 ~circles!, 0.3 ~upward triangles!, 0.4 ~dia-
monds!, 0.6 ~downward triangles!, and 0.8~pentagons!. The exact
result forR51 @Eq. ~10!# is indicated by a solid line. In the inse

the same data are plotted against the logarithm ofT̃.
2-4
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PLAQUETTE-SINGLET SOLID STATE AND . . . PHYSICAL REVIEW B64 224412
tion lengthj21 ~Fig. 4!. These results convincingly suppo
the conjecture made in the previous analytic studies.11,12 It
should be recalled that by using the method we explaine
detail in Sec. II C, the convergence to the thermodyna
and the zero-temperature limits of the data has been che
for all the values ofR we simulated. Therefore, the data c
be identified with those atL5` and T50 besides the sta
tistical errors, which are much smaller than the symbol si
in Figs. 3 and 4.

Although there are no singularities betweenR50 and 1,
long-range antiferromagnetic fluctuations are greatly
hanced in the intermediate region ofR. This is consistent
with the temperature dependence of the uniform suscept
ity presented in Sec. III B. Especially, note that all the phy
cal quantities we calculated have their maximum~or mini-
mum! at R.0.3 ~see also Table I!. They could be compared
with those of the spin-2 antiferromagnetic Heisenberg ch
i.e., x̃s51164.0(2), j549.49(1), andD̃50.089 17(4).9

FIG. 3. R dependence of the staggered susceptibility~open
squares! and the static structure factor at momentump ~solid
circles!. The statistical error of each data point is much smaller th
the symbol sizes.

FIG. 4. R dependence of the inverse correlation length along
chains~solid circles! and the spin gap~open squares!. The statistical
error of each data point is much smaller than the symbol sizes
22441
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IV. PLAQUETTE-SINGLET SOLID STATE AND HIDDEN
ORDER PARAMETER

A. Breakdown of AKLT picture

As we have already mentioned in Sec. I that the grou
state of the spin-1 antiferromagnetic chain is understo
quite well by means of the VBS picture.3 Actually, the AKLT
state, which is the exact ground state of the so-called AK
model,3 shares many common properties, such as sp
rotation symmetry, finite correlation length, etc., with th
ground state of the spin-1 Heisenberg chain. These two st
are believed to belong to the same universality class w
each other.

The AKLT state is essentially constructed as direct pro
ucts of spin-12 dimers sitting on each bond@Fig. 5~a!#. On
each site, two edgeS5 1

2 spins are symmetrized to form a
S51 spin. An important feature of this state is that a sum
Sz in any interval@ i , j # can take only 1, 0, or -1. This fact i
immediately followed by the existence of a topological hi
den order; if one removes spins atSz50 state, the sequenc
of Sz of the remaining spins has a perfect antiferromagn
clike ordering~1, -1, 1, -1, . . . ),although the original one
has no ‘‘true’’ antiferromagnetic long-range order at all.

The above topological order in the AKLT state can
detected quantitatively by means of thestring order
parameter,4 which is defined by

^O2&5 lim
u i 2 j u→`

^O2~ i , j !& ~11!

in terms of the string correlation operator

O2~ i , j !52Si
z expF ip (

k5 i 11

j 21

Sk
zGSj

z , ~12!

whose expected value is49 50.444••• for any u i 2 j u.1. The
string order parameter~11! is also finite in the spin-1 Heisen
berg chain. Its value is estimated to be 0.3743~1! in the ther-
modynamic limit (R50 in Fig. 6!. In practice, the string
order parameter of a finite chain of lengthL is calculated as

^O2&L5
1

L (
i

^O2~ i ,i 1L/2!&. ~13!

n

e

FIG. 5. Schematic picture of plaquette-singlet solid state.~a!
AKLT state atR50. ~b! Spin-1 dimer state atR51. ~c! Plaquette-
singlet solid state for 0,R,1.
2-5
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TODO, MATSUMOTO, YASUDA, AND TAKAYAMA PHYSICAL REVIEW B 64 224412
Although the string correlation function~12! is a nonlocal
quantity, one can construct an improved estimator even fo
For details, see Ref. 24.

In the presence of the interchain coupling, however,
above AKLT picture breaks down immediately. As shown
Fig. 6, the string order parameter^O2&L , defined on one of
the two chains, decreases quite rapidly asR increases. Fur-
thermore, in contrast with the other quantities shown befo
the value of^O2&L exhibits strong system-size dependen
for R.0. Actually, as shown in the inset of Fig. 6, one fin
that these finite-size data scaleexponentiallyquite well as

^O2&L. f̃ ~R lnaL ! ~14!

with a52.5, wheref̃ (x) is a scaling function, and it van
ishes forx→`. This strongly suggests that the string ord
parameter~11! is essentially singularat R50, and is van-
ished by infinitesimal interchain coupling, though we ha
no account for the value of the exponenta at the moment.

B. Plaquette-singlet solid state

As we have seen above, the AKLT picture@Fig. 5~a!#
breaks down immediately forR.0. Actually, in theR51
limit, the ground state is represented schematically by a
tern of spin-12 dimers, in which two dimers are sitting o
each rung@Fig. 5~b!#. There is no overlap between these tw
VBS states.

However, if we focus our attention on a plaquette conta
ing four spins at (a,x)5(1,i ), (1,i 11), (2,i ), and (2,i
11), it is found that these two states share a remarka
feature, i.e., the sum ofSz of these four spins can take only 0
61, or 62, and its absolute value never exceeds 2 in b
cases. In other words, fourS5 1

2 spins, each of which be
longs to anS51 spin at one of four corners of a plaquett
form an S50 state, though their fine structure is quite d

FIG. 6. R dependence of the hidden order parameters^O2&
~open symbols! and A^O4& ~solid circles!. The statistical error of
each data point is much smaller than the symbol sizes. The hori

tal dashed line denotes the exact value (2
3 ) of A^O4& in the dimer

limit ( R51). A scaling plot for̂ O2& with exponenta52.5 is also
shown in the inset.
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ferent from each other. This observation leads us to a p
posal of the following generalized state, which conne
these two VBS states smoothly.

First, we define a local state of plaquette consisting
four S5 1

2 spins, which is expressed explicitly as

uc~u!& i5au@cosu$u↑&1,i u↓&1,i 112u↓&1,i u↑&1,i 11%

3$u↑&2,i u↓&2,i 112u↓&2,i u↑&2,i 11%

1sinu$u↑&1,i u↓&2,i2u↓&1,i u↑&2,i%

3$u↑&1,i 11u↓&2,i 112u↓&1,i 11u↑&2,i 11%], ~15!

where au is the overall normalization factor (au
21

5A412 sin 2u). This state is constructed as a superposit
of two S50 states. The first term of right-hand side in E
~15! is the product of the dimers sitting on legs, and t
second one is the product of the rung dimers. The param
u (0<u<p/2) controls the proportion of these two constit
ents. Note that the wave function~15! is the exact ground
state of the following four-body spin-1

2 Hamiltonian:

Hp5
Jp

4
~s1,i•s1,i 111s2,i•s2,i 11!

1
Kp

4
~s1,i•s2,i1s1,i 11•s2,i 11!, ~16!

whereJp>0, Kp.0, andsa,i denotes the spin-1
2 Pauli op-

erator. In this case, the parameteru in Eq. ~15! can be ex-
pressed explicitly as a function ofxp[Kp /Jp as

u5arctan~xp211A12xp1xp
2!, ~17!

and the gap above the ground state never closes throug
while one variesxp from 0 (u50) to ` (u5p/2), as we will
see in Sec. VI.

By using the local singlet state~15!, we construct a wave
function of the spin-1 ladder

uC~u!&ps5)
a,i

Pa,i)
i

uc~u!& i , ~18!

wherePa,i is a projection operator acting on twoS5 1
2 spins

at site (a,i ). The schematic picture of this state is presen
in Fig. 5~c!. We refer to it as theplaquette-singlet solid state.
One sees that by varying the parameteru from 0 to p/2, it
connects smoothly the AKLT state atR50 @Fig. 5~a!# and
the spin-1 dimer state atR51 @Fig. 5~b!#. We expect the
ground state of the present system can be described we
the plaquette-singlet solid state withu tuned for each specific
value ofR.25

Furthermore, it is possible to define afour-body string
correlation operator

O4~ i , j !5S1,i
z S2,i

z expF ip (
k5 i 11

j 21

~S1,k
z 1S2,k

z !GS1,j
z S2,j

z ,

~19!

which characterizes the plaquette-singlet solid state~18!. It is
easy to prove that the expectation value ofO4( i , j ) remains
finite for any value ofu for the plaquette-singlet solid stat

n-
2-6
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~18!. Especially,̂ O4( i , j )&5 4
9 at u5p/2 (R51). It is inter-

esting to see thatO4( i , j ) can be expressed as a product
the conventional string correlations~12! defined on each
chain,O2( i , j ,a)

O4~ i , j !5O2~ i , j ,1!3O2~ i , j ,2!. ~20!

Therefore, in the decoupled-chain case (R50) we have

^O4~ i , j !&5^O2~ i , j !&2, ~21!

where we omit the indexa, since the expectation value o
the string correlation operatorO2( i , j ;a) does not depend on
a. For R.0, such a simple relation does not hold, and
general they take different values with each other.

In Fig. 6, we show theR dependence of our propose
hidden order parameter

^O4&L5
1

L (
i

^O4~ i ,i 1L/2!&, ~22!

calculated for the present model. We plotA^O4&L instead of
^O4&L itself to demonstrate the relation~21! at R50. In con-
trast with the conventional string order parameter^O2&L ,
which vanishes immediately forR.0, the proposed string
order parameter̂O4&L is found to be a smooth function ofR,
and remains finite up to the dimer limit (R51).

It should be emphasized that although the long-range
fluctuations are greatly enhanced roundR50.3 as discussed
in Sec. III, ^O4&L remains remarkably large even in this r
gion. This strongly supports that the ground state of
spin-1 ladder is actually described quite well by t
plaquette-singlet solid state~18! in the whole range ofR.

Before closing this section, it might be worth noting th
the plaquette-singlet solid state@Eq. ~18! and Fig. 5~c!# has
the following topological antiferromagnetic long-range or
der, though its definition is slightly complicated than
counterpart in the AKLT state for the single spin-1 cha
first, for a given spin configuration$Sa, j

z % (a51,2 and i
51,2,3, . . . ), define two sequences, (S1 ,S2 ,S3 , . . . ) and
(T1 ,T2 ,T3 , . . . ), where Si ’s and Ti ’s are calculated asSi

5S1,i
z 1S2,i

z and Ti5S1,i
z S2,i

z , respectively. Next, choose
nearest pair of nonvanishingTi ’s, sayTj andTk . If the num-
ber of Sl ’s satisfyinguSl u51 in the intervalj , l ,k is even
~odd!, then Tj and Tk has a same~opposite! sign. In other
words, in the sequence ofTi ’s, if one removes elements sa
isfying both ofTi50 anduSi uÞ1, and replaces 1 and21 by
(1,0) and (21,0), respectively, then one finds the resulti
sequence$Ti% has an antiferromagnetic long-range order
garding nonzero elements, i.e., all positive~negative! Ti ’s sit
on one~another! sublattice of the sequence. A demonstrati
of this topological order is presented in Fig. 7.

V. FERROMAGNETIC INTERCHAIN COUPLING

So far, we consider only the case where the interch
coupling is antiferromagnetic (R.0). In this section, we
consider, in turn, the ferromagnetic case. In theR→21
limit, two S51 spins connected by an infinitely strong fe
romagnetic rung bond formS52. Thus, two intrachain anti
ferromagnetic coupling of strengthJ in Eq. ~1! are trans-
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formed into one bond of strengthJ̃5J/2 connecting twoS
52 spins. The spin-2 antiferromagnetic chain has a fin
spin gap,D/ J̃50.089 17(4), which is much smaller than tha
of the spin-1 chain, and also a longer correlation leng
j549.49(1).9

The spin-2 Haldane state is also explained by a VBS p
ture, in which two dimers sit on each bond. Therefore, o
would expect naturally that the two independent spin
Haldane state atR50 and the spin-2 one (R→21) is con-
nected smoothly without any singularities between them.
deed, as shown in Fig. 8, the spin gap,D/J, as well as the
correlation lengthj decreases monotonically asR does, and
seems to converge smoothly to the values of the sp

FIG. 7. Demonstration of topological hidden order in th
plaquette-singlet solid state.~a! Spin configuration on each
plaquette. Arrows denote the configuration (6

1
2 ) of S5

1
2 spins. On

each plaquette, the sum of configurations of four spins is restric
to be zero.~b! Spin configuration of corresponding spin-1 ladde
~c! Sequences$Si% and$Ti% calculated from the configuration~b! as
Si5S1,i

z 1S2,i
z and Ti5S1,i

z S2,i
z , respectively.~d! Sequence ofTi ’s

obtained by being removed elements satisfying both ofTi50 and
uSi uÞ1, and replaced 1 and21 by (1,0) and (21,0), respectively,
in which all positive~negative! Ti ’s sit on one~another! sublattice
of the sequence.

FIG. 8. R dependence of the spin gap~open squares! and the
inverse correlation length along the chain~solid circles! in the fer-
romagnetic (K,0) case. The dashed lines denote the respec
values in theR→21 limit ~Ref. 9!.
2-7
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Haldane chain. Note that the spin gap presented in Fig.
not the reduced gapD̃. SinceD̃ vanishes as;1/uKu for R
!0, we normalize the gap asD/J, which remains finite in
the R→21 limit. At R520.8 and20.9, we needL5512
and T̃50.000 976 6 to obtain the zero-temperature value
the thermodynamic limit.

Although the decoupled-chain point (K50) is not a criti-
cal point, the spin gap is stillnonanalyticat this point. In Fig.
9, we show theK/J dependence ofD/J nearK50 (uK/Ju
<0.01) both in the antiferromagnetic and ferromagnetic
gimes. One sees a clear cusp just atK50. In both regimes,
D/J decreases linearly asuK/Ju increases. Furthermore, w
find that the absolute value of its slope is the same within
error on both sides@3.72~3! for K.0 and 3.75~3! for K,0#.
We should remark that this is completely consistent with
conjecture by the previous bosonization study.12

VI. SUMMARY AND DISCUSSIONS

In this paper, we investigated precisely the ground-s
properties of the spin-1 antiferromagnetic Heisenberg tw
leg ladder by means of the quantum Monte Carlo simulati
We found that the system is gapful regardless of the stren
of interchain coupling, that is, the Haldane state in the
coupled chains and the spin-1 dimer state are conne
smoothly and there is no quantum phase transition betw
them. We conclude that the behavior of the spin gap a
function of R we observed, including the cusp atR50, is
completely consistent with the recent analytic studies ba
on the mapping to the nonlinears model11 and the bosoniza
tion technique.12

Although there is no quantum phase transition in
present system, the spin gap is greatly suppressed, and
same time the long-range antiferromagnetic fluctuations
enhanced in the intermediate region (R.0.3), e.g.,D/(J
1K)50.064 76(4) and (J1K)xs5490.1(2) atR50.3. This
explains the reason why the spin-1 ladder withR.0.3 ex-
hibits an antiferromagnetic long-range order, if one int

FIG. 9. K/J dependence of the spin gapD/J in the antiferro-
magnetic (K.0) and ferromagnetic (K,0) cases. The dotted
straight lines are obtained by least-squares fitting for 0<K/J
,0.025 and20.025,K/J<0, respectively.
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duces quite small (.0.004J) antiferromagnetic coupling be
tween ladders.26 It should be noted that the critica
interladder coupling is smaller by an order of magnitude th
the spin gap. This situation is the same as the critical in
chain couplingJc8 of the two-dimensional array of spin-
chains, Jc8/J50.043 648(8),26 while D/J50.410 50(2).6

The precise ground-state phase diagram of these t
dimensional spin-1 Heisenberg antiferromagnets has bee
ported in detail in Ref. 26.

The AKLT picture, which works quite well for the single
spin-1 chain, was found to break down immediately in t
presence of interchain coupling. We proposed the plaque
singlet solid state to describe the ground state qualitativ
for the whole range ofR. The plaquette-singlet solid state ha
a topological hidden order. The hidden order parame
^O4&, which characterizes the plaquette-singlet solid sta
was shown to be finite up to the dimer limit (R51). This
strongly supports that the ground state of the spin-1 ladde
described quite well by the present plaquette-singlet s
picture.

It is quite interesting to see that the local Hamiltonian
spin-12 plaquette, Eq.~16!, itself can reproduce qualitatively
correct behavior of the spin gap observed in the pres
spin-1 ladder. The Hamiltonian~16! has a singlet ground
state regardless of the value ofxp[Kp /Jp (2`<xp<`).
The xp dependence of the spin gap can be written explic
as follows:

D

Jp
5H A12xp1xp

2 for xp>0

xp1A12xp1xp
2 for xp<0.

~23!

One can find easily the following features.
~i! There always exists a finite gap for2`<xp<`.
~ii ! For xp.0 (Kp.0), D/(Jp1Kp) has a minimum at a

finite value ofxp .
~iii ! On the other hand, forxp,0 (Kp,0), D/Jp is a

monotonically decreasing function ofuxpu, and converges to
a finite value atxp52`.

~iv! Finally, at xp50, D/Jp has a cusp, and it decreas
linearly with the same slope on both sides.

The last behavior is simply due to the crossing of t
second- and third-lowest eigenvalues. All of these featu
are qualitatively the same as the present spin-1 ladder.

The plaquette-singlet solid picture proposed in the pres
paper might be generalized to wider classes of the sp
Heisenberg ladder. Indeed, for the ferromagnetic interch
coupling case discussed in Sec. V, our hidden order par
eter^O4& was found to remain at a finite value (.0.089) in
the limit K→2`. Furthermore, the present plaquette-sing
solid picture might be applied even in the presence of bo
alternation~forced dimerization! in the intrachain coupling,
i.e., Ji5(11(21)id)J, where d denotes the strength o
dimerization. We have observed that there is no singula
for the whole range ofd (0<d<1), and^O4& remains finite
up to the decoupled-plaquette limit (d51). Note that as for
the decoupled dimerized chain (K50), thed dependence of
^O4& is qualitatively different from that forK.0. There ex-
ists a critical point atdc50.260 01(4),27 and the conven-
2-8
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tional string order parameter^O2& vanishes ford>dc . Since
the relation~21! holds forK50, the proposed hidden orde
parameter̂ O4& also vanishes ford>dc . The existence of
nonzero hidden order parameter^O4& in the cases with fer-
romagnetic couplings and with alternating bonds impl
their ground states are also well described by products
local singlet states similar to the present plaquette-sin
solid state, though the structure of local singlet state sho
be quite different from the present one.

Very recently a new nitroxide material, abbreviated
BIP-TENO, has been synthesized, and its magnetic pro
ties have been investigated precisely.28,29 The tetraradical
BIP-TENO molecule consists of two pairs of ferromagne
cally coupledS5 1

2 spins, and relatively weak antiferromag
netic coupling exists between the pairs. The crystalline s
of BIP-TENO is thus expected to be described effectively
a spin-1 antiferromagnetic ladder of present interest. Fr
the high-temperature behavior of the uniform susceptibil
Katohet al.estimated the strength of effective couplings a
concluded thatJ.50 K and K.42 K, i.e., R.0.46.28 A
clear spin-gapped behavior of the uniform susceptibility o
served in the experiment is consistent with the present
sults. The excitation gapD is also estimated to be 15.6 K
tt

e

22441
s
of
et
ld

s
r-

-

te
y
m
,

d

-
e-

from the magnetization curve.29 Unfortunately, its magnitude
is more than twice as large as the present result@D/(J1K)
50.073 92(6) atR50.45. See Fig. 4#.

Interestingly, the shoulder in the temperature depende
of the uniform susceptibility~Fig. 2! has also been observe
even in the real material.28 This anomaly in the excitation
spectrum might be related to the14 -plateau observed in th
magnetization process of BIP-TENO.29 However, it is be-
yond the scope of the present study, and remains as a fu
problem.
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