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Finite-size effects in Heisenberg antiferromagnetic films with a body-centered cubic lattice

Kok-Kwei Pan
Physics Group, Center of General Education, Chang Gung University, No. 259, Wen-Hua 1st Road, Kwei-San, Tao-Yuan, Taiwan,
Republic of China
(Received 14 March 2001; published 13 November 2001

High-temperature series expansions of the zero-field free energy and staggered susceptibility are calculated
for spin-% Heisenberg antiferromagnetic bcc lattice films consistinghef2, 3, 4, 5, and 6 interacting layers.
Sixth order series ix=J/kgT have been obtained for free-surface boundary conditions. The staggered sus-
ceptibility series is analyzed by using the ratio and Pagproximant techniques. The critical temperatures
Tn(m) as a function of the number oh spin layers in the films are obtained. The shifts of the critical
temperatures from the bulk valfi@ — Ty(m)/Ty(*)] can be described by a power law * with A =1.31,
whereN\ is the inverse of the correlation length exponent. A comparison is made with related works.

DOI: 10.1103/PhysRevB.64.224401 PACS nuntder75.70.-i,68.35.Rh, 75.30.Cr

[. INTRODUCTION fields on two sublattices and B for calculating the sublat-
tice magnetization and staggered susceptibility. The lattice
It is well established that the dimensionality of a systemhas been divided into two distinct interpenetrating sublat-
plays an important role in determining the critical behaviortices. High-temperature series expansions of the free energy
of the magnetic systethThe magnetic properties of mag- and the staggered susceptibility serigp to the sixth-order
netic thin film multilayers systems have been the subject oferies for the bcc lattice and to the seventh-order series for
intense research in recent year&.The size in the lateral (e SC lattic¢ are obtained. We report in this paper the nu-

directions are of infinite extent in thin layers, but restricted™Merical results of a high-temperature series expansion study

by the layer thickness in the third direction. Since the corre2N the bee lattice film. The series are analyzed using the

lation length in the third direction is terminated by the IayerSthgldtg:g Zﬁgﬁﬁgfﬂ%ﬂ;iﬁ%‘gﬁéﬁg;;??ﬁg%giﬁa?;gge
thickness, thin layers are ideal media for the studies of P y

finite-size effects on the critical behavior. The ma neticﬁlm is investigated from the sixth-order series. The results
: g . : AINEUChained are consistent with the conjecture that the shift of
properties of the Ising and Heisenberg ferromagnetic film

h b elv i i db ; s Yhe critical temperatures from the bulk valugl
ave been extensively investigated by various authors. —To(m)/Ty()] varies with thicknessn, asm™* with \

There have been some theoretical studies on phase transi- 31

tions in Heisenberg antiferromagnetic _thln fllms_ using @ yplike the bec lattice film, the spih-staggered suscepti-
mean-field approacfiand a Green's-function tech_n_|qﬁﬂeln bility series for the sc lattice film behaves irregularly. The
this work, we present the finite-size effects on critical behavseries for lattices with lower coordination number and lower
ior of spin; Heisenberg antiferromagnetic cubic lattice spin quantum numbes usually have a slower convergence.
films. The staggered susceptibilities of Heisenberg antiferroThe ratio and Padapproximant analysis do not show clear
magnetic films are studied theoretically by the exact highsigns of convergence. Analysis of such series becomes diffi-
temperature series expansions. The method has been ext@ut because nonphysical singularities exist near the circle of
sively used for the study of phase transition and criticalconvergence. The interference by the nonphysical singulari-
phenomena in spin systertfs. ties makes the results of ratio and Padhalysis less reliable
We considere X o X m cubic lattice films formed of mag- and less consistent. In such situations transformation
netic spins localized on the sites of cubic lattice which aremethods**°can be effectively used to analyze the series. We
infinite in two of its dimensions but af finite layers in the had applied a transformation method to analyze the series.
third dimensioA® (z direction. We impose free-surface For the sc lattice film, the estimate of the inverse of the
boundary® condition, in which each surface spin lacks onecorrelation length exponent=1.24 is obtained using the
nearest neighboring spin on the simple cufsig lattice and trgnsformatmn methoq. The complete series and_ further de-
four nearest neighboring spins on the body-centered cubitdils of the transformation method and the analysis for the sc

(bcg lattice. lattice film will be given in a future publicatiot.
The Hamiltonian of the spid-Heisenberg antiferromag- A brief outline of the paper is as follows. In Sec. Il we
net is given as discuss the linked-cluster series expansion method to obtain

high-temperatures series for the free energy and the stag-

gered susceptibility in Heisenberg antiferromagnetic cubic

H= 2 JiS-S—h> S+h> &, (1)  layers. The results of the calculation and the analysis of se-
(0 teA IeB fies are presented in Sec. Ill. A summary is given in Sec. IV.

wherei andj refer to the sites of two distinct interpenetrating
sublattice and the pair interaction paramelgy is taken to
be J>0 wheni andj are nearest neighbors and zero other- The Hamiltonian is divided into two parts, the mean-field
wise. hg in the Zeeman energy term are staggered magnetielamiltonian

Il. DERIVATION OF THE SERIES
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topologically equivalent graphs embedded in the layer lattice

Ho= —EA [IMT+h]S+ > [I,M T +hS by adding independently nearest neighboring vectors for
e J<B each nonequivalent lattice sites of surface and interior layers.
In order to reduce the computational time for enumerating

+5NJ(M “)? (2)  lattice constants of thicker layers, the computer calculation is
proceeded by dividing the free-surface films into even and
and the perturbation Hamiltonian odd number layers in which a graph is embedded. For even
J m layer only 3m in-layer lines need to be considered for
H.=J Z_ MAPITSE+ M1+ = S'ST+S°SH, counting by symmetry; for odoh layer extra counting for the
! <.2]> 'S IS ] 2@2,-)[ 'S S S 1(m+1)th layer is also needed. The lattice constants ob-

(3)  tained for the finite layer lattice are checked by comparing

wherezis the number of nearest neighbors ani the total ~ the ferromagnetic susceptibility series of arlayer simple

number of spins in a thin filmM* is the sublattice magne- cubic lattice films with free surfaces. Our results to seventh

tization which minimizes the free energy of the systém.  order agree with those of the high-temperature series expan-
The staggered susceptibility series for a thin filmmf  SIONS for the susceptibility of spififerromagnetic Heisen-

spin layers is obtained from the free enefgpy the relation berg simple cubic lattice film$The multiple integrals con-
taining rordered products of spin operators in each

s 1 9%(— BF) connected diagram of the staggered susceptibility series are
Xm:E T2 calculated by using the multiple-site Wick reduction theorem
and the standard basis operattty’ In Table | we show the
low-order of Ising susceptibility diagrams, the corresponding
' weight factors, and lattice constants through fifth order. The
c corresponding lattice constants in terms of weak embedded
(4) lattice constants for the Ising graphs in a finite layer of bcc
lattice are shown in Table II. Sixth order diagrams are avail-

18 B
e [[on[fon( 1] 3 @3, s

where able upon request.
2 (—1) (8 8 s The zero-field fs=0) high-temperature series for the
S(B)= 2 f dTlf de...f dr,T, staggered susceptibility series oflayer lattice with free
n=o N 0 0 0 surface is obtained as a seriesxis 8J,
X[Hy(r)H1(72) --H1(7)] 5 1 =
-1.s _ m,,|
andN, is the number of lattice sites in each spin layer. The B Xm_Z+|Zl a X ©®

subscriptc denotes that all connected diagrams have to be
considered. It is noted that the summation over all nearesffhe coefficientsaj" of an m layer for free surface fom
neighbor spin pairs of Eq4) has to be summed over all sites =2, 3, 4, 5, and 6 layers are tabulated in Table III.
in the z direction ofm layer films. The staggered susceptibility series obtained in the present
The staggered susceptibility diagrams are therefore twoealculation is directly evaluated from the two rooted dia-
rooted diagram$ with two operatorsS; and —S§ placed grams. The staggered susceptibility series could also be
together on one of the sites of the free energy diagrams. Thevaluated from the free energy to second ordérsiand take
contribution of a two-rooted diagram is composed of thethe derivative of the result twice with respect to the field.
product of the cumulants in the diagram, the weight factorBoth ways must yield the same result. For the butk (
and the lattice constants which depend on the lattice struc=) spin- antiferromagnetic Heisenberg model on both bcc
ture. The calculations of all possible two-rooted connectedind sc lattice, the results of the present calculation agree
graphs, the corresponding weight factors and the lattice corsompletely with previous resulté:*® This is an independent
stants are the most time consuming part of the computatiortheck on the correctness of cumulants expansions, the corre-
The connected graphs and the weights of the graphs are preponding weights and the value of théh-orderr integral of
duced from the Ising graphs, which contain longitudinal in-the rooted diagrams. Whem=2, we recover the high-
teraction lines only $—M™)(S{+M™), by an algorithm temperature series expansions of spikteisenberg model

which has been implemented on a computer. for the square lattic&’**>°
In a finite layer of bcc lattice each surface spin lacks four
nearest neighboring spin. Since translational symmetry is I1l. ANALYSIS OF THE SERIES

lost in the direction of the layer thickness, the conventional ]

lattice constants for a bulk lattice cannot be used. Computer 10 estimate the Nl temperature3\(m) for the m-layer
programs have been developed to calculate the lattice coflms, we have used the well-known ratio and Pagprox-
stants of all connected graphs in a finite layer lattice. A grapimant techniques. Since the ratio plot faff/a" ; versus 1/
with | interaction lines is generated by the sets of nearesshow oscillatory behavior, we have utiliZédhe ratio plot
neighbor vectors6 for the sc lattice and 8 for the bece lattice for  (af/a™ )¥2 versus {I(I-1)} Y2 The plot of
in a finite layer lattice. For a given layer thickness and given(af/a™ ;)Y versus{l (I — 1)} ~¥2 for m-layer films with the
graph withl interaction lines, the program then generates alfree surface is shown in Fig. 1.
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TABLE I. List of susceptibility diagrams through fifth order which contain longitudinal interaction lines

PHYSICAL REVIEW B4 224401
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TABLE Il. The nonzero lattice constants in terms of weak embedded lattice constants for the graphs in
finite layers of bcc lattice.

LC number m=2 m=3 m=4 m=5 m=6
LC() 2 8 3 16 10
3 5 3
LC2) 8 16 20 112 72
5 3
LC(3) 32 256 128 768 512
3 5 3
LC(4) 32 320 144 832 544
3 5 3
LC(5) 18 # 63 72 78
LC(6) 72 864 432 2592 576
3 5
e 128 1536 - 5376 3712
3 5 3
LC(®) 128 1536 896 5632 1280
3 5
LC(9) 512 81792 5376 %864 %624

In this plot, a straight line can be drawn through the pointsported by Ritchie and Fish&(This result is also consistent
except those of the lower-order terms. The inverseltem-  with the basic assumptions of scaling laffdzor m=3 lay-
perature is estimated from extrapolating the straight line teers film, there is a drastic change of the critical expongnt
the asymptotic limit(value of the intercept al(I1—1)}~¥2  This result is perhaps unexpected and longer series are es-
=0), then the exponeny can be determined from the slope sential in order to estimate t’he correct exponent.
of this line. The deviations of the points from being a straight \We have also used the Padpproximant analysis of the
line provide a measure of the uncertainty in the value of theseries to estimate the'kslbtemperatu[e. Nt temperature is
critical temperature so obtained. From the longer series ogstimated from the poles of direct Paalgproximants to the
three-dimensional staggered susceptibility, the critical temseries{x3}Y"2. y,=3.0 is assumed for all finite thickness
perature for the bulk is estimated to hg=1.38 (Ref. 14  films. In Table IV we list the poles of Pad®proximants to
with the exponenty=1.412? The estimated value of the {x3}¥72 for m=4, 5, and 6 layers. In general, the results of
critical exponent for ferromagnetic Heisenberg modelyis Padeapproximants analysis of the series are consistent with
=1.422023t is worth pointing out that the estimated values those obtained from the ratio method except the results of
of y for both systems agree with each other and this result isn=3 layers film. The convergence of the present high-
consistent with the conjectiffethat the two systems belong temperature series expansion for=3 layers film is slow
to the same universality class. For the films with=4, 5,  that the results of Padanalysis are too scattered to be con-
and 6 layers, the estimates of expongptange from values clusive. The estimates of etemperatures from the ratio
of 2.8 to 3.5 which are consistent with the estimate of expomethod are compared with the corresponding estimates ob-
nent, y,=3.0+0.5, for ferromagnetic Heisenberg films re- tained from the average d£], [4], [3], [2], and[3] Pade

TABLE lll. Exact series coefficients for the high-temperature staggered susceptibility series of body-
centered cubic lattices witm layers and free-surface boundary condition.

m ar aj ag ay ag' ag

2 0.2500 0.1667 0.0833 0.0305 0.0100 0.0052
3 0.3333 0.3889 0.3333 0.2924 0.1786 0.1219
4 0.3750 0.5000 0.5833 0.6004 0.5775 0.5213
5 0.4000 0.5667 0.7333 0.8852 0.9669 1.0497
6 0.4167 0.6111 0.8333 1.0751 1.3098 1.5339
o 0.5000 0.8333 1.3333 2.02448 3.0244 4.4548
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1.9 —— TABLE V. Néel temperatures for the bcc lattices wf layers
. films. Estimates okTy(m)/J are listed from(a) ratio estimate from
L7y R i [x5] and(b) Padeto [ x3]Y°.
L ®
1.5 F S c v i
13 o e y m @ (b) Average
g “F o v e o i
R R | 4 0.62 0.62 0.62
B, e e 5 0.81 0.83 0.82
e 1 6 0.93 0.91 0.92
-~ 07} o ° m=layers | % 1.38 1.38 1.38
_.'D v m=5 layers
0.5 ¢ ®  m=dlayers |
03 F o m=3layers temperature series expans%%nnethods. This results sub-
01 | o | ! ! ! ! stantiates the general universality principfés.

00 01 02 03 04 05 06 07 08 09 10

(se-1y”? IV. CONCLUSIONS

In summary, we have studied the critical properties of
spin+ antiferromagnetic Heisenberg model onmalayers
body-centered cubic lattice films for free-surface boundary
condition by using the exact high-temperature series expan-
sions. We have obtained the dependence of thel lam-

erature on the number of layers witi=3, 4, 5, and 6. The

eel temperatured y(m) for the m-layer films are estimated
from the divergence of the staggered susceptibility with an
exponenty,=3.0x0.5, which is consistent with the basic
assumptions of scaling laws. Our estimates for the shift ex-
ponent of the critical temperaturey=1.31 andv=1/A
=0.76, and the exponeng of bulk system,y=1.41, are
quite consistent with those for ferromagnetic Heisenberg
(7) ~ model. This result is consistent with the conjecture that the

FIG. 1. Ratio plot of the high-temperature staggered susceptibil
ity series @"a" ;)Y versus{l (I — 1)} ~*2 for m-layer bcc lattice
films with the free surfaces.

approximant form=4, 5, and 6 layers films in Table V. c.c.
denotes roots of a complex pair and a negative real ro
rather than a positive real root.

According to the finite-size scaling theory, the shift of the
reduced Nel temperaturekTy(m)/J from the three-
dimensional bulk valu&Ty()/J for thicker layersm can
be described by a power law of the fdhfi2

Tn(m A
T

A log-log plot of [1—Ty(m)/Ty()] versusm is shown
in Fig. 2. The error bars represent the range of uncertainty
for each value ofn. The Neel temperature fom=3 layers
film is obtained from the ratio plot. A good straight-line fit is 150
obtained for the points through<83m=6 with A\=1.31 and
v=1/\=0.76 according to the scaling predicti&t*’ In the

[1-Ta(m) Ty(ooyy

inset in Fig. 2 we show the variation of critical temperature @ é:gg "
shift with number of layeram for A=1.31. This value is bz 0.80 } P
close to the shift exponent=1.41 (v=0.71) for ferromag- g 070} m
netic Heisenberg model by Monte Cdfoand high- ;2 0.60 |
050

TABLE IV. Estimates of Nel temperatures by Pad@pproxi-
mants. Poles of the Pad@proximants tdx3,}*/72 with y,=3.0 are 0.40
listed for a bcc lattice om=4, 5, and 6 layers films.

m M/L 2 3 4
2 0.8745 0.6523 c.c. . . L

4 3 0.6254 0.5929 2 3 4 5 6 7 8
4 0.6125
2 0.8588 0.8766 0.7968 m (number of layers)

S 3 0.8750 0.8467 FIG. 2. Log-log plot of the shift of reduced critical temperature
4 0.7598 [1-Tn(m)/Tp()] versus layersn. Slopes of the straight line
2 0.9405 0.9501 0.8853 yield the inverse of the correlation length expongnin the inset

6 3 0.9420 0.9056 we show the variation of critical temperature shiftl
4 0.8698 —Tn(m)/Ty()] Y with number of layeram for A=1.31. The

error bars represent the range of uncertainty for each value of
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two systems belong to the same universality class. HoweveFrom the general universality principles, the critical expo-
the uncertainties in our numerical estimates, allowing for thenents should be independent of spin quantum nurSpand
scatter of the results in the ratio and Pag@roximant analy- therefore the spin-1/2 and spir1/2 models should have
sis, leave small discrepancy between our estimates and thogkentical exponents.
from Monte Carlo and high-temperature series. The lack of
precision in the values of the critical temperatures and the
limited number of layers due to the shortness of the series
lead to the uncertainties in the estimates of the shift exponent This research was supported by the National Science
of the critical temperatura. Therefore, higher-order coeffi- Council of Republic of China under Grant No. NSC89-2112-
cients of the series are needed to obtain more precise esti4182-002. The computations were done on the Fujitsu
mates of the exponents. VPP300 and IBM SP2 of the National Center for High-
We also hope to extend the present work to explore théerformance ComputinNCHC). We wish to thank NCHC
guestion of the spin independence of the critical exponentdor its support.
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