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Finite-size effects in Heisenberg antiferromagnetic films with a body-centered cubic lattice
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High-temperature series expansions of the zero-field free energy and staggered susceptibility are calculated
for spin-12 Heisenberg antiferromagnetic bcc lattice films consisting ofm52, 3, 4, 5, and 6 interacting layers.
Sixth order series inx5J/kBT have been obtained for free-surface boundary conditions. The staggered sus-
ceptibility series is analyzed by using the ratio and Pade´ approximant techniques. The critical temperatures
TN(m) as a function of the number ofm spin layers in the films are obtained. The shifts of the critical
temperatures from the bulk value@12TN(m)/TN(`)# can be described by a power lawm2l with l.1.31,
wherel is the inverse of the correlation length exponent. A comparison is made with related works.
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I. INTRODUCTION

It is well established that the dimensionality of a syste
plays an important role in determining the critical behav
of the magnetic system.1 The magnetic properties of mag
netic thin film multilayers systems have been the subjec
intense research in recent years.2–5 The size in the latera
directions are of infinite extent in thin layers, but restrict
by the layer thickness in the third direction. Since the cor
lation length in the third direction is terminated by the lay
thickness,6 thin layers are ideal media for the studies
finite-size effects on the critical behavior. The magne
properties of the Ising and Heisenberg ferromagnetic fi
have been extensively investigated by various authors7–9

There have been some theoretical studies on phase tr
tions in Heisenberg antiferromagnetic thin films using
mean-field approach10 and a Green’s-function technique.11 In
this work, we present the finite-size effects on critical beh
ior of spin-12 Heisenberg antiferromagnetic cubic lattic
films. The staggered susceptibilities of Heisenberg antife
magnetic films are studied theoretically by the exact hi
temperature series expansions. The method has been e
sively used for the study of phase transition and criti
phenomena in spin systems.12

We consider̀ 3`3m cubic lattice films formed of mag
netic spins localized on the sites of cubic lattice which
infinite in two of its dimensions but ofm finite layers in the
third dimension7,8 ~z direction!. We impose free-surface
boundary7,8 condition, in which each surface spin lacks o
nearest neighboring spin on the simple cubic~sc! lattice and
four nearest neighboring spins on the body-centered c
~bcc! lattice.

The Hamiltonian of the spin-1
2 Heisenberg antiferromag

net is given as

H5(
^ i , j &

Ji j Si•Sj2hs(
i PA

Si
z1hs(

j PB
Sj

z , ~1!

wherei andj refer to the sites of two distinct interpenetratin
sublattice and the pair interaction parameterJi , j is taken to
be J.0 when i and j are nearest neighbors and zero oth
wise. hs in the Zeeman energy term are staggered magn
0163-1829/2001/64~22!/224401~6!/$20.00 64 2244
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fields on two sublatticesA andB for calculating the sublat-
tice magnetization and staggered susceptibility. The lat
has been divided into two distinct interpenetrating sub
tices. High-temperature series expansions of the free en
and the staggered susceptibility series~up to the sixth-order
series for the bcc lattice and to the seventh-order series
the sc lattice! are obtained. We report in this paper the n
merical results of a high-temperature series expansion s
on the bcc lattice film. The series are analyzed using
standard extrapolation techniques.13 The dependence of th
Néel temperature on the number of layersm of the bcc lattice
film is investigated from the sixth-order series. The resu
obtained are consistent with the conjecture that the shif
the critical temperatures from the bulk value@1
2TN(m)/TN(`)# varies with thicknessm, as m2l with l
.1.31.

Unlike the bcc lattice film, the spin-1
2 staggered suscepti

bility series for the sc lattice film behaves irregularly. Th
series for lattices with lower coordination number and low
spin quantum numberS usually have a slower convergenc
The ratio and Pade´ approximant analysis do not show cle
signs of convergence. Analysis of such series becomes d
cult because nonphysical singularities exist near the circl
convergence. The interference by the nonphysical singu
ties makes the results of ratio and Pade´ analysis less reliable
and less consistent. In such situations transforma
methods14,15can be effectively used to analyze the series.
had applied a transformation method to analyze the se
For the sc lattice film, the estimate of the inverse of t
correlation length exponentl.1.24 is obtained using the
transformation method. The complete series and further
tails of the transformation method and the analysis for the
lattice film will be given in a future publication.16

A brief outline of the paper is as follows. In Sec. II w
discuss the linked-cluster series expansion method to ob
high-temperatures series for the free energy and the s
gered susceptibility in Heisenberg antiferromagnetic cu
layers. The results of the calculation and the analysis of
ries are presented in Sec. III. A summary is given in Sec.

II. DERIVATION OF THE SERIES

The Hamiltonian is divided into two parts, the mean-fie
Hamiltonian
©2001 The American Physical Society01-1
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H052(
i PA

@JzM
11hs#Si

z1 (
j PB

@JzM
11hs#Sj

z

1
1

2
NJz~M 1!2 ~2!

and the perturbation Hamiltonian

H15J(
^ i , j &

@Si
z2M 1#@Sj

z1M 1#1
J

2 (
^ i , j &

@Si
1Sj

21Si
2Sj

1#,

~3!

wherez is the number of nearest neighbors andN is the total
number of spins in a thin film.M 1 is the sublattice magne
tization which minimizes the free energy of the system.14

The staggered susceptibility series for a thin film ofm
spin layers is obtained from the free energyF by the relation

xm
s 5

1

b

]2~2bF !

]hs
2

5N2

1

b E
0

b

dtkE
0

b

dt l K TtH (
kPA

~Sk
z!(

l PB
~2Sl

z!S~b!J L
c

,

~4!

where

S~b!5 (
n50

`
~21!n

n! E
0

b

dt1E
0

b

dt2¯E
0

b

dtnTt

3@H1~t1!H1~t2!¯H1~tn!# ~5!

andN2 is the number of lattice sites in each spin layer. T
subscriptc denotes that all connected diagrams have to
considered. It is noted that the summation over all near
neighbor spin pairs of Eq.~4! has to be summed over all site
in the z direction ofm layer films.

The staggered susceptibility diagrams are therefore t
rooted diagrams12 with two operatorsSA

z and 2SB
z placed

together on one of the sites of the free energy diagrams.
contribution of a two-rooted diagram is composed of t
product of the cumulants in the diagram, the weight fac
and the lattice constants which depend on the lattice st
ture. The calculations of all possible two-rooted connec
graphs, the corresponding weight factors and the lattice c
stants are the most time consuming part of the computat
The connected graphs and the weights of the graphs are
duced from the Ising graphs, which contain longitudinal
teraction lines only (Si

z2M 1)(Sj
z1M 1), by an algorithm

which has been implemented on a computer.
In a finite layer of bcc lattice each surface spin lacks fo

nearest neighboring spin. Since translational symmetry
lost in the direction of the layer thickness, the conventio
lattice constants for a bulk lattice cannot be used. Comp
programs have been developed to calculate the lattice
stants of all connected graphs in a finite layer lattice. A gra
with l interaction lines is generated by the sets of near
neighbor vectors~6 for the sc lattice and 8 for the bcc lattice!
in a finite layer lattice. For a given layer thickness and giv
graph withl interaction lines, the program then generates
22440
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topologically equivalent graphs embedded in the layer lat
by adding independentlyl nearest neighboring vectors fo
each nonequivalent lattice sites of surface and interior lay
In order to reduce the computational time for enumerat
lattice constants of thicker layers, the computer calculatio
proceeded by dividing the free-surface films into even a
odd number layers in which a graph is embedded. For e
m layer only 1

2 m in-layer lines need to be considered f
counting by symmetry; for oddm layer extra counting for the
1
2 (m11)th layer is also needed. The lattice constants
tained for the finite layer lattice are checked by compar
the ferromagnetic susceptibility series of anm-layer simple
cubic lattice films with free surfaces. Our results to seve
order agree with those of the high-temperature series ex
sions for the susceptibility of spin-1

2 ferromagnetic Heisen-
berg simple cubic lattice films.8 The multiple integrals con-
taining t-ordered products of spin operators in ea
connected diagram of the staggered susceptibility series
calculated by using the multiple-site Wick reduction theore
and the standard basis operators.14,17 In Table I we show the
low-order of Ising susceptibility diagrams, the correspond
weight factors, and lattice constants through fifth order. T
corresponding lattice constants in terms of weak embed
lattice constants for the Ising graphs in a finite layer of b
lattice are shown in Table II. Sixth order diagrams are av
able upon request.

The zero-field (hs50) high-temperature series for th
staggered susceptibility series ofm-layer lattice with free
surface is obtained as a series inx5bJ,

b21xm
s 5

1

4
1(

l 51

`

al
mxl . ~6!

The coefficientsal
m of an m layer for free surface form

52, 3, 4, 5, and 6 layers are tabulated in Table III.
The staggered susceptibility series obtained in the pre

calculation is directly evaluated from the two rooted d
grams. The staggered susceptibility series could also
evaluated from the free energy to second order inhs and take
the derivative of the result twice with respect to the fie
Both ways must yield the same result. For the bulk (m
5`) spin-12 antiferromagnetic Heisenberg model on both b
and sc lattice, the results of the present calculation ag
completely with previous results.14,18 This is an independen
check on the correctness of cumulants expansions, the c
sponding weights and the value of thenth-ordert integral of
the rooted diagrams. Whenm52, we recover the high-
temperature series expansions of spin-1

2 Heisenberg mode
for the square lattice.14,19,20

III. ANALYSIS OF THE SERIES

To estimate the Ne´el temperaturesTN(m) for the m-layer
films, we have used the well-known ratio and Pade´ approx-
imant techniques. Since the ratio plot foral

m/al 21
m versus 1/l

show oscillatory behavior, we have utilized21 the ratio plot
for (al

m/al 21
m )1/2 versus $ l ( l 21)%21/2. The plot of

(al
m/al 21

m )1/2 versus$ l ( l 21)%21/2 for m-layer films with the
free surface is shown in Fig. 1.
1-2
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TABLE I. List of susceptibility diagrams through fifth order which contain longitudinal interaction lin
only.
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TABLE II. The nonzero lattice constants in terms of weak embedded lattice constants for the graphm
finite layers of bcc lattice.

LC number m52 m53 m54 m55 m56

LC~1! 2
8

3
3

16

5

10

3

LC~2! 8 16 20
112

5

72

3

LC~3! 32
256

3
128

768

5

512

3

LC~4! 32
320

3
144

832

5

544

3

LC~5! 18
144

3
63 72 78

LC~6! 72
864

3
432

2592

5
576

LC~7! 128
1536

3
832

5376

5

3712

3

LC~8! 128
1536

3
896

5632

5
1280

LC~9! 512
8192

3
5376

36864

5

26624
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In this plot, a straight line can be drawn through the poi
except those of the lower-order terms. The inverse Ne´el tem-
perature is estimated from extrapolating the straight line
the asymptotic limit~value of the intercept at$ l ( l 21)%21/2

50!, then the exponentg can be determined from the slop
of this line. The deviations of the points from being a straig
line provide a measure of the uncertainty in the value of
critical temperature so obtained. From the longer series
three-dimensional staggered susceptibility, the critical te
perature for the bulk is estimated to beTN51.38 ~Ref. 14!
with the exponentg51.41.22 The estimated value of th
critical exponent for ferromagnetic Heisenberg model isg
51.42.20,23 It is worth pointing out that the estimated valu
of g for both systems agree with each other and this resu
consistent with the conjecture24 that the two systems belon
to the same universality class. For the films withm54, 5,
and 6 layers, the estimates of exponentg2 range from values
of 2.8 to 3.5 which are consistent with the estimate of ex
nent, g2.3.060.5, for ferromagnetic Heisenberg films r
22440
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ported by Ritchie and Fisher.8 This result is also consisten
with the basic assumptions of scaling laws.24 For m53 lay-
ers film, there is a drastic change of the critical exponentg2 .
This result is perhaps unexpected and longer series are
sential in order to estimate the correct exponent.

We have also used the Pade´ approximant analysis of the
series to estimate the Ne´el temperature. Ne´el temperature is
estimated from the poles of direct Pade´ approximants to the
series$xm

s %1/g2. g253.0 is assumed for all finite thicknes
films. In Table IV we list the poles of Pade´ approximants to
$xm

s %1/g2 for m54, 5, and 6 layers. In general, the results
Padéapproximants analysis of the series are consistent w
those obtained from the ratio method except the results
m53 layers film. The convergence of the present hig
temperature series expansion form53 layers film is slow
that the results of Pade´ analysis are too scattered to be co
clusive. The estimates of Ne´el temperatures from the rati
method are compared with the corresponding estimates
tained from the average of@2

3#, @2
4#, @3

2#, @3
3#, and @4

2# Padé
body-
TABLE III. Exact series coefficients for the high-temperature staggered susceptibility series of
centered cubic lattices withm layers and free-surface boundary condition.

m a1
m a2

m a3
m a4

m a5
m a6

m

2 0.2500 0.1667 0.0833 0.0305 0.0100 0.0052
3 0.3333 0.3889 0.3333 0.2924 0.1786 0.1219
4 0.3750 0.5000 0.5833 0.6004 0.5775 0.5213
5 0.4000 0.5667 0.7333 0.8852 0.9669 1.0497
6 0.4167 0.6111 0.8333 1.0751 1.3098 1.5339
` 0.5000 0.8333 1.3333 2.02448 3.0244 4.4548
1-4
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FINITE-SIZE EFFECTS IN HEISENBERG . . . PHYSICAL REVIEW B64 224401
approximant form54, 5, and 6 layers films in Table V. c.c
denotes roots of a complex pair and a negative real
rather than a positive real root.

According to the finite-size scaling theory, the shift of t
reduced Ne´el temperature kTN(m)/J from the three-
dimensional bulk valuekTN(`)/J for thicker layersm can
be described by a power law of the form8,25,26

12
TN~m!

TN~`!
'

A

ml . ~7!

A log-log plot of @12TN(m)/TN(`)# versusm is shown
in Fig. 2. The error bars represent the range of uncerta
for each value ofm. The Néel temperature form53 layers
film is obtained from the ratio plot. A good straight-line fit
obtained for the points through 3<m<6 with l.1.31 and
v51/l.0.76 according to the scaling prediction.25,27 In the
inset in Fig. 2 we show the variation of critical temperatu
shift with number of layersm for l.1.31. This value is
close to the shift exponentl51.41 (v50.71) for ferromag-
netic Heisenberg model by Monte Carlo28 and high-

FIG. 1. Ratio plot of the high-temperature staggered suscept
ity series (al

m/al 21
m )1/2 versus$ l ( l 21)%21/2 for m-layer bcc lattice

films with the free surfaces.

TABLE IV. Estimates of Ne´el temperatures by Pade´ approxi-
mants. Poles of the Pade´ approximants to$xm

s %1/g2 with g253.0 are
listed for a bcc lattice ofm54, 5, and 6 layers films.

m M/L 2 3 4

2 0.8745 0.6523 c.c.
4 3 0.6254 0.5929

4 0.6125
2 0.8588 0.8766 0.7968

5 3 0.8750 0.8467
4 0.7598
2 0.9405 0.9501 0.8853

6 3 0.9420 0.9056
4 0.8698
22440
ot
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temperature series expansion29 methods. This results sub
stantiates the general universality principles.24

IV. CONCLUSIONS

In summary, we have studied the critical properties
spin-12 antiferromagnetic Heisenberg model on am layers
body-centered cubic lattice films for free-surface bound
condition by using the exact high-temperature series exp
sions. We have obtained the dependence of the Ne´el tem-
perature on the number of layers withm53, 4, 5, and 6. The
Néel temperaturesTN(m) for them-layer films are estimated
from the divergence of the staggered susceptibility with
exponentg2.3.060.5, which is consistent with the bas
assumptions of scaling laws. Our estimates for the shift
ponent of the critical temperature,l.1.31 and v51/l
.0.76, and the exponentg of bulk system,g51.41, are
quite consistent with those for ferromagnetic Heisenb
model. This result is consistent with the conjecture that

il-

FIG. 2. Log-log plot of the shift of reduced critical temperatu
@12TN(m)/TN(`)# versus layersm. Slopes of the straight line
yield the inverse of the correlation length exponentl. In the inset
we show the variation of critical temperature shift@1
2TN(m)/TN(`)#21/l with number of layersm for l.1.31. The
error bars represent the range of uncertainty for each value ofm.

TABLE V. Néel temperatures for the bcc lattices ofm layers
films. Estimates ofkTN(m)/J are listed from~a! ratio estimate from
@xm

s # and ~b! Padéto @xm
s #1/3.

m ~a! ~b! Average

4 0.62 0.62 0.62
5 0.81 0.83 0.82
6 0.93 0.91 0.92
` 1.38 1.38 1.38
1-5
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KOK-KWEI PAN PHYSICAL REVIEW B 64 224401
two systems belong to the same universality class. Howe
the uncertainties in our numerical estimates, allowing for
scatter of the results in the ratio and Pade´ approximant analy-
sis, leave small discrepancy between our estimates and t
from Monte Carlo and high-temperature series. The lack
precision in the values of the critical temperatures and
limited number of layers due to the shortness of the se
lead to the uncertainties in the estimates of the shift expon
of the critical temperaturel. Therefore, higher-order coeffi
cients of the series are needed to obtain more precise
mates of the exponents.

We also hope to extend the present work to explore
question of the spin independence of the critical expone
l
-

.

ys

ia

-

l
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From the general universality principles, the critical exp
nents should be independent of spin quantum numberS, and
therefore the spin-1/2 and spin.1/2 models should have
identical exponents.
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