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Single-parameter scaling in one-dimensional Anderson localization: Exact analytical solution
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The variance of the Lyapunov exponent is calculated exactly in the one-dimensional Anderson model with
random site energies distributed according to the Cauchy distribution. We derive an exact analytical criterion
for the validity of single-parameter scaling in this model. According to this criterion, states with energies
within the conduction band of the underlying nonrandom system satisfy single-parameter scaling when the
disorder is small enough. At the same time, single-parameter scaling is not valid for states close to band
boundaries and those outside of the original spectrum, even in the case of small disorder. The results obtained
are applied to the Kronig-Penney model with the potential in the form of periodically positidfieactions
with random strengths. We show that an increase in disorder can restore single-parameter scaling behavior for
states within the band gaps.
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I. INTRODUCTION This relation is the essence of SPS in the case of strong
localization, as it presumes that two parameters of the nor-
The hypothesis of single-parameter scali®PS in the  mal distribution of the LE are reduced to one scaling param-
context of transport properties of disordered conductors waster y. According to the scaling theorgsee Ref. 1 and ref-
introduced in Ref. 1. It was suggested that scaling propertiegrences therejralmost all states in one-dimensional systems
of the conductancg are determined by a single parameter, are localized, and these systems are, therefore, always in the

the conductance itself, through a scaling equation regime of strong localization in the asymptotic limiit
>|Ioc-
d(ing) ! Equation (3) was first derived in Ref. 2 within the ap-
d(inL) (9), @ proximation known as the random phase hypothesis, which

assumes that there exists a microscopic length scale over
wherelL is the size of a sample. The nature of the scalingwhich phases of complex transmission and reflection coeffi-
conductanceg was debated for some time until it was cients become completely randomized. Under similar as-
understood@that scaling in the theory of localization must be sumptions, Eq(3) was rederived later by several authors for
interpreted in terms of the entire distribution function of con-a number of different modefs*
ductivity rather than in terms of its momentums. SPS in this |andauer’s representation of the conductance in terms of
case means that the distribution functiongois fully deter-  transmission coefficients for different scattering chariiéfs
mined by a single parameter, which obeys the scaling equaeduces the study of the conductance in quasi-one-
tion (1). In Ref. 2, which was concerned with scaling prop- dimensional wires to the analysis of scattering or transfer
erties of one-dimensional disordered conductors, Andersomatrices. Within the transfer-matrix approatthe problem
et al. proposed the parameter is further reduced to the study of statistical properties of the
products of random matricessee Ref. 15 and references
therein. In this context, the self-averaging of LE and its
2 normal distribution in the asymptotic limlt—c are rigor-
ously established mathematical fatt§:}’ SPS expressed by
as a scaling parameter suitable to describe the fluctuations . (3) was also established in the limit of strong localization
the conductivity. In the limilL — the introduced parameter for a quasi-one-dimensional geometry in Refs. 18 and 19
takes a nonrandom valug which is the inverse localization with the use of the Dorokhov-Mello-Pereyra-Kumar
lengthl,, or the Lyapunov exponefiLE) characterizing the equatior?®
spatial distribution of electron’s wave function$.lt was The SPS hypothesis has also been verified in the regime
suggested in Ref. 2 that the introduced parameter has a nasf weak localization, which exists in the conducting phase of
mal distribution and does not exhibit anomalously large flucthree-dimensional conductors and in the limit of a large num-
tuations. Calculations carried out in Ref. 2 showed that variber of scattering channels in the quasi-one-dimensional ge-
ance of the LE,o?, scales according to the law of large ometry. In contrast with the case of strong localization, the
numbers,o>~1/L, and is related in a universal way to LE distribution of the conductandeather than the logarithm of
(Ref. 5: the conductangehas Gaussian form with two independent
parameters. The variance of the conductance, however, was
a?=1ylL. (3)  found to be a universal numb&r??leaving one again with a

~L—1I 1+1
o4 )_Zn g
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single scaling parameter: the average conductance. The uni- When local disorder is strong, the phase distribution was
versal conductance fluctuations, which were first discoverefbund to never become uniforffi,and the probability distri-

in three-dimensional conductors within a diagrammaticbution of LE, in this case, is controlled by two independent
approactt??were later reinterpreted from the point of view parameteré®° It was indicated® however, that even in the
of the random matrix theory in a quasi-one-dimensional gecase of an extremely nonuniform phase distribution, the de-
ometry (see for review Ref. 156 viations from SPS are rather limited.

The scaling properties of conductivity have also been The hypothesis of phase randomization lies at the founda-
studied numerically by a number of authors. The generation of all existing theoretical approaches to statistical prop-
concepts of the scaling theory expressed by #¢.were erties of conductance, including those based upon random
verified by means of Green’s function and transfer-matrixmatrix theory'® An additional requirement crucial for E(B)
approaches generalized for two- and three-dimensional sysan be called “local weakness of disorder.” In calculations
tems in Ref. 23. The log-normal distribution of the conduc-based upon the random matrix thedfy’this requirement is
tance and SPS, E(B), has been confirmed for the Anderson set as a limit when the cross section of each individual scat-
model(AM) in numerical simulations in Ref. 19. In the one- terer tends to zero, while the density of the scatterers tends to
dimensional situation, the existence of SPS has been aldnfinity keeping the localization length constant. It is com-
obtained in simulations of AM with correlated disoréleand ~ monly believed that in the regime of strong localization
scalar wave propagation in superlattices with different mod{l,,.<L), SPS holds provided that the local disorder is
els of randomness:?° weak, so that the localization length exceeds all microscopic

The zero energy state in one-dimensional models withength scales of the model. Increase of the disorder leads to
off-diagonal disordefrandom hopping modelsepresents a reduction of the localization length, and eventually violates
special case. These models demonstrate a delocalization tra@PS.
sition in the vicinity of zero enerdy contrary to the conclu- Results which apparently contradict this well established
sion of the scaling theory that such a transition is absent imnderstanding of the crossover between SPS and statistics
one-dimensional systems. The SPS relati®nbetween the with two independent parameters were recently reported in
standard deviation of the LE and its mean value is also vioRef. 32. The system considered in Ref. 32 belongs to the
lated in this casé® Unusual properties of this model are due class of Kronig-Penney-like model&PM's), which have
to a so-called chiral symmetry, which is characteristic of thebeen intensively studietsee, for example, Refs. 4, 33 and
state withE=0 in this model. In further discussion we will 34 and references thergifThe original spectrum of KPM'’s
ignore this special case and refer to regular situations, whicbontains multiple bands separated by band gaps. Disorder not
include models with diagonal disorder and random hoppingnly localizes states within the original pass bands but also
models away from the criticd&=0 point. creates tails of localized states in former band daiscord-

Simultaneously with numerous confirmations of the exis-ing to Ref. 32 the spectrum of the system is divided into two
tence of SPS, the limits of its validity have been the subjecgroups of states with different scaling behavior: SPS holds
of intensive discussion&ee, for example, Ref. 29 and ref- for states from the conduction bands of the initial spectrum
erences there)n As we mentioned above, the original con- and is violated for states from initial band gaps. Moreover,
dition for SPS, postulated in Ref. 2, invokes the hypothesishis violation of SPS for band gap states occurs even for
of the phase randomization. This hypothesis implies that theveak disorder and turns out to be much more dramatic than
phases of complex transmission and reflection coefficientthe phase randomization approach would pretfict.
become completely randomized at the distances much The occurrence of states outside of the initial conduction
smaller than the localization length. Phase randomizatiobands is known to be a model independent phenomenon. It
was numerically studied for the AM in Ref. 30, where it was seems plausible, therefore, that the coexistence of SPS and
shown that for small disorder the phases indeed become union-SPS states found in Ref. 32 is not a particular feature of
formly distributed at a scale much shorter than the localizakPM'’s but rather a general property of quantum disordered
tion length. This does not happen, however, for states in theystems.
center of the original conduction band. Numerical calcula- The main objective of the present paper is to reexamine
tion of the AM in Ref. 30 and analytical consideration of a the problem of scaling properties of conductance in one-
model with periodically positioned scatterers in Ref. 31 ob-dimensional systems and to derive SPS, @B§. without the
tained a nonuniform phase distribution for such states. It waassumption of phase randomization. This calculation allows
shown in Ref. 31 that for the states at the center of the bands to formulate a “correct” criterion for SPS and to under-
there exists a new length, a phase relaxation lehgthAs  stand the nature of its violation reported in Ref. 32. The main
soon as the length of the sample excekgdsthe phase dis- results of this paper were outlined in Ref. 35.
tribution approaches a stationary but nonuniform form. Un- The paper is organized as follows: In Sec. Il we formulate
der certain conditions, the relaxation length rather than théhe model within which we calculate the variance of LE. The
mean free path was found to determine the localizatiordetails of the calculations are presented in Sec. lll. The new
length. At the same time, neither analytical nor numericalriterion of SPS is derived and analyzed in Sec. IV. In that
studies of the states at the center of the conduction banskction we also complement our analytical calculations with
found violations of SPS. These results cast doubt upon theumerical simulations of a more generic model. Comparison
relevance of phase randomization for SPS. In this paper wwith the latter helps us to distinguish between universal fea-
show that the condition for SPS is not phase randomizatiortures of our results and those specific to the selected model.
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The transition between SPS and non-SPS states is discussedin the absence of disorder, the energy spectrum of the

in Sec. V. We conclude in Sec. VI. model is determined by the conditioflJy|<2. In the AM
this leads to a single conduction banr@<E=<2. In KPM's
Il. DESCRIPTION OF THE MODEL there exist multiple bands separated by band gaps. Allowed

values of the energy variable belong to intervals
Let us consider a one-dimensional tight-binding model

with diagonal disorder, which is described by the following

b _
equations of motion: kna<ka<mn, n=123..., (10

Yni1t -1~ Unhn=0, (4)  wherek! obeys the equation

where i, represents the wave function of the system at the

nth site. In Eq.(4) the hopping integral is chosen to be equal kﬁa Vo

to 1, so it sets the energy scale in the system. The concrete 2 ﬁ n odd, (1)
meaning ofU, depends upon the interpretation of the model "

(4). There are two apparently different models that can be

described by Eq(4). In the first, this equation represent a kﬁa 2k2

classical AM, withU,, defined as a5 =y, neven (12)

U,=—E+e,, (5) ) .
The higher-energy boundaries of each band correspond to

whereE is the energy of a particle ang, is the random site  so-called resonanctbecause disorder does not affect trans-
energy. Second, it can be shovsee, for example, Ref.)4 port at these particular energies. This fact can easily be seen
that the Schrdinger equation for KPM’s with a random po- from Eq.(9), wherel', for KPM's becomes zero for aka
tential formed by periodically positioned functions with = an. The presence of these resonances is a specific property
random strengths/,,, also reduces to the fori@) with ¢, of the model under consideration caused by the strict period-
being the values of the eigenfunctions at the sites occupie@ity in the positions of site potentials. Similar resonances are
by the & potentials. In this casé), is defined as follows also present in other models such as the dimer nfddel
models of random superlatticés3? The resonances dissap-

V, . pear once one destroys the exact periodicity in the positions
Un=2cogka)+ - ~sin(ka), (6)  of 5functions or allows for random variations in the width of
superlattice’s layers.
wherek= E is the energy variable aralis the period of the The main objects of our study are the finite-size L.@.)

structure. To be able to obtain an exact analytical solutiongnq its variancer2. Herey(L) can be defined for the model
we assume that parametegsor V,, are distributed with the ,nder consideration 4s

Cauchy probability densitythe Lloyd modei®)

- 1
PC(X):E; 7) y(L)=rInry, (13

T 24 (X—Xg)?

wherex,=0 or V, for the AM or KPM’s, respectively. Pa- whereN=L/a is the total number of sites in the system and
rametersx, andI" represent the mean value of the randomry is the envelope of the wave function:

variablex and the width of the distribution, respectively. Al-
thoughI” characterizes the strength of disorder in the system,
it cannot be interpreted as a second moment of the distribu-
tion ( 7), because the latter does not exist. The AM with the _
probability distribution(7) is one of the first models where As we discussed in the Introductiory(L) takes a nonran-
the LE was evaluated exacfly’ The probability distribution ~dom value,y, in the limit L — . This limiting value can also

of parameterdJ,,, which enter equations of motid), has  be considered as an averageygL) over different realiza-
the same form as Eq7) with the following parameters: tions of the system? For large but finiteL, y(L) exhibits

finite-size fluctuations whose distribution function asymp-
2 cogka) + &sir( ka), KPM, totically _approaches the Gaussian form with the variamte
k (8)  decreasing as w/*%17

E, AM, The average LEy in the considered model was first cal-
culated in Ref. 37. It turns out that the method developed in

T that paper(see also Ref. 4can be as well used for exact
—|sin(ka)|, KPM, calculation ofo®. The method is based upon the representa-

k (9 tion of LE in terms of the phase variabig, defined ag,
r. AM. =1, 1, which obeys the following equation of motion:

=+ 9 )2 (14)

(Up)=Up=

u=
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z,+z 4 =U,. (15) _
noonmreen P(Zn|zn+k):J P(ZnZn+k-1) Pe(Znsk+ Zn 1) Znsk1,
(20

where P is the Cauchy distribution introduced in E).

The advantage of the Cauchy distribution is that recurrence
(20) can be solved exactly. The conditional probability ob-

tained has again the form of the Cauchy distribution, which
can be conveniently presented in the form

The finite-size LE can be expressed in termgof

N 2
~ 1 1 1+2z5,4
yL)=r n; In|z| + Z'”( rs z | (16)

If z, is a stationary random function of—that is, a distri-
bution ofz, is independent ofi—the first term in Eq(16) is

of the order of unity while the second term is of the order of
(1/L) and disappears in the limit—c. The expression for P (20|20 1) = Im & 1

the LE, therefore, takes the following form: nintk T (Znok— &) (Znsk— E5)

where the asterisk denotes complex conjugation and param-
etersé, obey the following equation:

(21)

1 N
y=lim = X Injzo|=(In|z,)),

L—o

17

where the average on the right-hand side is taken over the §t &1 =Uotil. (22)

stationary distribution of. .
The asymptotic expression for variance of the LE can beEquatlon(Zl) for P(zy]2y+) and Eq._(22) fpr & have ex-
obtained from Eq(16), actly the same fo_rm as those obtalnepl in Ref. 37 for the
one-point distributionP4(z,). However, in the case of the
one-point distribution one looks for a stationary solution of
Eqg. (22), while the conditional distributiorP(z,|z, ) re-

N
1
2=— Inz,Inz,)—(InzY{Inz,)], 18
T m%il [(Inzyinzo) = (InzZy)(Inz,)). (18 quires that Eq(22) be solved with the initial condition

and is valid as long as the system’s slzés much greater £0=2 (23)
. . . 0 n:
than the correlation radius a,, which we assume to be
finite. This solution can be presented as
IIl. VARIANCE OF THE LYAPUNOV EXPONENT B A G o1
IN THE LLOYD MODEL k= (24)

5k_1—5_k+1—2n(5k— 5—k) !
A. Two-point distribution of the phases z, where § is the k-independent solution of E¢22), which
Calculation of the variance from E(L8) requires knowl-  obeys the stationary version of E@2):
edge of the two-point distribution functidd,(z, ,z,,) of the
phasesz. Our calculations of this function are based upon
representation of a joint distribution of multiple random vari-
ables as the product of marginal and conditional distribu-Real and imaginary parts af determine the center and the
tions: width of the one-point distributio®(z,):

S+6 1=Uy+il. (25)

(19 Imé 1

T (2y— (27— &)

Pa(zn,2h1)=P1(2,) P(Zn|zn+k)a

_ _ L P1(zn)= (26)
where P4(z,) is a stationary probability distribution of,
andP(z,|z,+) denotes a conditional probability distribution
of z,, « provided thatz, is fixed. With the help of Eq(15)

the latter probability can be written as

Averaging Eq(17) with the probability distributior{26), one
obtains the average LERefs. 4 and 3 v,

y=1In|é|/a. (27

Equations21), (24), and(26) determine the two-point prob-
ability distributionP,(z,,z,.) defined by Eq(19).

P(Zn|zn+k) = f 5(Zn+k+ Zr;}kfl_ Un+k71)

X P(Zn|zn+kflvUn+kfl)dUn+kflen+kflv

where P(z,|zhik-1,Unik_1) IS a joint probability of
Znik—1 @andU,, 1. It follows from the structure of Eq15)
that z, depends only upon values of the random parametege
U,, at preceding sitemi<n and thus is independent &f,,.

B. Variance of the Lyapunov exponent: General expression

Equation(18) for the variance of the LEgy?, can be pre-
nted in the following form:

The joint probabilityP(z,|zy+k-1,Un+k_1), therefore, can
be factorized and integration ovér,.,_, can be carried

out. The result is the following recurrent relation between

P(Zn|zn+k) and I:)(Zn|zn+k— 1):

2
L2

>

=0

N—1 N—n 1
o?= S, (Infzolinfzq. )+ T (In%|zo]) = 2.
n k=1

(28)
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The correlation functionD (k) ={In|z,|In|z,, /) is indepen- B
dent of the initial siten. With the use of the probability CI)(y,go)Iﬂ'tanl(—) —gptan !
distributionP,(z,,z,.) found in the previous subsection, it 1+¢

can be presented as

B cose )
{—cosep

—({—cosg) arcco$x+y{)
+8 f dx——, (32
Imé& (= In|z|In|&(2)] -1-¢ x>+ 32
D)= dz (29 |
T J-w(z—8)(z—5) where parameterg and{ are defined as
whereé,(z) andé are defined by Eq$24) and(25), respec- B=sinh(2vya)sine, (33
tively. Interchanging the order of integration and summation
in Eq. (28) one can find for the variance {=cosh2ya)cose. (39
Since we are interested in small valuesyaf, we can expand
, 2Imé (= In[z|In|z6—1| cos Y(x+¢) from Eq.(32) in the Taylor’s series irx,
= dz
mal Jou(z=6)(z=6) .
cos H(x+{)=cos H )+ > ax", (35
n=1

1 2
- a@(ﬂ—w)— Y In(62—1)+0(1/L?), (30)
and carry out the termwise integration. As the result we ob-

where is the phase ob, tain
_ , 1+¢ {—C0sp)
o=pexpie), <I>(y,go)=cos‘1(§)[tan‘l —_— —tan‘1<— J
reduced to the intervdlO,7], and p denotes the absolute
value of8: =|p|. The remaining integral in E430) can be 1 B (¢{—cosg)2+ 32
further simplified with the use of an appropriate contour in —— n
the complexz plane. One, finally, arrives at the following 2 \1-22 (1+¢)%+ B2
expression for the variance in the cas€ 7/2, which corre-

whereF(x) is defined by the following power series:
cosi2ya)—cog2¢p)

21 In|2
O'—E —vyin

1JW ,
+—| dxtan
a

(4

sint?(ya)

sinh(2ya)sine

+0(1/L2). Comparing this expression with the original seri8s) one
cosh{2ya)cose — cosx

can obtain for(x) the following integral representation:

(32) 1 In| x| dx .
Since our model is symmetric with respect to the transforma- T+ (X) = 08 O+ - + ;COS (£+X).
tion ¢— 7— ¢, the variance fop> /2 can be easily evalu- 37)
ated.

The remaining integral in Eq37) can be calculated exactly.

IV. NEW CRITERION FOR SINGLE-PARAMETER As a result we have

SCALING

1
_ —1/\ —1
The necessarybut not sufficient condition for SPS to FO)= X[COS (£)=cos *({+x)]

hold is that the localization length be greater than all micro-

scopic scales in the system. Therefore, we should consider 1
the general result, Eq31), in the limit of large localization + 2|n|1—§2(§+X)
length, ya<1. Our first goal is to develop an asymptotic V1-¢

form of the integral in Eq(31) in this limit. This is not a 5 5
trivial task since the integral has a singularityyat 0. The * ‘/(1_5 L= (E+x)7]]. (38)
first term in Eq.(31) is also singular at this point, and one when one combines Eq31) with Egs. (36) and (38), the
would anticipate two Singularities to cancel out. The |atter|ogarithmic Singu'arity |rﬂ)(fy1¢) nice'y cancels out the sin-
singularity has a logarithmic nature;Iny, and we need, gylarity in the first term of Eq(31). The expression for the

therefore, to extract the similar |Ogarithmic Singularity from Varianceo-z emerging in the |eading ”-y order takes the SPS
the integral in Eq.(31). To this end, we first evaluate the form

integral in Eq.(31) by parts and present it in the following
form: a?=2ylIL. (39
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This is, to the best of our knowledge, the first truly micro- Brackets( ) designate here averaging over the random site
scopic derivation of SPS with nad hoc hypotheses. The energye and the phase, which is assumed to be statistically
main reward for this is the exact criterion for SPS, whichindependent of and distributed uniformly. “Var” denotes
follows from the conditions under which we have arrived atthe variance of the respective quantity. The standard weak

Eq. (39). First of all we assumed that

ﬁ <1. (40)
Since
B=2yasing, (=1+2(ya)? (41)
the inequality(40) can be recast in the form
ya<sine. (42)

disorder expansion used in Ref. 30 implies the expansion of
this expression in powers of the random variableith con-
secutive averaging. The first term in Ed.7) then becomes
of the order of (€?)/[4—E?])? and is neglected, while the
second term after averaging over the phase yieldg3qgln
the case of the Cauchy distribution fer this approach can-
not be applied becauge?) does not exit. In order to pass to
the weak-scattering limit one has to average awvérst, and
only after that carry out expansion over the parameéterf
the Cauchy distribution. Both terms in E@.7) then become
of the same order of magnitud&/ y4— E?, and though the
general proportionality betwear? and the LE is preserved,

Another condition, which we have to impose in order tothe numerical factor not equal to that of E&) or of Eq.

obtain Eq.(39), is

({—1)cose/ B=ayltanp<1. (43)

Since sip<tane, the first of the two inequalities is more

restrictive, and the final condition for SPS takes the form

k=l1oc/1s>1, (44

wherel .=y ! is the localization length and a new length

ls is defined as
Is=alsing. (45

Evaluation of the integral in Eq31) in the limit k<1 can

(39). This result implies that the phase randomization hy-
pothesis is not valid at all for the Lloyd model. What is more
important, however, is the fact that although the phase ran-
domization hypothesis fails, SPS still survives.

For k<1, one can provide a clear physical interpretation
for the length 5. According to Thouless’ the phasep(E) is
proportional to the integrated density of stat€&E)
=¢(E)/7, and k<1 corresponds to eithéb(E)<1 or 1
—G(E)<1. The lengtH then can be expressed in terms of
the number of states in the energy intervals betwieeand
the closest boundary of the spectrugs 1] 7G(E)] [or I
=al(7m—awG)]. For the AM these boundaries lie ateo,
and for KPM's they are the resonance boundaries of the
bands, wherep(E)=mn with n an integer. The states in

be performed by means of a simple expansion of the intethese regions arise due to rare realizations of the disorder,

grand in power series i and retaining only the linear i
term. The resulting expression for can be presented as

1 21,
2:_ _ oc
ISL(W

oa

(46)
Is

Equation(46) shows that in the regime considered heré,
is determined by the new length rather than byt ,.. It is
important to emphasize that in this limit both lengthsand

and can be associated with spatially localized and well-
separated structural defects. The lenigtthen can be inter-
preted as an average distance between such defects. In view
of this interpretation of s, the physical meaning of the tran-
sition between two types of scaling regimes also becomes
clear. Condition44) means that the localization length at the
energyE exceeds the spatial separation between neighboring
localization centers from the relevant part of the ftdié-
tweenE and the nearest boundary of the speciruonder

l1oc can far exceed, and Eq.(46), therefore, describes the this condition the localized states overlap and SPS is valid.

violation of SPS while the system remains within a meaning-

ful scaling regime.
It should be noted, however, that E§9) differs from Eq.

To complete our discussion of the new scaling parameter
ls, let us compare it with the phase randomization lenigfh,
numerically studied by Stonet al3® Assuming thatE is in-

(3) by the factor of 2. This discrepancy is due to the peculiarside the conduction band and far from the band boundaries,
nature of the Cauchy distribution, whose moments, startingve can approximatés as
from the second one, diverge. Because of this, none of the

standard approaches, used to derive @j.within the ran-

dom phase hypothesis, can be applied to the Lloyd model. In

_1~_
lg 7=

>a 4—U3+0(T3?).

(48)

order to illustrate this point, let us consider, for example, an

expression fow? obtained in Ref. 30 for the AM:

22 vadin 14—
o=y Varn =y
€ 62 2
+{{In 1+2\/@c05v+ 1 E? . (47

According to Eq.(48), | decreases toward the center of the
bandU,=0, where it reaches its minimum value equahto

At the same time, the phase randomization length was found
in Ref. 30 to increase toward the center of the b&neO,
where it seemed to diverge. FB=0, the phase distribution
was found to be nonuniform even for very long chains. The
absence of the phase randomization in the center of the band
was also found analytically in Ref. 31. This comparison
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proves that s is an independent new parameter responsible 1.20
for the statistics of the LE. Both numerical results of Ref. 30

and analytical calculations of Ref. 31 show that a nonuni- 1.00
form distribution of phases can be consistent with SPS, pro-
viding an additional argument against the condition for SPS
based upon phase randomization. At the same time, our cri-
terion, Eq.(44), correctly predicts validity of SPS in the band
center as long as the localization length remains macro-  0.60
scopic.

0.80

0.40 i

I and the SPS criterion in generic models
I 0.20
The peculiarities of the Lloyd model may cast doubts on 2

the robustness of the new scéleand the criterion, Eq44).

In order to show that this criterion is applicable beyond the 000
Lloyd model, we carry out additional numerical simulations

of the model studied previously in Ref. 32. That model is of K

the Kronig-Penney kind, but unlike the model considered in

the present paper, its potentia| is formed by rectangu|ar FIG. 1. The functionr(«) obtained from the analytical solution
barriers. The width of the barriers is assumed to be randorfif the Lloyd model, Eq(31) (solid line), and the numerical simu-
with a uniform distribution over a given interval. Both lations of KPM with rectangular barriers of random widtfupen

the potential and the statistics of the model used incircles). Note that the SPS equations for these models differ by a

numerical simulations are considerably different from thefactor of 2[Egs.(3) and(39)]; therefore we rescaled numerical data
by this factor.

Lloyd model; e.g., all moments of the distribution function

exist.
It is instructive to rewrite expressions fof in terms of a e \ °°\/— x*  Ex d
new dimensionless variabte= o®L1,,./2 as a function ofk. k (B)=—- o VR T 1T D23 X, (50
In terms of these variables both asymptotics of the variance
o? given by Eqgs.(39) and (46) can be presented in a form whereD determines the strength of thcorrelated poten-
which contains no free parameters: tial. The asymptote ok for large negativeE is
% 4| E|3/2) -
~eX — < y
K( Tl k=1, " 3D
T= 2 (49
1 > 1. and we conclude that these states do not obey SPS. The

transition to SPS behavior again occurs at the initial band

boundaryE=0, wherex=~1.1 and does not depend upon
Although we do not expect the concrete form of the functionparameters of the model.
7(x) to be universal, we do believe that the new crossover For systems with multiplgin the absence of disorder
lengthl retains its physical meaning in the general case, anthands separated by band gaps, one has to consider separately
that the crossover point is also universally determinedcby two different situations. If disorder-modified bands still do
~1. not overlap and a genuine gap between the bands persists,

In order to generalize the crossover lendgghfor other the situation is equivalent to the single-band case. The phase

models, we use the interpretation of the phasie terms of  can be defined for each separate band and normalized by the
the integral density of states normalized in such a way thanumber of states in the band. The results of the numerical
the phase would vary between 0 andfor any given band. simulations of this particular situation are shown in Fig. 1
The generalization is quite straightforward for models with aalong with 7(«) obtained from our analytical E¢31). Here
single-band spectrum if in the absence of disorder the banld was calculated numerically with the phase defined using
has a finite width. The total number of states in such modelshe integral density of states normalized in such a way
is finite, and it can be used to normalize the phase. If thehat the phase changes from zerortovhen energy sweeps
initial band of the system is infinitely broad, e.g., for the over a band from one fluctuation boundary to the other.
Schralinger equation with a random white-noise potential,In order to generate the plot we calculated both quantities
one has to introduce a cutoff frequency for the spectrum inr and « as functions of energy, and plotted them versus
order to normalize the phase. This cutoff introduces a microeach other. One can see from this figure that the crossover
scopic length similar to the intersite distareavhich is used between different asymptotes for both numerical and analyti-
to define the localization length and the density of states. Theal calculations occurs in the same region. This proves
crossover parametear then can be obtained from an expres- the universal significance of our criteriqd4) for SPS and
sion relating the LE and the integral density of states foundustifies the suggested generalization of the crossover length
in Ref. 4: ls.
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A new situation arises, however, when fluctuation statesvheres is given as
from adjacent bands overlap, and the spectrum does not have
boundaries in former band gaps. On the one hand, it is clear 1 5 oo 1 5 — s
that if the number of states in the former gap is small, SPS ~ $=5(4+I'y=Ug)+ 5\/(4+FU_U0) +4Ugl'g
should not be expected on the basis of the general qualitative (54)
interpretation of the criterioid4). On the other hand, since
there are no exact boundaries of the spectrum inside formeind we assume again thgt<1. The relation between and
gaps, one cannot define a phase suitable for determination gfis determined by the paramegmwhich in its turn depends
|s. Though this situation requires special consideration, waipon the energg. Let us recall that the energy enters into
can offer a conjecture that can be used to meaningfully desur equations through parametétg andI'; defined in Eqgs.
fine |5 in this case. Consider one of the original bands be<(8) and(9). For energies within conduction bands, the LE is
tween two adjacent band gaps. In the presence of disordeyf the order ofl', thoughl is of the order of 1[see Eq.
there appear tails of the density of states within the gapg48)]. Thus, SPS holds as long as disorder is small<1,
When disorder is small, one can always distinguish betweefh accordance with the previous resfifs?®*° From Egs.
gap states originating from different bandsxcept for a (52), (53), and (54) it is clear that the relation between
small region where the tails from different bands ovexlap loc andlg changes with the energy approaching an initial
Let g,(E) be the differential density of states related to thespectral boundary. In the limit of small disordgp.=Is
nth band. Then integraN;,;= [~ ..g,(E)dE gives the total exactly at the boundary. Therefore, one should expect the
number of states originating from the band. One can define strongest violation of SPS for states which arise due to dis-

phase order in the originally forbidden regions. For the AM this
. corresponds to energiefE|>2, and for KPM's these
(Pn(E):Wf 9,(E)AE/N,y, are energ_ies fr_om band gaps of the origina}I spectrum.
—w For energies lying far away from the boundaries one can
. . . e obtain the following approximate expressions for LE and the
with E obeying the inequalitEn,;, - <E<ED;,, whereER, phaseo:

corresponds to the minimum of tlaetualdifferential density
of states within the gap between théh and 1+ 1)th bands.

The phase defined according to this procedure does not as- I'y

sume unphysical values af at the points where there are no sine~ /U2—4 <1 (55
spectrum boundaries, and we suggest that the pararmeter 0
defined through this phase according to \/2_
-1 . ' n—1 n Y U . (56)
Is =Sl Ntot _xgn(E)dE ’ Emin<E<Emin' (51) 0

i o It is evident that in this cask,.<ls, and the variance be-
can be used in order to formulate the criterion, &). The  hayes according to Eq46). The states disobeying SPS,
suggested definition df can be practically used for analyti- however, are more important for KPM’s than for the AM.
cal estimates of the transition between different statisticsye reason for this is that the LE in the AM becomes of the
using, for example, a tight-binding approach to a multibandyger of 1 not very far from the boundary, moving the system
problem, where interactions only between adjacent bands agg,; ¢ any scaling regime. In KPM'sy can remain

taken into account. However, more detailed discussion Ogmall enough throughout entire band gaps for sufficiently

this issue requires a separate paper. high energiek>V,, and the violation of SPS in this case
occurs when the localization length is still of a macroscopic
V. PROPERTIES OF THE TRANSITION REGION scale.
BETWEEN SPS AND NON-SPS STATES Equations(39) and(46) explain a nonmonotonic behavior

In this section we discuss properties of the transition re°f o(E) observed numerically in Ref. 32. When the energy
gion between SPS and non-SPS states. In spite of the meflOVeS towards a band edge, the LE grows @n@fqvlvs
tioned peculiarities of the Lloyd model, our calculations pro-&l0ng with . V\éhen, however,y becomes equal to ",
vide a sound qualitative explanation for numerical results ofh€ variance o starts decreasing towards the value
Ref. 32, confirming once again that we correctly describe the~ s */N. The maximum of, therefore, corresponds to the
qualitative nature of the transition between SPS and non-SP&ergy wherey=I;*, i.e., the boundary of the original
statistics. In the model considered, the phasend LEy can ~ spectrum.

be conveniently presented in the férm We can now also estimate the width of the transition re-
gion between SPS and non-SPS states, which was found in
J; numerical simulations to be surprisingly small. The transition
sinp= , (52 between the two groups of states occurs whé€g) passes
\/US+S through its maximum, and the width of the transition
region is related to the sharpness of the maximum. In view
y:FU/\/g, (53 of the preceding discussion, the latter is determined by
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the region of energies over whicy(I";) changes its behav- 0.8
ior. The extent of this region can be estimated from the con- (a)
dition
0.6 +
|4—UZ|~2U, Iy . (57)
In the AM it leads toSE~T, and in KPM’s one has o .,
o O
PRSLEL (59
ak,8, Vg 6, oal
whereA,, is the width of thenth band gapk, represents the
nonresonant boundary of timth band, and the parametéy
is defined as 0.0
PR AL (59)
n akﬁ . 0.8

In both cases the width of the transition region is determined
by the degree of disorder in the system and is small when 061
disorder is small. In the Kronig-Penney situation, however,

Eq. (58) indicates a special sharpness of the transition in the«

case of high-energy bands, when the paramatgeis also s 04F
small.

When disorder increases, the AM and KPM's behave dif-
ferently. Monte Carlo resufté show that in periodic systems, 02}

an increase of disorder leads to a restoration of SPS for al-
most the entire spectrum of the system. We are now able tc

explain this behavior and to provide an estimate for the criti- 001 : ‘ : : : :
cal disorder. It is clear that the parameltgf reaches a mini- 3L 3200 323 313('0 B30 A3
mum at the energy in the center of a band gap. This mini-
mum value can be estimated from E§6) as 0.8
F /'/, \\\ (c)
-1
ls min"~ k_n\/gnv (60) 06 L

where k,, represents the nonresonant boundary of rlie
band, and the parametey, is defined by Eq(59). At the ©
same energy Wherltg’l is minimal, the LE assumes its maxi-

mum value:

0.2
Vo

Y T —.
max kn\/gn

I L, increases with disorder, whilg,,., does not change,
and atI'=V,/45, two length scales are of the same order, k
|smin2%};x- At this instant for the states outside of the im-

mediate vicinity of the center of the band gag> vy * and

SPS is restored. Thus, we can idenfif§,=V,/4, as a criti-

g::ﬁ?;%ﬂﬁ;fggszmggv\?:\?& E?E'li%r rt:aettztra\:fhsa:lgigtolrg(ta?e systemL (solid line and LE itself (dashed ling for KPM'’s are

. ' ’ osted as functions of the energy paramétésr different degrees

is, and t.hese states do not ob(_ey SPS. Therefore, the Compl.%tpdisorder. The plot extends over the regionm¥0ka<11lw, so
re;toratlon of SPS for' the entire band gap doe§ not occur 'Bre gap and one conductance band are represented. The presence of
th_ls model, but the_ width of the non-SPS region decr_ease[;a]e maximum in the vicinity of the band boundarya(~ 10.35r)

with increase of disorder. This can be seen from Fig. 2gjgnals the violation of SPS for states from a band gap. The absence
where we present the LE and its variance obtained from ougs g similar maximum at the second boundary is due to its reso-
analytical results, Eq31), for different degrees of disorder. nance nature. The degrees of the disorBeare 3(a), 7 (b), and 15

In the case of a strong potentigly, and high energya " (c). Itis clearly seen that with the increase of disorder, the number
<Vp<k, one hasd,=1, and the critical disorder is just of states disobeying SPS decreases.

(61)

0.0 1 L 1 1 L 1 L
315 320 325 33.0 335 34.0 345

FIG. 2. The variance of the LE multiplied by the length of the

224202-9



LEV I. DEYCH, A. A. LISYANSKY, AND B. L. ALTSHULER
equal toVy. When a potential is weak/ga<<1, there exists

a medium-energy regime, whegVy/a>k,>V,. In this
case

Ymax™ VVoa<1,

It is interesting to note that in this ca$&, increases with

an increase ok,, even though the widths of the gaps de-

crease.

The calculations presented above referred to the nonresd?®

nant band boundaries. At the resonant pokds- 77n, both
the localization lengtH,,. and the crossover length di-

verge, while the variance of the LE vanishes. Although thet
resonances are not stable with respect to a violation of th
periodic arrangements of thepotentials, they occur in some

PHYSICAL REVIEW B 64 224202

the generally accepted assumption that it is the length over
which the phase of reflection and transmission coefficients
become uniformly distributed that sets the condition for the
existence of SPS.

We found a new length scalg, which is responsible for
the scaling properties of the conductivity in the system: SPS
exists as long as the localization lendth. exceedd. The
length I, however, differs from the phase randomization
length and presents, therefore, a new significant scaling pa-
rameter. The parametdt is microscopic for states close
to the center of the original conduction bands of the
system and does not impose, therefore, any additional
restrictions for the existence of SPS excepting the regular
requirement for the localization length to be of a
croscopic dimension. However, for the states at the edge
of the bands,l; grows to a macroscopic size and the
condition | ,.=1¢ actually establishes a boundary between
he states with and without the SPS statistics. As soon
s | becomes much larger than all microscopic lengths,
this scale becomes significant. In this limit it can be ex-

other models as well. We already mentioned models witrPr?Ssed in terms of the number of stathlge(E), which

correlated disordéf and random superlattics32 The latter

arise at the tails of the initial bands due to rare fluctuation

. . 71_ .
has an experimental significance with applications to propacnfigurationsis “=Ngc{(E). It then can be given a natural
gation of classical waves. Therefore, it is interesting to conPhysical interpretation as an average distance between such

sider the behavior of the critical parametein the vicinity
of the resonances. Although bokR. andlg diverge at the

resonances, their ratie remains finite and takes on the fol-

lowing values:

Vo /. Vo

_° — ka<mn,

I +/1+ o w
Vo N }ﬁ, ka> 7n.

T,
One can see from E@62) that k experiences a discontinuity
at resonance points: its value decreases Wy/P, once a
point is crossed. In the case of small disorder, wiigil'
>1, this is a dramatic jump, such tha#1 at the band side
of the resonant boundary anek<1l at the gap side. It is

K=

(62

defects.

The change of the scaling behavior occurs when the en-
ergy crosses over a boundary of a former gap. In the case of
regular boundaries, the change occurs gradually with the
critical parametei being of the order of unity right at the
boundary. The Kronig-Penney version of our model, besides
regular boundaries, has so-called resonant boundaries, where
both the LE and_* vanish. We found that at the resonance
boundaries the parameterundergoes a sudden jump from
very large valuesc>1 at the band side of the boundary to
very small valuesc<1 at the gap side. This means that the
change of the scaling behavior at the resonant energies also
occurs discontinuously: the system obeys SPS when the
boundary is approached from the conduction band and then
demonstrates two-parameter scaling if the boundary is ap-
proached from the gap.

We carried out numerical simulations of the Kronig-

obvious, therefore, that the scaling properties of the systerRenney-like model with a different configuration of the po-
also change discontinuously at the resonance from SPS beential and different statistics. The comparison between nu-

havior at the band side to the scaling with two parameters anerical

the gap side.

VI. CONCLUSION

and analytical results clearly indicates that
significance of the length scalg defined in terms of the
integral density of states persists beyond the Lloyd model
and that the new criterion for SPS established in the present
paper has a universal nature.

In this paper we studied statistical properties of the
Lyapunov exponent in the one-dimensional Anderson model
with the Cauchy distribution of site energies. The model can
also be interpreted as the Kronig-Penney model with periodi-
cally positioned§ potentials with random strengths. The = We are indebted to A. Mirlin for a useful discussion. We
main objective of the study was to find an exact solution foralso wish to thank S. Schwarz for reading and commenting
the thermodynamical limit of the variance of the LE and toon the manuscript. Work at Queens College was supported
establish an exact criterion for the existence of single paramby a CUNY collaborative grant, PSC-CUNY research award,
eter scaling. It is important to emphasize that in contrast wittend NATO Linkage Grant No. N974573, and work at
all previous calculations of the variance, we did not use thé”rinceton University was supported by ARO under Contract
phase randomization hypothesis. This allowed us to rejedio. DAAG 55-98-1-0270.
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