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Cusp-condition constraints and the thermodynamic properties of dense hot hydrogen
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The thermodynamic properties of liquid hydrogen are investigated at high densities and high temperatures
where full molecular dissociation is expected to be attained. Nonlinear electronic response is taken into
consideration by imposing rigorous cusp-condition constraints on the electron-nucleus~proton or deuteron!
structure factor, and by requiring that it leads to the form of a linear-response theory in the high-density and
high-temperature limits. The aim of the new structure factor is to account properly for the accumulation of the
electron charge at distances from the nuclei where linear-response theory is insufficient. Using a quasi-one-
component model and the Gibbs-Bogoliubov inequality with a hard-sphere reference system, it is shown that,
compared with the commonly used linear methods, response with an enforced cusp condition lowers the free
energy and leads to a better agreement with recentab initio calculations in the energy and pressure of the
hydrogen plasma.
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I. INTRODUCTION

The properties of hydrogen at high densities have b
studied extensively1 over the past several decades, but th
still remain unsettled. Part of the motivation for this intere
has been the expected molecular dissociation and meta
tion under the application of external pressure, which w
first considered by Wigner and Huntington2 and is now
believed3 to occur significantly above 300 GPa in the grou
state of solid hydrogen. The thermodynamic properties
liquid hydrogen have also been attracting considerable at
tion in relation to astrophysical problems,4,5 such as the in-
ternal structure and evolution of giant planets~e.g., Jupiter,
Saturn, etc.!. Recent experiments involving static and d
namic compression techniques6–10 have already attained
pressures in the range of hundreds of gigapascal, and
been uncovering many intriguing features of the dense s
of hydrogen. Weir and coworkers7 have observed a dramat
increase of the conductivity at;140 GPa and at;3000 K in
a shock-wave experiment, giving evidence of metallizati
Other shock-wave experiments8–10 have produced an unex
pected Hugoniot equation of state~EOS!, which suggests
that hydrogen is more compressible than predicted by
Sesame models.11 The highest pressures attained by dynam
compression9 have exceeded 300 GPa at temperatures
yond 30 000 K, where it is presumed that long-lived m
ecules no longer exist, yet strong correlations between e
trons and nuclei~protons or deuterons! still need to be
considered.

At the extreme conditions mentioned above, the relev
system can be viewed as a two-component fluid compr
of electrons and nuclei. The electron response and the re
ing effective interactions in such two-component proble
are frequently dealt with within the linear-response~LR!
theory when the ions have closed inner shells. This pertu
tive approach has been successful in explaining the ther
dynamic properties of simple metals, where the interacti
between the outer-shell electrons and the ions can be
scribed by weak pseudopotentials. The argument for ap
ing LR to hydrogen, which lacks closed inner shells and
0163-1829/2001/64~22!/224111~12!/$20.00 64 2241
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therefore, characterized by strong electron-nucleus (e-n) in-
teractions, is that nonlinear response is significantly we
ened at sufficiently high densities and/or temperatures wh
the kinetic energy of the electrons is much larger than
screened electrostatic interactions. While such an argum
is valid when considering the electronic response in the
terstitial regionbetweenthe nuclei, owing to the divergen
short-range bare Coulomb potential, LR is insufficient f
obtaining the correcte-n correlation in the regionscloseto
the nuclei.Ab initio molecular dynamics calculations withi
the local-density approximation is a possible approach
treat the hydrogen liquid beyond LR. However, it is comp
tationally very intensive because the correlation lengths
have to be considered while studying fluids require the us
large supercells, and the computation times are also lon
attainment of thermal equilibrium is to be achieved. In ad
tion, the concept of pseudopotentials, which is frequen
used even for hydrogen in theseab initio calculations, may
not be well defined at extreme conditions. Other dens
functional-theory methods12,13 and the quantal hypernetted
chain ~QHNC! approximation14 also give pair-distribution
functions valid beyond LR; however, so far they do not le
to a direct access of the free energy and equation of sta

The purpose of this paper is to present a relatively sim
analytical method, beyond the LR approximation, for the c
culation of both thee-n structure factor and free energy o
liquid hydrogen in the high-density and/or high-temperatu
regime where the molecules are fully dissociated but thee-n
correlations remain significant. In the method that we p
pose, the inhomogeneous electron density is treated
manner similar to the LR approach, in the sense that it is
considered a superposition of the induced charge density
to the individual nuclei. However, the strength of thee-n
correlation is taken into account in a unified way througho
the region of the phase diagram of interest by modifying
Lindhard response function to give the correct cusp beha
of the e-n pair-distribution function. We have achieved th
by making use of the cusp condition15–17 that is a rigorous
requirement in systems with singular2Ze2/r Coulombic in-
©2001 The American Physical Society11-1
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teractions, and it relates the charge density to its spheric
averaged derivative atr 50.

The idea to use the cusp condition to modify the elect
response was first proposed by Moulopoulos and Ashcro18

~MA !, who considered a system with one proton embed
in an interacting electron gas. They obtained a form for
induced charge density, which gives a good improvem
over LR at low average densities~e.g., r s.1 for kBT
;1 eV). However, at high densities it does not account
the cusp adequately, and even leads to a weaker cusp
LR. We present in this paper an improved form of the el
tron response, which has the correct high-density cusp
havior. We have also extended the MA formalism to
Nn-nucleus system where the emphasis is shifted from
induced charge density to thee-n structure factor, which is
the quantity of major interest in the liquid-state theory.

The derivation of thee-n structure factor is given in Sec
II A. A method for obtaining the free energy of the hydrog
fluid is then described in Sec. II B, where we use a qua
one-component model19 and the Gibbs-Bogoliubov inequa
ity ~GBI!.19,20 The e-n structure factor,e-n pair-distribution
function, and some thermodynamic variables are discus
in Sec. III, where it is shown that our method improves L
and leads to good agreement with results from a recent p
integral Monte-Carlo~PIMC! calculation.21

II. METHOD OF CALCULATION

In this section, we consider the general problem of a tw
component fluid composed of interactingNe electrons and
Nn nuclei with atomic numberZ in a volumeV. The mixture
is electrically neutral so thatNe5ZNn , and thee-n interac-
tions are treated as pure Coulombic, i.e., without the us
pseudopotentials. The Hamiltonian of the system can
written as a sum of three terms

Ĥ5Ĥn1Ĥe1V̂en , ~1!

where Ĥ i[T̂i1V̂i ( i 5e or n) is the Hamiltonian of the
one-component plasma~OCP! consisting of speciesi, and
V̂n , V̂e , andV̂en are given by

V̂n5
1

2V (
q

8 Z2vc~q!@dr̂n~2q!dr̂n~q!2Nn#, ~2!

V̂e5
1

2V (
q

8 vc~q!@dr̂e~2q!dr̂e~q!2Ne#, ~3!

V̂en52
1

V (
q

8 Zvc~q!dr̂e~2q!dr̂n~q!. ~4!

Here,vc(q)[4pe2/q2 is the Fourier transform of thee2/r
Coulomb potential, and the primes in theq summations in-
dicate that theq50 terms are excluded. The symboldr̂ i(q)
denotes the Fourier transform of the one-particle-indu
density operator of speciesi,

dr̂ i~q!5E dr exp~2 iq•r!~ r̂ i~r!2r i !, ~5!
22411
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with r̂ i(r) andr i being the one-particle density operator a
the average density, respectively.

In addition, we will assume throughout the paper that
nuclei behave as classical particles, which is a reason
approximation for the high temperatures of interest (kBT

.1 eV). Therefore, the quantum operatorsT̂n , dr̂n(q), etc.
are hereafter replaced by their corresponding classical q
tities Tn , drn(q), etc.

A. Cusp-condition constraints on the electron-nucleus
structure factor

In principle, the physical properties of a liquid mixtur
can be described by a set of partial-correlation functions
partial-structure factors, among its species. In this sect
we obtain a form for thee-n structure factor that is an im
provement over LR. Thee-n structure factor is defined in
reciprocal space as22

Sen~q!5
1

ANeNn

^dr̂e~2q!drn~q!&. ~6!

The averaging in Eq.~6! is over both the electron an
nuclear degrees of freedom. Having made the assump
that the nuclei obey classical mechanics, the process of
eraging can be divided into two steps as follows:

Sen~q!5
1

ANeNn

Š^dr̂e~2q!&edrn~q!‹n . ~7!

In Eq. ~7!, ^•••&e , and ^•••&n , respectively, indicate aver
ages over the electron states at a fixed nuclear configura
and over the nuclear degrees of freedom, which are explic
written as

^ f̂ e&e5
Tr(e)@e2b(Ĥe1V̂en) f̂ e#

Tr(e)e2b(Ĥe1V̂en)
, ~8!

and

^ f n&n5
Tr(n)@e2bHn~Tr(e)e2b(Ĥe1V̂en)! f n#

Tr(n)@e2bHn~Tr(e)e2b(Ĥe1V̂en)!#
. ~9!

Here f̂ e is an operator acting on the electrons,f n is a classi-
cal quantity related to the nuclei, Tr(e) is a trace over the
electron states, and Tr(n) is a classicaltrace over the nuclea
states. Notice that the nuclear configuration enters in
evaluation of Tr(e) through thee-n interactionV̂en . Within
the LR approach,̂dr̂e(2q)&e in Eq. ~7! is given by

^dr̂e~2q!&e52x (1)~q!Zvc~q!drn~2q!, ~10!

where x (1)(q) is the bare linear-response function of th
electron gas. If we employ the local-field correction~LFC! of
the homogeneous electron gas~see, for example, Ref. 23! to
take account of the exchange-correlation effects,x (1)(q) can
be expressed as x (1)(q)5x0(q)/„12vc(q)x0(q)@1
2G(q)#…, wherex0(q) is the Lindhard response function o
1-2
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the ideal~noninteracting! electron gas andG(q) is the LFC.
Then, within the LR, thee-n structure factor is

Sen
(L)~q!5ANn

Ne

Z

12G~q!21/@vc~q!x0~q!#
Snn~q!,

~11!

whereSnn(q) is the nucleus-nucleus (n-n) structure factor
defined by

Snn~q!5^drn~2q!drn~q!&n /Nn . ~12!

Let us examine the low-q and high-q limits of Eq. ~11!,
which correspond to long- and short-wavelength dist
bances in the electron gas, respectively. In the former c
x0(q) approaches the Thomas-Fermi response funct
xTF52q0

2/(4pe2), where q0 is the Thomas-Fermi wave
number. The low-q behavior of thee-n structure factor from
LR is then determined by imposing the rigorous compre
ibility sum rule18,24 on the LFC,

lim
q→0

q0
2

q2
G~q!512

K0

K
. ~13!

Here K and K0 are the isothermal compressibilities of th
interacting and noninteracting homogeneous electron ga
namely,

K215VF ]

]V S ]Fe

]V D
Ne,T

G
Ne,T

, ~14!

whereFe (Fe0) is the free energy of the interacting~nonin-
teracting! electron gas, for which accurate parametrizatio
exist.25–28 Finally, the resulting low-q limit of Eq. ~11! is

Sen
(L)~q→0!;ANn

Ne

Z

11~q2/q0
2!~K0 /K !

Snn~q!. ~15!

In the opposite limit of largeq, Snn(q) converges to unity,
G(q) to a finite constant,23 andx0(q) behaves as

x0~q→`!;2
mekF

p2\2

1

3 S 2kF

q D 2

, ~16!

where me is the electron mass andkF is the Fermi wave
number. Thus, Eq.~11! has the following high-q limit:

Sen
(L)~q→`!;ANn

Ne
Zvc~q!

mekF

p2\2

1

3 S 2kF

q D 2

}q24.

~17!

It is well known that the LR form~11! does not accoun
correctly for the cusp of the electron density at the nucl
sites, which is closely connected with the high-q values of
thee-n structure factor~the high-q behavior is related to the
short-range correlations!. The correct behavior ofSen(q) in
the limit of largeq is determined by the cusp condition an
the corresponding sum rule that must be satisfied by the
act e-n structure factor, namely,16,17
22411
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Arern1
1

~2p!3E dqSen~q!5
\2

16pmZe2
lim
q→`

q4Sen~q!,

~18!

where m[memn /(me1mn) with the nuclear massmn .29

This equation shows thatSen(q) must be proportional toq24

at largeq, resulting in a cusp in the electron density at t
positions of the nuclei. Actually,Sen

(L)(q) already possesses
q24 proportionality at largeq as seen in Eq.~17!. However,
the coefficient of theq24 term within LR is too small to
satisfy Eq.~18!, and the resulting cusp is less sharp. This
to be expected from a first-order correction~LR! to the per-
turbed system, considering that the pure Coulomb poten
is singular.

Formally, response beyond linear can be developed
series of ascending powers of the inducing potentia
namely,

^dr̂e~q!&e5x (1)~q!Vext~q!1
1

V (
q8

x (2)~q,q8!

3Vext~q2q8!Vext~q8!1•••, ~19!

where^dr̂e(q)&e is the electron density induced by the u
screened potentialVext, and x (1), x (2), etc. are the linear,
quadratic, etc. response functions of the interacting gas
particular,x (2) has been obtained for the noninteracting ele
tron gas at zero temperature by Lloyd and Sholl~and ap-
proximations to it at arbitrary degeneracy by Pickenhain, F
etner, and Unger!.30 The complexity of the terms in the serie
rapidly rises with order and, for an inducing potential of t
pure Coulomb type, the first attempt was made by MA
approximately reproduce the entire series@when Vext is a
single-impurity potential# through an interpolation, the low-q
limit being provided by LR and the high-q limit by the cusp
nature of the charge distribution@which we will call the
cusp-condition constraints approximation~CCA!#. As one of
many possible such interpolations, MA proposed the follo
ing form of the electron density for a one-proton system:

^dr̂e~q!&e5
Z

11~q2/q0
2!~K0 /K !1q4/k4

, ~20!

where the parameterk is determined from the cusp cond
tion. The analogous expression for anNn-nucleus system is
then

Sen~q!5ANn

Ne

Z

11~q2/q0
2!~K0 /K !1q4/k4

Snn~q!

~21!

andk is determined by a direct substitution of Eq.~21! into
Eq. ~18!. As already mentioned in the introduction, this for
gives improvement over LR at low densities but not at ve
high densities. This is because Eq.~21! still places too much
weight on the small-q part of Sen

(L)(q) @i.e., it uses only the
small-q part ofSen

(L)(q)#. Hence, we here propose an appro
mate form for thee-n structure factor, which reproduces th
correct high-density limit.
1-3
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In constructing an interpolation of thee-n structure factor
for the CCA, we impose the following restrictions:~i! It is
required to include a parametera (0<a<1), which is de-
termined from the cusp condition~18!, and to exactly repro-
duce Sen

(L)(q) when a51. ~ii ! It is required to agree with
Sen

(L)(q) at small-q values regardless ofa, i.e., to satisfy the
compressibility sum rule;~iii ! it is required to approach
Sen

(L)(q)/a at large-q values whereSen
(L)(q) shows appreciable

decay. The first restriction is imposed in order to ensur
reasonable limiting behavior at high densities, where thee-n
structure factor should approach the LR form. The sec
and third restrictions serve to remind us that we are conc
trating on the nonlinear response related to the cusp, whic
principally revealed in the large-q behavior ofSen(q). So
long as the above restrictions are observed, the phys
quantities that depend on thee-n structure factor will be
quite insensitive to its exact form. Accordingly, we propo
the following interpolation:

Sen
(C)~q!5ANn

Ne

Z

12G~q!2
~12a! f ~q!1a

vc~q!x0~q!

Snn~q!,

~22!

wheref (q)5x0(q)/x0(0). This result is simply obtained by
making the following replacement in Eq.~11!:

x0~q!→ x0~q!

~12a! f ~q!1a
, ~23!

which approachesx0(q) at small q where f (q);1, and
x0(q)/a at largeq where f (q);0. We should mention here
that a, determined from the cusp condition~18!, is always
less than unity throughout our calculation. Thus, by the
placement~23!, the electron response is effectively enhanc
at largeq, which physically corresponds to further piling u
of electron density around each nucleus as is intuitively
pected. Again, Eq.~22! can be considered as an approxim
tion to the entire response series concerning the cusp in
~19!.

To clarify the physical meaning of the CCA, we can e
amineSen

(C)(q) by replacingSnn(q) in Eq. ~22! with a sum of
two terms, 1 andSnn(q)21, corresponding to the one-bod
and two-body correlations, respectively. It is easy to see t
that the corresponding two-body part of thee-n structure
factor is little affected by using the CCA instead of its L
form, becauseSnn(q)21 converges to zero whenq→`. Ac-
cordingly, the main effect of the CCA will be restricted to th
one-body part. This is to be expected, considering that
CCA deals with the nonlinear response related to the cha
accumulation at each nuclear site, and it is basically inse
tive to the nuclear configuration. Thus, the CCA can
thought of as a summation of only the one-body parts of
higher-order~beyond linear! response terms.

We can also examine the effect of the CCA by looking
the LFC of thee-n mixture,Gi j (q) ( i , j 5e or n). With their
help, the e-n structure factor is exactly written a
follows:28,31
22411
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Sen~q!5ANn

Ne

Z„12Gen~q!…

12Gee~q!21/„vc~q!x0~q!…
Snn~q!.

~24!

Note that hereGee(q) is not the electron-electron (e-e) LFC
of the homogeneous electron gasG(q), but that of thee-n
mixture. Substituting Eq.~24! into the cusp condition~18!,
we find that

Gen~q→`!512gen~0!, ~25!

wheregen(r ) is the e-n pair-distribution function; the pair-
distribution functions are generally related to the struct
factors as follows:

gi j ~r !511
1

Ar ir j
E dq

~2p!3
@Si j ~q!2d i , j #exp~2 iq•r!.

~26!

Sincegen(0) is larger than unity,Gen(q) must tend toward a
negative value at highq.32,33 However, comparing the LR
structure factor~11! with Eq. ~24!, we find thatGen(q)50
andGee(q)5G(q) within LR. This contradicts the negativ
property ofGen(q) required from Eq.~25!, which is another
way to see the violation of the cusp condition within LR.
the case of the CCA, on the other hand, by comparing
~22! with Eq. ~24! together with the jellium approximation
Gee(q)5G(q), thee-n LFC is written as

Gen~q!5
~12a! f ~q!1a21

~12a! f ~q!1a2vc~q!x0~q!@12G~q!#
.

~27!

The high-q behavior is now,Gen(q→`)5121/a, and since
a is always less than unity as already stated, the CCA sa
fies the negative property ofGen(q) at largeq.

B. Quasi-one-component model and Gibbs-Bogoliubov
inequality

Having obtainedSen(q), we can now use the standar
quasi-one-component model and the GBI to obtain
Helmholtz free energyF as a function of density and tem
perature, from which almost all thermodynamic quantities
the liquid mixture can be derived. For a system where
nuclei are treated as classical particles, it is possible to
duce the electron-nucleus two-component problem to
quasi-one-component problem.19 In this approach, we only
need to deal with a system composed of nuclei, having t
effective interaction energy

Ve f f5Vn1Fe1Un , ~28!

whereFe andUn are given by

Fe52kBT ln Tr(e)e2bĤe, ~29!

and

Un5E
0

1

dl^V̂en&e(l) . ~30!
1-4
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HereFe is the free energy of a uniform interacting electr
gas for which convenient parametrizations exist in the lite
ture as already mentioned in Sec. II A.25–28The definition of
^•••&e(l) in Eq. ~30! is identical to that in Eq.~8!, but with
V̂en replaced bylV̂en , where the quantityl is a coupling-
constant parameter introduced as a scaling factor in thee-n
interaction. The expression of the effective potential in E
~28! is exact so long as the nuclei can be considered clas
particles, but it is only a formal relation becauseUn is still
unknown.

For the estimation of the total free energyF, we exploit
the GBI that is a rigorous theorem in classical system
namely,

F<Fr1^Ve f f2Vr& r , ~31!

whereFr and Vr are the free energy and the potential of
reference system, and the average^•••& r is taken by using
the distribution function of the reference system. When
temperature is high enough to overcome then-n screened
interaction around the mean nearest-neighbor distance
structure of the liquid will be determined mostly by the r
pulsive core part of the interaction and will be insensitive
its detailed shape. Therefore, under such conditions, we
apply the GBI with a hard-sphere~HS! reference system, an
regard the packing fractionh as a variational parameter~the
use of a HS system as an appropriate reference syste
further examined in Sec. III!. By substituting Eq.~28! into
Eq. ~31! and considering that the free energy of the HS s
tem is entirely entropic, we can rewrite the GBI as19

F<Fgas2TDs~h!1Fe1^Vn&n(h)1^Un&n(h) , ~32!

whereFgas is the free energy of the ideal gas consisting
nuclei, andDs(h) is the excess entropy of the HS syste
The bracket̂ •••&n(h) indicates an average over nuclear co
figurations taken by the distribution function of the HS sy
tem with a packing fractionh. Here, we invoke the Percus
Yevick ~PY! approximation, which is known to be a goo
approximation for a HS system and, moreover, has an a
lytic solution.34 Then,Ds(h) can be written using the em
pirical but accurate expression of Carnahan and Starling,19,35

Ds~h!52NnkBh
423h

~12h!2
. ~33!

Also, we can use the analytic form for the Madelung ene
^Vn&n(h) given by Jones,19,36

^Vn&n(h)5Nn

2Z2

Z1/3r s

~23h2/3!
12h/51h2/10

112h
Ry, ~34!

wherer s is defined by 4p(r sa0)3/35V/Ne .
The quantity^Un&n(h) in Eq. ~32! is directly related to a

~l-dependent! e-n structure factor. After rewritinĝUn&n(h)
using Eqs.~4! and ~30!, we find the connection betwee
^Un&n(h) and thee-n structure factor as follows:
22411
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^Un&n(h)52
ANeNn

V (
q

8 Zvc~q!E
0

1

dlSen~q,l;h!

52ANeNn

1

2p2E0

`

dqq2Zvc~q!

3E
0

1

dlSen~q,l;h!, ~35!

where

Sen~q,l;h![
1

ANeNn

Š^dr̂e~2q!&e(l)drn~q!‹n(h) .

~36!

This e-n structure factor can be calculated using Eq.~11!
~LR! or Eq. ~22! ~CCA!, where we use then-n structure
factor obtained by the PY approximation, name
Snn(q;h);1/$12rncPY(qs)%; heres is the diameter of the
HS, s52Z1/3r sa0h1/3, andcPY(y) is the Fourier transform
of the Ornstein-Zernike function, i.e.,

cPY~y!524ps3F24C

y6
2

2B

y4
1sin~y!H A12B14C

y3

2
24C

y5 J 1cos~y!H 2
A1B1C

y2
1

2B112C

y4

2
24C

y6 J G , ~37!

with A5(112h)2/(12h)4, B526h(11h/2)2/(12h)4,
C5hA/2.34 We should note here that the coupling consta
l is explicitly included in Eq.~36!. Therefore, when we use
the methods presented in Sec. II A, we need to replaceZ with
lZ in Eqs.~11!, ~18!, and~22!. This also means that, in th
CCA, the parametera must be determined separately f
eachl. Then, we can evaluatêUn&n(h) by carrying out the
numerical integrations37 with respect toq andl in Eq. ~35!.
At this point, all terms appearing in the GBI are known, a
the free energy can, therefore, be obtained by minimizing
right-hand side of Eq.~32! with respect toh.

III. RESULTS

All calculations in this section are carried out fo
deuterium38 to compare our results with recent expe
ments8,9 and also with otherab initio calculations.21,39,40

In order to apply the method presented in Sec. II, we n
to specifyFe , x0(q), andG(q). Here, we use the parametr
zations ofFe and x0(q) given by Dandrea, Ashcroft, an
Carlsson,27 and G(q) provided by Vashishta and Singwi,41

namely, G(q)5a(12exp@2bq2#), where the parametersa
and b are fully determined from the cusp condition@G(q
→`)512gee(0)# ~Refs. 23 and 42! and the compressibility
sum rule18,24 for the homogeneous electron gas.

The e-n structure factor atl51 is plotted in Fig. 1 for
G51, whereG is the Coulomb coupling parameter define
1-5
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by G[e2/(r sa0kBT). The figure clearly shows that the CC
significantly enhancesSen(q) at largeq compared with the
LR result. The difference diminishes at smallq, but remains
finite even atq50 because the packing fractionh is differ-
ent in the two cases; recall thath is a variational paramete
in expression~32!, and, therefore, it depends on the meth
used to obtain̂ Un&n(h) . It is intuitively apparent that the
CCA must lead to a smaller packing fraction than LR b
cause it provides for better screening of the nuclei. A sma
h then yields largerSnn(q50) andSen(q50).

The effect of enhancedSen(q) at high q seen within the
CCA must be observed in real space as a larger charge a
mulation at the sites of the nuclei. To ascertain this, we h
calculated thee-n pair-distribution functiongen(r ) through
the Fourier transform~26!. The results are shown in Fig.
and, as expected, the CCA dramatically heightens the c
around the origin compared with LR. Because the CCA r
resents an improvement over LR related to the one-body
of the nuclear correlation, its major effect, which is mo
prominent at lower densities, is confined to a sphere of rad
r 5a0r s about each nucleus.

In order to investigate the improvement of the CCA on t

FIG. 1. Electron-nucleus structure factorSen(q); a comparison
between the CCA and LR results~see text!.

FIG. 2. Electron-nucleus pair-distribution functiongen(r ) within
the CCA and LR.
22411
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cusp at various densities and temperatures, we have ca
lated and plottedgen(0) ~a measure of the cusp! in Fig. 3 as
a function ofG for variousr s values. The CCA always give
a largergen(0) compared to LR under the conditions studi
here, and the difference between them lessens asG or r s is
decreased, which confirms that the CCA has the correct h
density and high-temperature limits. It is intriguing to no
that within both LR and CCA,gen(0) has differentG depen-
dences at small- and large-G values; while it is monoto-
nously increasing in the former, it is decreasing in the lat
case. This behavior was previously pointed out by Dharm
wardana and Perrot12 and also by Chihara,14 and the reason
behind it is the different temperature dependences of
quantitiesx0(q) andSnn(q), which enter the calculation o
gen(r ). At a small value of the Coulomb coupling paramet
where the electron system is nondegenerate, the temper
dependence ofx0(q) is dominant because the absolute val
of x0(q) grows appreciably upon increase ofG and the
‘‘turning on’’ of the quantum degeneracy. On the other han
x0(q) is not so sensitive to the temperature at largeG be-
cause the electron system there is already strongly dege
ate. However, in this regime, the nuclei are highly coup
with one another and their mutual screening is driven
correlation and the associated repulsion from other nuclei
Snn(q) remains temperature sensitive, and this leads to
observed slight negative slope ofgen(0).

Next, we examineGen(q), which is obtained as one of th
outcomes of the CCA through Eq.~27! and is useful to cap-
ture the physical meanings of it in connection with the oth
treatments. Figure 4 exhibits theGen(q), and we notice that
it is always negative. This behavior was previously observ
in QHNC calculations by Chihara,32 where the nonlinear re
sponse is sufficiently included by directly solving a on
electron Schro¨dinger equation in a self-consistent potenti
Further, Tanaka, Yan, and Ichimaru33 pointed out a similar
tendency inGen(q) by using a modified convolution ap
proximation, taking account of the strong electron-nucle
correlation. This negative property ofGen(q) implies an ef-
fective attraction between electrons and nuclei in addition

FIG. 3. Electron-nucleus pair-distribution function at the orig
gen(0) as a function of the Coulomb coupling parameterG and at
various values of the density parameterr s .
1-6
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the bare Coulomb interaction. Note that, atr s51, the curve
of G510 shows smaller absolute values at high value oq
than observed atG51, while it is not the case atr s52. This
can be interpreted in terms ofgen(0) through the relation
~25!; as shown in Fig. 3,gen(0) at r s51 has a slightly larger
value atG51 than atG510.

The enhanced cusp observed within the CCA is relate
a strongere-n coupling than in LR, and it is expected t
lower the free energyF. To elucidate this point, we now
investigate thee-n coupling part of the free energy define
by DF5F2Fe2Fn , where Fn is the free energy of a
nuclear OCP given byFn52kBT ln Tr(n)exp(2bHn). Here
Fn can be written as a sum of an ideal gas and an ex
free-energy part, namely,Fn5Fgas1Fex , and the latter can
be calculated from the relation

bFex5E
0

GdG8

G8
uex~G8!, ~38!

whereuex(G)[bEex with Eex being the excess energy. Ac
curate estimates foruex(G) have been obtained by the clust
expansion method43 for G,0.1, by the HNC approximation
for 0.1,G,1, and from a Monte Carlo simulation44 for
1,G. The resultingDF is shown in Fig. 5 as a function ofr s
for some fixed temperatures. As anticipated, the CCA low
the free energy compared to the LR. Also, the results sh
again that the CCA has the correct high-density limit, wh
it approaches LR. It is interesting to note that the CCA
sults approach those of LR at low densities as well when
temperature is high, as is evident from theT5105 K data in
Fig. 5. This is related to the degree of degeneracy of
electron system; at low density, where the Fermi tempera
is also low, the electron response is easily suppressed
temperature effects, which leads to the decrease of the
ference between LR and CCA.

FIG. 4. Electron-nucleus local field correctionGen(q) within
the CCA.
22411
to

ss

rs
w
e
-
e

e
re
by
if-

We should point out thatDF continues to increase rapidl
at smallr s . This unphysical behavior takes place because
HS system used here simply becomes a less satisfactory
erence system for the GBI at densities so high that the lo
range character of the interactions between the nucle
prominent. To establish quantitatively the conditions
which the use of HS is adequate, we therefore examine
screened Coulomb coupling parameter,G* 5G exp
(2q0rsa0), which is the ratio of the Yukawa interactio
around the mean distance of the nearest-neighbor nucle
the temperaturekBT. WhenG* is small, the core repulsive
part of the potential between nuclei plays a dominant role
determining the structure of the liquid, and the hard sphe
will be a fairly good reference system. Figure 6 shows co
tour lines ofG* in the r s2T plane that is divided into two
parts ~one of them shaded! by the contour ofG* 51. The

FIG. 5. Electron-nucleus coupling part of free energy,DF5F
2Fe2Fn , as a function ofr s ; hereFe is the free energy of an
interacting homogeneous electron gas andFn is that of a nuclear
~classical! OCP.

FIG. 6. Screened-Coulomb coupling parameterG* in the (r s

2T) plane.G* is defined byG* [G exp(2q0rsa0), whereq0 is the
Thomas-Fermi wave number. The shaded region marks the
where the long-range character of the interaction among the nu
is significant.
1-7
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shaded region is roughly the area where the HS is a l
suitable reference. For example, the boundary of the
areas atT5105 K is located atr s;0.77, and at higher den
sity the HS reference is likely to be less accurate. Howe
note that even in this region it is still meaningful to use t
HS model if the aim is to examine the possible improvem
of the CCA over the LR.

We also compare the energy and pressure obtained b
method presented here with those from PIMC.21 The PIMC
method treats both electrons and nuclei as quantum part
even beyond the adiabatic approximation, and it is con
ered a very reliable approach even though it employs
fixed-node approximation and supercells of finite sizes. F
ure 7 displays the correspondinge-n coupling part of the
energy,DE5E2Ee2En , as a function ofG at r s52. At
largeG, the CCA is in good agreement with the PIMC, a
its improvement over LR is significant; for example, the e
ergy difference between LR and CCA atG515.8 corre-
sponds to;10% of the absolute value of the total energ
However, the CCA energy curve gradually deviates from
PIMC asG is reduced and the deviation becomes apprecia
for G,1, though the differences still remain very small com
pared to the total energy. This observation may raise a q
tion about the validity of the HS reference at smallG. Figure
6 already summarizes the conditions at which the HS re
ence is appropriate, using the criterionG*,1, which is rea-
sonable but somewhat intuitive as well. According to th
criterion, the HS system seems to be a suitable referenc
small G; nevertheless, to establish its validity more firm
we have carried out an alternative calculation~see the Ap-
pendix! and estimated the errors resulting from the use of
HS system. In this calculation, for obtaining then-n struc-
ture factor, we have applied the Debye-Hu¨ckel ~DH! method
to a linearly screened nuclear system, which is a satisfac
approximation in a weakly coupled regime~small-G* re-
gion!. The free energy is then calculated directly from
coupling-constant integration without the use of the G

FIG. 7. G dependence of the coupling part of the energy,DE
5E2Ee2En , at r s52. The path-integral Monte Carlo results a
from Ref. 21 and data labeled DH are from calculations with
nucleus-nucleus structure factor obtained by applying the Deb
Hückel approximation to a linearly screened nuclear system~see the
Appendix!.
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since then-n structure factor can be easily determined
eachl from the DH approximation. The results obtained
the method are also shown in Fig. 7, which are labeled as
~DH! and CCA~DH!. We have found that the use of the D
method gives energies close to those of the HS mode
small G, and this confirms that the latter remains a suita
reference system in this range.

Figure 8 shows the correspondinge-n coupling part of
the pressure,DP5P2Pe2Pn . The CCA again improves
the LR results and always works to reduce the discrepa
with the PIMC. Both LR and CCA give lowerDP than
PIMC at largeG, and this can be attributed to the fact th
these methods do not take account of the possible pairin
nuclei, since it has been suggested39,45 that a small concen-
tration of molecules~with a short lifetime! still exists at
G;15 and atr s52. Notice that, at largeG, the CCA energy
in Fig. 7 is in better agreement with the PIMC than is t
pressure~despite the neglect of the nuclear pairing there
well!. This indicates that the pressure, which is obtain
from the derivative of the free energy with respect to t
volume, is a more sensitive test for comparison than the
ergy. At higher temperatures~around 1,G,10! where no
nuclei are expected to be paired, the CCA and PIMC ag
quite well. But as in the case of the energy, our results di
from the PIMC at smallG, and this is independent of th
choice of a reference system~HS or DH!. At these high
temperatures, however, the discrepancies are consid
small compared to the total pressure: AtG50.158, for ex-
ample, the difference corresponds to only;1.5% of the total
pressure.

Lastly, we discuss the Hugoniot EOS of deuterium whe
as we will show, the importance of the nonlinear respons
even more clearly observed. The Hugoniot EOS is de
mined by E2E05(P1P0)(V02V)/2, whereE0 , P0, and
V0 are the initial energy, pressure, and volume, respectiv
and the locus of final states,E, P, and V, constitutes the
Hugoniot curve. Many theoretical attempts have been m
to account for the remarkable Hugoniot EOS observed
recent shock experiments.8,9 So far, the linear mixing
model46 and the chemical model5 have provided rather good
agreements, whileab initio calculations21,40 have shown

e
e-

FIG. 8. G dependence of the coupling part of pressure,DP
5P2Pe2Pn , in comparison with the path-integral Monte Car
results21 at r s52.
1-8
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large discrepancies with the experiments. The reason for
difference is still a matter of active debate.

Our Hugoniot EOS, together with experimental8,9 and
PIMC21 results, is shown in Fig. 9. We find that the CC
agrees very well with the PIMC and hence leads to a sign
cant deviation from experiments. As the pressure is
creased, the CCA Hugoniot also gradually deviates from
PIMC, and the difference becomes perceivable around
GPa, although it is still small compared to the differen
from the experiments. It is likely that this deviation of th
CCA from the PIMC at low pressure may again be related
the circumstances that the CCA does not deal with the p
ing of the nuclei.

As noted above, we have invoked an adiabatic separa
of electronic and nuclear time scales; deviations from ad
batic adjustment are gauged by the parameter (me /mn)1/4

and this is small. When the band gap declines to the vib
energy (\vv), there can be mixing of states and a pathw
opens for the transfer of energy from the nuclear to the e
tronic system. However, as the gap declines further, nona
batic excitation should again diminish. Given this, t
present results, as with other treatments, remain in some
flict with experiments.

In Fig. 9, we also show the Hugoniots from LR and fro
a noncouplede-n plasma~NCENP! model where thee-n
interaction is set to zero. The comparison between
NCENP, LR, and the CCA shows that a better evaluation
the e-n coupling tends to shift the Hugoniot curve to th
low-density region. The fact that LR exhibits a behav
more similar to the NCENP than to the CCA at low press
~around 200 GPa! implies that the Hugoniot is very sensitiv
to the treatment of thee-n coupling, and it is, therefore
essential to deal with the electronic response beyond the
approximation.

IV. SUMMARY AND CONCLUSIONS

In summary, we have proposed an interpolation form
thee-n structure factor that has a correct limiting behavior

FIG. 9. Hugoniot equation of state of deuterium. Experimen
results~Exp.! are from Refs. 8 and 9, and the path-integral Mon
Carlo results are from Ref. 21. The Hugoniot of a noncoup

electron-nucleus plasma, with electron-nucleus interactionV̂en set
to zero, is also shown.
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high densities, and it can be used for calculations of the f
energy of dense liquid hydrogen beyond LR. The CC
method presented here is a modification and an extensio
Nn-nucleus systems of the idea of MA~Ref. 18! for an im-
provement over LR by enforcement of the rigorous cusp c
dition on the electronic response. The cusp-condition c
straint requiresGen(q) to take on negative values i
accordance with previous results,32,33 suggesting the pres
ence of an additional attractivee-n correlation ~which is
constrained to zero within LR!. Compared to LR, the CCA
therefore leads to a dramatic enhancement of thegen(r )
cusp, which correspondingly lowers the free energy and a
leads to a better agreement with PIMC in both energy a
pressure. In addition, we have found that the Hugoniot E
is reasonably sensitive to the treatment of the electron
sponse.

The GBI combined with a HS reference system wor
well at low densities where the screening lengths are su
ciently smaller thanr sa0; however, at extremely high dens
ties, a more sophisticated reference system is needed.
CCA only accounts for the nonlinear response around
positions of nuclei, and, therefore, it is suitable for t
atomicphase. A complete nonlinear response in the inter
tial region~ultimately represented as a covalent bond! is be-
yond the scope of this paper; it would require at least
consideration of higher-order two-body parts ine-n structure
factor together with the one-body part obtained by CCA.

The CCA is potentially applicable to elements other th
hydrogen. One conceivable choice is helium, where no in
shells exist and the cusp condition is satisfied for the str
ture factor. Even for other light elements that have inn
shells, the CCA may again be useful. For example, in
plasma at extremely high densities or temperatures, the c
sification of core and valence electrons becomes impre
and, consequently, pseudopotentials are not well defi
there. Under such conditions, it is necessary to treat the
and valence electrons on the same footing and in a con
where they interact with the nuclei through a divergent Co
lomb potential, and, therefore, the inclusion of the nonline
response is indispensable.
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APPENDIX

We present here an alternative method to the appro
discussed in Sec. II B for obtaining the free energy. In
following, we again introduce a coupling constantl to the
e-n interaction partV̂en and define the free energy at givenl
as

F~l!52kBT ln Tr exp@2b~Ĥn1Ĥe1lV̂en!#. ~A1!

The derivative ofF(l) with respect tol then yields

l

d

1-9
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dF~l!

dl
5^V̂en&l , ~A2!

where the averagê•••&l is defined by

^ f̂ &l[
Tr exp@2b~Ĥn1Ĥe1lV̂en!# f̂

Tr exp@2b~Ĥn1Ĥe1lV̂en!#
. ~A3!

Assuming that there is no phase change whenl varies be-
tween zero and 1, we can integrate Eq.~A2! to obtain

F5Fe1Fn1E
0

1

dl^V̂en&l . ~A4!

Here,F5F(l51) is the actual free energy, andFe andFn

are the free energies of the interacting electron gas25–28 and
the nuclear OCP,43,44 respectively. The last term in Eq.~A4!
represents thee-n coupling part of the free energy and ca
be rewritten as

E
0

1

dl^V̂en&l52
ANnNe

V (
q

8 Zvc~q!E
0

1

dlSen~q,l!,

52ANnNe

1

2p2E0

1

dqq2Zvc~q!

3E
0

1

dlSen~q,l!, ~A5!

where we have used Eq.~4! together with the definition of
the e-n structure factor

Sen~q,l!5
1

ANnNe

^dr̂e~2q!dr̂n~q!&l . ~A6!

Now, assuming that the nuclei are classical particles, thee-n
structure factor becomes

Sen~q,l!;
1

ANnNe

Š^dr̂e~2q!&e(l)drn~q!‹n(l) , ~A7!

where the definitions of̂•••&e(l) and^•••&n(l) are obtained
from Eqs.~8! and ~9! with the replacement ofV̂en by lV̂en.
For the calculation ofSen(q,l), we can use either LR or th
CCA, which are discussed in Sec. II A. At this point, w
should emphasize that the average over the nuclear stat
Eq. ~A7! depends onl, which means that we need to mak
the replacementSnn(q)→Snn(q,l) together withZ→lZ in
both Eq.~11! and Eq.~22!. Furthermore, this approach re
quires knowledge of then-n structure factor in advance
since it directly calculates the free energy; this is a ma
difference from GBI discussed in Sec. II B where then-n
structure factor is determined through minimization of E
~32! and the resulting free energy is an upper bound of
real one.

Here we employ a simple method to obtainSnn(q,l),
which uses the Debye-Hu¨ckel approach to a linearly
screened nuclear system and is, therefore, valid only at s
G* . Consider an assembly of nuclei and electrons with
22411
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given nucleus fixed at the origin and with a scalede-n inter-
actionlVen . The averaged densities of the electrons and
nuclei in this inhomogeneoussystem,^r i(r ,lun)& ( i 5e or
n), are related to the pair-distribution functions of thehomo-
geneoussystem,gin(r ,l), by the following relation:31

^dr i~r ,lun!&5r i@gin~r ,l!21#, ~A8!

where^dr i(r ,lun)&[^r i(r ,lun)&2r i . In reciprocal space
this becomes

^dr i~q,lun!&5Ar i

rn
@Sin~q,l!2d i ,n#, ~A9!

where we have used the relation~26!. Hence, to evaluate the
n-n structure factor of thehomogeneoussystem, we first
derive the expression of̂drn(q,lun)& for the inhomoge-
neoussystem. Then, through relation~A9!, we can obtain the
n-n structure factor.

In the system with a nucleus fixed at origin, the elect
potential acting on the nuclei,fn(r ,lun), satisfies the fol-
lowing Poisson equation:

nfn~r ,lun!524p@~Ze!2$^drn~r ,lun!&1d~r !%

2lZe2^dre~r ,lun!&#. ~A10!

The Fourier transform of this equation yields

2q2fn~q,lun!524p@~Ze!2$^drn~q,lun!&11%

2lZe2^dre~q,lun!&#

524p~Ze!2$11l2vc~q!x (1)~q!%

3$^drn~q,lun!&11%, ~A11!

where, in the second equation, we have used the lin
response relation

^dre~q,lun!&5x (1)~q!$2lZvc~q!%$^drn~q,lun!&11%,
~A12!

with the bare response functionx (1)(q)5x0(q)/„1
2vc(q)x0(q)@12G(q)#…. Here, as in Sec. III, we use th
Dandrea, Ashcroft, and Carlsson fitting forx0(q) ~Ref. 27!
and the Vashishta-Singwi form forG(q).41 On the other
hand, assuming a Boltzmann distribution for nuclei, we ha
another relation between̂ rn(r ,lun)& and fn(r ,lun),
namely,

^rn~r ,lun!&5rnexp@2bfn~r ,lun!#;rn@12bfn~r ,lun!#,
~A13!

where we have linearized̂rn(r ,lun)& with respect to
fn(r ,lun). Then, in reciprocal space,

^drn~q,lun!&52rnbfn~q,lun!. ~A14!

The combination of Eqs.~A11! and ~A14! yields
1-10
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^drn~q,lun!&5
2qD

2

e~q,l!q21qD
2

, ~A15!

where

qD[4p~Ze!2rnb, ~A16!

e~q,l![1/$11l2vc~q!x (1)~q!%. ~A17!

Finally, from Eqs.~A9! and~A15!, then-n structure factor is
expressed as follows:
n-
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Snn~q,l!5
e~q,l!q2

e~q,l!q21qD
2

. ~A18!

Now, with the aid of Eq.~A18!, we can obtain thee-n struc-
ture factor by using either LR or the CCA, i.e., Eq.~11! or
Eq. ~22! together with Eq.~18!. Then, carrying out the nu
merical integrations with respect toq andl in Eq. ~A5!, and
using Eq.~A4!, we arrive at the total free energy.
tor

. B

re-
1See, for example, I.F. Silvera, Rev. Mod. Phys.52, 393 ~1980!;
H.K. Mao and R.J. Hemley,ibid. 66, 671~1994!, and references
therein.

2E. Wigner and H.B. Huntington, J. Chem. Phys.3, 764 ~1935!.
3N.W. Ashcroft, Phys. Rev. B41, 10 963 ~1990!; K. Nagao, H.

Nagara, and S. Matsubara,ibid. 56, 2295~1997!; K.A. Johnson
and N.W. Ashcroft, Nature~London! 403, 632 ~2000!; M. Stä-
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