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Cusp-condition constraints and the thermodynamic properties of dense hot hydrogen
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The thermodynamic properties of liquid hydrogen are investigated at high densities and high temperatures
where full molecular dissociation is expected to be attained. Nonlinear electronic response is taken into
consideration by imposing rigorous cusp-condition constraints on the electron-n(gtetmn or deuteron
structure factor, and by requiring that it leads to the form of a linear-response theory in the high-density and
high-temperature limits. The aim of the new structure factor is to account properly for the accumulation of the
electron charge at distances from the nuclei where linear-response theory is insufficient. Using a quasi-one-
component model and the Gibbs-Bogoliubov inequality with a hard-sphere reference system, it is shown that,
compared with the commonly used linear methods, response with an enforced cusp condition lowers the free
energy and leads to a better agreement with reabninitio calculations in the energy and pressure of the
hydrogen plasma.
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[. INTRODUCTION therefore, characterized by strong electron-nucleds)(in-
teractions, is that nonlinear response is significantly weak-
The properties of hydrogen at high densities have beeened at sufficiently high densities and/or temperatures where
studied extensivelyover the past several decades, but theythe kinetic energy of the electrons is much larger than the
still remain unsettled. Part of the motivation for this interestscreened electrostatic interactions. While such an argument
has been the expected molecular dissociation and metallizés valid when considering the electronic response in the in-
tion under the application of external pressure, which waserstitial regionbetweenthe nuclei, owing to the divergent
first considered by Wigner and Huntingfoand is now short-range bare Coulomb potential, LR is insufficient for
believed to occur significantly above 300 GPa in the groundobtaining the correce-n correlation in the regionsloseto
state of solid hydrogen. The thermodynamic properties othe nuclei.Ab initio molecular dynamics calculations within
liquid hydrogen have also been attracting considerable atteqpe local-density approximation is a possible approach to
tion in relation to astrophy;ical prqblerﬁ%,such as thg iN- treat the hydrogen liquid beyond LR. However, it is compu-
ternal structure and evolution of giant planéesg., Jupiter,  tationally very intensive because the correlation lengths that

Satu.rn, etg. Recgnt expﬁrl'ml?[g? rllnvolvmlg stjatlc anq ddy- have to be considered while studying fluids require the use of
hamic compression technique ave already attaine large supercells, and the computation times are also long if

pressures n t_he range .Of _hur_ldreds of gigapascal, and ha ftainment of thermal equilibrium is to be achieved. In addi-
been uncovering many intriguing features of the dense S.tatt?on the concept of pseudopotentials, which is frequently
of hydrogen. Weir and coworkeriave observed a dramatic usea even for hvdroaen in theas initio,calculations ma
increase of the conductivity at140 GPa and at-3000 K in yarog » may

a shock-wave experiment, giving evidence of metallization "t be well defined at extreme conditions. Other density-

Other shock-wave experimefts? have produced an unex- functional-theory meth‘)d%’,lg and the quantal hypernetted-
pected Hugoniot equation of stat€OS, which suggests cham. (QHN(?) approximatioh* also give pair-distribution
that hydrogen is more compressible than predicted by thénctions valid beyond LR; however, so far they do not lead
Sesame model.The highest pressures attained by dynamicto @ direct access of the free energy and equation of state.
compressioh have exceeded 300 GPa at temperatures be- The purpose of this paper is to present a relatively simple
yond 30000 K, where it is presumed that long-lived mol-analytical method, beyond the LR approximation, for the cal-
ecules no longer exist, yet strong correlations between elegulation of both thee-n structure factor and free energy of
trons and nuclei(protons or deuteronsstill need to be liquid hydrogen in the high-density and/or high-temperature
considered. regime where the molecules are fully dissociated buttime

At the extreme conditions mentioned above, the relevaneorrelations remain significant. In the method that we pro-
system can be viewed as a two-component fluid comprisefiose, the inhomogeneous electron density is treated in a
of electrons and nuclei. The electron response and the resuanner similar to the LR approach, in the sense that it is still
ing effective interactions in such two-component problemsconsidered a superposition of the induced charge density due
are frequently dealt with within the linear-respondeR)  to the individual nuclei. However, the strength of then
theory when the ions have closed inner shells. This perturbasorrelation is taken into account in a unified way throughout
tive approach has been successful in explaining the thermdhe region of the phase diagram of interest by modifying the
dynamic properties of simple metals, where the interactionsindhard response function to give the correct cusp behavior
between the outer-shell electrons and the ions can be def the e-n pair-distribution function. We have achieved this
scribed by weak pseudopotentials. The argument for applyby making use of the cusp condition'’ that is a rigorous
ing LR to hydrogen, which lacks closed inner shells and isyequirement in systems with singularZe?/r Coulombic in-
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teraCtionS, and it relates the Charge denSity to its Spherica”With 5i(r) andpi being the One_partide density Operator and
averaged derivative at=0. the average density, respectively.

The idea to use the cusp condition to modify the electron | addition, we will assume throughout the paper that the
response was first proposed by Moulopoulos and Ashi€roft nuclei behave as classical particles, which is a reasonable
(MA), who considered a system with one proton embeddedpproximation for the high temperatures of interelsgT

in an interacting electron gas. They obtained a form for the>1 eV). Therefore, the quantum operatdis, 5p,(q), etc
) , a(0), etc.

induced charge density, which _g?ves a good improvemenére hereafter replaced by their corresponding classical quan-
over LR at low average densitie@.g., r<>1 for kgT tities T, Spn(q), etc
n» n il .

~1 eV). However, at high densities it does not account for
the cusp adequately, and even leads to a weaker cusp than
LR. We present in this paper an improved form of the elec-
tron response, which has the correct high-density cusp be-
havior. We have also extended the MA formalism to a In principle, the physical properties of a liquid mixture
N,-nucleus system where the emphasis is shifted from thean be described by a set of partial-correlation functions, or
induced charge density to then structure factor, which is partial-structure factors, among its species. In this section,
the quantity of major interest in the liquid-state theory. we obtain a form for thee-n structure factor that is an im-
The derivation of thee-n structure factor is given in Sec. provement over LR. The-n structure factor is defined in
Il A. A method for obtaining the free energy of the hydrogen reciprocal space &%
fluid is then described in Sec. Il B, where we use a quasi-

A. Cusp-condition constraints on the electron-nucleus
structure factor

one-component mod€land the Gibbs-Bogoliubov inequal- 1 .
ity (GBI).2*?°The e-n structure factore-n pair-distribution Sen(d) = \/W<5Pe(—(1) dpn(Q)). (6)
e'yn

function, and some thermodynamic variables are discussed
in Sec. Ill, where it is shown that our method improves LRThe averaging in Eq(6) is over both the electron and
and leads to good agreement with results from a recent patfclear degrees of freedom. Having made the assumption
integral Monte-CarldPIMC) calculation?* that the nuclei obey classical mechanics, the process of av-
eraging can be divided into two steps as follows:
II. METHOD OF CALCULATION

. . . 1
In this section, we consider the general problem of a two- Sen(@) = ———{(pe( — D) eSpn(Dn- 7
component fluid composed of interactitN, electrons and o VNN, ¢ ermmn

N,, nuclei with atomic numbez in a volumeV. The mixture

is electrically neutral so thal,=ZN,,, and thee-n interac- In Eq. (7), {---)e, and(---),, respectively, indicate aver-

tions are treated as pure Coulombic, i.e., without the use Jjges over the electron states at a fixed nuclear configuration
pseudopotentials. The Hamiltonian ,of t,he system can bgmd over the nuclear degrees of freedom, which are explicitly

written as a sum of three terms written as

~ ~ ~ ~ - ':|e \A/e f
A=A+ Aot Ven, &) ¢ 9L letVedt ]

fe e Tr(e)efﬁ(HeJrVen) '

8
where ﬂiE'T'i+f/i (i=e or n) is the Hamiltonian of the
one-component plasm@CP consisting of species and and

V,, Ve, andV,, are given by o
e e TrM[ @~ AHn(THO g~ AHet Ven) £ ]

<fn>n: 9

1o, . . - - :
Vi=oy 2 Z20(@)[8pn(~ D pn(d)—Nol.  (2) Tr e AHin(Tr(Oe™ AlfleVen)
q
Heref, is an operator acting on the electrofig,is a classi-
o ) - - cal quantity related to the nuclei, ‘tr is a trace over the
Ve=3v 5 vo(A)[ Fpe( =) pe(Q) ~Ne], (3 electron states, and Mt is aclassicaltrace over the nuclear
states. Notice that the nuclear configuration enters in the

g 1 S 2 5 5 . evaluation of Tt through thee-n interactionV,,. Within
etV 4 ve(d) Ope( — Q) opn(Q)- @ the LR approach( p.(—a))e in Eq. (7) is given by
Here,v.(q)=4me?/q? is the Fourier transform of the?/r (5pe( — D)= — xD(Q)Zvo(@) Spn( — ) (10)
e e Cc n ’

Coulomb potential, and the primes in thesummations in-

dicate that they=0 terms are excluded. The symbip;(q)  Where xP(q) is the bare linear-response function of the

denotes the Fourier transform of the one-particle-inducedlectron gas. If we employ the local-field correctidfrC) of

density operator of speciés the homogeneous electron gage, for example, Ref. 230
take account of the exchange-correlation effegt¥(q) can

~ : ~ be expressed as x(q)=xo(a)/(1-vc(d)xo(a)[1
5pi(q>_f dr exp(—ig-n)(pi(r) = pi), ©) —G(q)]), wherex(q) is the Lindhard resporcwse function of
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the ideal(noninteracting electron gas an(q) is the LFC. 1 X
Then, within the LR, thee-n structure factor is N + —f dgs, = limg*s ,
PePn (27T)3 0Sen(Q) 167TIU/Ze2q*>ooq en(d)
WL n z (18
Ser(=\ 7= _ Sin(@), _ . 29
Ne1l—-G(q)—Uvc(q)xo(a)] where u=m,m,/(me+m,) with the nuclear massn,.

(1) This equation shows th&,,(q) must be proportional tq~*
whereS,,(q) is the nucleus-nucleus¢n) structure factor at Igr'geq, resulting in' a cusp in Lthe electron density at the
defined by positions of the nuclei. Actuall;ngn)(q) already possesses a

q~* proportionality at largeg as seen in Eq(17). However,
San(@) =(Spn(— ) 8pn(A))n/Np. (120  the coefficient of theq * term within LR is too small to
satisfy Eq.(18), and the resulting cusp is less sharp. This is
Let us examine the lowand highg limits of Eq. (11),  to be expected from a first-order correctiftrR) to the per-
which correspond to long- and short-wavelength disturtyrbed system, considering that the pure Coulomb potential
bances in the electron gas, respectively. In the former casgs singular.
Xo(q) approaches the Thomas-Fermi response function, Formally, response beyond linear can be developed in a
XTe=— 05/ (4me?), where qq is the Thomas-Fermi wave series of ascending powers of the inducing potentials,
number. The lowg behavior of thee-n structure factor from  namely,
LR is then de:grzryined by imposing the rigorous compress- L
iy sum uie = on the LFC (3 D)e= XD AVerd 0+ 5 = ¥ D(q)
2 q
. Yo Ko
im 2SO (3 X Veud 0= 0 )Veu(d' )+, (19
Here K and K are the isothermal compressibilities of the where(dpe(Q))e is the electron density induced by the un-

interacting and noninteracting homogeneous electron gasegc':reene_d potentidVe,, and X(l).' X, etc. are the_ linear,
namely qua<_jrat|c, etc. response fun_ctlons of the interacting gas. In
' particular,y?) has been obtained for the noninteracting elec-
J [ oF tron gas at zero temperature by Lloyd and SHald ap-
K- 1=v ( e) 1 ,
Ne, T N, T

NV

N (14 proximations to it at arbitrary degeneracy by Pickenhain, Fli-
etner, and Unger® The complexity of the terms in the series
rapidly rises with order and, for an inducing potential of the
whereF, (F¢o) is the free energy of the interactirigonin-  pure Coulomb type, the first attempt was made by MA to
teracting electron gas, for which accurate parametrizationsapproximately reproduce the entire ser[@ghen V., is a
exist?>~** Finally, the resulting lowg limit of Eq. (11) is single-impurity potentidlthrough an interpolation, the logy-
N limit being provided by LR and the higg-limit by the cusp
L /Np nature of the charge distributiowhich we will call the
Sfan)(q—>0)~ N_e 1+ (92 q2) (Ko /K) Snnl(@). (19 cusp-condition constraints approximati@@CA)]. As one of
070 many possible such interpolations, MA proposed the follow-
In the opposite limit of largey, S,,(q) converges to unity, ing form of the electron density for a one-proton system:
G(q) to a finite constant® and y,(q) behaves as

N Z
K =
. (16) Pl @))e= 212 (Ko K) + g

e
e’

(20

_ . . where the parametet is determined from the cusp condi-
where m, is the electron mass arkk is the Fermi wave tion. The analogous expression for Bp-nucleus system is

number. Thus, Eq11) has the following highg limit: then
/N meke 1[2kg\? /N z
SB(g—oo)~\/— Zp _eF _<_F) g4, S _ /N
i (02) Ne °(q)w2ﬁ2 3\ 7q ) "1 er(4) Ne1+(qZ/qg)(KO/K)+q4/K4S””(q)
(17 (21

It is well known that the LR form(11) does not account andx is determined by a direct substitution of §g1) into
correctly for the cusp of the electron density at the nucleaEQ. (18). As already mentioned in the introduction, this form
sites, which is closely connected with the highsalues of ~ gives improvement over LR at low densities but not at very
thee-n structure factofthe highg behavior is related to the high densities. This is because ER1) still places too much
short-range correlationsThe correct behavior dB,(q) in  Weight on the smali part of S{;)(q) [i.e., it uses only the
the limit of largeq is determined by the cusp condition and small-q part ofsgLrR(q)]. Hence, we here propose an approxi-
the corresponding sum rule that must be satisfied by the exnate form for thee-n structure factor, which reproduces the
acte-n structure factor, namefy;!’ correct high-density limit.
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In constructing an interpolation of tfeen structure factor N, Z(1—Gen(q))
for the CCA, we impose the following restrictiong) It is Sen(q) = N.1-G (@)= a)x (q))snn(q).
e ee! c 0

required to include a parameter (0<a=<1), which is de- (24)
termined from the cusp conditidi8), and to exactly repro-

duce S&(q) when a=1. (i) It is required to agree with Note that her&,((q) is not the electron-electrore¢e) LFC
sH(q) at smallg values regardless af, i.e., to satisfy the Of the homogeneous electron gagq), but that of thee-n
compressibility sum rulefiii) it is required to approach Mixture. Substituting Eq(24) into the cusp conditiori18),
SH(q)/a at largeq values where&)(q) shows appreciable We find that
decay. The first restriction is imposed in order to ensure a
reasgnable limiting behavior at hipgh densities, whereetire Gen(0—%)=1-0en(0), (25
structure factor should approach the LR form. The secongvhereg,,(r) is thee-n pair-distribution function; the pair-

and third restrictions serve to remind us that we are concendistribution functions are generally related to the structure
trating on the nonlinear response related to the cusp, which igctors as follows:

principally revealed in the largg-behavior ofS;,(q). So

long as the above restrictions are observed, the physical 1
quantities that depend on treen structure factor will be gij(r)=1+ ——f
quite insensitive to its exact form. Accordingly, we propose PiPj

dq
(2m)3

[Sij(q)—d;jlexp—iqg-r).

the following interpolation: (26)
Sincege(0) is larger than unityG.,(q) must tend toward a
© N, z negative value at higly.32® However, comparing the LR

Sen (@)= N. (1_a)f(q)+a5nn(Q)a structure factor(11) with Eq. (24), we find thatG.,(q)=0

1-G(q) andG.4q)=G(q) within LR. This contradicts the negative
property ofG.,(q) required from Eq(25), which is another

way to see the violation of the cusp condition within LR. In
wheref(q) = xo(a)/xo(0). This result is simply obtained by the case of the CCA, on the other hand, by comparing Eg.

making the following replacement in E€L1): (22) with Eq. (24) together yvith t'he jellium approximation
Gedq)=G(q), thee-n LFC is written as

ve(9)xo(Q)
(22)

Xo(Q) 1oV (a) + a1
Xo(d) = ==~ (23 _ (1-a)f(q)+a
T -of@re Cenl @)= 1= (q) T a—ve( @) xo(M1-G(Q)]"

which approachesy(q) at small g where f(gq)~1, and @
xo(0)/ « at largeq wheref(q) ~0. We should mention here The highg behavior is nowG,(q—)=1-—1/a, and since
that @, determined from the cusp conditigqh8), is always « is always less than unity as already stated, the CCA satis-
less than unity throughout our calculation. Thus, by the refies the negative property @&.,(q) at largeq.
placement23), the electron response is effectively enhanced
at largeq, which physically corresponds to further piling up B. Quasi-one-component model and Gibbs-Bogoliubov
of electron density around each nucleus as is intuitively ex- inequality
pected. Again, Eq(22) can be considered as an approxima-
tion to the entire response series concerning the cusp in Ea.
(19). u

To clarify the physical meaning of the CCA, we can ex-
aminesg%)(q) by replacingS,,(q) in Eg. (22) with a sum of
two terms, 1 and,,(q) —1, corresponding to the one-body
and two-body correlations, respectively. It is easy to see the
that the corresponding two-body part of tken structure
factor is little affected by using the CCA instead of its L
form, becaus&, ,(q) — 1 converges to zero wheap—o. Ac-
cordingly, the main effect of the CCA will be restricted to the
one-body part. This is to be expected, considering that the _
CCA deals with the nonlinear response related to the charge Verr=Vn*FetUn, 28)
accumulation at each nuclear site, and it is basically insensiwhereF, andU,, are given by
tive to the nuclear configuration. Thus, the CCA can be .
thought of as a summation of only the one-body parts of all Fe=—kgTInTr(®e Ate, (29
higher-order(beyond lineay response terms.

We can also examine the effect of the CCA by looking atand
the LFC of thee-n mixture,G;;(q) (i,j=e or n). With their L
help, the e-n structure factor is exactly written as U,= fo IN(Vereqn) - (30)

follows:2831

Having obtainedS,(q), we can now use the standard
asi-one-component model and the GBI to obtain the
Helmholtz free energy as a function of density and tem-
perature, from which almost all thermodynamic quantities of
the liquid mixture can be derived. For a system where the
nuclei are treated as classical particles, it is possible to re-
duce the electron-nucleus two-component problem to a
quasi-one-component problethin this approach, we only
R : . .
need to deal with a system composed of nuclei, having total
effective interaction energy
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HereF. is the free energy of a uniform interacting electron INGN, 1

gas for which convenient parametrizations exist in the litera-  (Up)n(,)=— N > Zvc(q)f dA S, (O, N 7)
ture as already mentioned in Sec. IPA22The definition of g 0

(- )epn In EQ. (30) is identical to that in Eq(8), but with 1 (=

Ve, replaced by V,.,, where the quantity. is a coupling- =— \/NeNn—zf dqofZv(q)

constant parameter introduced as a scaling factor irethe 2mJ0

interaction. The expression of the effective potential in Eq.

1
(28) is exact so long as the nuclei can be considered classical X f dNSe(Q,N; ), (35
particles, but it is only a formal relation becaudg is still 0
unknown. where

For the estimation of the total free energy we exploit
the GBI that is a rigorous theorem in classical systems, 1 .
namely, Sen(Q,\; )= {(Ope(—))er)0Pn( A In(x) -
v, en(dsN; 7 \/m < pe(—d >e()\) Pnl Q) In()

(36)

This e-n structure factor can be calculated using Etjl)
whereF, andV, are the free energy and the potential of a(LR) or Eq. (22) (CCA), where we use th@-n structure
reference system, and the averdge- ), is taken by using factor obtained by the PY approximation, namely,
the distribution function of the reference system. When theSnn(d; 7)~ 1£1—p,c”¥(qo)}; hereo is the diameter of the
temperature is high enough to overcome the screened HS, o=22"% a,7'3, andc”"(y) is the Fourier transform
interaction around the mean nearest-neighbor distance, tt@ the Ornstein-Zernike function, i.e.,
structure of the liquid will be determined mostly by the re-

I:sFr""<Veff_Vr>r ’ (31)

pulsive core part of the interaction and will be insensitive to ~ py, . 5| 24C 2B A+2B+4C

its detailed shape. Therefore, under such conditions, we can © (y)=—A4mo™| —5 = F+sm(y) v

apply the GBI with a hard-sphef&lS) reference system, and

regard the packing fraction as a variational parametéhe A+B+C 2B+12C

use of a HS system as an appropriate reference system is -5 +coqy)| — D) 2

further examined in Sec. )l By substituting Eq(28) into y y y

Eq. (31) and considering that the free energy of the HS sys- 24C

tem is entirely entropic, we can rewrite the GBI'as - —6] , (37
y

F<Fgas— TAS(7) +Fet(Vi)nin T {Unn(m» B2 with A=(1+279)%(1— n)*, B=—675(1+ 5/2)2/(1— )%

_ _ o C= 5A/2.3* We should note here that the coupling constant
whereF g, is the free energy of the ideal gas consisting of) is explicitly included in Eq(36). Therefore, when we use
nuclei, andAs(7) is the excess entropy of the HS system.he methods presented in Sec. Il A, we need to refasih
The bracket- - -)n,) indicates an average over nuclear con-) 7 in Egs.(11), (18), and(22). This also means that, in the
figurations taken by the distribution function of the HS SYS-CCA, the parameter must be determined separately for
tem_with a packing _frac'Fiony. H_ere,_we invoke the Percus- ggcha. Then, we can evaluad) ), by carrying out the
Yevick (PY) approximation, which is known to be a good nymerical integratior® with respect tog and in Eq. (35).
approximation for a HS system and, moreover, has an anax; s point, all terms appearing in the GBI are known, and

. - 34 . .
lytic solution=™ Then, As(#) can be written using the em-  he free energy can, therefore, be obtained by minimizing the
pirical but accurate expression of Carnahan and Statfify, right-hand side of Eq(32) with respect to.

4—37y Ill. RESULTS

. (33
(1-m)? N . .
All calculations in this section are carried out for
Also, we can use the analytic form for the Madelung energydeme”é”ﬁa to compare our results with recent experi-
(Vodn(y given by Joned?=® ment§® and also with otherab initio ca!culatlonsz.' '
In order to apply the method presented in Sec. I, we need
5 to specifyF, xo(q), andG(q). Here, we use the parametri-
1= 7l5+ 7 lloRy (34)  zations ofF, and xo(q) given by Dandrea, Ashcroft, and
1+27y ’ Carlssort’ and G(q) provided by Vashishta and Singffi,
namely, G(q) =a(1—exd —bd?]), where the parameters
wherer is defined by 4r(rag)3/3=V/N,. and b are fully determined from the cusp conditi¢s(q
The quantity(U ),y in Eq. (32) is directly related to a —)=1—g.40)] (Refs. 23 and 4Rand the compressibility
(\-dependente-n structure factor. After rewritingU ),y  sum rulé®?*for the homogeneous electron gas.
using Egs.(4) and (30), we find the connection between  The e-n structure factor ah=1 is plotted in Fig. 1 for
(Un)n(, and thee-n structure factor as follows: I'=1, wherel is the Coulomb coupling parameter defined

As(7)=—Npkg7

n/n(n) I‘ln 7
7 Zl/Srs
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FIG. 1. Electron-nucleus structure factss,(q); a comparison

between the CCA and LR resultsee text FIG. 3. Electron-nucleus pair-distribution function at the origin

den(0) as a function of the Coulomb coupling paramdteand at

various values of the density parameter
by I'=e?/(r.aokgT). The figure clearly shows that the CCA

significantly enhanceS,(q) at largeq compared with the
LR result. The difference diminishes at smallbut remains
finite even atg=0 because the packing fractiopis differ-
ent in the two cases; recall thatis a variational parameter
in expression(32), and, therefore, it depends on the method
used to obtain(U),(, - It is intuitively apparent that the
CCA must lead to a smaller packing fraction than LR be-

cause it provides for better screening of the nuclei. A smalle hat within both LR and CCAg, (0) has different” depen
1 = = en -
7 then yields large(q=0) andSe(q=0). dences at small- and larde-values; while it is monoto-

The effect of enhance8,,(q) at highq seen within the . o L L
CCA must be observed in real space as a larger charge acclagusly increasing in the former, it is decreasing in the latter

mulation at the sites of the nuclei. To ascertain this, we havgvzs;gélg'zr?;gae\?%;ﬁs ggivfusémgge;ngﬂthgyn:,.Dahs%Ta'
calculated thee-n pair-distribution functiong.,(r) through y ’

the Fourier transforni26). The results are shown in Fig. 2 behind it is the different temperature dependences of the

and, as expected, the CCA dramatically heightens the cus uantitiesyo(q) andSyy(g), which enter the calculation of
’ ’ en(r). At a small value of the Coulomb coupling parameter,

around the origin compared with LR. Because the CCA rep here the electron system is nondegenerate, the temperature

resents an improvement over LR related to the one-body pa q i< dominant b the absolut |
of the nuclear correlation, its major effect, which is more ependence ofo(q) is dominant because the absolute value

prominent at lower densities, is confined to a sphere of radiudl Xo(d) grows appreciably upon increase bf and the
F=aor, about each nucleus. turnmg on” of the qufa.ntum degeneracy. On the other hand,
In order to investigate the improvement of the CCA on theXO(Q) IS not so sensitive to the tgmperature at largée-
cause the electron system there is already strongly degener-
ate. However, in this regime, the nuclei are highly coupled

cusp at various densities and temperatures, we have calcu-

lated and plotted).,(0) (a measure of the cusn Fig. 3 as

a function ofT" for variousr values. The CCA always gives

a largerge,(0) compared to LR under the conditions studied

here, and the difference between them lesseris asrg is

decreased, which confirms that the CCA has the correct high-
ensity and high-temperature limits. It is intriguing to note

80 ' ' with one another and their mutual screening is driven by
] =1 correlation and the associated repulsion from other nuclei, so
! S.n(q) remains temperature sensitive, and this leads to the
6.0 B

observed slight negative slope of,(0).
Next, we examin&,(q), which is obtained as one of the
outcomes of the CCA through EQ7) and is useful to cap-
] ture the physical meanings of it in connection with the other
treatments. Figure 4 exhibits tl&&,,(q), and we notice that
it is always negative. This behavior was previously observed
. in QHNC calculations by Chihar¥,where the nonlinear re-
sponse is sufficiently included by directly solving a one-
electron Schrdinger equation in a self-consistent potential.
0.0 w . . Further, Tanaka, Yan, and Ichimafuointed out a similar
0.0 10 rf'go 80 40 tendency inG.,(q) by using a modified convolution ap-
proximation, taking account of the strong electron-nucleus
FIG. 2. Electron-nucleus pair-distribution functigg,(r) within correlation. This negative property &.,(q) implies an ef-
the CCA and LR. fective attraction between electrons and nuclei in addition to

=< 4.0

Gen

20
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0.0 .
~0A o——0 T=5.0 x10°K (LR)
’ &—a T=5.0x10" K (CCA)
o--0T=1.0x10°K (LR)
o0k & - -4 T=1.0x10° K (CCA)
= -02
o
>
z
4.0 +
5 | 5 -03
« Y \\\ =1
\\ \\ R
N T~
\ S~ -
-6.0 " ™ -0.4
v T=10
\
N 1.0 2.0 3.0
r.=1 \\\ r
-80 - - t=2 N 4
\\\\ FIG. 5. Electron-nucleus coupling part of free enerdyfs=F
0.0 510 16_0 = 15.0 —F.—F,, as a function ofr; hereF, is the free energy of an
q/ke interacting homogeneous electron gas &ndis that of a nuclear

(classical OCP.
FIG. 4. Electron-nucleus local field correctid®,,(q) within
the CCA. We should point out thakF continues to increase rapidly
at smallrg. This unphysical behavior takes place because the
the bare Coulomb interaction. Note that,rat1, the curve HS system used here simply becomes a less satisfactory ref-
of '=10 shows smaller absolute values at high valuejof erence system for the GBI at densities so high that the long-
than observed df=1, while it is not the case at=2. This range character of the interactions between the nuclei is
can be interpreted in terms af,,(0) through the relation prominent. To establish quantitatively the conditions at
(25); as shown in Fig. 3g.,(0) atr,=1 has a slightly larger which the use of HS is adequate, we therefore examine the
value atl’=1 than atl’'=10. screened Coulomb coupling parameted™ =I"exp
The enhanced cusp observed within the CCA is related t¢—qyrsag), which is the ratio of the Yukawa interaction
a strongere-n coupling than in LR, and it is expected to around the mean distance of the nearest-neighbor nuclei to
lower the free energyr. To elucidate this point, we now the temperaturégT. WhenI'* is small, the core repulsive
investigate thee-n coupling part of the free energy defined part of the potential between nuclei plays a dominant role in
by AF=F—F.—F,, where F, is the free energy of a determining the structure of the liquid, and the hard spheres
nuclear OCP given bf,= —kgT In Tr(Wexp(—BH,). Here  will be a fairly good reference system. Figure 6 shows con-
F, can be written as a sum of an ideal gas and an excegsur lines ofI'* in thers—T plane that is divided into two
free-energy part, namelf,= Fgas+ Fex, and the latter can parts (one of them shadgcby the contour of *=1. The
be calculated from the relation

!

rd
BFex= fo Fuex(r ), (39

whereu,(I") = BE., with E., being the excess energy. Ac-
curate estimates far.,(I") have been obtained by the cluster
expansion methdd for I'<0.1, by the HNC approximation
for 0.1<I'<1, and from a Monte Carlo simulatith for
1<T'. The resultingAF is shown in Fig. 5 as a function of

for some fixed temperatures. As anticipated, the CCA lowers
the free energy compared to the LR. Also, the results show
again that the CCA has the correct high-density limit, where ]
it approaches LR. It is interesting to note that the CCA re- 10% ; ‘ 1
sults approach those of LR at low densities as well when the 0.0 10 20 3.0

temperature is high, as is evident from fhe 10° K data in fs

Fig. 5. This is related to the degree of degeneracy of the FiG. 6. Screened-Coulomb coupling paramefér in the (s
electron system; at low density, where the Fermi temperature T) plane.I'* is defined byl™* =" exp(—0f<a), whereq, is the

is also low, the electron response is easily suppressed bphomas-Fermi wave number. The shaded region marks the area
temperature effects, which leads to the decrease of the difvhere the long-range character of the interaction among the nuclei
ference between LR and CCA. is significant.
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FIG. 7. I" dependence of the coupling part of the enelyi, FIG. 8. I" dependence of the coupling part of pressuké
=E—-E.—E,, atrg=2. The path-integral Monte Carlo results are =P—P.—P,, in comparison with the path-integral Monte Carlo
from Ref. 21 and data labeled DH are from calculations with theresult€® atr =2.

nucleus-nucleus structure factor obtained by applying the Debye-

Hiickel approximation to a linearly screened nuclear sysgee the ~ SINCe then-n structure factor can be easily determined at
Appendiy. each\ from the DH approximation. The results obtained by

the method are also shown in Fig. 7, which are labeled as LR
shaded region is roughly the area where the HS is a leséPH) and CCA(DH). We have found that the use of the DH

suitable reference. For example, the boundary of the twé€thod gives energies close to those of the HS model at
areas al =10° K is located at,~0.77, and at higher den- smallT’, and this confirms that the latter remains a suitable

sity the HS reference is likely to be less accurate. Howevetrlefe(ence system in this range. . .
Figure 8 shows the correspondirgn coupling part of

note that even in this region it is still meaningful to use the

. S . L2 he pressureAP=P—-P.,—P,. The CCA again improves
HS model if the aim is to examine the possible mprovemen{he LR results and always works to reduce the discrepancy
of the CCA over the LR.

We also compare the energy and pressure obtained by tWIth the PIMC, Both LR and CCA give lowenP than

. rﬁMC at largel’, and this can be attributed to the fact that
method presented here with those from PIFfTthe PIMC  hese methods do not take account of the possible pairing of
method treats both ellectr(_)ns and n_ucle! as quan.tum partm_lqﬁjdei, since it has been suggesfeti that a small concen-
even beyond the adiabatic approximation, and it is considiration of molecules(with a short lifetime still exists at
ered a very reliable approach even though it employs thg¢'—15 and atr.=2. Notice that, at larg&, the CCA energy
fixed-node approximation and supercells of finite sizes. Figin Fig. 7 is in better agreement with the PIMC than is the
ure 7 displays the correspondirggn coupling part of the pressure(despite the neglect of the nuclear pairing there as
energy, AE=E—E.—E,, as a function ofl" atr;=2. At  well). This indicates that the pressure, which is obtained
largeT’, the CCA is in good agreement with the PIMC, and from the derivative of the free energy with respect to the
its improvement over LR is significant; for example, the en-volume, is a more sensitive test for comparison than the en-
ergy difference between LR and CCA &t=15.8 corre- ergy. At higher temperature@round XI'<10) where no
sponds to~10% of the absolute value of the total energy.nuclei are expected to be paired, the CCA and PIMC agree
However, the CCA energy curve gradually deviates from theguite well. But as in the case of the energy, our results differ
PIMC asT is reduced and the deviation becomes appreciabl&om the PIMC at smalll’, and this is independent of the
for I'<1, though the differences still remain very small com-choice of a reference systeftlS or DH). At these high
pared to the total energy. This observation may raise a quesemperatures, however, the discrepancies are considered
tion about the validity of the HS reference at smallFigure  small compared to the total pressure: A+0.158, for ex-
6 already summarizes the conditions at which the HS referample, the difference corresponds to onl{.5% of the total
ence is appropriate, using the criteribfi<1, which is rea-  pressure.
sonable but somewhat intuitive as well. According to this Lastly, we discuss the Hugoniot EOS of deuterium where,
criterion, the HS system seems to be a suitable reference as we will show, the importance of the nonlinear response is
small I"; nevertheless, to establish its validity more firmly, even more clearly observed. The Hugoniot EOS is deter-
we have carried out an alternative calculatisee the Ap- mined by E—Ey=(P+Py)(Vy—V)/2, whereEy, Py, and
pendiX and estimated the errors resulting from the use of thé/ are the initial energy, pressure, and volume, respectively,
HS system. In this calculation, for obtaining then struc- and the locus of final stateg, P, and V, constitutes the
ture factor, we have applied the Debyedkal (DH) method  Hugoniot curve. Many theoretical attempts have been made
to a linearly screened nuclear system, which is a satisfactorip account for the remarkable Hugoniot EOS observed in
approximation in a weakly coupled regimemall{* re- recent shock experimerftS. So far, the linear mixing
gion). The free energy is then calculated directly from amodef® and the chemical modehave provided rather good
coupling-constant integration without the use of the GBlagreements, whileab initio calculation$**° have shown
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10* . . . . high densities, and it can be used for calculations of the free
5 Exp. energy of dense liquid hydrogen beyond LR. The CCA
% - -% PIMC method presented here is a modification and an extension to
M ’C‘gENP N,-nucleus systems of the idea of MRef. 18 for an im-
s o2 CCA | provement over LR by enforcement of the rigorous cusp con-

dition on the electronic response. The cusp-condition con-
straint requiresGg,(q) to take on negative values in
accordance with previous resuffs>® suggesting the pres-
ence of an additional attractive-n correlation (which is

5 constrained to zero within LR Compared to LR, the CCA
e = therefore leads to a dramatic enhancement of ghgr)

o cusp, which correspondingly lowers the free energy and also
leads to a better agreement with PIMC in both energy and
, , . , pressure. In addition, we have found that the Hugoniot EOS
06 07 08 09 10 11 1.2 is reasonably sensitive to the treatment of the electron re-

Density (g/cma) sponse.
FIG. 9. Hugoniot equation of state of deuterium. Experimental The GBI combined with a HS reference system works

results(Exp.) are from Refs. 8 and 9, and the path-integral Montewe” at low densities where the screening lengths are suffi-

Carlo results are from Ref. 21. The Hugoniot of a noncoupledCieéntly smaller thamsao; however, at extremely high densi-
ties, a more sophisticated reference system is needed. The

CCA only accounts for the nonlinear response around the
positions of nuclei, and, therefore, it is suitable for the
large discrepancies with the experiments. The reason for thisgtomic phase. A complete nonlinear response in the intersti-
difference is still a matter of active debate. tial region (ultimately represented as a covalent bpisdbe-
Our Hugoniot EOS, together with experimefitailand  yond the scope of this paper; it would require at least the
PIMC?! results, is shown in Fig. 9. We find that the CCA consideration of higher-order two-body partseim structure
agrees very well with the PIMC and hence leads to a signififactor together with the one-body part obtained by CCA.
cant deviation from experiments. As the pressure is de- The CCA is potentially applicable to elements other than

creased, the CCA Hugoniot also gradually deviates from theyqrogen. One conceivable choice is helium, where no inner
PIMC, and the difference becomes perceivable around 200,015 exist and the cusp condition is satisfied for the struc-

GPa, although it is still small compared to the differencey o tactor. Even for other light elements that have inner

from the experiments. It is likely that this deviation of the : ;
CCA from the PIMC at low pressure may again be related toShe"S’ the CCA may again be useful. For example, in a

the circumstances that the CCA does not deal with the pair;_)_la_\sm_a at extremely high densities or temperatures, the Cl.as'
ing of the nuclei. sification of core and valence electrons becomes imprecise

As noted above, we have invoked an adiabatic separatioﬂnd' consequently, psggdopqtgntials are not well defined
of electronic and nuclear time scales; deviations from adiath€re- Under such conditions, it is necessary to treat the core

batic adjustment are gauged by the parametay/(n,)* and valence electrons on the same footing and in a context
and this is small. When the band gap declines to the vibrofvhere they interact with the nuclei through a divergent Cou-
energy ¢w,), there can be mixing of states and a pathway!0mb potential, and, therefore, the inclusion of the nonlinear
opens for the transfer of energy from the nuclear to the electesponse is indispensable.

tronic system. However, as the gap declines further, nonadia-

Pressure (GPa)

4
I

electron-nucleus plasma, with electron-nucleus interacignset
to zero, is also shown.

batic excitation should again diminish. Given this, the ACKNOWLEDGMENTS
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APPENDIX

IV. SUMMARY AND CONCLUSIONS N ~ N
F(N)=—kgTInTr exd — B(H,+Hs+AVey)]. (A1)
In summary, we have proposed an interpolation form for
thee-n structure factor that has a correct limiting behavior atThe derivative ofF(\) with respect ton then yields
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dF(A) . given nucleus fixed at the origin and with a scaged inter-
T:<Ven>)u (A2)  action\V,,. The averaged densities of the electrons and the
nuclei in thisinhomogeneousystem,{p;(r,\|n)) (i=e or
where the average - -), is defined by n), are related to the pair-distribution functions of themo-

. L geneoussystemgi,(r,\), by the following relatiort!
Trexgd — B(H,+He+ AV ]f

fy= T A3
th Trexd — B(Hpt+HetAVey) ] ") (8pi(r,A[n))=pi[gin(r,A)—1], (A8)
Assuming that there is no _phase change Whevaries be- where(8p;(r,\|n))=(pi(r,\|n))—p;. In reciprocal space,
tween zero and 1, we can integrate E42) to obtain this becomes
l ~
F=F¢+F +J AN (Vey - (A4) o
LI (Spi(@AIM) =\ ISa(@N) =801, (A9)
n

Here,F=F(\=1) is the actual free energy, aid andF,
are the free energies of the interacting electrorfyd%and  Where we have used the relati26). Hence, to evaluate the
the nuclear OCF* respectively. The last term in EGA4) n-n structure factor of thehomogeneousystem, we first
represents the-n coupling part of the free energy and can derive the expression ofdpn(qg,x|n)) for the inhomoge-
be rewritten as neoussystem. Then, through relati¢A9), we can obtain the
n-n structure factor.
T VNiNe « 1 In the system with a nucleus fixed at origin, the electric

JO AMVeh =~ % Zvc(q)fo dXSen(G,M), potential acting on the nucleip,(r,\|n), satisfies the fol-

lowing Poisson equation:

1 (1
== anNeZ—szO dqcZu(q) A1 N[n)=—4m[(Z&)*{(Spn(r N |n))+ 8(r)}
. —NZ€¥(Spe(r,\[n))]. (A10)
X fo dASen(Q.1), (AS) The Fourier transform of this equation yields

where we have used E) together with the definition of ) — 2
the e-n structure factor Q°¢n(d,\[n) = —47[(Ze)4{(Spn(a,\[n)) + 1}
) —NZ€(5pe(a,N[N))]
Sen(d,M) = m(&ise(—q) Spn(@)r.  (AB) = —4m(Ze)*{1+ v (a)x'V(q)}
X +
Now, assuming that the nuclei are classical particlesethe {(dpn(a,\[n))+1}, (A11)

structure factor becomes where, in the second equation, we have used the linear-

response relation

1 N
Sen(d,N)~ Ope(—a))e(r)9Pn nony . (A7
(A0~ G oPel = Dey 2P @iy (AT <5pe(q,x|n>>=x<”<q>{—AZUC(q>}{<5pn<q,x|n>>+(A1\}1.2)

where the definitions of- - - )¢y and(- - - )n(\) are obtained

from Eqgs.(8) and(9) with the replacement d?/en by )\\A/Gm. with the bare response functiony®(q)= xo(q)/(1
For the calculation 05,,(qg,\), we can use either LR or the —uv.(q)xo(a)[1—G(q)]). Here, as in Sec. lll, we use the
CCA, which are discussed in Sec. Il A. At this point, we Dandrea, Ashcroft, and Carlsson fitting fpg(q) (Ref. 27
should emphasize that the average over the nuclear statesand the Vashishta-Singwi form fo&(q).** On the other
Eqg. (A7) depends on\, which means that we need to make hand, assuming a Boltzmann distribution for nuclei, we have
the replacemen$,,(q) — Sy,(g,\) together withZ—\Z in another relation betweenp,(r,\|n)) and ¢,(r,\|n),
both Eq.(11) and Eq.(22). Furthermore, this approach re- namely,

quires knowledge of then-n structure factor in advance,

since it directly calculates the free energy; this is a major(pn(r,Mn))IPneXF{—B¢n(f,?\|n)]~Pn[1—,3¢n(fJ\|n)],
difference from GBI discussed in Sec. Il B where the (A13)
structure factor is determined through minimization of Eq.

(32) and the resulting free energy is an upper bound of thavhere we have linearizedp,(r,\|n)) with respect to

real one. ¢n(r,\|n). Then, in reciprocal space,
Here we employ a simple method to obte#y,(q,\),
which uses the Debye-ltkel approach to a linearly {Spn(Q,N|N)Y=—prBdn(d,\|N). (A14)

screened nuclear system and is, therefore, valid only at small
I'*. Consider an assembly of nuclei and electrons with a’he combination of EqgA11) and (A14) yields
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2 2

) €(g,\)q
(Spa(@N[N))y=——, (A15) S N)=—— (A18)

" (q.N)02+ a3 " (a.N)a2+q}
where
— 2

Qo=4m(Z€)"pnp, (A16)  Now, with the aid of Eq(A18), we can obtain the-n struc-
(g ) =11+ M2 (q) xD()}- (A17) ture factor by using either LR or the CCA, i.e., E4l) or

Eqg. (22) together with Eq.(18). Then, carrying out the nu-
Finally, from Egs.(A9) and(A15), then-n structure factoris merical integrations with respect tpandX in Eq. (A5), and
expressed as follows: using Eq.(A4), we arrive at the total free energy.
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