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Prediction of a low-temperature ferroelectric instability in antiphase domain boundaries
of strontium titanate
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The structure of the antiphase domain boundaries of strontium titanate ;StffaDexist at temperatures
below the antiferrodistortive transition, is analyzed. It is found that some boundaries are similai tioNin
walls, as an additional component of the order parameter develops within them. We show quantitatively that at
low temperatures, typically below 40 K, such boundaries become unstable with respect to the development
of a ferroelectric polarization. This ferroelectric transition might provide the much needed explanation for
several anomalies that are experimentally observed in SrifiGhis temperature region.
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I. INTRODUCTION mains. Naively one might think that the structural order pa-
rameter could pass through zero in the middle of such
PerovskitesABO; can undergo several types of crystal- “walls.” Specifically, something similar to this might happen
line instabilities at different points of their Brillouin zone for the so-called “antiphase domain boundaries,” since the
(BZ)." In particular there are structural ones, often related t@®rder parameter changes sign between two such domains, as
rotations ofBOg octahedra, and there are ferroelectric onesQPPOsed to “twin walls” where it simply changes direction.
mostly due to the polar displacement of Bsite ion. Which ~ Hence, one might expect that under favorable conditions the
of these dominates depends on the so-called “tolerance taderroelectric instability cpuld be .restored Wlthln an antiphase
tor” t that describes the relative filling of space by the vari-Poundary, as most strains are fixed by the adjacent bulk do-
ous iong? If the radius ofA is too small ¢<1) the structural Mains, while the structural order parameter is strongly per-

instability is generally observed, while B is too small ¢  Urbed inside the boundary. _ _
>1) ferroelectricity can be favored. The study of such instabilities is the subject of this paper.

Strontium titanate, SrTi§) is an interesting case whetre We are motivated in this by the observation of various unex-
~1 and in which both types of instabilities can be simulta-P/ained phenomena at low temperatures in SgJ&s partly
. L = reviewed in Ref. 11. In particular, Mier and collaborators
neously active. The crystal is simple cubifan3m at room

temperature. On cooling, SrTidiirst undergoes an antifer have reported the EPR observation of a transitionlike
PTG . . " anomaly at a temperatuiie,=37 K.2This value is close to
rodistortive structural transition at,=105 K. It is due to y b N

tai tahed tati q bi is the rotafi that of thebare ferroelectric instability, i.e., the one which is
stalic octahedra rotations around one cubic axis, the rolationg,; eyormalized by interactions with the structural distor-
alternating from cell to cell in all three cubic directioh$.

: o ) tions, which occurs near 30 ¥.Recent investigations of the
Hence, this transition occurs at tRepoint of the BZ. Below g

T th trv is tet Y here the tet “Mu'ller state” suggested that its existence might be quite
a, (N€ Symmetry 1S tetragonaiz/mem where the tetrago- — gopgitive to sample preparation and histdn explanation

nal axisc is parallel to the octahedron-rotation axis. Thein terms of antiphase boundaries WOUId account for this
transition is accompanied by the development of small busomewhat elusive nature of the phenomenon. Another issue
physically important spontaneous strafr@n the other hand,  of interest is the strong anomaly that is observed at similar
the ferroelectric instability manifests itself by large dielectrictemperatures in the dielectric losses of SIFiG Finally,
constants, which become anisotropic and continue to inthe influence of antiphase domain boundaries has also been
crease belowl, to saturate at low temperatur@s with €, invoqued to account more generally for anomalous neutron-
~40000 in theab plane ands;~10 000 along the axis®~® scattering spectrs. For all these reasons it appears useful to
In this regime, the lattice vibrations are nonclassical, whichperform such an analysis, this all the more that the necessary
leads to a strong departure from the Curie-Weiss®l&law-  parameters are quite well known for SrEiG617:10
ever, this fact alone is not sufficient to prevent the ferroelec- The theoretical treatment will be performed in the con-
tric transition. The actual supression of ferroelectricity is duetinuous approximation whose validity will be justifiedpos-
to the competition between the structural order parameteteriori. In this spirit, we shall use a Gibbs potential similar to
and the ferroelectric orielt was shown recently that if just that first introduced by Uwe and Sakufibpt including also
the spontaneous strains associated with the transition coutie gradient terms as done by Cao and Bat&chhis is
somehow be prevented, a ferroelectric transition would actudefined in Sec. Il where an example is given for the calcu-
ally take place? lation of a possible order-parameter profile in an antiphase
Strong changes of the structural order parameter can odyoundary. The stability of such boundaries with respect to
cur locally in the regions separating different structural do-the appearance of other components of the structural order
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parameter is discussed in Sec. lll, where it is found that theotation, which is measured by the displacement of an appro-
really stable solution can indeed be more complicated. Segriate O atom from its cubic position as defined by Uwe and
tion IV then discusses the stability of these antiphase boundSakudo’ The domain boundaries separating states which dif-
aries with respect to the development of polarization compofer only by the sign ofp, are called “antiphase” ones. Such
nents. We do find that a ferroelectric transition can occur fotstagtes have a common tetragonal axis and they are macro-
boundaries of particular orientations. The potential relevancgcopically indistinguishable because a sign changg,afor-

of this phenomenon to the low-temperature anomalies Ofesponds to a translation by just one lattice constant of the
SrTiO; is discussed in Sec. V. A summary concludes theparent phase.

paper. The question of the structure of an antiphase boundary in

SrTiO; was already addressed by Cao and Batéchhey
used an approach due to Zhirfdwo calculate the order-
parameter profile for a particular orientation of the boundary.
The structural order parameter is an axial veaforlts We employ the same method to calculate other boundary

three components are the values of the staggered rotatigijientations, as well as to determine the stability of these

angles of the oxygen octahedra around the three cubic ax@9undaries. In contrast to Cao and Barsch, we base the cal-
#, (i=1 to 3. In SrTiO; under normal conditions, below culation on the elastic Gibbs functidd rather than on the

T, the ferroic phase exhibits six tetragonal domain states ifffélmholiz one, as it simplifies the derivations. The part of
which the order parameter is¢f 0 0), (—¢o O 0), the Gibbs function containing the order parameter and the
(0 ¢ 0), etc. Hereg, is the value of the spontaneous mechanical stresses in contracted notatidf is written

Il. GIBBS POTENTIAL AND CALCULATION OF A
SIMPLE ORDER-PARAMETER PROFILE

1
Gy=bi(1+ @5+ ¢5) +biu($1+ 5+ 5) +biA ST+ 55+ d307) — SSu(0i+ 05+ 05) —S1a 0102+ 0503+ 7307)
1
— 5 Sal 04+ 08+ o) ~Ru(pfor+ d30+ d309) —Rud ($5+ d3) 01+ ($5+ $1) o+ (dT+ 7))
1
~Rud p2p304+ 3105+ d1dpo0e) + 551][((9¢1/¢9X1)2+ (02! %)+ (Iep3 1 9X3)*1+ 81 (b1 ] IX1) (I hp | IX5)

T (dp219X2)(p3l IX3) + (I3 IX3) (I 1l IX1) ]+ %544[(3471/5)(2"‘ Iepal %)%+ (Aol IX3+ dp3l X3)?

+(9pgl axy+ Iy 19%3)%], @

where thex;’s are the Cartesian coordinates. For all secondand fixed by the spontaneous strains in the bulk far from the
and fourth rank tensors we will be using the Voigt notationboundary, whiles;, 5, andeg arex, dependent and satisfy
(j=1 to 6 unless specified otherwise. Fro@) one obtains the Saint-Venant conditions.

the equations of state There are two extreme orientations of the antiphase-
boundary planes with respect to the tetragonal axis. Those
which are orthogonal te shall be called “longitudinal” as
their normal is||c. Those which contairc shall be called

(9 .
a—)q[aG/a(w,-/axi)]:aG/aqb,- (j=1 to 3, (2
“transversal” as their normal isL.c. Considering just the

and the constitutive equations of elasticity rigidity of the oxygen octahedra TiQone observes that lon-
gitudinal boundaries, which are parallel to théd plane,
e=—3dGldoy, (3)  could be drawn infinitely thin, cutting the structure at the

height of the undisplaced apex oxygens. This produces no
where the straing, must satisfy the Saint-Venant compat- disruption in the oxygen positions and no distortions of the
ibility conditions”* In Eq. (2), as well as below, the summa- oxygen octahedra. Hence, such boundaries should occur
tion over repeated indices is implied. Following the standardairly easily and they are indeed likely to be rather thin. They
practice, for a boundary which is perpendiculaxipwe set  could as well be called “easy” boundaries. They were the
o1=05=0=0, which assumes that no longitudinal stressones considered in Ref. 18. On the other hand, transverse
and no transverse shears are applied to this boundary. Thisli®undaries cannot be drawn without severe distortions of the
compatible with the conditiongo;; /9x;=0 (i,j=1to 3.  octahedra, with alternate elongations and compressions of
The straing,, &3, ande,4 are independent of the coordinates the O-O distances. Therefore they are likely to be rather
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energetic and thick, and they could also be called “hard.” Gy=Gyo\BY,
This intuitive reasoning is fully confirmed by the detailed €
calculations presented below. Guo=(2 \/5/3)058\/@1- (11)

For illustration, a continuous calculation for a transverse

boundary is now presented in some details. The bulk order The above results can easily be generalized to any trans-

parameter is taken along the third axig;3= = ¢, and the  verse boundary forming an anglewith the second axis. In

boundary plane is momentarily selected to be perpendiculaf reference frame rotated aroursi let the axisx; be per-

to the first axis. We assume in this section_th_at No new coMpendicular to the boundary. The equation of staeis un-

ponent qf the Qrder parameter deve_lops within the boundarYnodified, withx, simply replaced by, while all stresses

Boundaries with that property will thereafter be called 51 expressed in the original reference frame. Solving the

“simple.” From Eg. (2), with j=3, one obtains elastic problem in that more general case, one firads that all
Suad? bl ax§= 2b, s+ 4byy ¢g ?nboor\éegreczanseurlgsl ;i??elgéigﬁcept for the replacemerg oby a

—2[Ry103+Ry(a1+02)]ps.  (4)

From Eq.(3), one finds Be= [R11E3+R1:E1 ol (12)

+ [R—
ST

_ 2 .. — .
£1= 81101+ S1( 02+ 03) + Rypdh3, where the coefficient&; relate to the stressdsr;},, in the

5 middle of the boundarywhere ¢;=0) by
€= 811021 S1( 01+ 03) + Rypdh3,

= 2
101+ 0ofm=E 1200,

{ostm=Es5. (13
The value of the coefficientg; is given by

2
£3=811031S1( 01+ 02) + Ry143,

Ex=S440 (k:4 to 6). (5)

In this cases, andej are fixed by bulk values. For the bulk,

o;=0 (i=1 to 6), so that Eqs(5) give —_ 1) Sys COS2r|S1R 1~ S11R12
E.,=— —|sinf2a+ ,
2 ’ A 2(S11~S12) S11
£2= Ri2¢hp,
— S12,_, Ri
=Ry 02, 6 Ea=——E,+—,
€3 1905 (6) 3 Si1 1,2 S11
while g4 to 4 are zero. The value ab, results from Eq(4), )
bo=+—by/2by;. (7) A=sinf2a| 5 (st 812+ 7504~ -
The stress-free condition of the boundary is simphy=0.
Y . (S111512)S4s
Eliminating o, and o3 between Eqs(4) and(5) one arrives +cos’-2aT (19
at 11
— Said? 2, B2 iy 3 _ In the case of the longitudinal boundary, which is perpen-
447" $3]0X;+ Be(2D1 65+ 4b1143) =0, ®  icular to Xs, the left side of Eq.(4) is replaced by
whereB¢ is given by 5110%¢319x35, and nothing else is changed, except for the
5 5 boundary conditions which now reag;=0 and e;=¢,
BO— 1+ 1 |(RutRy) +(R11_ R1o) ° = Ri.¢3. One arrives at Eq10) with BY replaced by
¢ 4by1|  sutsi2 S11~ S12 R?
In the absence of mechanical coupling one would just have B|e:1+ % (15)
B2=1. The solution of Eq(8) which satisfies the boundary 11(S11+ $12)
condition can be written and 844 replaced bys,4, so that
$3(X1) = o tanh(x, /), to=— 611/b;. (16)
t =to/\/§0 The same replacements must be mad&ijp, in Eq. (11).
v ¢ Since §;1<< 6,4 (Appendiy, the “easy” boundaries are in-
to= m_ (10) deed much less energetic than the “hard” ones. The above

results on the longitudinal boundaries are equivalent to those
The valuet, is the boundary half-width in the absence of of Cao and Barscl except for the different notations.
mechanical effects. Calculating the difference between the The parameters that allow one to evaluate these expres-
value of G, obtained in the presence of one such boundarsions have all been quite well determined. The specific nu-
and the homogeneous value @f,, one obtains the excess merical values used for the purpose of this paper are listed in
boundary energy per unit area. It is given by the Appendix. With these, one can calculate the mechanical
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correction factorsB,—1 of Egs.(9), (12), and (15). One  with
finds in all cases thd&.—1~0.1, hence these corrections are
never large. Also, the angular anisotropy in Et) is very

small, ~0.002 only. The main difference with the evaluation

in Ref. 18 is in the size of the gradient terms that are needed
to calculate the boundary thicknesses in E4¢) and (16).

We find that the values in Table IV of Ref. 18 should be C=[—4b11—2R12
multiplied by 472 in order to conform with the units used by

Stirling.® This gives boundary thicknesses that aretfnes  The instability of the wall results from a negative eigenvalue
larger than in Ref. 18. The full thickness of the Iongltudlnal)\ for the operatol. 2224 The eigenvalues of Eq18) are
boundary(16) at 40 K is then 2,~8 A. Thisis indeed very | ' 25 Thg o est one i 9 '

thin. That of the “simple” transverse boundaf{0) is 2t,, '

Ri1t Ry
S11tS1o

2
0

U= |:2b12+ 2R12

Ryt Ry

2
—_— . 19
S11tS12 %o 19

=44 A. While the former is somewhat small to guarantee o 2
the validity of a continuous approximation, the latter which A= 144Ut/ 611~ 1+2Ct,/ 61, (20)
amounts to~11a,, wherea, is the lattice parameter, seems 2t3V/ 811 '

sufficient. Anticipating on the following sections, we shall - _
see that while the longitudinal boundary is stable against th&ne should note thal;, must be positive, otherwise the

development of another componentd this is not the case 9round state in the bulk is not the stable one. As the me-
for transverse boundaries. The latter then become thicker yeghanical corrections in Eq19) are relatively smallas can
Similarly the longitudinal boundary is stable against a polar®® checked using the numerical values in the Appendixs
instability, and thus the interest will concentrate thick positive. This shows that a necessary condition for the insta-
transverseboundaries. For these the continuous approximaPility is C<0, which implies that the equation of state is
tion is very well justified. already unstable at the center of the boundary whkere0.

The condition for the instability of the boundawy<0, can

IIl. STRUCTURAL STABILITY OF ANTIPHASE be rewritten

BOUNDARIES AND CALCULATION OF A REAL PROFILE
U+C<C?t2/68y;. (21)

In this section we consider the stability of the simple so-
lutions obtained in Sec. Il against the emergence of anothehS to 844, the quantityty/ s, involves the ratiod,/ 8y
component of the structural order parameter within thewhich is very large(see the Appendjx As a result, the
boundary. We find that while the easy boundaries are stabl€valuation of Eq(21) using Eq.(19) leads for this transverse
the hard ones develop a component{&qﬁerpendicular tothe Poundary to an instability against the appearance of a com-
boundary plane, similar to & walls in magnetism. The ponent of the order.param_eter normal to the boundary plane.
question of stability was addressed previously in the context _1h€ Same resultis obtained for all other transverse bound-
of competing structural and magnetic instabilitfeand also ~ &7i€S, i-., for any value of the angte introduced in the
for improper ferroelectric& The idea is to allow for a small Prévious section. On the other hand, the stability condition
perturbation of the wall and to study whether it lowers thefor the longitudinal boundary involves the ratiéy,/ 644
energy. Mathematically, the small perturbation has to satisfj”h'c_h is very small. For this reason one finds that simple
a wave equation which is the corresponding linearized equd®ngitudinal boundaries, witkp, =0 throughout, are stable at
tion of state. The associated eigenvalue enters into the calc{gast within this continuous approximation.
lation of the perturbed energy. The instability results from a W& now turn to the actual profile of transverse bound-
negative eigenvalue. aries. For S|mpI|C|fcy we take the case=0, and we flrst.

We consider first the stability of the hard antiphase bound@!low for ¢,#0 within the boundary. Such a boundary is
ary described by Eqg¢8) and (10) against the development €duivalent to a Nel wall in magnetism, as we now have two
of an order-parameter componeg. The equation of state rotational components$; and ¢, where ¢, is directed

linearized with respect te, reads along the boundary thickness. For this kind of boundary, the
equation forgs is similar to Eq.(4), with just two additional
— 8110 P119X2+2b by + 2D ph1 p3— 2Ry p1 07y terms containing ¢; on the right-hand side(RHS):
2b1,¢2 h3— Rasos 1. The equation forp, is similar to Eq.
~2R1p1(02+ 03) ~ Raach305=0, A7 (17), but including the cubic term on the RHSb4¢3. As

where one can sar,;=o05=0 as explained above. In Eq. done above, we set in these equations- os=0. The val-
(17), ¢4 is given by Eq(10) while a simple calculation gives ues ofo, ando; should now be deduced from modified Egs.
oot 03=(d5— ¢3)(E1o+E3), as in Egs.(13) and (14) (5 that make allowance for the nonzero compongt

with @=0. Equation(17) is of the formL ¢; =0, whereL is
the operator ' £,=5110F S0+ 03) + R $5+ $7),

R d?
dx{

Xl) 19 £3= 51103+ S 01+ 0) + Rp1d3+ Ripd?, (22)
t 1

w wheree, ande are fixed by Eq(6). Introducing these in the
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equations forp,; and ¢3, one obtains two coupled differen- =0,
tial equations that can be written in terms of the reduced
variables 1= &,/ ¢y and 3= @3/ py. Furthermore, these 24 2
equationswéimﬁllify(blgy usin%sdiggn(ﬁoes scaled jdrom Eq. vi=1- (14 70)¥5. @D
(10), defining a reduced distanaeby To produce a Nel wall, the second branch must apply, but
z,lff cannot be negative so that there aressoverso the first
X=Xg/ty. (23)  pranch aty3=1/(1+ 7). Both ends of the boundary profile,

] ] where 5 is nearly 1, obey thus the equation
The coupled nonlinear equations are then

1 g )
1 Py, , , > =W 1)ys, (28)
PLa =[—1+er(1+Oyi+(1+n)¢sly, 2
with ¢, =0, while the central region obeys
i
S ——=[ =1+ (1+ ) i+ 2], (24) 1%
2 e LTI 3 = s 2+ 70, (29
where with ¢, given by the second bran¢R7). The solution of Eq.
_ (28) that satisfies the boundary conditiofgg= =1 at x=
=611/ 644, (29 *o js gy=tanhfk—x,) where x, is a free parameter. To
solve EQ.(29), a standard procedufeee, e.g., Ref. 36s to
n=U/(4b;,3B%) -1, remark that it has the structure of an equation of motion
. oV
e=(by—2b11)/(2b1,8%) — 7, m._ _ N
12 1 11Pe 2¢ P (30
{=B/BJ-1. (26)  which integrates to

The values oBg, BL, andU are given by Eqs.9), (15), and m.
(19), respectively. From the parameters in the Appendix, one §¢2+V( i) =const, (32)
calculatesu=0.04, n=0.042, {=0.037, e=0.094.

In general, the system of equatiofid4) can only be \yherey is the coordinate of a particle in the potentié]y)
solved numerically. However, for this particular boundary niie x plays the role of time. The potential for the, =0
there exists a physically justified approximation that provides, 5nch is simply

for an analytical solution of the problem. A remarkable fea-
ture of the structural ordering in SrTiQis its quasi-two- 1 1
dimensional nature. The correlation of the oxygen-octahedra V(if3) = E,pg— Z(1+ ¢‘3‘), (32

rotations is very anisotropic. For rotations aroundit is

strong within any giverab layer, whereas rotations in adja- \here use was made of the free constant to arbitrarily/set
centab layers are only weakly coupled. This is manifested, ,arq aw,%: +1. The structure of the syste(@4) is such

by the smallness of the paramejer The quasi-2D approxi- that v . di tb i tth int
mation ©=0 is made for the remainder of this section as it aty, ¢, an ."” must be continuous at the crossover points.
These matching conditions are then used to determine the

allows one to obtain this analytic solution. | £ th nstant for th niral ment of th tential
Inspection of the above equations might suggest that ela alue of the constant for the central segment of the potentia
or which one finds

tic effects could be weak in this problem. If one makes the
approximationB,=B2=1, the coefficients simplify consid- . 247
erably, with{=e=0 and = 7y=—1+b,,/(2b;;)=0.149. __ 10,2 274

It is, however, known that in domain-wall problems the me- Vi) 2 Y5t 70 4 Vs 33
chanical effects, although involving relatively small numeri- ) ) o

cal coefficients, are often of principal importance. It is in- 1he potential/ (i) from Eqs.(32) and(33) is drawn in Fig.
structive to first neglect the mechanical effects which has thd(8)- The circles show the crossover point§= 1/(1+ 7).
further merit to S|mp||fy the equations and thus the presen:rhe total potential Separates into two dlStlnCt wells. A par-
tation. In a second step the mechanical effects are reintrdicle launched fromy;= —1 atx= —o with zeroy will take
duced to obtain the correct result, thereby showing the draan infinite “time” to reach 3=0. In terms of space, this

matic changes that they produce. means that such a boundary would split into two infinitely
With ©=0, the first Eq.(24) splits into two branches. separated twin walls, or in other words that there were no
Without mechanical effects these are Neel antiphase boundary. This result is not consistent with
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v L
(¥3) s
-1 -0.5 ‘ 0.5 1 -
1 1 ) ) wj )
1 L 1 lx
(a) -0.02 I

V("b'?) FIG. 2. The reduced order-parameter profis= ¢;/¢q (i

-1 -05 05 ] =1,3) for the Nel-type boundary corrgsponding to ca(b;in Fig.

. | | ) '»03 1. The continuous lines show the solutions fgrand 5, with open

dots showing the crossovers afy. The dashed lines are the

tanhi=xy) solutions that prolongate the solutions s obtained
in the wings wherej,=0. The horizontal distance between these
tanh solutions show the increase in wall thickness-& reduced
units owing to the presence @f;.

(b) tion into two wells is removed. This is a remarkable mani-
festation of the major role of the “apparently weak” elastic
FIG. 1. The potential(y;) that determines the profile of the terms. It reflects the aforementioned elastic incompatibility

Néel-type hard antiphase boundary perperdicular to{ 186) direc- of the(1 0 0) twin walls. The equation resulting from Egs.
tion in SrTiOy: (a) with neglect of elastic effectfEqgs. (32) and (30) and(39)
(33)]; (b) with inclusion of the elastic effectEqgs.(32) and (35)].

The open dots are located at the crossovers between the two

branches of the solution.

1.
FVATc(yi—a?)(y5+b%)=0 (36)

the real situation of1 O O)-oriented twin boundaries in _ ) )
SITiO5. One can readily show that for this orientation theiS integrable in terms of standard functions. The solution that
twin boundaries are mechanically incompatibi¢ience, the ~ Satisfies the conditior;=0 atx=0 is
decay into separated twin boundaries is a clear consequence
of the neglect of elastic effects.
Including the elastic effects, the crossover point between 1 1 F
the'two br'an'ches now occurs ¢§=(1—e)/(1+ 7). Fol- x= 2\c a2+ b? (y[m),
lowing a similar reasoning, Eq29) is replaced by

10°; n—e—en—{  {(—2n—7n" , ¢ [a?+Db?
> " = 177 3 1+¢ U3, (39 y=arcsm5 z//2+b2’

The numerical values of the coefficients on the RHS are

—0.090 and —0.047, respectively. The potential for the

n=0 branch is still given by Eq(32). The potential corre- = a (37
sponding to Eq(34) can be written a2+p?’

2

_ 2 4_ ()2 A2\ 21 2
V(4h3)=0.045/3+0.0118)4 — 0.052=c(y3—a?)(y3+b )5;) where F(y|m) is the elliptic integral of the first kind. It

matches the solution foiy;=0, ¢3=tanhk=*xy), at the
As above, the constant M( ) is obtained by matching the crossover points withxo=0.985. This solution is illustrated
potential(35) at the crossover points with EB2). The co-  in Fig. 2 in which the tanh solutions have been continued by
efficientsa?, b?, andc have numerical values of 0.93, 4.75, dashed lines whose separation illustrates the increase in wall
and 0.0118, respectively. This potential is illustrated in Fig.thickness produced by the presence of thecomponent.
1(b). The major difference with Fig.(d) is in the sign of the The value ofy, is also drawn. One notices that in the middle
quadratic term which is here positive. As a result the separasf the boundary| ¢4}, nearly reaches,,
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{¢§}m: (,53(1_ €)l(1+9), (38)  Wwith _qlzafo, while the e_qqations fop, and ¢ are un-
modified. This problem is similar to that at the beginning of

or {1} = 0.9355,. This is close to a pure rotation o as this section, except that the opera(h8) is now replaced by

in magnetic Nel walls. The neglect of the second derivative

of ¢, (having setu=0) is obviously a poor approximation 2
in the region where there is a break in tiig curve. The I:E—544—+C+Uf2<ﬁ), (40)
presence of the term wd?y, /x> will effectively smooth dx2 ty

that region. This term only has a minor effect in the center of
the boundary. Indeed, dividing the first E@4) by ¢, one-  wheref?(x) is a more complicated expression which, how-
observes that u(9?¢, /9x?)1 s, is well below one percent ever, has the property to reach its absolute minimum 0 at
as opposed to the other terms of the order of 1 that are kept0. C is by definition the inverse susceptibilityvith re-
in that equation. spect tog,) in the middle of the wall, here

It remains to check for the stability of the Bleboundary
against the development of the third component of the order

parameterp,. The linearized equation fap, is C=2(b;—Ry105— Ryp03+bio?). (41
8449%$219%5=2[ b1~ Ry30,— Ry 1+ 03) The expressions for, and o3 can be calculated as above.
As explained at the beginning of this section, a necessary
+b1A 2+ ¢2) 1o~ Rys( 06 b1+ Tach3) condition for the instability isC<0. Using the ratio

{2}/ d3 given by Eq.(38), together with the definitions
(39  (26), this condition can be written

( N Rz Ryt Ry

( N Ri2 Ryt Ry

B 2byy 2byy S11t+S1 2by, s11tS12 (42
b1o 14 1 [(Ry+Ryp)? B (Ry1—Ryp)? } { 1+ R,
4byi| Sptsio S11~ S12 b11(S11t+S12)

In the absence of mechanical couplings, the RHS is zero any. FERROELECTRIC INSTABILITY WITHIN ANTIPHASE
the condition reduces tol,/b,,>1 which actually corre- BOUNDARIES
sponds to the instability of the tetragonal phase with respect

to the trigonal oné. Hence, in SrTiQ one must have -
b /b1 and the difference 4 2b.:/b.o— 013 is well competition between the development of the etruct_ural order
112 = . 1 12 parameter and that of ferroelectricity. In strontium titanate, it
known as it can be 96“"6" from the splitting O.f the Strm.:turalhas been shown that if the structural transition could be sup-
soft modes at lowf.” It tums out that the elastic corrections yressed, then under mechanically free conditions the ferro-
on the RHS of Eq(42) are far from sufficient to make it g|eciricity should occur a&=30 K29 For this reason one can
bigger than 0.13. A numerical evaluation of the RHS, usingeypect that under favorable circumstances a ferroelectric
the parameters in the Appendix, gives the value 0.04. Evaluransition might occur in an antiphase boundary. To find out
ating the influence of inaccuracies of 10%, cumulated on a|hnder which conditions this actua”y happensy one must con-
six parameters entering the RHS, we find that the result igjder three additional factor&l) the mechanical coupling of
then between 0.02 and 0.06. This being so much smaller thahe boundary region with the adjacent bulR) the effect of
0.13, we conclude that the Beboundary is extremely likely  ihe eventual new componentsfin the wall, (3) the energy
to be stable against the development of the third componen{ssociated with the inhomogeneous distribution of the polar-
of the structural order parameter. ization developing in the wall. Such an instability will be
A final remark concerns the possible existence of a Blochsensitive to the orientation of the boundary. In this work we
wall with ¢;=0 and¢,#0. The simple wall with only$;  just consider two extreme case&) the longitudinal or
#0 is indeed unstable both against the spontaneous appeédeasy” wall and (b) the transverse or “hard” wall with its
ance of¢, or that of ¢,. However, the eigenvalue associated normal parallel to 100 direction of the cubic phase as
with the development o, is much more negative than the discussed in Sec. lll. We find that in the former case there is
one for ¢,. This shows that the Mg wall is preferred over no ferroelectric instability whereas in the latter a polarization
the Bloch wall. develops along the axis of the bulk.

It is well known that in perovskites there is generally a
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To carry out this program, the Gibbs functiéh) has to be completed with the terf@s containing the polarization vector
P. This part is written

Gp=ay(Pi+P3+P%)+ay(Pi+P3+P3) +a(PIP5+P5P5+ P3P — Quy(Pio, + Pioy+ Pios)
~Qud (P5+P3) o+ (P5+ P opt (Pi+P5) 03]~ QuiPaP3os+ P3Pros+ PiPoag) —tiy(Pi i+ Pogh3+ P3b3)
2,52, p2 2,52, b2 2,52, B2 1 2
— 11 @1(P5+P3) + d5(P3+ PY) + d3(P1+ P3) | = tal(PoP3dodps+ P3P 113+ P1Prdpi o) + §K11[(5P1/3X1)

+ (P21 9%2)%+ (9P319%3) 2]+ k1 (IP119%X1) (9P 19X5) + (9P 9Xp) (P31 IXg) + (P31 9X3) (9P 119x%1)]

1
+ §K44[((9P1/(?X2+ P 19%1) 2+ (9P 1 Xg+ dP319X5) 2+ (9P 3/ X, + P11 9X3)?]

s Py Pa Py T [(0Py Py (0Py P3| (9Py 9Py
1%, T %, T2 axa T3 T axy  axy ) 73T U axy | axa) TE \axg | axy) 02
P,  dP, P, P, dP; P,
+fu | —+ =S| og+| —+ —| o4+ | —+ —] o5 43
4“[( Xy &x1>06 (ax3 9%y ) T4 axy " axa) 78 (43)
|
In addition to the usual gradient terms with coefficients, ) d)é
we have included the flexoelastic termsfipwhich do have {X1 Tm=2|a;—(Q111t Q1) ngﬁ , (46)

an appreciable renormalization effect @has explained in

the Appendix. The Appendix also gives the values of the . . .
necessary coefficients. where ¢, is the bulk value ofp5 given by Eq.(7). Using the

known value of the bare inverse susceptibility; 2 Appen-

dix), the T dependence of the corresponding dielectric con-

stante'1'2:47-r{xl}m shown in Fig. 3 is obtained. It does not
As a first step, one can check whether ferroelectricity cardiverge, and thus the longitudinal antiphase boundary is

occur in the middle of the boundary neglecting the gradienstable against the development of a spontaneous polarization.

contributions to the energy. We call the corresponding insta- As a second example we take the transverse boundary

bility a “local” polarization instability. Physically, this perpendicular to the; direction calculated in the previous

amounts to considering the hypothetical situation of a polarsection. In this case one must check separatelyPfpand

ization instability in an infinitely thick boundary. This is a P5. For P, one obtains

necessary condition to obtain the instability in a real bound-

ary. To check for the local polarization instability, it is suffi- -1 _ _ _ _ 2

cient to calculate the inverse susceptibibGp/9P? for the {x2 tm=2[a1= Qu{02}m— QuA og}m—tio 1}ml, )

relevant componer®; . In general, the polarization compo-

nent perpendicular to the boundary will not be able to deyynhere all values are in the middle of the boundaeys 3

velop because of the depolarizing effects, and thus the relsg pe obtained from EG13), with extra terms owing to the
evant components d?; lie in the boundary plane. fact that nowe,#0. One finds

We take as first example the longitudinal boundary per-
pendicular to thex; axis that was discussed in connection

A. Local instability

with Egs. (15) and (16). The relevant polarization compo- (o)} ~ SuRip— SRy $2— Ri2 (42
nents areP; and P,, but in view of the symmetry of the T2rm= 2 —s2 0 gyt sp, M

problem it suffices to check foP,. The corresponding in-
verse susceptibility is given by

S11R11—S12Ry2 Ri>
1 aZGp 2 {0'3}m: 2 2 ¢S_S +s {d’%}m (48)
AC =2(a;= Q1101 — Q02— t123),  (44) St~ S12 1712
1
where Inserting these into Eq47), and using ¢2},, from Eq.(38),
the numerical result for the local dielectric constaeit
be— ¢3 =47{x,}m shown in Fig. 3 is obtained. This transverse
01=02= Rmm- (45) boundary is thus stable against the spontaneous development
of P,.
In the center of the walip;=0 and Finally, let us consider the case Bf. One finds

224107-8



PREDICTION OF A LOW-TEMPERATUE . . . PHYSICAL REVIEW B 64 224107

{x3 =221~ Qu{ostm— Qi Totm—t1d dThm] 10%, €

$11R11— S12R1»
a— | Qu——> 75—

=2
2
S11— S12

S11R12—S12R11
+ Q12 2 2

2
S St o b——20 40 ‘\60 80
Q1+ Q12 t

Rlz——qz){gbi}m. (49 _90 - €3 ) T, "local"

+2

S11tS12

Inserting the values as above, the numerical resultefor -30 -
=4m{x3}m shown in Fig. 3 is found. This now reveals a
local instability at=42 K. Therefore this boundary is a can-
didate for a true ferroelectric instability which should now be
checked making allowance for the effects of the boundar)gnd €., are smaller thar, in the bulk, whereas the value e§ is
profile and of the polarization-gradient energy. 2 a o oo

. A . . . much larger than the correspondiggof the bulk, and it diverges at

Before doing this, it is of interest to consider the physical,

origin of the deviations of the “local” dielectric constants
shown in Fig. 3 from their bulk values. The deviations from P
the bare susceptibility can be discussed in terms of separate —[0Gpld(IP3l3x1)]=IGp!IPs (50)
contributions from pure strains and from pure rotations, as 281

done for the bulk in Ref. 10. o _
(i) In the bulk, as shown in Ref. 10, while the bare dielec-and EQ.(43). Note that in this case the RHS of EO) is

tric susceptibility diverges around 30 K, this divergence isSIMPly [#°Gp/dP3]P5. This second derivative can be writ-
prevented in the case ef mostly by the stabilizing effect of t€n
the phase-transition-induced compressive strains inathe
plane. In the case of., there are several contributions but Gp
the one which is by far dominant is the strong stabilizing P2 =C+UO(x/ty), (52)
effect of the pureps rotation around the axis. 3
(ii) For the “easy” antiphase boundary, the strains in theyhere@ (x, /t,,) is zero at the center of the wadj =0 and it
ab plane are just like those in the bulk, and thus the polaris 1 on its exteriox;— = . With this notation the equation
ization instability in the boundary is suppressed mostly forgf state reduces to
the same reason. There are of course differences betwyeen
a”d_fll,z which arise from the lesser contributions. — k40Pl X2+[C+UB(x, /t,)IPs=0,  (52)
(iii) For the “hard” boundary perpendicular tg;, the
adjacent bulk produces a compressive stegirand an elon-  whereC is obviously the inverse susceptibility in the center
gationes. Itis principally £, that prevents th@, instability,  of the wall given by Eq(49), while
just as it does in the bulk. On the other hapglis zero in the

FIG. 3. The local dielectric constants calculated in the middle of
a longitudinal Wallellvz, and in the middle of a transverse wall
erpendicular to the, axis, €, and €5. The values found fok) ,

2

middle of the boundary, and this removes the main stabiliz- 52G
ing effect onP;. One is essentially back to the situation of C+U= 2P =2(a,—ty103). (53
the cubic phase, because the effectpefis minor. Owing to P3

the imposed elongation along, the instability ofP5 is then _ . - .
enhanced, which raises the expected transition temperatufide linear operator of interest here is thus

from ~30 to ~40 K.
2

B. Dielectric instability of the Néel wall L=- Kaa 3 +CHUO(X/ty). (54
1
Now we investigate in detail thés-instability of the Nel

wall whose profile was obtained in Sec. Ill. This requires thelt remains to obtain the expression féx(x,/t,,). A direct
linearized equation of state fé; which is calculated from calculation gives

o Qullosin o]+ Qud{ohn 02l + tid {$}n 611~ tud]

, 55
Qur{oatmt QuA oot + tif Bt m— 1165 59

224107-9



TAGANTSEV, COURTENS, AND ARZEL PHYSICAL REVIEW B64 224107
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FIG. 5. Determination of;, following Eq. (57). The line 4n/ e,

FIG. 4. The functior®(x, /t,) given by Eq.(55), which enters . . .
the eigenvalue equation that determines the dielectric instability of the LHS of Eq.(57). It intercepts the RHS at the transition tem-

a hard Nel-type boundary. The open dots show the crossovePeratureTc. The dashed lines indicate the small effectTonof a
points between the two branches. The approximatio®ofith +30% variation of the numerical values on the RHS. The main
tantf(x, /ty) is shown by the dashed line. The horizontal bar is the‘lljlncelr’t,a_unty comes, 'nt_g’_‘ﬁt’cfrom the position of the zero of the
actual lowest eigenvalue before the addition-diC| in Eqg. (54). It ocaltInverse susceptibilityt.

shows that® is particularly well approximated in that region. .
P y PP g the value ofT. might be between 35 and 40 K. It should be

where remarked that the effects of the boundary profile and of the
polarization-gradient terms are rather small. They reduce the
$11R12—S1:R11 Ry, , 5 “local” value of T.C by only ~3 K, i.e.,' by !es; than 10%.
{o2}m— o= TR ¢3— m {o1tm— &1, The boundary being rather thick, the situation is in fact close
S117 S12 S117 512 to that of a transition in bulk material, but with the “local”
instability temperature.
~SuRp—siR , Ri2 2 P
{ostm—0s= SR $3- S+ slz[{¢1}m_ 1l C. The saturation polarization

(56) It is of interest to obtain an estimate for the size of the

It is obvious that Eq(55) has the property®},,=0 since polariza_tion that develops below, . We assume for. that .
{¢%m=0, and{®}. .= 1 sinceoz=0,=0 in the bulk. The calculation that the boundary experiences no further instabil-
calculated curve@leltW) is shown in Fig. 4. It can be ity below Tc, .and we simply det.ermine t_he saturation value
approximated quite satisfactorily by t&k /ty), where the &t 0 K which is set by the quartic termy, in Gp, Eq. (43). )
approximate half-width of the Mg boundary isty=2t,,. For su.ch an estimate it is alsp reasonable to just use a “lo-
This approximation is shown by the dashed line in Fig. 4.Cal" Gibbs potential in the middle of the boundary, as we
The position of the first eigenvalue shown by the horizontan@ve shown in _the previous sub_sectlon that the modifications
line is sufficiently deep in the well that it should not be due to.the profile are comparatively small. The relevant part
substantially affected by the quality of the approximation in©f Gp is then

the wings. With this the problem is identical to that treated 1

with the operator(18). The condition for instability is just {G}mzi{xgl}mngr a11P3+ Q1104P3+ Q1.05P3.

given by the equivalent of Eq21): 59)

U+C<Cy/Kas. (57 The value of {x3'}m is given by Eq.(49). The primed
Here the LHS is given by Eq53) and it is just 47/e,. This  Stresses; ando; are just theP3-inducedchangesn o, and
quantity is plotted in Fig. 5, as derived from the soft-mode¢s, as the main part of the stresses is already included in the
frequency measuremefppendix. The RHS contain€ as  calculation of{x5 '},,. The induced changes i, and ¢,
given by Eq.(49). Our best value of the RHS is shown by the are neglected in this simple estimate, as it can be shown that
corresponding solid line in this figure. It intercepts/4. at  their effect is comparatively quite small. Since the macro-
T.=39 K. The dashed lines illustrate thatz80% multipli-  scopic field is zeroE = d{G},/dP;=0, the derivative irP;
cative inaccuracy in the RHS introduces at @4 Kinac-  of Eq. (58) gives an equation for the saturation polarization
curacy inT,. However, the main inaccuracy is hidden in the Ps. The values ofo;, and o5 that enter that equation are
exact value of the bare inverse susceptibility; 2and more  obtained from Eq(3):
precisely in the position of its zero around 30 K. A shift of

— ’ ’ 2
that point results in a shift of the 42 K zero on the RHS of 0e3=81105+ S1203— Q1Ps,
Eq. (567), and in a horizontal shift of the corresponding ) , )
curves in Fig. 5. In consequence, a reasonable estimate for 0e3= 81205+ 51103~ Q11Ps. (59)
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As the strains are fixed by the adjacent domains, the changd$iese boundaries can also be called “hard” in view of their

dg, and de4 are zero, so that Eq59) gives

, Q18117 QuiS12 _,
=" 5 2 Ps
S11— S12
Q11811 Q15512
op=— P, (60)
S11— S12

Introducing these in the derivative of E§8), one finds that
a,, is renormalized to

(Q11+ Q1511 2Q11Q15517

aj=ag+ (62)
2(sfy—s)
Finally, P is given by
-1
p2—— Xa Jm, (62)
daq,

where{x; "}, is at 0 K. Introducing the numerical values
from the Appendix, one findsP§=1.9>< 1% cgs, or P

higher energy compared to the “easy” ones.
In Sec. IV, it was shown that the=0 hard boundary is
unstable with respect to the development of a spontaneous

polarization parallel tec. This unusual ferroelectric transi-
tion should occur forT. between~35 and ~40 K. The
question naturally arises whether this is a general feature of
all the hard boundaries, irrespective @f A strict answer to
this question would require solutions for the eldype
boundaries at all’s, including checking for their stability.
For «#0 the approximations;;=0 is of no particular ad-
vantage, so that one is faced with having to solve a pair of
coupled nonlinear differential equations. This is generally
quite a tedious task that should require a numerical study, as
it seems that it cannot be pursued analyticAif{f However,

we found fora=0 that the ferroelectric instability was nei-
ther strongly affected by the gradient terms, nor by the pres-
ence of the component q% perpendicular to the boundary
plane. It is thus meaningful to check for the “local” polar-
ization instability in the middle of “simple” hard boundaries,
even though these are structurally unstable. We found in that
approximation very similaP5 instabilities fora=0 and for

=4.2uClcnt. This is quite a large value, as it amounts to @ = 7/4, with nearly equal values of.. This leads us to

about 20% of the room-temperature polarization of a stron
ferroelectric such as BaTiO The corresponding stresses

oy=—0.16x10° and o3=2.7x10° erg/cn? are also quite
large.

V. DISCUSSION

%onjecture that ferroelectric instabilities should occur in hard

oundaries for all values af, and in all at about the same
T.. The above result for=0, and conjecture for alix’s,
might provide an explanation for some of the numerous un-
explained anomalies that have been reported in STH©
tween~30 and~40 K.
In a first extensive x-ray study, Lytle already reported a

The solutions for “simple” antiphase boundaries were transition-like feature occurring at 35 K2 In retrospect,
presented in Sec. Il and the stability of these solutiongvhat he observed might have been a rearrangemesttod-

against the development of other componentsafas ana-
lyzed in Sec. lll. The “simple” boundary, witkp=0 in its

middle, is the stable solution when its plane is perpendicula

to the tetragonal axis. These we also called longitudinal, or

“easy” boundaries. They are quite thin since the continuum,

approximation only gives a full widthtg,=2a,. This means

that a microscopic calculation will be necessary to establisrpn
their structure. Such boundaries have been observed WitaJ

high-resolution electron microscopy. On the very thin

samples used in such a case, they were indeed found to Qﬁ
rather sharp, and also to have an extremely high densit
different boundaries being separated from each other by ju

a few timesay.

It was also shown in Sec. lll that “simple” transverse

boundaries, those that contain thexis, are unstable against
the development of new ComponentanfThis is found for

tural domains, i.e., essentially an exchangeddr ¢ or vice
versa within the scattering volume. Such structural anoma-
lies are of course numerous, and they have a clear signature
In ultrasonic measurements, as well as in mechanical or elec-
tromechanical ones, such as, e.g., in Refs. 30 or 31. It is
important not to mistake these effects for genuine “bulk”
ones. Take for example the case of an ultrasonic measure-

bic phase. If nothing is undertaken to generate a “single
tetragonal domain,” the measurement in the tetragonal phase
Il be affected in an uncontrolled manner by combinations
f the tetragonalcompliancess,, and sgg, Which are quite
ifferent from each othérA complicated behavior is then
seen in the tetragonal phase, as, e.g., in Ref. 32. By applica-
tion of a sufficient orienting(110)-axial pressure, such
anomalies can be forced to disappear from the ultrasonic
datal® It is, however quite interesting that anomalies related

all values of the angle: between the normal to the boundary to domain motion, similar to the one just cited or the me-

and thex; direction. For the particular cage=0, the stable
structure was shown to be of the &ldype. For these par-

chanical friction peak reported in Ref. 31, occur in the region
of the T, predicted above. This suggests that the ferroelectric

ticular orientations an analytical solution could be obtainedransition in the antiphase boundaries can modify substan-

by neglectingsd,,. That approximation is physically well jus-
tified, in view of the nearly two-dimensioné2D) correlation

tially the mobility of the structural domains. This is probably
not so surprising considering the interaction between fer-

of the TiGs-octahedra rotations in the basal plane. Theseoelastic boundaries and antiphase ones that is known in ma-

Neel boundaries are very thick, with a full widtr,¢=20 to

25a,. This justifies the use of the continuous approximation.

terials such as gadolinium molybd&@®MO0).3334
There are also reports of “bulk” anomalies in the saie
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region. This is the case for the effectsTat, originally no-  ally, it should be remarked that a “local” ferroelectric insta-
ticed with electron paramagnetic resonafEER),*? but also  bility is clearly possible in SrTi@ when the antiferrodistor-
seen on other signatures such as birefringén¢EEPR mea-  tive order parameter is locally modified, especially if the
surements were often performed on thin, elongated, highlgtrains are favorable. One should thus keep in mind that
polished platelets that had been cut with a specific crystallin@ther structural defects than “hard” boundaries could possi-
orientation®® These platelets have the nice property to transbly generate a local transition, and thereby anomalies, in the
form with a single tetragonal-axis direction beld. One ~ Same temperature region.

may presume that a large number of dislocations become
oriented plastically during polishing, producing the internal
stresses that force the “monodomain” character. The bire-
fringence measurement of Ref. 35 also used such a sample. We have shown in this paper that the antiphase domain
The “Mliller effect”'? was observed on elongated, polished,boundaries that occur below the 105 K structural phase tran-
thin rods which might have quite similar structural defects.sition of SrTiQ; are of two extreme types. Boundaries per-
In all these “real” samples, the density and orientation of pendicular to the tetragonal axis are very thin and character-
antiphase boundaries will not be determined by thermodyized by a single component of the structural order parameter,
namic equilibrium, but rather by defects and transition-as already discussed previou¥hBoundaries containing the
kinetic considerations. In thin polished samples one shouldetragonal axis are much thicker-@0a,) and an additional
expect a large density of antiphase boundaries that form ancbmponent of the order parameter develops within them, so
“freeze in” owing to edge dislocations. A link between an- that they are of the N type. Near or below 40 K, a ferro-
tiphase boundaries and dislocations was experimentally olelectric transition should occur in these boundaries. The de-
served in GMO34|f the density of hard boundaries is suf- veloped polarization is sizable as it could reach values
ficiently high, the stresses generated within the boundaries-4 . C/cn?. The discussion in Sec. V suggests that such a
by the ferroelectric transition will have to be equilibrated by transition could possibly account for several of the so far
additional average strains that will affect the entire sampleunexplained anomalies which have been reported for SrTiO
The onset of these strains &t, might well produce below~40 K.

transition-like features neaf, in bulk measurements. This

would of course explain why strong effectslatare not seen

in thick, good quality samples that are forced into a single ACKNOWLEDGMENTS
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boundaries, will affect the loss mainly owing to two effects.

Firstly, the so-called quasi-Debye loss mechanisee e.g.,

Ref. 39 allowed by symmetry only in noncentrosymmetric APPENDIX

structures will be active in these boundaries. The contribu- ] o )

tion of this mechanism can be essential at microwave fre- This appendix lists all the numerical values that are used
quencies. Although affecting only a small fraction of the vol- N the course of the paper. The only temperature dependent
ume, this contribution can really be significant as its yield jsParameters aré, in Eq. (1) anda, in Eq. (43). All other
expected to be very large per unit voludfé® Secondly, the parameters are.assu.med constant and the valugs _that hqve
ferroelectric slabs should split into ferroelectric subdomaind€en used are listed in Table I. The sources are indicated in
divided by subdomain walls—the regions where the Spoma'me caption of the table. The c_al_culatlons tha@ were perform.ed
neous polarization passes through zero. These subdomailfsobtain some of these coefficients are ;tralghtforward, with
will contribute to the dielectric loss as the domain walls inthe exception of those fok,, and f,, which will now be

bulk ferroelectrics do. This contribution could be relevant atexplained. . _ _ _
lower frequencies, similar to the case of bulk ferroelectrics. A Value of k44 can be derived from the dispersion with
We believe these mechanisms could be relevant to the olwave vectorq of the ferroelectric transverse opti€O) soft
served low temperature anomalies in the dielectric losses ahode. This has been determined with neutron scattéfiffy.

SrTiO; as reported for microwaves in Ref. 14 and for radioThe value'k,, which is obtained in this way is, however,
frequencies in Ref. 15. Clearly, a direct test for this interpretenormalized by the coupling between the gradient of the

tation will require experiments where the type and amount ofy|arization and the transverse acoustic wd¥é&This cou-
antiphase boundaries will also be monitored. AR

In conclusion, the predicted ferroelectric transition within pling is produced by the flexoelectric tensér To under-
antiphase boundaries can potentially produce a large numbsetand the situation it is easiest to first derive the coupled
of anomalies as it occurs. Further progress along this linequations of motion from the Gibbs function used here. The
will require the development of experimental methods toequation for the polarizatioR; of the TO mode propagating
produce, observe, and control these boundaries. More genen-the x; direction is

VI. SUMMARY
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TABLE |. Constants of “cubic” SrTiQ at low temperatures.

by, 1.69x 10%32 an 2.1x 107 12f
b, 3.88x10%2 a, 1.7x 107 12f
Sy 3.52x10 18P Qu 5.09x 10 139
Sip —0.85x 10713 Qi —1.50x 107139
Sas 7.87x10 18P Qu 2.13x 10 139
Ri1 8.7x10M"¢ ty —1.94x 10N
Ry —7.8x101¢ tyo —0.84x 105N
R4 —18.4x 10"¢ ta 6.51x 101"
o1 0.28x 1019 K11 not used
S1p —7.34x 10 Ko not used
s 7.11x 10 Kas 8.26x 10 18!
p 5.13° fiy not used
ag 3.9x10°8P fio not used
Aldw 7.24x 1077 ¢ fas 5.88x 10!

8Recalculated from constant-strain values in Ref. 7.
bFrom Ref. 41.
‘From Ref. 7.

dFrom Ref. 18 corrected according to the units used in the original

paper by Stirling(Ref. 16.

eAEea,CQ;C where(}, . is the soft-mode frequency in rad/s. The
value is calculated from the data in Ref. 10 taking,)fax
=42000 and &) na= 9400.

fRecalculated from constant-strain values in Ref. 42.

9Recalculated from the deformation-polarization electrostrictive co-

efficients in Ref. 43.
"Recalculated from data in Ref. 10, keeping—t;, at the value of

PHYSICAL REVIEW B 64 224107

.1 duy  fu,d?P,
—pUs=——— + ———
Sas dx7  Saa dxj

(A5)
wherep is the density of the crystal. Now one introduces the
displacemenP for the TO-mode byP;=+/p/yP, and trans-
forms to Fourier space witlPocuzxexp(—iwt+igx,). One
obtains

w?P=0%,P+Vdius,

w?Uu3=VPP+ Q2 U, (AB)
where
2 _ ~ 2
O5o=(2a1+ k491 y,
0% 4=0%(pSsa),
~_ 2
K—K+f44/544,
V=" 44/(S4a\py). (AT)

It is clear from the first relation, sincea2=4/e€, that y

Ref. 7. The difference with Ref. 10 is due to a numerical error in=477/A whereA is defined in Table I. The neutron scatter-

_the latter.
'Explained in the Appendix.

.. d
'yP3+&Gp/&P3=R[&G,:/&(&Pg,/ﬁxl)], (Al)
1
which gives
Py+2 d2P3+ dos (A2)
A=Ky -
Y3 1 44 dxf 44dX1

The equation folo s is obtained from the constitutive equa-
tions of elasticity(3) with G=G,+ Gp . Taking into account
Egs.(1) and(493), it reads

dP;

8525440'5_f44d_xl. (A3)

Introducing this into Eq. (A2) and using des/dxy
=d2u3/dxi, whereus is a component of the acoustical dis-
placement, one obtains

d2

2
dxi

fis
K44+ —_—
Sy4

f 44 d?u
= (A9
Sas dx]

- 7'53: 2a;—

This exhibits the coupling betwed?y andus. The equation
of motion forus, including the flexoelectric term, reads

ing experimenty** determine x4/ y=3.8x10"* cn?/s.
The value of V was found by Brillouin scattering
experiment® V=2.4x 10" cn?/s>. The same experiments
give the bare velocitf)tp/q=4.25<10° cm/s. From these
values, using(A7), one calculatesc,,=5.23x 10" 17 cn?
and k4,=0.826< 101" cm?. This emphasizes the large ef-
fect of the flexoelectric renormalization.

The value ofb; in Eq. (1) is only used here in the lowl-
phase, well below ,=105 K. It is related thSS by Eq. (7).
The experimental value od:é was taken from Ref. 47 and
converted to the units cfroxygen displacements as in Ref.
7). It was then fitted to a polynomial function that gives an
excellent approximation fof <60 K. The result is

—by(T)=1.62<10%°
X (1—0.338<10 *T2-0.53x 10 °T3).
(A8)

The value ofa; in Eq. (43) is obtained from the measured
soft-mode frequencies in Ref. 10, using the valueAoin
Table I. It is already fitted to a Barrett formula in Ref. 10,
which in the appropriate cgs units reads

a,(T)=4.51x[ coth(54/T) — coth(54/30 ] x 10 3.
(A9)
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