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Prediction of a low-temperature ferroelectric instability in antiphase domain boundaries
of strontium titanate
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The structure of the antiphase domain boundaries of strontium titanate SrTiO3 that exist at temperatures
below the antiferrodistortive transition, is analyzed. It is found that some boundaries are similar to Ne´el domain
walls, as an additional component of the order parameter develops within them. We show quantitatively that at
low temperatures, typically below;40 K, such boundaries become unstable with respect to the development
of a ferroelectric polarization. This ferroelectric transition might provide the much needed explanation for
several anomalies that are experimentally observed in SrTiO3 in this temperature region.
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I. INTRODUCTION

PerovskitesABO3 can undergo several types of crysta
line instabilities at different points of their Brillouin zon
~BZ!.1 In particular there are structural ones, often related
rotations ofBO6 octahedra, and there are ferroelectric on
mostly due to the polar displacement of theB-site ion. Which
of these dominates depends on the so-called ‘‘tolerance
tor’’ t that describes the relative filling of space by the va
ous ions.2 If the radius ofA is too small (t,1) the structural
instability is generally observed, while ifB is too small (t
.1) ferroelectricity can be favored.

Strontium titanate, SrTiO3, is an interesting case wheret
'1 and in which both types of instabilities can be simul
neously active. The crystal is simple cubicPm3̄m at room
temperature. On cooling, SrTiO3 first undergoes an antifer
rodistortive structural transition atTa.105 K. It is due to
static octahedra rotations around one cubic axis, the rotat
alternating from cell to cell in all three cubic directions.3,4

Hence, this transition occurs at theR point of the BZ. Below
Ta , the symmetry is tetragonal,I4/mcm, where the tetrago-
nal axis cW is parallel to the octahedron-rotation axis. T
transition is accompanied by the development of small
physically important spontaneous strains.5 On the other hand
the ferroelectric instability manifests itself by large dielect
constants, which become anisotropic and continue to
crease belowTa to saturate at low temperaturesT, with ea

'40 000 in theab plane andec'10 000 along thecW axis.6–8

In this regime, the lattice vibrations are nonclassical, wh
leads to a strong departure from the Curie-Weiss law.8 How-
ever, this fact alone is not sufficient to prevent the ferroel
tric transition. The actual supression of ferroelectricity is d
to the competition between the structural order param
and the ferroelectric one.9 It was shown recently that if jus
the spontaneous strains associated with the transition c
somehow be prevented, a ferroelectric transition would a
ally take place.10

Strong changes of the structural order parameter can
cur locally in the regions separating different structural d
0163-1829/2001/64~22!/224107~14!/$20.00 64 2241
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mains. Naively one might think that the structural order p
rameter could pass through zero in the middle of su
‘‘walls.’’ Specifically, something similar to this might happe
for the so-called ‘‘antiphase domain boundaries,’’ since
order parameter changes sign between two such domain
opposed to ‘‘twin walls’’ where it simply changes direction
Hence, one might expect that under favorable conditions
ferroelectric instability could be restored within an antipha
boundary, as most strains are fixed by the adjacent bulk
mains, while the structural order parameter is strongly p
turbed inside the boundary.

The study of such instabilities is the subject of this pap
We are motivated in this by the observation of various un
plained phenomena at low temperatures in SrTiO3, as partly
reviewed in Ref. 11. In particular, Mu¨ller and collaborators
have reported the EPR observation of a transitionl
anomaly at a temperatureTq.37 K.12 This value is close to
that of thebare ferroelectric instability, i.e., the one which i
not renormalized by interactions with the structural dist
tions, which occurs near 30 K.10 Recent investigations of the
‘‘Mü ller state’’ suggested that its existence might be qu
sensitive to sample preparation and history.13 An explanation
in terms of antiphase boundaries would account for t
somewhat elusive nature of the phenomenon. Another is
of interest is the strong anomaly that is observed at sim
temperatures in the dielectric losses of SrTiO3.14,15 Finally,
the influence of antiphase domain boundaries has also b
invoqued to account more generally for anomalous neutr
scattering spectra.13 For all these reasons it appears useful
perform such an analysis, this all the more that the neces
parameters are quite well known for SrTiO3.7,16,17,10

The theoretical treatment will be performed in the co
tinuous approximation whose validity will be justifieda pos-
teriori. In this spirit, we shall use a Gibbs potential similar
that first introduced by Uwe and Sakudo,7 but including also
the gradient terms as done by Cao and Barsch.18 This is
defined in Sec. II where an example is given for the cal
lation of a possible order-parameter profile in an antiph
boundary. The stability of such boundaries with respect
the appearance of other components of the structural o
©2001 The American Physical Society07-1
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parameter is discussed in Sec. III, where it is found that
really stable solution can indeed be more complicated. S
tion IV then discusses the stability of these antiphase bou
aries with respect to the development of polarization com
nents. We do find that a ferroelectric transition can occur
boundaries of particular orientations. The potential releva
of this phenomenon to the low-temperature anomalies
SrTiO3 is discussed in Sec. V. A summary concludes
paper.

II. GIBBS POTENTIAL AND CALCULATION OF A
SIMPLE ORDER-PARAMETER PROFILE

The structural order parameter is an axial vectorfW . Its
three components are the values of the staggered rota
angles of the oxygen octahedra around the three cubic
f i ( i 51 to 3!. In SrTiO3 under normal conditions, below
Ta the ferroic phase exhibits six tetragonal domain state
which the order parameter is (f0 0 0), (2f0 0 0),
(0 f0 0), etc. Heref0 is the value of the spontaneou
n
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rotation, which is measured by the displacement of an app
priate O atom from its cubic position as defined by Uwe a
Sakudo.7 The domain boundaries separating states which
fer only by the sign off0 are called ‘‘antiphase’’ ones. Suc
states have a common tetragonal axis and they are ma
scopically indistinguishable because a sign change off0 cor-
responds to a translation by just one lattice constant of
parent phase.

The question of the structure of an antiphase boundar
SrTiO3 was already addressed by Cao and Barsch.18 They
used an approach due to Zhirnov19 to calculate the order-
parameter profile for a particular orientation of the bounda
We employ the same method to calculate other bound
orientations, as well as to determine the stability of the
boundaries. In contrast to Cao and Barsch, we base the
culation on the elastic Gibbs functionG rather than on the
Helmholtz one, as it simplifies the derivations. The part
the Gibbs function containing the order parameter and
mechanical stressess i in contracted notation20 is written
Gf5b1~f1
21f2

21f3
2!1b11~f1

41f2
41f3

4!1b12~f1
2f2

21f2
2f3

21f3
2f1

2!2
1

2
s11~s1

21s2
21s3

2!2s12~s1s21s2s31s3s1!

2
1

2
s44~s4

21s5
21s6

2!2R11~f1
2s11f2

2s21f3
2s3!2R12@~f2

21f3
2!s11~f3

21f1
2!s21~f1

21f2
2!s3#

2R44~f2f3s41f3f1s51f1f2s6!1
1

2
d11@~]f1 /]x1!21~]f2 /]x2!21~]f3 /]x3!2#1d12@~]f1 /]x1!~]f2 /]x2!

1~]f2 /]x2!~]f3 /]x3!1~]f3 /]x3!~]f1 /]x1!#1
1

2
d44@~]f1 /]x21]f2 /]x1!21~]f2 /]x31]f3 /]x2!2

1~]f3 /]x11]f1 /]x3!2#, ~1!
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where thexi ’s are the Cartesian coordinates. For all seco
and fourth rank tensors we will be using the Voigt notati
( j 51 to 6! unless specified otherwise. FromG, one obtains
the equations of state

]

]xi
@]G/]~]f j /]xi !#5]G/]f j ~ j 51 to 3!, ~2!

and the constitutive equations of elasticity

«k52]G/]sk , ~3!

where the strains«k must satisfy the Saint-Venant compa
ibility conditions.21 In Eq. ~2!, as well as below, the summa
tion over repeated indices is implied. Following the stand
practice, for a boundary which is perpendicular tox1, we set
s15s55s650, which assumes that no longitudinal stre
and no transverse shears are applied to this boundary. Th
compatible with the conditions]s i j /]xj50 (i , j 51 to 3!.
The strains«2 , «3, and«4 are independent of the coordinat
d

d

s
is

and fixed by the spontaneous strains in the bulk far from
boundary, while«1 , «5 , and«6 arex1 dependent and satisf
the Saint-Venant conditions.

There are two extreme orientations of the antipha
boundary planes with respect to the tetragonal axis. Th
which are orthogonal tocW shall be called ‘‘longitudinal’’ as
their normal isicW . Those which containcW shall be called
‘‘transversal’’ as their normal is'cW . Considering just the
rigidity of the oxygen octahedra TiO6, one observes that lon
gitudinal boundaries, which are parallel to theab plane,
could be drawn infinitely thin, cutting the structure at th
height of the undisplaced apex oxygens. This produces
disruption in the oxygen positions and no distortions of t
oxygen octahedra. Hence, such boundaries should o
fairly easily and they are indeed likely to be rather thin. Th
could as well be called ‘‘easy’’ boundaries. They were t
ones considered in Ref. 18. On the other hand, transv
boundaries cannot be drawn without severe distortions of
octahedra, with alternate elongations and compression
the O-O distances. Therefore they are likely to be rat
7-2
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PREDICTION OF A LOW-TEMPERATURE . . . PHYSICAL REVIEW B 64 224107
energetic and thick, and they could also be called ‘‘har
This intuitive reasoning is fully confirmed by the detaile
calculations presented below.

For illustration, a continuous calculation for a transve
boundary is now presented in some details. The bulk or
parameter is taken along the third axis,f356f0, and the
boundary plane is momentarily selected to be perpendic
to the first axis. We assume in this section that no new co
ponent of the order parameter develops within the bound
Boundaries with that property will thereafter be call
‘‘simple.’’ From Eq. ~2!, with j 53, one obtains

d44]
2f3 /]x1

252b1f314b11f3
3

22@R11s31R12~s11s2!#f3 . ~4!

From Eq.~3!, one finds

«15s11s11s12~s21s3!1R12f3
2 ,

«25s11s21s12~s11s3!1R12f3
2 ,

«35s11s31s12~s11s2!1R11f3
2 ,

«k5s44sk ~k54 to 6!. ~5!

In this case«2 and«3 are fixed by bulk values. For the bulk
s i50 (i 51 to 6!, so that Eqs.~5! give

«25R12f0
2 ,

«35R11f0
2 , ~6!

while «4 to «6 are zero. The value off0 results from Eq.~4!,

f056A2b1/2b11. ~7!

The stress-free condition of the boundary is simplys150.
Eliminating s2 ands3 between Eqs.~4! and~5! one arrives
at

2d44]
2f3 /]x1

21Be
0~2b1f314b11f3

3!50, ~8!

whereBe
0 is given by

Be
0511

1

4b11
F ~R111R12!

2

s111s12
1

~R112R12!
2

s112s12
G . ~9!

In the absence of mechanical coupling one would just h
Be

051. The solution of Eq.~8! which satisfies the boundar
condition can be written

f3~x1!5f0 tanh~x1 /tw!,

tw5t0 /ABe
0,

t05A2d44/b1. ~10!

The valuet0 is the boundary half-width in the absence
mechanical effects. Calculating the difference between
value ofGf obtained in the presence of one such bound
and the homogeneous value ofGf , one obtains the exces
boundary energy per unit area. It is given by
22410
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Gw5Gw0ABe
0,

Gw05~2A2/3!f0
3A4b11d44. ~11!

The above results can easily be generalized to any tr
verse boundary forming an anglea with the second axis. In
a reference frame rotated aroundx3, let the axisx18 be per-
pendicular to the boundary. The equation of state~4! is un-
modified, withx1 simply replaced byx18 , while all stresses
are expressed in the original reference frame. Solving
elastic problem in that more general case, one finds tha
above results remain, except for the replacement ofBe

0 by a
more general expression

Be
a511

1

2b11
@R11J31R12J1,2#, ~12!

where the coefficientsJ i relate to the stresses$s i%m in the
middle of the boundary~wheref350) by

$s11s2%m5J1,2f0
2 ,

$s3%m5J3f0
2 . ~13!

The value of the coefficientsJ i is given by

J1,252
1

D Fsin22a1
s44 cos22a

2~s112s12!
Gs12R112s11R12

s11
,

J352
s12

s11
J1,21

R11

s11
,

D5sin22aF1

2
~s111s12!1

1

4
s442

s12
2

s11
G

1cos22a
~s111s12!s44

2s11
. ~14!

In the case of the longitudinal boundary, which is perpe
dicular to x3, the left side of Eq. ~4! is replaced by
d11]

2f3 /]x3
2, and nothing else is changed, except for t

boundary conditions which now reads350 and «15«2

5R12f0
2. One arrives at Eq.~10! with Be

0 replaced by

Be
l 511

R12
2

b11~s111s12!
~15!

andd44 replaced byd11, so that

t05A2d11/b1. ~16!

The same replacements must be made inGw0 in Eq. ~11!.
Since d11!d44 ~Appendix!, the ‘‘easy’’ boundaries are in-
deed much less energetic than the ‘‘hard’’ ones. The ab
results on the longitudinal boundaries are equivalent to th
of Cao and Barsch,18 except for the different notations.

The parameters that allow one to evaluate these exp
sions have all been quite well determined. The specific
merical values used for the purpose of this paper are liste
the Appendix. With these, one can calculate the mechan
7-3
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TAGANTSEV, COURTENS, AND ARZEL PHYSICAL REVIEW B64 224107
correction factorsBe21 of Eqs. ~9!, ~12!, and ~15!. One
finds in all cases thatBe21;0.1, hence these corrections a
never large. Also, the angular anisotropy in Eq.~12! is very
small,;0.002 only. The main difference with the evaluatio
in Ref. 18 is in the size of the gradient terms that are nee
to calculate the boundary thicknesses in Eqs.~10! and ~16!.
We find that the values in Table IV of Ref. 18 should
multiplied by 4p2 in order to conform with the units used b
Stirling.16 This gives boundary thicknesses that are 2p times
larger than in Ref. 18. The full thickness of the longitudin
boundary~16! at 40 K is then 2tw.8 Å. This is indeed very
thin. That of the ‘‘simple’’ transverse boundary~10! is 2tw
.44 Å. While the former is somewhat small to guarant
the validity of a continuous approximation, the latter whi
amounts to;11a0, wherea0 is the lattice parameter, seem
sufficient. Anticipating on the following sections, we sha
see that while the longitudinal boundary is stable against
development of another component offW , this is not the case
for transverse boundaries. The latter then become thicker
Similarly the longitudinal boundary is stable against a po
instability, and thus the interest will concentrate onthick
transverseboundaries. For these the continuous approxim
tion is very well justified.

III. STRUCTURAL STABILITY OF ANTIPHASE
BOUNDARIES AND CALCULATION OF A REAL PROFILE

In this section we consider the stability of the simple s
lutions obtained in Sec. II against the emergence of ano
component of the structural order parameter within
boundary. We find that while the easy boundaries are sta
the hard ones develop a component offW perpendicular to the
boundary plane, similar to Ne´el walls in magnetism. The
question of stability was addressed previously in the con
of competing structural and magnetic instabilities22 and also
for improper ferroelectrics.23 The idea is to allow for a smal
perturbation of the wall and to study whether it lowers t
energy. Mathematically, the small perturbation has to sat
a wave equation which is the corresponding linearized eq
tion of state. The associated eigenvalue enters into the ca
lation of the perturbed energy. The instability results from
negative eigenvalue.

We consider first the stability of the hard antiphase bou
ary described by Eqs.~8! and ~10! against the developmen
of an order-parameter componentf1. The equation of state
linearized with respect tof1 reads

2d11]
2f1 /]x1

212b1f112b12f1f3
222R11f1s1

22R12f1~s21s3!2R44f3s550, ~17!

where one can sets15s550 as explained above. In Eq
~17!, f3 is given by Eq.~10! while a simple calculation gives
s21s35(f0

22f3
2)(J1,21J3), as in Eqs.~13! and ~14!

with a50. Equation~17! is of the formL̂f150, whereL̂ is
the operator

L̂[2d11

d2

dx1
2

1C1U tanh2S x1

tw
D , ~18!
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U5F2b1212R12

R111R12

s111s12
Gf0

2 ,

C5F24b1122R12

R111R12

s111s12
Gf0

2 . ~19!

The instability of the wall results from a negative eigenval
l for the operatorL̂.22,24 The eigenvalues of Eq.~18! are
known.25 The lowest one is

l5
A114Utw

2 /d112112Ctw
2 /d11

2tw
2 /d11

. ~20!

One should note thatb12 must be positive, otherwise th
ground state in the bulk is not the stable one. As the m
chanical corrections in Eq.~19! are relatively small~as can
be checked using the numerical values in the Appendix!, U is
positive. This shows that a necessary condition for the in
bility is C,0, which implies that the equation of state
already unstable at the center of the boundary wherex150.
The condition for the instability of the boundary,l,0, can
be rewritten

U1C,C2tw
2 /d11. ~21!

As tw
2 }d44, the quantitytw

2 /d11 involves the ratiod44/d11

which is very large~see the Appendix!. As a result, the
evaluation of Eq.~21! using Eq.~19! leads for this transverse
boundary to an instability against the appearance of a c
ponent of the order parameter normal to the boundary pla

The same result is obtained for all other transverse bou
aries, i.e., for any value of the anglea introduced in the
previous section. On the other hand, the stability condit
for the longitudinal boundary involves the ratiod11/d44
which is very small. For this reason one finds that sim
longitudinal boundaries, withf150 throughout, are stable a
least within this continuous approximation.

We now turn to the actual profile of transverse boun
aries. For simplicity we take the casea50, and we first
allow for f1Þ0 within the boundary. Such a boundary
equivalent to a Ne´el wall in magnetism, as we now have tw
rotational components,f1 and f3, where f1 is directed
along the boundary thickness. For this kind of boundary,
equation forf3 is similar to Eq.~4!, with just two additional
terms containing f1 on the right-hand side~RHS!:
2b12f1

2f32R44s5f1. The equation forf1 is similar to Eq.
~17!, but including the cubic term on the RHS: 4b11f1

3. As
done above, we set in these equationss15s550. The val-
ues ofs2 ands3 should now be deduced from modified Eq
~5! that make allowance for the nonzero componentf1:

«25s11s21s12~s11s3!1R12~f3
21f1

2!,

«35s11s31s12~s11s2!1R11f3
21R12f1

2 , ~22!

where«2 and«3 are fixed by Eq.~6!. Introducing these in the
7-4
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equations forf1 andf3, one obtains two coupled differen
tial equations that can be written in terms of the reduc
variablesc1[f1 /f0 and c3[f3 /f0. Furthermore, these
equations simplify by using distances scaled totw from Eq.
~10!, defining a reduced distancex by

x[x1 /tw . ~23!

The coupled nonlinear equations are then

1

2
m

]2c1

]x2
5@211e1~11z!c1

21~11h!c3
2#c1 ,

1

2

]2c3

]x2
5@211~11h!c1

21c3
2#c3 , ~24!

where

m5d11/d44, ~25!

h5U/~4b11f0
2Be

0!21,

e5~b1222b11!/~2b11Be
0!2h,

z5Be
l /Be

021. ~26!

The values ofBe
0 , Be

l , andU are given by Eqs.~9!, ~15!, and
~19!, respectively. From the parameters in the Appendix, o
calculatesm.0.04, h.0.042,z.0.037,e.0.094.

In general, the system of equations~24! can only be
solved numerically. However, for this particular bounda
there exists a physically justified approximation that provid
for an analytical solution of the problem. A remarkable fe
ture of the structural ordering in SrTiO3 is its quasi-two-
dimensional nature. The correlation of the oxygen-octahe
rotations is very anisotropic. For rotations aroundcW , it is
strong within any givenab layer, whereas rotations in adja
cent ab layers are only weakly coupled. This is manifest
by the smallness of the parameterm. The quasi-2D approxi-
mationm50 is made for the remainder of this section as
allows one to obtain this analytic solution.

Inspection of the above equations might suggest that e
tic effects could be weak in this problem. If one makes
approximationBe

l 5Be
051, the coefficients simplify consid

erably, withz5e50 andh5h05211b12/(2b11).0.149.
It is, however, known that in domain-wall problems the m
chanical effects, although involving relatively small nume
cal coefficients, are often of principal importance. It is i
structive to first neglect the mechanical effects which has
further merit to simplify the equations and thus the pres
tation. In a second step the mechanical effects are rein
duced to obtain the correct result, thereby showing the d
matic changes that they produce.

With m50, the first Eq.~24! splits into two branches
Without mechanical effects these are
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c150,

c1
2512~11h0!c3

2 . ~27!

To produce a Ne´el wall, the second branch must apply, b
c1

2 cannot be negative so that there arecrossoversto the first
branch atc3

251/(11h0). Both ends of the boundary profile
wherec3 is nearly 1, obey thus the equation

1

2

]2c3

]x2
5~c3

221!c3, ~28!

with c150, while the central region obeys

1

2

]2c3

]x2
5h0@c32~21h0!c3

3#, ~29!

with c1 given by the second branch~27!. The solution of Eq.
~28! that satisfies the boundary conditionsc3561 at x5
6` is c35tanh(x2x0) where x0 is a free parameter. To
solve Eq.~29!, a standard procedure~see, e.g., Ref. 26! is to
remark that it has the structure of an equation of motion

m

2
c̈52

]V

]c
, ~30!

which integrates to

m

2
ċ21V~c!5const, ~31!

wherec is the coordinate of a particle in the potentialV(c)
while x plays the role of time. The potential for thec150
branch is simply

V~c3!5
1

2
c3

22
1

4
~11c3

4!, ~32!

where use was made of the free constant to arbitrarily seV
to zero atc3

2561. The structure of the system~24! is such

thatc, ċ, andc̈ must be continuous at the crossover poin
These matching conditions are then used to determine
value of the constant for the central segment of the poten
for which one finds

V~c3!52
h0

2
c3

21h0

21h0

4
c3

4 . ~33!

The potentialV(c3) from Eqs.~32! and~33! is drawn in Fig.
1~a!. The circles show the crossover pointsc3

251/(11h0).
The total potential separates into two distinct wells. A p
ticle launched fromc3521 atx52` with zeroċ will take
an infinite ‘‘time’’ to reach c350. In terms of space, this
means that such a boundary would split into two infinite
separated twin walls, or in other words that there were
Néel antiphase boundary. This result is not consistent w
7-5
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the real situation of̂ 1 0 0&-oriented twin boundaries in
SrTiO3. One can readily show that for this orientation t
twin boundaries are mechanically incompatible.27 Hence, the
decay into separated twin boundaries is a clear consequ
of the neglect of elastic effects.

Including the elastic effects, the crossover point betwe
the two branches now occurs atc3

25(12e)/(11h). Fol-
lowing a similar reasoning, Eq.~29! is replaced by

1

2

]2c3

]x2
5

h2e2eh2z

11z
c31

z22h2h2

11z
c3

3 . ~34!

The numerical values of the coefficients on the RHS
20.090 and20.047, respectively. The potential for th
c150 branch is still given by Eq.~32!. The potential corre-
sponding to Eq.~34! can be written

V~c3!50.045c3
210.0118c3

420.0525c~c3
22a2!~c3

21b2!.
~35!

As above, the constant inV(c3) is obtained by matching the
potential~35! at the crossover points with Eq.~32!. The co-
efficientsa2, b2, andc have numerical values of 0.93, 4.7
and 0.0118, respectively. This potential is illustrated in F
1~b!. The major difference with Fig. 1~a! is in the sign of the
quadratic term which is here positive. As a result the sep

FIG. 1. The potentialV(c3) that determines the profile of th
Néel-type hard antiphase boundary perperdicular to the^100& direc-
tion in SrTiO3: ~a! with neglect of elastic effects@Eqs. ~32! and
~33!#; ~b! with inclusion of the elastic effects@Eqs.~32! and ~35!#.
The open dots are located at the crossovers between the
branches of the solution.
22410
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e
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tion into two wells is removed. This is a remarkable ma
festation of the major role of the ‘‘apparently weak’’ elast
terms. It reflects the aforementioned elastic incompatibi
of the ^1 0 0& twin walls. The equation resulting from Eqs
~30! and ~35!

1

4
ċ3

21c~c3
22a2!~c3

21b2!50 ~36!

is integrable in terms of standard functions. The solution t
satisfies the conditionc350 at x50 is

x5
1

2Ac

1

Aa21b2
F~gum!,

g5arcsin
c

a
Aa21b2

c21b2
,

m5
a2

a21b2
, ~37!

where F(gum) is the elliptic integral of the first kind. It
matches the solution forc150, c35tanh(x6x0), at the
crossover points withx050.985. This solution is illustrated
in Fig. 2 in which the tanh solutions have been continued
dashed lines whose separation illustrates the increase in
thickness produced by the presence of thec1 component.
The value ofc1 is also drawn. One notices that in the midd
of the boundary$f1%m nearly reachesf0,

wo

FIG. 2. The reduced order-parameter profilesc i5f i /f0 ( i
51,3) for the Ne´el-type boundary corresponding to case~b! in Fig.
1. The continuous lines show the solutions forc1 andc3, with open
dots showing the crossovers onc3. The dashed lines are th
tanh(x6x0) solutions that prolongate the solutions forc3 obtained
in the wings wherec150. The horizontal distance between the
tanh solutions show the increase in wall thickness of;2 reduced
units owing to the presence ofc1.
7-6
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$f1
2%m5f0

2~12e!/~11z!, ~38!

or $f1%m50.935f0. This is close to a pure rotation offW as
in magnetic Ne´el walls. The neglect of the second derivati
of c1 ~having setm50) is obviously a poor approximatio
in the region where there is a break in thec1 curve. The
presence of the term1

2 m]2c1 /]x2 will effectively smooth
that region. This term only has a minor effect in the center
the boundary. Indeed, dividing the first Eq.~24! by c1 one-
observes that12 m(]2c1 /]x2)/c1 is well below one percen
as opposed to the other terms of the order of 1 that are
in that equation.

It remains to check for the stability of the Ne´el boundary
against the development of the third component of the or
parameterf2. The linearized equation forf2 is

d44]
2f2 /]x1

252@b12R11s22R12~s11s3!

1b12~f1
21f3

2!#f22R44~s6f11s4f3!

~39!
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with s15s650, while the equations forf1 andf3 are un-
modified. This problem is similar to that at the beginning
this section, except that the operator~18! is now replaced by

L̂[2d44

d2

dx1
2

1C1U f 2S x1

tw
D , ~40!

where f 2(x) is a more complicated expression which, ho
ever, has the property to reach its absolute minimum 0 ax
50. C is by definition the inverse susceptibility~with re-
spect tof2) in the middle of the wall, here

C52~b12R11s22R12s31b12f1
2!. ~41!

The expressions fors2 and s3 can be calculated as abov
As explained at the beginning of this section, a necess
condition for the instability is C,0. Using the ratio
$f1

2%m /f0
2 given by Eq.~38!, together with the definitions

~26!, this condition can be written
12
2b11

b12
,12

S 11
R12

2b11

R111R12

s111s12
D S 11

R12

2b12

R111R12

s111s12
D

H 11
1

4b11
F ~R111R12!

2

s111s12
2

~R112R12!
2

s112s12
G J H 11

R12
2

b11~s111s12!
J . ~42!
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In the absence of mechanical couplings, the RHS is zero
the condition reduces to 2b11/b12.1 which actually corre-
sponds to the instability of the tetragonal phase with resp
to the trigonal one.5 Hence, in SrTiO3 one must have
2b11/b12,1 and the difference 122b11/b1250.13 is well
known as it can be derived from the splitting of the structu
soft modes at lowT.7 It turns out that the elastic correction
on the RHS of Eq.~42! are far from sufficient to make i
bigger than 0.13. A numerical evaluation of the RHS, us
the parameters in the Appendix, gives the value 0.04. Ev
ating the influence of inaccuracies of 10%, cumulated on
six parameters entering the RHS, we find that the resu
then between 0.02 and 0.06. This being so much smaller
0.13, we conclude that the Ne´el boundary is extremely likely
to be stable against the development of the third compon
of the structural order parameter.

A final remark concerns the possible existence of a Blo
wall with f150 andf2Þ0. The simple wall with onlyf3

Þ0 is indeed unstable both against the spontaneous ap
ance off1 or that off2. However, the eigenvalue associat
with the development off1 is much more negative than th
one forf2. This shows that the Ne´el wall is preferred over
the Bloch wall.
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IV. FERROELECTRIC INSTABILITY WITHIN ANTIPHASE
BOUNDARIES

It is well known that in perovskites there is generally
competition between the development of the structural or
parameter and that of ferroelectricity. In strontium titanate
has been shown that if the structural transition could be s
pressed, then under mechanically free conditions the fe
electricity should occur at.30 K.10 For this reason one ca
expect that under favorable circumstances a ferroelec
transition might occur in an antiphase boundary. To find
under which conditions this actually happens, one must c
sider three additional factors:~1! the mechanical coupling o
the boundary region with the adjacent bulk,~2! the effect of
the eventual new components offW in the wall,~3! the energy
associated with the inhomogeneous distribution of the po
ization developing in the wall. Such an instability will b
sensitive to the orientation of the boundary. In this work w
just consider two extreme cases:~a! the longitudinal or
‘‘easy’’ wall and ~b! the transverse or ‘‘hard’’ wall with its
normal parallel to â 100& direction of the cubic phase a
discussed in Sec. III. We find that in the former case ther
no ferroelectric instability whereas in the latter a polarizati
develops along thecW axis of the bulk.
7-7



r

TAGANTSEV, COURTENS, AND ARZEL PHYSICAL REVIEW B64 224107
To carry out this program, the Gibbs function~1! has to be completed with the termsGP containing the polarization vecto
PW . This part is written

GP5a1~P1
21P2

21P3
2!1a11~P1

41P2
41P3

4!1a12~P1
2P2

21P2
2P3

21P3
2P1

2!2Q11~P1
2s11P2

2s21P3
2s3!

2Q12@~P2
21P3

2!s11~P3
21P1

2!s21~P1
21P2

2!s3#2Q44~P2P3s41P3P1s51P1P2s6!2t11~P1
2f1

21P2
2f2

21P3
2f3

2!

2t12@f1
2~P2

21P3
2!1f2

2~P3
21P1

2!1f3
2~P1

21P2
2!#2t44~P2P3f2f31P3P1f1f31P1P2f1f2!1

1

2
k11@~]P1 /]x1!2

1~]P2 /]x2!21~]P3 /]x3!2#1k12@~]P1 /]x1!~]P2 /]x2!1~]P2 /]x2!~]P3 /]x3!1~]P3 /]x3!~]P1 /]x1!#

1
1

2
k44@~]P1 /]x21]P2 /]x1!21~]P2 /]x31]P3 /]x2!21~]P3 /]x11]P1 /]x3!2#

1 f 11F]P1

]x1
s11

]P2

]x2
s21

]P3

]x3
s3G1 f 12F S ]P1

]x1
1

]P2

]x2
Ds31S ]P2

]x2
1

]P3

]x3
Ds11S ]P3

]x3
1

]P1

]x1
Ds2G

1 f 44F S ]P1

]x2
1

]P2

]x1
Ds61S ]P2

]x3
1

]P3

]x2
Ds41S ]P3

]x1
1

]P1

]x3
Ds5G . ~43!
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In addition to the usual gradient terms with coefficientsk i j ,
we have included the flexoelastic terms inf i j which do have
an appreciable renormalization effect onk as explained in
the Appendix. The Appendix also gives the values of
necessary coefficients.

A. Local instability

As a first step, one can check whether ferroelectricity c
occur in the middle of the boundary neglecting the gradi
contributions to the energy. We call the corresponding ins
bility a ‘‘local’’ polarization instability. Physically, this
amounts to considering the hypothetical situation of a po
ization instability in an infinitely thick boundary. This is
necessary condition to obtain the instability in a real bou
ary. To check for the local polarization instability, it is suffi
cient to calculate the inverse susceptibility]2GP /]Pi

2 for the
relevant componentPi . In general, the polarization compo
nent perpendicular to the boundary will not be able to
velop because of the depolarizing effects, and thus the
evant components ofPi lie in the boundary plane.

We take as first example the longitudinal boundary p
pendicular to thex3 axis that was discussed in connecti
with Eqs. ~15! and ~16!. The relevant polarization compo
nents areP1 and P2, but in view of the symmetry of the
problem it suffices to check forP1. The corresponding in-
verse susceptibility is given by

x1
215

]2GP

]P1
2

52~a12Q11s12Q12s22t12f3
2!, ~44!

where

s15s25R12

f0
22f3

2

s111s12
. ~45!

In the center of the wallf350 and
22410
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$x1
21%m52Fa12~Q111Q12!R12

f0
2

s111s12
G , ~46!

wheref0 is the bulk value off3 given by Eq.~7!. Using the
known value of the bare inverse susceptibility 2a1 ~Appen-
dix!, the T dependence of the corresponding dielectric co
stante1,2

l 54p$x1%m shown in Fig. 3 is obtained. It does no
diverge, and thus the longitudinal antiphase boundary
stable against the development of a spontaneous polariza

As a second example we take the transverse boun
perpendicular to thex1 direction calculated in the previou
section. In this case one must check separately forP2 and
P3. For P2 one obtains

$x2
21%m52@a12Q11$s2%m2Q12$s3%m2t12$f1

2%m#,
~47!

where all values are in the middle of the boundary.$s2,3%m
can be obtained from Eq.~13!, with extra terms owing to the
fact that nowf1Þ0. One finds

$s2%m5
s11R122s12R11

s11
2 2s12

2
f0

22
R12

s111s12
$f1

2%m ,

$s3%m5
s11R112s12R12

s11
2 2s12

2
f0

22
R12

s111s12
$f1

2%m . ~48!

Inserting these into Eq.~47!, and using$f1
2%m from Eq.~38!,

the numerical result for the local dielectric constante2
t

54p$x2%m shown in Fig. 3 is obtained. This transver
boundary is thus stable against the spontaneous develop
of P2.

Finally, let us consider the case ofP3. One finds
7-8
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$x3
21%m52@a12Q11$s3%m2Q12$s2%m2t12$f1

2%m#

52Fa12S Q11

s11R112s12R12

s11
2 2s12

2

1Q12

s11R122s12R11

s11
2 2s12

2 D f0
2G

12S R12

Q111Q12

s111s12
2t12D $f1

2%m . ~49!

Inserting the values as above, the numerical result fore3
t

54p$x3%m shown in Fig. 3 is found. This now reveals
local instability at.42 K. Therefore this boundary is a can
didate for a true ferroelectric instability which should now
checked making allowance for the effects of the bound
profile and of the polarization-gradient energy.

Before doing this, it is of interest to consider the physic
origin of the deviations of the ‘‘local’’ dielectric constant
shown in Fig. 3 from their bulk values. The deviations fro
the bare susceptibility can be discussed in terms of sepa
contributions from pure strains and from pure rotations,
done for the bulk in Ref. 10.

~i! In the bulk, as shown in Ref. 10, while the bare diele
tric susceptibility diverges around 30 K, this divergence
prevented in the case ofea mostly by the stabilizing effect o
the phase-transition-induced compressive strains in theab
plane. In the case ofec , there are several contributions b
the one which is by far dominant is the strong stabilizi
effect of the puref3 rotation around thecW axis.

~ii ! For the ‘‘easy’’ antiphase boundary, the strains in t
ab plane are just like those in the bulk, and thus the po
ization instability in the boundary is suppressed mostly
the same reason. There are of course differences betweeea

ande1,2
l which arise from the lesser contributions.

~iii ! For the ‘‘hard’’ boundary perpendicular tox1, the
adjacent bulk produces a compressive strain«2 and an elon-
gation«3. It is principally «2 that prevents theP2 instability,
just as it does in the bulk. On the other handf3 is zero in the
middle of the boundary, and this removes the main stab
ing effect onP3. One is essentially back to the situation
the cubic phase, because the effect off1 is minor. Owing to
the imposed elongation alongx3, the instability ofP3 is then
enhanced, which raises the expected transition tempera
from ;30 to ;40 K.

B. Dielectric instability of the Néel wall

Now we investigate in detail theP3-instability of the Néel
wall whose profile was obtained in Sec. III. This requires
linearized equation of state forP3 which is calculated from
22410
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]x1
@]GP /]~]P3 /]x1!#5]GP /]P3 ~50!

and Eq.~43!. Note that in this case the RHS of Eq.~50! is
simply @]2GP /]P3

2#P3. This second derivative can be wri
ten

]2GP

]P3
2

5C1UQ~x1 /tw!, ~51!

whereQ(x1 /tw) is zero at the center of the wallx150 and it
is 1 on its exteriorx1→6`. With this notation the equation
of state reduces to

2k44]
2P3 /]x1

21@C1UQ~x1 /tw!#P350, ~52!

whereC is obviously the inverse susceptibility in the cent
of the wall given by Eq.~49!, while

C1U5S ]2GP

]P3
2 D

6`

52~a12t11f0
2!. ~53!

The linear operator of interest here is thus

L̂52k44

d2

dx1
2

1C1UQ~x1 /tw!. ~54!

It remains to obtain the expression forQ(x1 /tw). A direct
calculation gives

FIG. 3. The local dielectric constants calculated in the middle
a longitudinal wall e1,2

l , and in the middle of a transverse wa
perpendicular to thex1 axis, e2

t ande3
t . The values found fore1,2

l

and e2
t are smaller thanea in the bulk, whereas the value ofe3

t is
much larger than the correspondingec of the bulk, and it diverges a
42 K.
Q5
Q11@$s3%m2s3#1Q12@$s2%m2s2#1t12@$f1

2%m2f1
2#2t11f3

2

Q11$s3%m1Q12$s2%m1t12$f1
2%m2t11f0

2
, ~55!
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where

$s2%m2s25
s11R122s12R11

s11
2 2s12

2
f3

22
R12

s111s12
@$f1

2%m2f1
2#,

$s3%m2s35
s11R112s12R12

s11
2 2s12

2
f3

22
R12

s111s12
@$f1

2%m2f1
2#.

~56!

It is obvious that Eq.~55! has the property$Q%m50 since
$f3

2%m50, and$Q%6`51 sinces35s250 in the bulk. The
calculated curveQ(x1 /tw) is shown in Fig. 4. It can be
approximated quite satisfactorily by tanh2(x1 /tN), where the
approximate half-width of the Ne´el boundary istN.2tw .
This approximation is shown by the dashed line in Fig.
The position of the first eigenvalue shown by the horizon
line is sufficiently deep in the well that it should not b
substantially affected by the quality of the approximation
the wings. With this the problem is identical to that treat
with the operator~18!. The condition for instability is just
given by the equivalent of Eq.~21!:

U1C,C2tN
2 /k44. ~57!

Here the LHS is given by Eq.~53! and it is just 4p/ec . This
quantity is plotted in Fig. 5, as derived from the soft-mo
frequency measurement~Appendix!. The RHS containsC as
given by Eq.~49!. Our best value of the RHS is shown by th
corresponding solid line in this figure. It intercepts 4p/ec at
Tc.39 K. The dashed lines illustrate that a630% multipli-
cative inaccuracy in the RHS introduces at most a 1 K inac-
curacy inTc . However, the main inaccuracy is hidden in t
exact value of the bare inverse susceptibility 2a1, and more
precisely in the position of its zero around 30 K. A shift
that point results in a shift of the 42 K zero on the RHS
Eq. ~57!, and in a horizontal shift of the correspondin
curves in Fig. 5. In consequence, a reasonable estimate

FIG. 4. The functionQ(x1 /tw) given by Eq.~55!, which enters
the eigenvalue equation that determines the dielectric instabilit
a hard Ne´el-type boundary. The open dots show the crosso
points between the two branches. The approximation ofQ with
tanh2(x1 /tN) is shown by the dashed line. The horizontal bar is
actual lowest eigenvalue before the addition of2uCu in Eq. ~54!. It
shows thatQ is particularly well approximated in that region.
22410
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the value ofTc might be between 35 and 40 K. It should b
remarked that the effects of the boundary profile and of
polarization-gradient terms are rather small. They reduce
‘‘local’’ value of Tc by only ;3 K, i.e., by less than 10%
The boundary being rather thick, the situation is in fact clo
to that of a transition in bulk material, but with the ‘‘local
instability temperature.

C. The saturation polarization

It is of interest to obtain an estimate for the size of t
polarization that develops belowTc . We assume for tha
calculation that the boundary experiences no further insta
ity below Tc , and we simply determine the saturation val
at 0 K which is set by the quartic terma11 in GP , Eq. ~43!.
For such an estimate it is also reasonable to just use a
cal’’ Gibbs potential in the middle of the boundary, as w
have shown in the previous subsection that the modificati
due to the profile are comparatively small. The relevant p
of GP is then

$G%m5
1

2
$x3

21%mP3
21a11P3

41Q11s38P3
21Q12s28P3

2 .

~58!

The value of $x3
21%m is given by Eq. ~49!. The primed

stressess28 ands38 are just theP3
2-inducedchangesin s2 and

s3, as the main part of the stresses is already included in
calculation of$x3

21%m . The induced changes inf1 and f3

are neglected in this simple estimate, as it can be shown
their effect is comparatively quite small. Since the mac
scopic field is zero,E5]$G%m /]P350, the derivative inP3
of Eq. ~58! gives an equation for the saturation polarizati
Ps . The values ofs28 and s38 that enter that equation ar
obtained from Eq.~3!:

d«25s11s281s12s382Q12Ps
2 ,

d«35s12s281s11s382Q11Ps
2 . ~59!

of
r

FIG. 5. Determination ofTc following Eq. ~57!. The line 4p/ec

is the LHS of Eq.~57!. It intercepts the RHS at the transition tem
peratureTc . The dashed lines indicate the small effect onTc of a
630% variation of the numerical values on the RHS. The m
uncertainty comes, in fact, from the position of the zero of t
‘‘local’’ inverse susceptibilityC.
7-10
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As the strains are fixed by the adjacent domains, the cha
d«2 andd«3 are zero, so that Eq.~59! gives

s285
Q12s112Q11s12

s11
2 2s12

2
Ps

2 ,

s385
Q11s112Q12s12

s11
2 2s12

2
Ps

2 . ~60!

Introducing these in the derivative of Eq.~58!, one finds that
a11 is renormalized to

ã115a111
~Q11

2 1Q12
2 !s1122Q11Q12s12

2~s11
2 2s12

2 !
. ~61!

Finally, Ps is given by

Ps
252

$x3
21%m

4ã11

, ~62!

where $x3
21%m is at 0 K. Introducing the numerical value

from the Appendix, one findsPs
251.93108 cgs, or Ps

54.2mC/cm2. This is quite a large value, as it amounts
about 20% of the room-temperature polarization of a stro
ferroelectric such as BaTiO3. The corresponding stresse
s28520.163108 and s3852.73108 erg/cm3 are also quite
large.

V. DISCUSSION

The solutions for ‘‘simple’’ antiphase boundaries we
presented in Sec. II and the stability of these solutio
against the development of other components offW was ana-
lyzed in Sec. III. The ‘‘simple’’ boundary, withf50 in its
middle, is the stable solution when its plane is perpendicu
to the tetragonal axiscW . These we also called longitudinal, o
‘‘easy’’ boundaries. They are quite thin since the continuu
approximation only gives a full width 2tw.2a0. This means
that a microscopic calculation will be necessary to estab
their structure. Such boundaries have been observed
high-resolution electron microscopy.28 On the very thin
samples used in such a case, they were indeed found t
rather sharp, and also to have an extremely high den
different boundaries being separated from each other by
a few timesa0.

It was also shown in Sec. III that ‘‘simple’’ transvers
boundaries, those that contain thecW axis, are unstable agains
the development of new components offW . This is found for
all values of the anglea between the normal to the bounda
and thex1 direction. For the particular casea50, the stable
structure was shown to be of the Ne´el type. For these par
ticular orientations an analytical solution could be obtain
by neglectingd11. That approximation is physically well jus
tified, in view of the nearly two-dimensional~2D! correlation
of the TiO6-octahedra rotations in the basal plane. The
Néel boundaries are very thick, with a full width 2tN.20 to
25a0. This justifies the use of the continuous approximati
22410
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These boundaries can also be called ‘‘hard’’ in view of th
higher energy compared to the ‘‘easy’’ ones.

In Sec. IV, it was shown that thea50 hard boundary is
unstable with respect to the development of a spontane

polarization parallel tocW . This unusual ferroelectric transi
tion should occur forTc between;35 and ;40 K. The
question naturally arises whether this is a general featur
all the hard boundaries, irrespective ofa. A strict answer to
this question would require solutions for the Ne´el-type
boundaries at alla ’s, including checking for their stability.
For aÞ0 the approximationd1150 is of no particular ad-
vantage, so that one is faced with having to solve a pai
coupled nonlinear differential equations. This is genera
quite a tedious task that should require a numerical study
it seems that it cannot be pursued analytically.26,18 However,
we found fora50 that the ferroelectric instability was ne
ther strongly affected by the gradient terms, nor by the pr
ence of the component offW perpendicular to the boundar
plane. It is thus meaningful to check for the ‘‘local’’ pola
ization instability in the middle of ‘‘simple’’ hard boundaries
even though these are structurally unstable. We found in
approximation very similarP3 instabilities fora50 and for
a5p/4, with nearly equal values ofTc . This leads us to
conjecture that ferroelectric instabilities should occur in ha
boundaries for all values ofa, and in all at about the sam
Tc . The above result fora50, and conjecture for alla ’s,
might provide an explanation for some of the numerous
explained anomalies that have been reported in SrTiO3 be-
tween;30 and;40 K.

In a first extensive x-ray study, Lytle already reported
transition-like feature occurring at;35 K.29 In retrospect,
what he observed might have been a rearrangement ofstruc-
tural domains, i.e., essentially an exchange ofa for c or vice
versa within the scattering volume. Such structural anom
lies are of course numerous, and they have a clear signa
in ultrasonic measurements, as well as in mechanical or e
tromechanical ones, such as, e.g., in Refs. 30 or 31. I
important not to mistake these effects for genuine ‘‘bul
ones. Take for example the case of an ultrasonic meas
ment of a shear velocity related to the compliances44 of the
cubic phase. If nothing is undertaken to generate a ‘‘sin
tetragonal domain,’’ the measurement in the tetragonal ph
will be affected in an uncontrolled manner by combinatio
of the tetragonalcompliancess44 and s66, which are quite
different from each other.5 A complicated behavior is then
seen in the tetragonal phase, as, e.g., in Ref. 32. By app
tion of a sufficient orienting^110&-axial pressure, such
anomalies can be forced to disappear from the ultraso
data.13 It is, however quite interesting that anomalies relat
to domain motion, similar to the one just cited or the m
chanical friction peak reported in Ref. 31, occur in the reg
of theTc predicted above. This suggests that the ferroelec
transition in the antiphase boundaries can modify subs
tially the mobility of the structural domains. This is probab
not so surprising considering the interaction between
roelastic boundaries and antiphase ones that is known in
terials such as gadolinium molybdate~GMO!.33,34

There are also reports of ‘‘bulk’’ anomalies in the sameT
7-11



h
lin
ns

m
a

ire
p
d
ts
o
dy
n
u
a
-
o

f-
ri
by
le

s

gl

e
ec
n
as
ts

ic
bu
fre
l-
i

in
ta
a
in
a

cs
o

s
io
re
t o

in
b

lin
to
n

-

e
hat
si-
the

ain
ran-
r-
ter-
ter,

, so
-
de-
es

h a
far
iO

b-
has
res
is
sup-

sed
dent

have
d in
ed
ith

h

r,
the

led
he

TAGANTSEV, COURTENS, AND ARZEL PHYSICAL REVIEW B64 224107
region. This is the case for the effects atTq , originally no-
ticed with electron paramagnetic resonance~EPR!,12 but also
seen on other signatures such as birefringence.35,11EPR mea-
surements were often performed on thin, elongated, hig
polished platelets that had been cut with a specific crystal
orientation.36 These platelets have the nice property to tra
form with a single tetragonal-axis direction belowTa . One
may presume that a large number of dislocations beco
oriented plastically during polishing, producing the intern
stresses that force the ‘‘monodomain’’ character. The b
fringence measurement of Ref. 35 also used such a sam
The ‘‘Müller effect’’12 was observed on elongated, polishe
thin rods which might have quite similar structural defec
In all these ‘‘real’’ samples, the density and orientation
antiphase boundaries will not be determined by thermo
namic equilibrium, but rather by defects and transitio
kinetic considerations. In thin polished samples one sho
expect a large density of antiphase boundaries that form
‘‘freeze in’’ owing to edge dislocations. A link between an
tiphase boundaries and dislocations was experimentally
served in GMO.33,34 If the density of hard boundaries is su
ficiently high, the stresses generated within the bounda
by the ferroelectric transition will have to be equilibrated
additional average strains that will affect the entire samp
The onset of these strains atTc might well produce
transition-like features nearTq in bulk measurements. Thi
would of course explain why strong effects atTq are not seen
in thick, good quality samples that are forced into a sin
tetragonal orientation by an external axial pressure, as
Refs. 37 and 10.

The ferroelectricity which we predict in ‘‘hard’’ antiphas
boundaries below 40 K should also manifest itself in diel
tric losses. The loss can be influenced over a wide freque
range. Slabs of polar material, i.e., ferroelectric antiph
boundaries, will affect the loss mainly owing to two effec
Firstly, the so-called quasi-Debye loss mechanism~see e.g.,
Ref. 38! allowed by symmetry only in noncentrosymmetr
structures will be active in these boundaries. The contri
tion of this mechanism can be essential at microwave
quencies. Although affecting only a small fraction of the vo
ume, this contribution can really be significant as its yield
expected to be very large per unit volume.39,40 Secondly, the
ferroelectric slabs should split into ferroelectric subdoma
divided by subdomain walls—the regions where the spon
neous polarization passes through zero. These subdom
will contribute to the dielectric loss as the domain walls
bulk ferroelectrics do. This contribution could be relevant
lower frequencies, similar to the case of bulk ferroelectri
We believe these mechanisms could be relevant to the
served low temperature anomalies in the dielectric losse
SrTiO3 as reported for microwaves in Ref. 14 and for rad
frequencies in Ref. 15. Clearly, a direct test for this interp
tation will require experiments where the type and amoun
antiphase boundaries will also be monitored.

In conclusion, the predicted ferroelectric transition with
antiphase boundaries can potentially produce a large num
of anomalies as it occurs. Further progress along this
will require the development of experimental methods
produce, observe, and control these boundaries. More ge
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ally, it should be remarked that a ‘‘local’’ ferroelectric insta
bility is clearly possible in SrTiO3 when the antiferrodistor-
tive order parameter is locally modified, especially if th
strains are favorable. One should thus keep in mind t
other structural defects than ‘‘hard’’ boundaries could pos
bly generate a local transition, and thereby anomalies, in
same temperature region.

VI. SUMMARY

We have shown in this paper that the antiphase dom
boundaries that occur below the 105 K structural phase t
sition of SrTiO3 are of two extreme types. Boundaries pe
pendicular to the tetragonal axis are very thin and charac
ized by a single component of the structural order parame
as already discussed previously.18 Boundaries containing the
tetragonal axis are much thicker (;20a0) and an additional
component of the order parameter develops within them
that they are of the Ne´el type. Near or below 40 K, a ferro
electric transition should occur in these boundaries. The
veloped polarization is sizable as it could reach valu
;4 mC/cm2. The discussion in Sec. V suggests that suc
transition could possibly account for several of the so
unexplained anomalies which have been reported for SrT3
below ;40 K.
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APPENDIX

This appendix lists all the numerical values that are u
in the course of the paper. The only temperature depen
parameters areb1 in Eq. ~1! and a1 in Eq. ~43!. All other
parameters are assumed constant and the values that
been used are listed in Table I. The sources are indicate
the caption of the table. The calculations that were perform
to obtain some of these coefficients are straightforward, w
the exception of those fork44 and f 44 which will now be
explained.

A value of k44 can be derived from the dispersion wit
wave vectorqW of the ferroelectric transverse optic~TO! soft
mode. This has been determined with neutron scattering.37,44

The valuek̃44 which is obtained in this way is, howeve
renormalized by the coupling between the gradient of
polarization and the transverse acoustic waves.45,46This cou-

pling is produced by the flexoelectric tensorf
↔

. To under-
stand the situation it is easiest to first derive the coup
equations of motion from the Gibbs function used here. T
equation for the polarizationP3 of the TO mode propagating
in the x1 direction is
7-12
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g P̈31]GP /]P35
d

dx1
@]GP /]~]P3 /]x1!#, ~A1!

which gives

g P̈312a15k44

d2P3

dx1
2

1 f 44

ds5

dx1
. ~A2!

The equation fors5 is obtained from the constitutive equa
tions of elasticity~3! with G5Gf1GP . Taking into account
Eqs.~1! and ~43!, it reads

«55s44s52 f 44

dP3

dx1
. ~A3!

Introducing this into Eq. ~A2! and using d«5 /dx1

5d2u3 /dx1
2, whereu3 is a component of the acoustical di

placement, one obtains

2g P̈35F2a12S k441
f 44

2

s44
D d2

dx1
2GP32

f 44

s44

d2u3

dx1
2

. ~A4!

This exhibits the coupling betweenP3 andu3. The equation
of motion for u3, including the flexoelectric term, reads

TABLE I. Constants of ‘‘cubic’’ SrTiO3 at low temperatures.

b11 1.6931043 a a11 2.1310212 f

b12 3.8831043 a a12 1.7310212 f

s11 3.52310213 b Q11 5.09310213 g

s12 20.85310213 b Q12 21.50310213 g

s44 7.87310213 b Q44 2.13310213 g

R11 8.731014 c t11 21.9431015 h

R12 27.831014 c t12 20.8431015 h

R44 218.431014 c t44 6.5131015 h

d11 0.2831011 d k11 not used
d12 27.3431011 d k12 not used
d44 7.1131011 d k44 8.26310218 i

r 5.13b f 11 not used
a0 3.931028 b f 12 not used
L/4p 7.2431027 e f 44 5.88310215 i

aRecalculated from constant-strain values in Ref. 7.
bFrom Ref. 41.
cFrom Ref. 7.
dFrom Ref. 18 corrected according to the units used in the orig
paper by Stirling~Ref. 16!.

eL[ea,cVa,c
2 whereVa,c is the soft-mode frequency in rad/s. Th

value is calculated from the data in Ref. 10 taking (ea)max

542000 and (ec)max59400.
fRecalculated from constant-strain values in Ref. 42.
gRecalculated from the deformation-polarization electrostrictive
efficients in Ref. 43.

hRecalculated from data in Ref. 10, keepingt112t12 at the value of
Ref. 7. The difference with Ref. 10 is due to a numerical error
the latter.

iExplained in the Appendix.
22410
2rü35
1

s44

d2u3

dx1
2

1
f 44

s44

d2P3

dx1
2

, ~A5!

wherer is the density of the crystal. Now one introduces t
displacementP for the TO-mode byP3[Ar/gP, and trans-
forms to Fourier space withP}u3}exp(2ivt1iqx1). One
obtains

v2P5VTO
2 P1Vq2u3 ,

v2u35Vq2P1VTA
2 u3 , ~A6!

where

VTO
2 5~2a11k̃44q

2!/g,

VTA
2 5q2/~rs44!,

k̃5k1 f 44
2 /s44,

V5 f 44/~s44Arg!. ~A7!

It is clear from the first relation, since 2a154p/e, that g
54p/L, whereL is defined in Table I. The neutron scatte
ing experiments37,44 determine k̃44/g53.831011 cm2/s2.
The value of V was found by Brillouin scattering
experiments46 V52.431011 cm2/s2. The same experiment
give the bare velocityVTA /q54.253105 cm/s. From these
values, using~A7!, one calculatesk̃4455.23310217 cm2

and k4450.826310217 cm2. This emphasizes the large e
fect of the flexoelectric renormalization.

The value ofb1 in Eq. ~1! is only used here in the low-T
phase, well belowTa5105 K. It is related tof0

2 by Eq.~7!.
The experimental value off0

2 was taken from Ref. 47 and
converted to the units cm2 ~oxygen displacements as in Re
7!. It was then fitted to a polynomial function that gives a
excellent approximation forT<60 K. The result is

2b1~T!51.6231025

3~120.33831024T220.5331026T3!.

~A8!

The value ofa1 in Eq. ~43! is obtained from the measure
soft-mode frequencies in Ref. 10, using the value ofL in
Table I. It is already fitted to a Barrett formula in Ref. 1
which in the appropriate cgs units reads

a1~T!54.513@coth~54/T!2coth~54/30!#31023.
~A9!

al

-
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