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Statistical dynamics of dislocation systems: The influence of dislocation-dislocation correlations
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During plastic deformation of crystalline materials, the collective dynamics of interacting dislocations gives
rise to various patterning phenomena. A crucial and still open question is whether the long range dislocation-
dislocation interactions which do not have an intrinsic range can lead to spatial patterns which may exhibit
well-defined characteristic scales. It is demonstrated for a general model of two-dimensional dislocation sys-
tems that spontaneously emerging dislocation pair correlations introduce a length scale which is proportional to
the mean dislocation spacing. General properties of the pair correlation functions are derived, and explicit
calculations are performed for a simple special case, viz pair correlations in single-glide dislocation dynamics.
It is shown that in this case the dislocation system exhibits a patterning instability leading to the formation of
walls normal to the glide plane. The results are discussed in terms of their general implications for dislocation
patterning.
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[. INTRODUCTION dered patterns to the minimization of elastic energy. In this
approach dislocation pair correlations had to be introduced
In plastically deforming crystals, the accumulation, inter-phenomenologically in order to obtain a well-defined energy
action and motion of large numbers of dislocations gives riséunctional’® The pattern wavelength obtained by Holt
to a complex spatiotemporal dynamics. In many cases thturned out to be proportional to the spatial range of the
dislocations form spatial patterns with length scales whickcorrelations.
decrease in inverse proportion with the flow stré$aw of All these approaches have in common that the wavelength
similitude”).! In conjunction with the Taylor relationship ac- Of dislocation patterns deduced from the models is governed
cording to which the flow stress of a dislocation arrangemenPy length scales introduced priori in terms of gradient
is proportional to the square root of dislocation density, thiscoefficients, nonlocal kernels or correlation functions. Since
implies that the characteristic scales of deformation-induce¢he results are predetermined by the phenomenological “in-
dislocation patterns are often proportional to, but in generaPut,” it is arguable whether this kind of models can solve the
much |arger than, the mean dislocation Spacing_ This ho|d§r0b|em of Iength scale selection. This deficiency has led to
even for “fractal” dislocation patterns which are self-similar the idea of using stochastic mod&tSwhere dislocation in-
over a certain range of scales, since the upper and |0Wéeractions are considered in terms of spatiotemporal fluctua-
bounds of this Sca“ng regime are again proportiona| to théions of the local dislocation fluxeshear strain rate@sThis
average dislocation spacifig. approach yields a characterization of inhomogeneous dislo-
In the past different phenomenological models have beefiation arrangements in terms of distributions of dislocation
proposed for dislocation patterning. While these models difdensities which give a statistical “signature” of patterning
fer with respect to the Conceptua| framework emp]oyed and)ut no direct information on how the dislocations are distrib-
the way how length scales are introduced, they have in contited in space. The approach does not solve the problem of
mon that the dislocation arrangement is characterized itength scale selection but has been fruitful in modeling mul-
terms of space-dependent dislocation densities for which bafiscale dislocation patterns such as fractal cell structures ob-
ance equations are formulated in a phenomenological marserved in deformation of high-symmetry oriented fcc
ner. In the work of Walgraef and Aifantié the framework ~ Crystalsi*~**Furthermore, it has been demonstrated that the
of reaction-diffusion systems was used, and space dependeiﬁ.formation contained in the dislocation density probability
cies were introduced through second-order gradient terms iglistribution is sufficient to calculate important properties
the dislocation densities. Kratochvil proposed to describguch as the macroscopic flow stress of inhomogeneous dis-
spatial interactions in terms of nonlocal expressions eithelocation arrangemerfts®and characteristics of the x-ray line
for the flow stress evolution in general“nonlocal  profiles!
hardening)® or, more specifically, for the sweeping of edge  In addition to the theoretical models mentioned above,
dislocation dipoles by moving screw dislocatidhis. one of  over the past few years a vast number of computer simula-
the earliest papers on the subject, Haised an irreversible tions have been performed for studying the dislocation pat-
thermodynamics framework and related the formation of orterning phenomenon. Using different discretization methods,
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several authorgsee, e.g., Refs. 16,1 have investigated the by the presence of the first one—a fact which cannot be
evolution of systems of interacting dislocation lines. In thesegrasped by spatially averaged densities which represent
works [often referred to as three-dimensior{8D) simula-  probabilities for the spatial occurrence of a given type of
tions] the dislocations are treated as real linear entitiesdislocations irrespective of their arrangement relative to each
While early stages of patterning have been observed in sucpther. Hence one has to ask foonditional probabilitiesto
simulations'®*° statistically reliable information on the find other dislocations in a certain position relative to the
mechanisms which govern the pattern wavelengths cannétislocation under consideration, which mathematically im-
yet be deduced from the simulations since the characteristiglies the consideration of pair densities or pair correlations.
lengths of the observed rudimentary patterns are of the sami'€ evolution of pair configurations depends, in turn, on the
order as the size of the simulation volume. Hence, such 3r3rangement of third dislocations, and so forth. _
simulations provide insight into often complex but still “el- ~ Therefore it is necessary to consider in a systematic man-
ementary” dislocation phenomena. The results of thes&€ many-dislocation densities which characterize the prob-
works are very important but the study of dislocation pattern2Pility of occurrence of many-dislocation configurations. A
ing requires approaching the problem on a scale larger thafprmal procedure for defining such densities and obtaining
that one can presently afford with the computation powefthe corrésponding equations of evolution from the dynamics
available. A computationally less demanding approach is +©@f the discrete dislocations has been discussed in an earlier

0 . . . .
investigate numerically the collective behavior of an en-Work by Groma® For three-dimensional dislocation sys-
semble of parallel straight dislocations. Certainly, this is alems, a systematic method to obtain a statistical description

strong simplification of a real dislocation network but, on thenas been demonstrated by El-AZalEl-Azab uses a concep-

other hand, such a 2D system is an ideal model system tdpal framework which differs from that used by Groma and is
investigating the influence of long range dislocation-Similar to Klimontovic’s approach in nonequilibrium statisti-

dislocation interactions. Since the precise roles of the shof¢@! m_echanig%?_His approach is of particular interest since it
range(junction formation and long range dislocation inter- permits in principle the characterization of correlations in 3D
actions in dislocation patterning are not clear at the momenglislocation systems. For 2D systems, however, the results
it is an important question whether the long range interacderived by El-Azab are equivalent to those obtained by
tions alone(which decay as t/and hence do not have an Groma. Both Groma and El-Azab use mean-field approxima-
intrinsic range can give rise to dislocation arrangementstons which_reduce the problem to single-dislocation

it 0,26,27,21 ; ; : )
with well-defined length scales. The objective of the presengens't'eé_ A stochastic generalization of Groma's
paper is to analyze the consequences of the long ran odel which takes into account microscopic stress fluctua-

dislocation-dislocation interactions in a 2D setting within antion$ in terms of a random sto%lastic process was shown to
analytical framework, with a special attention on the properYi€ld fractal dislocation patterris. However, these studies
ties of dislocation-dislocation correlation functions. also demonstrated that the neglection of correlations which is
To characterize the dynamics of a 2D dislocation system{nherent in any mean-field approach makes it impossible to
we adopt the statistical approach proposed by Gréna solve the problem of length scale selection. In the present

which is based on many-dislocation densities. Before goindnvestigation, we therefore consider explicitly the evolution
into the technicalities. we find it useful to state the main©f correlations in the dislocation arrangement. In Sec. Il, the

problem in statistical modelling of dislocation systems inProblem is stated in mathematical terms and a scaling analy-
physical terms: On “mesoscopic” scales large as compared'S 1S _performed. In t_he rate-mdep_endent case, the s_calmg
to the dislocation spacing, the dislocation arrangement caR€havior of the evolution equations is found to be consistent
be characterized by single-dislocation densities which repré2ith the “law of similitude” and the Taylor relationship. In
sent probabilities to find dislocations of a given type at a>€cS- Il and IV, general properties of pair correlation func-
given point in space. The average Kes-Nye dislocation tions are derived a_nd co_mpared with S|mulat!on results for
density tensor can be computed from these single-dislocatiofi€ case where dislocations of only one slip system are
densities, see the work of El-AzZ3bwhere this is demon- Present. The role of pair correlations in dislocation patterning
strated for three-dimensional dislocation arrangements. Frof§ discussed in Sec. V, and general conclusions are given in
this tensor, in turn, long-range stresses in the dislocation arr€c. V1.

rangement can be calculated using the stress function

method???® However, it has been recognized already in an Il. STATISTICAL CHARACTERIZATION

early paper by KroeP* that the information contained in  OF A 2-DIMENSIONAL DISLOCATION ARRANGEMENT
spatially averaged single-dislocation densities and the corre-
sponding mesoscopically averaged internal stress fields is not
sufficient to statistically characterize the local internal stress We consider an arrangement Rfdislocations with line
state on the microscopic scale of individual dislocationsdirection parallel to the axis of a Cartesian coordinate sys-
This, however, is indispensable for studying the dynamics ofem and denote by (i=1 .. .N) the position vectors of the
dislocation systems: Motion of dislocations takes place undedislocations in they plane. In generalization of the situation
the influence of the locally acting external and internaldiscussed in Ref. 20, dislocation activity is allowed in more
stresses. The internal stress experienced by a given disloctiran one slip system. However, because of the 2D geometry
tion depends on the configuration of the other dislocations irconsidered, all allowed glide directions are contained in the
its surrounding. This configuration is obviously influencedxy plane. The slip system of thigh dislocation(Burgers

A. Mathematical formulation
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vector and glide directionis labeled bya;, and the sign of to the external stress field and the stress field of a single
this dislocation bys; (sj==1). For simplicity, the disloca- dislocation, respectively. The projection tensdvj are
tion strengthb (the modulus of the Burgers vecjois as-  given by M{j=(1/20)[b{*n{*+n{*b{’] whereb{* and nj* are
sumed to be the same for all dislocations. During plastidche components of the Burgers vechirand the glide plane
deformation, due to dislocation multiplication or annihilation normal n* of slip systema. The dislocation stress fields
the number of dislocations is not conserved. In principleofj(r) can be written as

terms characterizing dislocation multiplication and disloca-

tion reactions can be introduced into the present formalism. o (N=Gbg(nN=Gb
(For systems of reacting particles, this is, e.g., discussed in ! ]

Ref. 29. However, in the present investigation we focus on

the consequences of long-range interactions. Hence, for Si”@ﬁmensionless function of the angtein the xy plane. Ac-

pIicit_y N is_kept (_:ons_tant. cording to Egs.(2) and (3), the resolved shear stresses
Dislocation glide is governed by the component of the ,

kY (r) = aga) g =3 . M KK Y
Peach-Koehler for@8in the glide direction. For thith dis- ¢ () =GbK (0)/|r|,.whereK =2 MK
location this is given by;(r;) =s;ba“i(r;), whereos“i(r;) is In prlnC|pI¢, the evolutllon of th_e Q|§Iocat|0_n arrangemen_t
the resolved shear stress in the slip systerat the position can be obtained by tracing the individual dislocation posi-

of this dislocation. We assume overdamped dislocation mot_|ons using Eq(1). However, the plastic behavior of a de-

tion and a friction force which is linearly proportional to the forming crystal depends on statistical properties of the dislo-

dislocation velocityv; =€ uF;(r;), whereu is an effective cation ensemble rather than on the precise location of the
ot . o . . . individual dislocations. We consider an ensemble of statisti-
mobility coefficient ande® is the unit vector in the glide

direction of dislocations of slip system (the line of inter- cally equivalent dislocation arrangements and define many-

section between the glide plane and plang. Taking dislocation densities by the ensemble averages
into account that the local shear stress acting on the disloca- N
a,S
p(iy(r):= .

Kii(6)
Irl

: ()

where G is a shear modulus of the material aK(% is a

tion is the sum of the external shear stress and the shear 2 5Mk555K5(r—rk)
stresses created by all other dislocations, the velocity of the k=1

ith dislocation may be written as N N
N p(azos S8 (r,r,) :=< kZl I;k 5aak5a’a|55§<5s’sl 5(r_ rk)
U= Siube‘”i o&baiy 2 SkO'aiak( ri— rk) . (1)
kZi
Here o®"“i is the external stress resolved in the slip system X &(r! —r|)> IR 4

a; ando®i*«(r;—ry) is the shear stress produced in slip sys-
tem a; at the positionr; by a (positive dislocation of slip N EQ.(4), p(3)(r) is the density of dislocations of tyder,s}
systeme, located atr, . These stresses are related via at the positiorr, andp&c;"ss’(r,r’) is the density of pairs of
dislocations of typeqda,s} and{a’,s'} at the respective
O_ext,azz O_?jxtMicjg, O_aa'(r)zz o__c){’(r)M{sz ) positio.nsr anq r’. Higher-order densities which obey the
i ] recursive relations

1

,Sq- - S, ,S1+ - S,
p?nl) () = N—n ES f P?nl+1)an+1 V(g T )P ©)
Fn+15n+1

are defined accordingly. It is noted that owing to the ensemble averaging the many-dislocation densities are in general smooth
functions of their arguments. In the following, we shall often use an abbreviated notation, vyfjgiﬂg):pfll)’sl(rl),
P L.2)=p3) " (r,r2), ete.

To formulate the evolution of the many-dislocation densities, we ensemble average the discrete equations dfl)motion
Using the definitions given in Eq4) we obtain for the evolution of the single-dislocation densiﬁéﬁ (see Ref. 2D

1 o o
mﬂtp(l)(l): — V{8101 4y(1) - V{? ES S132f p(2)(1,2012(r —15)d%r,, (6)
ap,Sy

i.e., the equations of evolution of the single-dislocation densities contain integrals over the pair densities. The %i‘ierator
=ﬁrie“i acts on the coordinate and takes the directional derivative in the directefn

It may be mentioned that the right-hand side of this equation is the gradient of the dislocatigh flurf dislocations of
slip systema; and signs;, divided bybu. From the dislocation fluxes, the components of the plastic strain rate tensor are
obtained agsee Ref. 28
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ék|=b25 S(j*°e*)My,. (7)

Furthermore, by multiplying Eq6) with s;b%en“t and summing over al; ands;, one can arrive at an equation having the
form

7% 1 curli=0 8
P curld= (8)
in which e is Kroner's dislocation density tensérandJ is the dislocation current density tensor, the symmetric part of which
is again the plastic strain rate. It follows, that from E6). we do have explicit expressions for the plastic strain rate, which
build the link between the formalism presented and macroscopic deformation problems.

The pair densities obey, in turn, the equations

1 3 .
Mﬁtp(z)(l,2)= — Vs[04 5,012(r — 1)) |p(2)(1,2 — V* ES 3133f p3)(1,2,90°1%3(r; —r3)d’r3+ 12, (9)
a3,S3

Here the symbol &2 means that the terms on the right-hand side of(Bgare repeated with indices 1 and 2 interchanged.
The general equation for thedislocation density is

n

1 n
—dpm(L---n)=—2, Vis| o™i+ >, s0%%(r;—r
by P (n)( ) 121 ] J{U kE#J ko (T =1y

n
pmny(1---n) —jzlvjaj > SiSnia

an+1:Sn+1

X f Pn+1)(1-- 'nan+1)0'ajan+l(rj_rn+1)d2rn+1- (10

n_ap - -ap,Syt--Sy

1 1 11 i a, a, ,S1-+ -5,
Knowledge of the dislocation densities of arbitrary order P —C oS, P(anl) an .Sy "—Chph '

yields a complete statistical description of the dislocation
system, i.e., the statistical information obtained by solving _1 1 ext 12 ext
the infinite hierarchy of equation),(9),(10) is equivalent r—=C, 7T, 1=C,7t, oy —C oy (11)

to the information obtained by solving the discrete equation . . L .
y 9 d ?nvanance under this transformation implies that any particu-

of motion for infinitely many statistically equivalent initial . .
configurations and subsequent averaging. However, the hiel-r solution of(6),(9),(10) belongs to a one-parameter mani-

archy of Egs. (6),(9),(10) where the equations for the old of similitude solutionspertaining to different external

. . o . . §tresses. These solutions may be parametrized, for instance,
n-dislocation densities contain integrals over the densities 9%\ their total dislocation density:=[1V]X, Jyp®S(r)d2r
next-higher order is much more difficult to handle than the y a.s) VP(1)

di ¢ i Theref the statistical h dWherev is the crystal volume. From a given solution, the
Iscrete equations. Theretore, tne stalistical approach use J:%rresponding similitude manifold is generated by scaling all
the present work is useful only if relevant information can be

lengths in proportion with the mean dislocation spacing

obtained by truncating this hierarchy at some low order. Tol/f, all imes in proportion with 1, and the externally

find out at which order truncation may be done without de.'applied stress in proportion witkip.

stroying essential qualitative features of the dynamics, it is When the dislocation mobilities are high, dislocations al-

Eseful to study some scaling properties of the full system 0Rwost instantaneously relax intfguasjstationary configura-
gs.(6),(9),(10). tions. In the limit of rate-independent behaviop-G ©)
where dislocations respond instantaneously to acting
stresses, the dislocations are always arranged in metastable
stationary configurations, the lifetime of which is governed
We investigate the scaling behavior of E(8),(9),(10) by by the activation of new sources or an increase of the exter-
assuming that all single-dislocation densities are changed byal stress. In the quasistatic limit, the scaling behavior of
a common factocC,,, pf’iiﬂcppﬁf. Further we require that Egs.(6),(9),(10) is consistent with two basic empirical prop-
the n-dislocation densities scale like products ofsingle-  erties of dislocation system&) According to the Taylor re-
dislocation densities. Now we look for an appropriate transdationship, the flow stres@s.e., the stress at which large-scale
formation of the other quantities in Eg$),(9),(10) such that  dislocation motion sets jrscales as the square root of dislo-
these equations remain invariant upon the rescaling. Poweation density(ii) According to the “law of similitude” the
counting shows that there is exactly one transformatioriength scales of dislocation patterns observed after plastic
which fulfills this requirement; it is given by deformation scale in inverse proportion with the flow stress

B. Scaling relations
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(and hence in proportion with the mean dislocation spacing .

In the course of strain hardening, dislocation arrangementsS20“1“4(r1—rz)=p ZS Sg | F3%3(r3)d(23)(r2,r3)

are often found to evolve on a similitude manifold where 3%

they con'tra_lct1 in space but maintain their geometrical ><[1+d(Sl)(ra,rl)]Ualaa(rl_rg)d2r3,
characteristicg

(15

ll. PAIR CORRELATIONS IN QUASISTATIC where fo3(r) =p(i5(r)/ p, and d12)(ra.rp) =
DISLOCATION ARRANGEMENTS: GENERAL p2)(L,2)1p1y(1)p1)(2)]—1 is the scaled pair correlation

PROPERTIES function of dislocations of type$a,,s;} and{a;,s,}. To

. : . L study the properties of these pair correlation functions, we
The scaling property11) gives an important guideline . . .
A . . consider the case of a homogeneous dislocation arrangement
how to handle the infinite hierarchy of many-dislocation den-

a,s_ -
sities. The idea is to truncate this hierarchy at some lavel wheref constf) for all {a,s}. Then thed,; are func

by expressing densities of ordeit 1 in terms of densities of tions Of_ the relative positions; — T only, and_ some gene_ral
) - . properties of these functions can be obtained from simple
lower order. The simplest manner to do this is to use, in Eq

(6), the mean-field approximationzy(1,2)~ p(1(1)p(1)(2) inspection of Eq(15), considering the behavior at large and

as proposed by Gronfd.This amounts to the assumption small valu_es Of 1. . .

that the positions of individual dislocations are uncorrelated. The pair (?orreNIatlon funcpons depend only -on the sc.aled
However, when we require that truncation preserves the funsPace coordinates=rp. This reflects the scaling behavior
damental scaling properties expressed by Bd), it be- discussed above.

comes obvious that the mean-field approximation which At smallr,, the pair correlation functions must exhibit a
truncates at first order destroys substantial information: Tha/r ,, singularity.

length scale contained in the full hierarchy—the mean dislo- 114 integralsa(lz)zzfd(lg)G)dZF must be finite. In Fou-

cation spacing—no longer shows up in the mean-field €quaser space ak=0 all derivatives of the Fourier transforms of
tion, which therefore permits additional scaling transforma-,q d(12) and of the[d(;0*1°2] must also be finite, which

tions. On the other hand, E(9), which involves pair o hjiec’that in real space tht, ) decay faster than algebra-
densities, has the same scaling properties as the general F’r&’ally.

(10). Hence, consideration of pair densiti@s, equivalently, ~ . ~
pair correlations allows one to account for all scaling rela- AFor Ielrgerlz one may therefore approximatk(rsy)
tions between stress, total dislocation density, and lengtfd(12)8(r12). Equation(15) in this approximation reduces to
scales of the dislocation pattern.

We focus on weakly correlated dislocation arrangements

where distant dislocations behave in a statistically indepen- Sp0“1%2(rp) = _2 S3f*3%dpg0“1*3(ryy).  (16)
dent manner. Then the pair densities fulfill the asymptotic e
relations

This equation must be fulfilled by the “amplitude"&zg) of
the pair correlation functions for all combinations

P2(1,2=p1)(1)p2)(2) {a;...a3,5,,83} and irrespective of the direction of the
Vectorry,.
for ryp=|r—ry|—oe. (12 To interpret Eq.(16) in physical terms, we note that

+d(12)(r12)]p2"12)52dv is the conditional probability to find a
For the third-order densities the required asymptotic behawdislocation of type 2 in a volume elemedV at r, when
or is there is a dislocation of type 1 a{. For a homogeneous
random arrangement of dislocations, this probability reduces
p3)(1,.2,3=p2)(1,2)p)(3) to p(1y(2)dV. Accordingly, d(lg)([lz)Pu)(Z) can be under-
stood as an average density am@p(r,)f*2®2 as the total
number of formal “excess dislocations” of type 2 surround-
ing a dislocation of type 1 in a correlated arrangement. An-
ficorrelations are formally represented by negative excess
dislocations. Equation(16) simply means that the shear
stresses created by a dislocation of type 2 in any slip system
a4 are, at large distances and in all directions, balanced by
the stresses of the surrounding excess dislocations. This
_P(1,2p2)(2,3)p(2)(3,1) “screening condition” ensures that the energy density of the
p3)(1,2,3~ : (14 =9 M AR B - e
p)(Dp)(2)p)(3) elastic field is finite in spite of a diverging self-energy of the
isolated dislocations; an equivalent formulation of Elf) is
In the quasistatic case where time derivatives may be ndhat the sum of the Burgers vectors of the formal “excess
glected, we obtain from Eq$6) and (9) in this approxima- dislocations” and the Burgers vector of the first dislocation is
tion the integral equation zero*®

for riz—o0 andr,3—00. (13

To truncate the hierarchy of many-dislocation densities a
second order in a manner which is consistent with Etyb.
and(12), we use Kirkwood’s approximation
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12 FIG. 3. Decay of the correlation function of dislocations of the
x-x") p same sign in the direction.

FIG. 1. Correlation function of dislocations of the same sign in

; ) . functions have been obtained from a simulation at zero ex-
scaled coordinates, stress-free state; for details see text.

ternal stress: Equal numbers of dislocations of both signs
were initially placed at random, and pair densities were de-
IV. PAIR CORRELATION FUNCTIONS FOR A SINGLE termined after relaxation of the dislocation system to a sta-

SLIP SYSTEM tionary configuration. Dislocations of opposite signs ap-

To assess the validity of the general results obtained in thBroaching each other at distances below the core radius
previous section, we consider pair correlation functions ob=~b were removed from the system. Figure 1 shows a ten-
tained from simulations of the dynamics of systems of dis-dency of dislocations of the same sign to form walls where
crete edge dislocations moving in a single slip systéme-  they arrange perpendicularly above each other, while dislo-
cordingly, we drop the superscrip and distinguish ~cations of opposite signs tend to form close dipoles with 45°
dislocations only according to their sigre {+,—}. The ex-  Orientations(Fig. 2). The behavior of the pair correlation
ternal resolved shear stress in the slip system is denoted #41ctions at distances of about one average dislocation spac-
o® the interaction strestshear stress in the slip system iNg indicates a tendency of the dipoles to arrange vertically
between two positive dislocations igr), and the glide di- above each other. The behavior of the pair correlation func-
rection is identified with thex direction. tions obtained from the simulation is consistent with the re-

Figures 1 and 2 show pair correlation functiahs, and  Sults obtained in the previous sectiofig:at short distances

d, _ of dislocations of equal and of opposite signs. Theséhe functions exhibit a t/singularity (this is truncated at the
core radiug (ii) At large distances, correlations decay expo-

nentially. This is illustrated by Fig. 3 showing the pair cor-

100 relation functiond, , of dislocations of the same sign ar-
ranged vertically above each other as a function of the scaled
{o coordinatey:=y\/p wherep=p;,+p3, and they direction
+ is normal to the slip plane. The data are well approximated
— by the fit functionf(y)=(1/)exd—0.38/1], i.e., the effec-

12

tive range of pair correlations is restricted to a few disloca-
tion spacings.
1.0 It can be shown by symmetry arguments that, under zero
stress, the pair correlation functions for a single slip system
are invariant(i) with respect to a change of sign of both
dislocations andii) with respect to the transformatian—
—r. When an external stress is applied, these symmetries
still hold for the correlation function of dislocations of the
same sign. The simulations indicate that this function is prac-
tically unchanged unless the stresses are very high. For dis-
locations of opposite sign, however, the symmetries are bro-
(x-x") ,01/2 ken and only invariance under the simultaneous inversion of
signs and space coordinates of the dislocations is preserved,
FIG. 2. Correlation function of dislocations of opposite signs; asd+ _(r)=d__(—r). Under applied external stress, the mu-
Fig. 1. tual arrangement of dislocations of opposite signs changes

W-y) p

4 3 2 1 0 1

N
w
N

0.1
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10.0 We now study the linear stability of an initially homoge-
neous dislocation arrangemeni(r)=p=const, ¢(r)=0,

i with respect to small space- and time-dependent perturba-
+‘0 tions. We consider the special case where the polarization
+ ¢=p(+1)—p(1) of the dislocation arrangement remains zero.
— (A more detailed analysis including effects of polarization
and nonzero external stress as well as nonlinear effects will
be published elsewhejeUnder these restrictions, the equa-
tion of evolution of the total dislocation density variation

Sp(r)=pT(r)+p (r)—p becomes

3;:8p(r)= —b,upVXf Sp(r')d,(r—r")o(r—r")d?r’,

LR

(19
4 3 2 1 0 1 2 3 4 0.1 where the effective pair correlation functions are those in the
Y initial, homogeneous dislocation arrangement. We expand
(x-x) p Sp(r’) up to fourth order irr. This yields
FIG. 4. Correlation function of dislocations of opposite signs in 5 . .
scaled coordinates, external stre€s15/(Gby/p). 1 dldp] —_p®@ 97 ép] NG d'[ép] D(4)(9 [p]
bu at “oax? X axt Y ax2ay?
such that these dislocations exert a back stress on each other (20

which offsets the externally applied stress. The correspond- ) L
N Atio - : : '« with the second-order expansion coefficienb!?
ing “polarization” of the pair correlation functiord, _ is p X

seen in Fig. 4; the asymmetry of this function increases in=xd,(r)o(r)d’r, and the fourth-order expansion coeffi-
proportion with the applied stress. In physical terms,cijents Df(‘)‘():[1/p]f(§3/6)dp(?)g(}')d2F and Df(‘;)
this monitors the polarization of dislocation dipoles a”d=[1/p]f(§<§2/2)dp(?)a(?)dZF. A numerical evaluation of

multipoles. these terms using the stress field of an edge dislocation and
the pair correlation functions depicted in Figga3and 3b)
V. PAIR CORRELATIONS AND DISLOCATION yields D{¥=2.02x103Gb/(1-v), D¥P=2.27103Gh/

PATTERNING [p(1-v)], D{})=9.24x10 3Gh/[p(1—v)] where v is

The range of dislocation-dislocation correlations scales i ©1Sson's number. For all other derivativesdf of less than
proportion with the average dislocation spacing. ThereforeSixth order the corresponding coefficients vanish for symme-

accounting for pair correlations introduces a characteristidl¥ €asons. _
length scale into the equations of evolution of the dislocation_ 'Serting the ansatdp(r,t) = dpoexplA(q)t]expar) into
densities. To illustrate this, we consider again the simplesEd- (20) yields the dispersion relation
case, namely, an arrangement of equal numbers of edge dis-
locations of both signs of total densiy on one slip system A(@)=br[DPqZ-D gy —D{)aza’l. (21)
and without external stress. In this case, the equations of
evolution of the dislocation densities can be written as A(qg) can be interpreted as an “amplification factor” of the
corresponding mode. The mode with maximum amplification
1 , , has wave vector in thg direction and wavelength (A 2y
matp(r)——fo AN (r)[1+dy(r=r")] =2m2DPIDP~9.42/\/p. This indicates that the disloca-
, , o tion arrangement is unstable with respect to patterning on a
+p(Np(r)d,(r=r")}o(r=1")dr’, (17 |ength scale of about 10 average dislocation spacings. This is
in qualitative agreement with observations reported in Ref.

1 _ , , 34 which give \\Jp~15. The characteristic time for the

@at‘ﬁ(r)_ _ij Ip(NG(r)[1+dy(r=r)] growth of the mode with maximum amplification is given by
, , o A i ~2.2x10%(1— v)/[ pGb?u]. This time is proportional

+p(N)p(r)d,(r—r")}o(r—r)d’. to 1/p, in agreement with the scaling prediction of Sec. Il B.

(18) We note that the characteristic time for establishing the
quasi-steady-state pair correlation functiahs, andd, _
Here p(r)=p(1)(r)+ p@)(r) is the local dislocation density, out of an initially random dislocation arrangement is less by
¢==p(+1)(r)—p(_1)(r) the local surplus dislocation density, a factor of about 100, i.e., patterning proceeds on a slow time
and the effective pair correlation functions are givendgy  scale on which one can use a quasistatic approximation for
=[1/2](d; ;+d,_) andd,=[1/2](d, , —d, ). the pair correlation functions.
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VI. DISCUSSION AND CONCLUSIONS cordingly the result is an isotropid (q) function. In the
n-present work, on the other hand, we find that anisotropy of

dislocation interaction in dislocation pattern formation a sys-dislocation motion and interactions leads to anisotropic cor-

tem of straight parallel dislocation is considered. We havéelat'ons(';'gs'hl_%: Accordingly, paltterr:jmg ISS str«\a/ngr:y an- d
demonstrated that pair correlations in the dislocation arlSOtrOp'.C' or't € sip geometry analyzed In Sec. v, fn€ mode
of maximum instability characterizes density modulations in

rgngemgnt mtroc.jgce into the equaﬂon; Of. evolutlon of thethe slip direction while any density modulations normal to
dislocation densities a length scale which is proportional tothis direction are damped, i.e., the instability leads to the

the average d|s_|ocat|on spacing. This reSL_JIt depends only %fdrmation of “dislocation walls” normal to the slip plane.
general properties of the evolution equations for the many- -, o eme cases, a “wrong” pair correlation function
d|sloc_at|on densme:{o_r correlation funct|on)_s Since the_se may even suppress the patterning. This is seen, for instance,
equations can be derived from the dynamics of the d|scret8 inserting into Eq(19) the pair correlation functiofi(F)
dislocations in a rigorous manner, we have demonstrated fop) N3 9 q P ) i ~ .
the first time how length scales in a density-based formula= do(r) 8(¢— 7/2) where the radial functiod(r) is chosen
tion of dislocation dynamics can be obtained without invok-such thatd(r) complies with the properties formulated in
ing ad hoc assumptions. To achieve this it was, however,Sec. lll. Evaluating Eq(19) with this correlation function
necessary to go beyond single-dislocation densities and tg€lds A(q)=0 for all g. The reason is the following: Ener-
take into account the presence of correlations in the dislocagetically driven dislocation-density patterning results from
tion arrangement in an explicit manner. It is expected that théhe fact that dislocations, by clustering, reduce their screen-
present results carry over to more complicated deformatiofng radius and thereby the elastic energy. For the fictitious
geometries: Because of the general scaling relations digair correlation functiord, however, only a densification in
cussed in Sec. Il, any pair correlation functions in a homo+they direction would enhance screening. This is impossible
geneous and stationary dislocation arrangement depend ®ince, for the slip geometry considered, dislocations can
the scaled coordinate=r p only, and therefore length move in thexdirection only. Our particular choice of the pair
scales of patterns derived from an analysis as in Sec. V wiltorrelation function in this counterexample is, of course,
always be proportional to the average dislocation spacingzompletely unphysical-é-corresponds to a random arrange-
The pattern wavelength of the order of 10 average dislocament of pairs of edge dislocations of opposite signs where
tion spacings which we derive is of the order of typical val-the dislocations of each pair are vertically above each other,
ues observed by experiment. i.e., in an unstable configuration. However, there isao
What is the physical origin of this patterning? Our Eq. priori method to decide which pair correlation function is
(21) is very similar to the equation Hdlderived within an  physically correct. Apart from an educated guess, one has to
irreversible thermodynamics framework, although the formakely on determination of pair correlations from discrete dis-
approach we use is completely different: While the presenlocation dynamics simulations or on solving the integrodif-
results are derived from statistically averaging the dynamicserential equations for the pair densities.
of discrete dislocations, Holt’s results derive from the as- To summarize, we note that any dislocation patterning is
sumption that the dynamics of dislocatidensities(as op-  “energetically driven” in the sense that the motion of dislo-
posed to individual dislocationsninimizes an energy func- cations is driven by forces, i.e., they move downhill in an
tional, i.e., he considers “energetically driven” dislocation- energy functional. However, the question is how the high-
density patterning. Comparison of our results with those otlimensional energy functional which characterizes the many-
Holt may be useful to achieve an improved conceptual undislocation system can be projected on a low-dimensional
derstanding of the mechanisms governing the evolution ophase space whefsinglejdislocation densities are the only
dislocation patterns. state variables. We have shown that already the very defini-
As pointed out by Wilken&,without invoking pair corre-  tion of an elastic energy functional necessitates the consider-
lations it is virtually impossible to formulate a meaningful ation of pair correlations which, from the point of view of a
energy functional which relates the stored elastic energy tdensity-based dynamics, are hidden variables. Since their
the dislocation densities. Holt obtains a nonsingular energproperties influence the emerging patterns both quantitatively
functional by assuming a pair correlation function which isand qualitatively, these variables should be made visible and
consistent with our Eq(16). More generally speaking: be- considered explicitly. In dynamic situations an even stronger
cause of the necessity of introducing pair correlations, anyaveat applies. In materials with high dislocation mobility,
“energetic” theory which uses dislocation densities as stateéhe dislocation system is during plastic deformation in a
variables necessarily contains hidden variables, viz the paitlose-to-critical staté>3¢ Under these circumstances, corre-
correlation functions. The properties of these functions mayation functions ofall orders become relevant and it is virtu-
be of crucial importance for the dynamics. Holt's main re-ally impossible to project the high-dimensional dynamics of
sult, namely, ax~1/\/p proportionality, relies on thécor-  the interacting dislocations on a low-dimensional phase
rec) ad hocassumption that the range of dislocation pairspace. Models of dislocation motion and patterning in such
correlations scales in proportion with the dislocation spacingsituations must explicitly account for the high-dimensional
The correlation function is assumed isotropic, and the anisotaature of the dynamics. This can be done by introducing
ropy of dislocation interactions and the constraints arisingappropriately defined random processes into the evolution
from dislocation motion on glide planes are neglected. Ac-equations for the dislocation densitie¥:*®The influence of

In order to investigate the role of long-range dislocatio

224102-8



STATISTICAL DYNAMICS OF DISLOCATION.. .. PHYSICAL REVIEW B64 224102
these random processes depends on how they couple to thpproachis not adequate for characterizing the evolution of
dislocation densitieqi) The “noise” due to collective dislo- dislocation structures.

cation motions may be neglected when it simply superim-
poses on a slow and low-dimensional, energetically driven
pattern evolution(ii) When the “noise” couples to the dis-
location densities in a multiplicative manner, however, it is 1.G. acknowledges financial support of the Hungarian Sci-
not possible to disentangle the fast, high-dimensional dyentific Research Fund(OTKA) under Contract No.
namics of the interacting dislocations from the slow dynam-T 030791, and M.Z. support of the Commission of the
ics of the patterns. In such situations, the method used in thEuropean Communities under Contract No. ERB FMRX-
present work(as well as any low-dimensional “energetic” CT96-0062 and of the Deutsche Forschungsgemeinschaft.
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