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Statistical dynamics of dislocation systems: The influence of dislocation-dislocation correlations
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During plastic deformation of crystalline materials, the collective dynamics of interacting dislocations gives
rise to various patterning phenomena. A crucial and still open question is whether the long range dislocation-
dislocation interactions which do not have an intrinsic range can lead to spatial patterns which may exhibit
well-defined characteristic scales. It is demonstrated for a general model of two-dimensional dislocation sys-
tems that spontaneously emerging dislocation pair correlations introduce a length scale which is proportional to
the mean dislocation spacing. General properties of the pair correlation functions are derived, and explicit
calculations are performed for a simple special case, viz pair correlations in single-glide dislocation dynamics.
It is shown that in this case the dislocation system exhibits a patterning instability leading to the formation of
walls normal to the glide plane. The results are discussed in terms of their general implications for dislocation
patterning.
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I. INTRODUCTION

In plastically deforming crystals, the accumulation, inte
action and motion of large numbers of dislocations gives
to a complex spatiotemporal dynamics. In many cases
dislocations form spatial patterns with length scales wh
decrease in inverse proportion with the flow stress~‘‘law of
similitude’’!.1 In conjunction with the Taylor relationship ac
cording to which the flow stress of a dislocation arrangem
is proportional to the square root of dislocation density, t
implies that the characteristic scales of deformation-indu
dislocation patterns are often proportional to, but in gene
much larger than, the mean dislocation spacing. This ho
even for ‘‘fractal’’ dislocation patterns which are self-simila
over a certain range of scales, since the upper and lo
bounds of this scaling regime are again proportional to
average dislocation spacing.2

In the past different phenomenological models have b
proposed for dislocation patterning. While these models
fer with respect to the conceptual framework employed a
the way how length scales are introduced, they have in c
mon that the dislocation arrangement is characterized
terms of space-dependent dislocation densities for which
ance equations are formulated in a phenomenological m
ner. In the work of Walgraef and Aifantis,3,4 the framework
of reaction-diffusion systems was used, and space depen
cies were introduced through second-order gradient term
the dislocation densities. Kratochvil proposed to descr
spatial interactions in terms of nonlocal expressions eit
for the flow stress evolution in general~‘‘nonlocal
hardening’’!5 or, more specifically, for the sweeping of edg
dislocation dipoles by moving screw dislocations.6 In one of
the earliest papers on the subject, Holt7 used an irreversible
thermodynamics framework and related the formation of
0163-1829/2001/64~22!/224102~9!/$20.00 64 2241
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dered patterns to the minimization of elastic energy. In t
approach dislocation pair correlations had to be introdu
phenomenologically in order to obtain a well-defined ene
functional.7,8 The pattern wavelength obtained by Ho
turned out to be proportional to the spatial range of
correlations.

All these approaches have in common that the wavelen
of dislocation patterns deduced from the models is gover
by length scales introduceda priori in terms of gradient
coefficients, nonlocal kernels or correlation functions. Sin
the results are predetermined by the phenomenological
put,’’ it is arguable whether this kind of models can solve t
problem of length scale selection. This deficiency has led
the idea of using stochastic models9,10 where dislocation in-
teractions are considered in terms of spatiotemporal fluc
tions of the local dislocation fluxes~shear strain rates!. This
approach yields a characterization of inhomogeneous di
cation arrangements in terms of distributions of dislocat
densities which give a statistical ‘‘signature’’ of patternin
but no direct information on how the dislocations are distr
uted in space. The approach does not solve the problem
length scale selection but has been fruitful in modeling m
tiscale dislocation patterns such as fractal cell structures
served in deformation of high-symmetry oriented f
crystals.11–14 Furthermore, it has been demonstrated that
information contained in the dislocation density probabil
distribution is sufficient to calculate important properti
such as the macroscopic flow stress of inhomogeneous
location arrangements2,15 and characteristics of the x-ray lin
profiles.14

In addition to the theoretical models mentioned abo
over the past few years a vast number of computer sim
tions have been performed for studying the dislocation p
terning phenomenon. Using different discretization metho
©2001 The American Physical Society02-1
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several authors~see, e.g., Refs. 16,17! have investigated the
evolution of systems of interacting dislocation lines. In the
works @often referred to as three-dimensional~3D! simula-
tions# the dislocations are treated as real linear entit
While early stages of patterning have been observed in s
simulations,18,19 statistically reliable information on the
mechanisms which govern the pattern wavelengths ca
yet be deduced from the simulations since the character
lengths of the observed rudimentary patterns are of the s
order as the size of the simulation volume. Hence, such
simulations provide insight into often complex but still ‘‘e
ementary’’ dislocation phenomena. The results of th
works are very important but the study of dislocation patte
ing requires approaching the problem on a scale larger
that one can presently afford with the computation pow
available. A computationally less demanding approach is
investigate numerically the collective behavior of an e
semble of parallel straight dislocations. Certainly, this is
strong simplification of a real dislocation network but, on t
other hand, such a 2D system is an ideal model system
investigating the influence of long range dislocatio
dislocation interactions. Since the precise roles of the s
range~junction formation! and long range dislocation inter
actions in dislocation patterning are not clear at the mom
it is an important question whether the long range inter
tions alone~which decay as 1/r and hence do not have a
intrinsic range! can give rise to dislocation arrangemen
with well-defined length scales. The objective of the pres
paper is to analyze the consequences of the long ra
dislocation-dislocation interactions in a 2D setting within
analytical framework, with a special attention on the prop
ties of dislocation-dislocation correlation functions.

To characterize the dynamics of a 2D dislocation syste
we adopt the statistical approach proposed by Grom20

which is based on many-dislocation densities. Before go
into the technicalities, we find it useful to state the ma
problem in statistical modelling of dislocation systems
physical terms: On ‘‘mesoscopic’’ scales large as compa
to the dislocation spacing, the dislocation arrangement
be characterized by single-dislocation densities which re
sent probabilities to find dislocations of a given type a
given point in space. The average Kro¨ner-Nye dislocation
density tensor can be computed from these single-disloca
densities, see the work of El-Azab21 where this is demon-
strated for three-dimensional dislocation arrangements. F
this tensor, in turn, long-range stresses in the dislocation
rangement can be calculated using the stress func
method.22,23 However, it has been recognized already in
early paper by Kro¨ner24 that the information contained in
spatially averaged single-dislocation densities and the co
sponding mesoscopically averaged internal stress fields is
sufficient to statistically characterize the local internal str
state on the microscopic scale of individual dislocatio
This, however, is indispensable for studying the dynamics
dislocation systems: Motion of dislocations takes place un
the influence of the locally acting external and intern
stresses. The internal stress experienced by a given dis
tion depends on the configuration of the other dislocation
its surrounding. This configuration is obviously influenc
22410
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by the presence of the first one—a fact which cannot
grasped by spatially averaged densities which repre
probabilities for the spatial occurrence of a given type
dislocations irrespective of their arrangement relative to e
other. Hence one has to ask forconditional probabilitiesto
find other dislocations in a certain position relative to t
dislocation under consideration, which mathematically i
plies the consideration of pair densities or pair correlatio
The evolution of pair configurations depends, in turn, on
arrangement of third dislocations, and so forth.

Therefore it is necessary to consider in a systematic m
ner many-dislocation densities which characterize the pr
ability of occurrence of many-dislocation configurations.
formal procedure for defining such densities and obtain
the corresponding equations of evolution from the dynam
of the discrete dislocations has been discussed in an ea
work by Groma.20 For three-dimensional dislocation sy
tems, a systematic method to obtain a statistical descrip
has been demonstrated by El-Azab.21 El-Azab uses a concep
tual framework which differs from that used by Groma and
similar to Klimontovic’s approach in nonequilibrium statist
cal mechanics.25 His approach is of particular interest since
permits in principle the characterization of correlations in 3
dislocation systems. For 2D systems, however, the res
derived by El-Azab are equivalent to those obtained
Groma. Both Groma and El-Azab use mean-field approxim
tions which reduce the problem to single-dislocati
densities.20,26,27,21 A stochastic generalization of Groma
model which takes into account microscopic stress fluct
tions in terms of a random stochastic process was show
yield fractal dislocation patterns.27 However, these studie
also demonstrated that the neglection of correlations whic
inherent in any mean-field approach makes it impossible
solve the problem of length scale selection. In the pres
investigation, we therefore consider explicitly the evoluti
of correlations in the dislocation arrangement. In Sec. II,
problem is stated in mathematical terms and a scaling an
sis is performed. In the rate-independent case, the sca
behavior of the evolution equations is found to be consist
with the ‘‘law of similitude’’ and the Taylor relationship. In
Secs. III and IV, general properties of pair correlation fun
tions are derived and compared with simulation results
the case where dislocations of only one slip system
present. The role of pair correlations in dislocation pattern
is discussed in Sec. V, and general conclusions are give
Sec. VI.

II. STATISTICAL CHARACTERIZATION
OF A 2-DIMENSIONAL DISLOCATION ARRANGEMENT

A. Mathematical formulation

We consider an arrangement ofN dislocations with line
direction parallel to thez axis of a Cartesian coordinate sy
tem and denote byr i ( i 51 . . .N) the position vectors of the
dislocations in thexy plane. In generalization of the situatio
discussed in Ref. 20, dislocation activity is allowed in mo
than one slip system. However, because of the 2D geom
considered, all allowed glide directions are contained in
xy plane. The slip system of thei th dislocation~Burgers
2-2
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vector and glide direction! is labeled bya i , and the sign of
this dislocation bysi (si561). For simplicity, the disloca-
tion strengthb ~the modulus of the Burgers vector! is as-
sumed to be the same for all dislocations. During plas
deformation, due to dislocation multiplication or annihilatio
the number of dislocations is not conserved. In princip
terms characterizing dislocation multiplication and disloc
tion reactions can be introduced into the present formali
~For systems of reacting particles, this is, e.g., discusse
Ref. 29!. However, in the present investigation we focus
the consequences of long-range interactions. Hence, for
plicity N is kept constant.

Dislocation glide is governed by the component of t
Peach-Koehler force30 in the glide direction. For thei th dis-
location this is given byFi(r i)5sibsa i(r i), wheresa i(r i) is
the resolved shear stress in the slip systema i at the position
of this dislocation. We assume overdamped dislocation m
tion and a friction force which is linearly proportional to th
dislocation velocityv i5ea imFi(r i), wherem is an effective
mobility coefficient andea i is the unit vector in the glide
direction of dislocations of slip systema i ~the line of inter-
section between the glide plane and thexy plane!. Taking
into account that the local shear stress acting on the disl
tion is the sum of the external shear stress and the s
stresses created by all other dislocations, the velocity of
ith dislocation may be written as

v i5simbea iFsext,a i1(
kÞ i

N

sks
a iak~r i2rk!G . ~1!

Heresext,a i is the external stress resolved in the slip syst
a i andsa iak(r i2rk) is the shear stress produced in slip sy
tem a i at the positionr i by a ~positive! dislocation of slip
systemak located atrk . These stresses are related via

sext,a5(
i j

s i j
extMi j

a , saa8~r!5(
i j

s i j
a8~r!Mi j

a ~2!
22410
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to the external stress field and the stress field of a sin
dislocation, respectively. The projection tensorsMi j

a are
given by Mi j

a 5(1/2b)@bi
anj

a1ni
abj

a# where bi
a and nj

a are
the components of the Burgers vectorba and the glide plane
normal na of slip systema. The dislocation stress field
s i j

a (r) can be written as

s i j
a~r!5G b si j

a~r!5G b
Ki j

a~u!

uru
, ~3!

where G is a shear modulus of the material andKi j
a is a

dimensionless function of the angleu in the xy plane. Ac-
cording to Eqs.~2! and ~3!, the resolved shear stress
saka l(r)5GbKaka l(u)/uru, whereKaka l5( i j M i j

akKi j
a l .

In principle, the evolution of the dislocation arrangeme
can be obtained by tracing the individual dislocation po
tions using Eq.~1!. However, the plastic behavior of a de
forming crystal depends on statistical properties of the dis
cation ensemble rather than on the precise location of
individual dislocations. We consider an ensemble of stati
cally equivalent dislocation arrangements and define ma
dislocation densities by the ensemble averages

r (1)
a,s~r!ªK (

k51

N

daak
dssk

d~r2rk!L ,

r (2)
aa8,ss8~r,r8!ªK (

k51

N

(
lÞk

N

daak
da8a l

dssk
ds8sl

d~r2rk!

3d~r82r l !L , . . . . ~4!

In Eq. ~4!, r (1)
a,s(r) is the density of dislocations of type$a,s%

at the positionr, andr (2)
aa8,ss8(r,r8) is the density of pairs of

dislocations of types$a,s% and $a8,s8% at the respective
positions r and r8. Higher-order densities which obey th
recursive relations
l smooth

tion

ator

r are
r (n)
a1•••an ,s1•••sn~r1•••rn!5

1

N2n (
an11sn11

E r (n11)
a1•••an11 ,s1•••sn11~r1•••rn11!d2r n11 ~5!

are defined accordingly. It is noted that owing to the ensemble averaging the many-dislocation densities are in genera
functions of their arguments. In the following, we shall often use an abbreviated notation, writingr (1)(1)ªr (1)

b1 ,s1(r1),

r (2)(1,2)ªr (2)
b1b2 ,s1s2(r1 ,r2), etc.

To formulate the evolution of the many-dislocation densities, we ensemble average the discrete equations of mo~1!.
Using the definitions given in Eq.~4! we obtain for the evolution of the single-dislocation densitiesr (1)

a,s ~see Ref. 20!

1

bm
] tr (1)~1!52¹1

a1s1sext,a1r (1)~1!2¹1
a1 (

a2 ,s2

s1s2E r (2)~1,2!sa1a2~r12r2!d2r 2 , ~6!

i.e., the equations of evolution of the single-dislocation densities contain integrals over the pair densities. The oper¹ i
a i

5¹W ri
ea i acts on the coordinater i and takes the directional derivative in the directionea i.

It may be mentioned that the right-hand side of this equation is the gradient of the dislocation fluxja1 ,s1 of dislocations of
slip systema1 and signs1, divided bybm. From the dislocation fluxes, the components of the plastic strain rate tenso
obtained as~see Ref. 28!
2-3



he

ich
ich

ed.

M. ZAISER, M.-CARMEN MIGUEL, AND I. GROMA PHYSICAL REVIEW B64 224102
«̇kl5b(
a,s

s ~ ja,sea!Mkl
a . ~7!

Furthermore, by multiplying Eq.~6! with s1ba1+na1 and summing over alla1 ands1, one can arrive at an equation having t
form

]a

]t
1curlJ50 ~8!

in which a is Kröner’s dislocation density tensor22 andJ is the dislocation current density tensor, the symmetric part of wh
is again the plastic strain rate. It follows, that from Eq.~6! we do have explicit expressions for the plastic strain rate, wh
build the link between the formalism presented and macroscopic deformation problems.

The pair densities obey, in turn, the equations

1

bm
] tr (2)~1,2!52¹1

a1s1@sext,a11s2sa1a2~r12r2!#r (2)~1,2!2¹1
a1 (

a3 ,s3

s1s3E r (3)~1,2,3!sa1a3~r12r3!d2r 311↔2. ~9!

Here the symbol 1↔2 means that the terms on the right-hand side of Eq.~9! are repeated with indices 1 and 2 interchang
The general equation for then-dislocation density is

1

bm
] tr (n)~1•••n!52(

j 51

n

¹ j
a jsjFsext,a j1(

kÞ j

n

sks
a jak~r j2rk!Gr (n)~1•••n! 2(

j 51

n

¹ j
a j (

an11 ,sn11

sjsn11

3E r (n11)~1•••n,n11!sa jan11~r j2rn11!d2r n11 . ~10!
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Knowledge of the dislocation densities of arbitrary ord
yields a complete statistical description of the dislocat
system, i.e., the statistical information obtained by solv
the infinite hierarchy of equations~6!,~9!,~10! is equivalent
to the information obtained by solving the discrete equati
of motion for infinitely many statistically equivalent initia
configurations and subsequent averaging. However, the
archy of Eqs. ~6!,~9!,~10! where the equations for th
n-dislocation densities contain integrals over the densitie
next-higher order is much more difficult to handle than t
discrete equations. Therefore, the statistical approach us
the present work is useful only if relevant information can
obtained by truncating this hierarchy at some low order.
find out at which order truncation may be done without d
stroying essential qualitative features of the dynamics, i
useful to study some scaling properties of the full system
Eqs.~6!,~9!,~10!.

B. Scaling relations

We investigate the scaling behavior of Eqs.~6!,~9!,~10! by
assuming that all single-dislocation densities are change
a common factorCr , r (1)

a,s→Crr (1)
a,s . Further we require tha

the n-dislocation densities scale like products ofn single-
dislocation densities. Now we look for an appropriate tra
formation of the other quantities in Eqs.~6!,~9!,~10! such that
these equations remain invariant upon the rescaling. Po
counting shows that there is exactly one transformat
which fulfills this requirement; it is given by
22410
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r (1)
a,s→Crr (1)

a,s , r (n)
a1•••an ,s1•••sn→Cr

nr (n)
a1•••an ,s1•••sn ,

r→Cr
21/2r, t→Cr

21t, s i j
ext→Cr

1/2s i j
ext. ~11!

Invariance under this transformation implies that any parti
lar solution of~6!,~9!,~10! belongs to a one-parameter man
fold of similitude solutionspertaining to different externa
stresses. These solutions may be parametrized, for insta
by their total dislocation densityrª@1/V#(a,s*Vr (1)

a,s(r)d2r
where V is the crystal volume. From a given solution, th
corresponding similitude manifold is generated by scaling
lengths in proportion with the mean dislocation spaci
1/Ar, all times in proportion with 1/r, and the externally
applied stress in proportion withAr.

When the dislocation mobilities are high, dislocations
most instantaneously relax into~quasi!stationary configura-
tions. In the limit of rate-independent behavior (m→`)
where dislocations respond instantaneously to ac
stresses, the dislocations are always arranged in metas
stationary configurations, the lifetime of which is govern
by the activation of new sources or an increase of the ex
nal stress. In the quasistatic limit, the scaling behavior
Eqs.~6!,~9!,~10! is consistent with two basic empirical prop
erties of dislocation systems.~i! According to the Taylor re-
lationship, the flow stress~i.e., the stress at which large-sca
dislocation motion sets in! scales as the square root of disl
cation density.~ii ! According to the ‘‘law of similitude’’ the
length scales of dislocation patterns observed after pla
deformation scale in inverse proportion with the flow stre
2-4
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~and hence in proportion with the mean dislocation spacin!.
In the course of strain hardening, dislocation arrangeme
are often found to evolve on a similitude manifold whe
they contract in space but maintain their geometri
characteristics.31

III. PAIR CORRELATIONS IN QUASISTATIC
DISLOCATION ARRANGEMENTS: GENERAL

PROPERTIES

The scaling property~11! gives an important guideline
how to handle the infinite hierarchy of many-dislocation de
sities. The idea is to truncate this hierarchy at some levn
by expressing densities of ordern11 in terms of densities o
lower order. The simplest manner to do this is to use, in
~6!, the mean-field approximationr (2)(1,2)'r (1)(1)r (1)(2)
as proposed by Groma.20 This amounts to the assumptio
that the positions of individual dislocations are uncorrelat
However, when we require that truncation preserves the
damental scaling properties expressed by Eq.~11!, it be-
comes obvious that the mean-field approximation wh
truncates at first order destroys substantial information:
length scale contained in the full hierarchy—the mean dis
cation spacing—no longer shows up in the mean-field eq
tion, which therefore permits additional scaling transform
tions. On the other hand, Eq.~9!, which involves pair
densities, has the same scaling properties as the genera
~10!. Hence, consideration of pair densities~or, equivalently,
pair correlations! allows one to account for all scaling rela
tions between stress, total dislocation density, and len
scales of the dislocation pattern.

We focus on weakly correlated dislocation arrangeme
where distant dislocations behave in a statistically indep
dent manner. Then the pair densities fulfill the asympto
relations

r (2)~1,2!→r (1)~1!r (2)~2!

for r 12ªur12r2u→`. ~12!

For the third-order densities the required asymptotic beh
ior is

r (3)~1,2,3!→r (2)~1,2!r (1)~3!

for r 13→` and r 23→`. ~13!

To truncate the hierarchy of many-dislocation densities
second order in a manner which is consistent with Eqs.~11!
and ~12!, we use Kirkwood’s approximation

r (3)~1,2,3!'
r (2)~1,2!r (2)~2,3!r (2)~3,1!

r (1)~1!r (1)~2!r (1)~3!
. ~14!

In the quasistatic case where time derivatives may be
glected, we obtain from Eqs.~6! and ~9! in this approxima-
tion the integral equation
22410
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s2sa1a2~r12r2!5r (
a3 ,s3

s3E f a3s3~r3!d(23)~r2 ,r3!

3@11d(31)~r3 ,r1!#sa1a3~r12r3!d2r 3 ,

~15!

where f a,s(r)ªr (1)
a,s(r)/r, and d(12)(r1 ,r2)ª

r (2)(1,2)/@r (1)(1)r (1)(2)#21 is the scaled pair correlatio
function of dislocations of types$a1 ,s1% and $a2 ,s2%. To
study the properties of these pair correlation functions,
consider the case of a homogeneous dislocation arrange
where f a,s5const(r) for all $a,s%. Then thed(12) are func-
tions of the relative positionsr12r2 only, and some genera
properties of these functions can be obtained from sim
inspection of Eq.~15!, considering the behavior at large an
small values ofr 12.

The pair correlation functions depend only on the sca
space coordinatesr̃ªrAr. This reflects the scaling behavio
discussed above.

At small r̃ 12, the pair correlation functions must exhibit
1/r̃ 12 singularity.

The integralsd̂(12)ª*d(12)( r̃)d
2r̃ must be finite. In Fou-

rier space atk50 all derivatives of the Fourier transforms o
the d(12) and of the@d(12)s

a1a2# must also be finite, which
implies that in real space thed(12) decay faster than algebra
ically.

For large r̃ 12 one may therefore approximated(12)( r̃12)
'd̂(12)d( r̃12). Equation~15! in this approximation reduces t

s2sa1a2~r12!52 (
a3s3

s3f a3s3d̂(23)s
a1a3~r12!. ~16!

This equation must be fulfilled by the ‘‘amplitudes’’d̂(23) of
the pair correlation functions for all combination
$a1 . . . a3 ,s2 ,s3% and irrespective of the direction of th
vector r12.

To interpret Eq.~16! in physical terms, we note that@1
1d(12)(r12)#r (1)

a2s2dV is the conditional probability to find a
dislocation of type 2 in a volume elementdV at r2 when
there is a dislocation of type 1 atr1. For a homogeneous
random arrangement of dislocations, this probability redu
to r (1)(2)dV. Accordingly, d(12)(r12)r (1)(2) can be under-
stood as an average density andd̂(12)(r1) f a2s2 as the total
number of formal ‘‘excess dislocations’’ of type 2 surroun
ing a dislocation of type 1 in a correlated arrangement. A
ticorrelations are formally represented by negative exc
dislocations. Equation~16! simply means that the shea
stresses created by a dislocation of type 2 in any slip sys
a1 are, at large distances and in all directions, balanced
the stresses of the surrounding excess dislocations.
‘‘screening condition’’ ensures that the energy density of
elastic field is finite in spite of a diverging self-energy of th
isolated dislocations; an equivalent formulation of Eq.~16! is
that the sum of the Burgers vectors of the formal ‘‘exce
dislocations’’ and the Burgers vector of the first dislocation
zero.32
2-5



th
ob
is

d

s

ex-
gns
de-
ta-
p-
s
en-
re

slo-
5°

n
pac-
ally
nc-
re-

o-
r-
r-
aled

ted

a-

ero
em
th

tries
e
ac-
dis-
ro-
of

ved,
u-
ges

in

a

he

M. ZAISER, M.-CARMEN MIGUEL, AND I. GROMA PHYSICAL REVIEW B64 224102
IV. PAIR CORRELATION FUNCTIONS FOR A SINGLE
SLIP SYSTEM

To assess the validity of the general results obtained in
previous section, we consider pair correlation functions
tained from simulations of the dynamics of systems of d
crete edge dislocations moving in a single slip system.33 Ac-
cordingly, we drop the superscripta and distinguish
dislocations only according to their signsP$1,2%. The ex-
ternal resolved shear stress in the slip system is denote
sext, the interaction stress~shear stress in the slip system!
between two positive dislocations iss(r), and the glide di-
rection is identified with thex direction.

Figures 1 and 2 show pair correlation functionsd11 and
d12 of dislocations of equal and of opposite signs. The

FIG. 1. Correlation function of dislocations of the same sign
scaled coordinates, stress-free state; for details see text.

FIG. 2. Correlation function of dislocations of opposite signs;
Fig. 1.
22410
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functions have been obtained from a simulation at zero
ternal stress: Equal numbers of dislocations of both si
were initially placed at random, and pair densities were
termined after relaxation of the dislocation system to a s
tionary configuration. Dislocations of opposite signs a
proaching each other at distances below the core radiur c
'b were removed from the system. Figure 1 shows a t
dency of dislocations of the same sign to form walls whe
they arrange perpendicularly above each other, while di
cations of opposite signs tend to form close dipoles with 4
orientations~Fig. 2!. The behavior of the pair correlatio
functions at distances of about one average dislocation s
ing indicates a tendency of the dipoles to arrange vertic
above each other. The behavior of the pair correlation fu
tions obtained from the simulation is consistent with the
sults obtained in the previous sections:~i! at short distances
the functions exhibit a 1/r singularity~this is truncated at the
core radius!; ~ii ! At large distances, correlations decay exp
nentially. This is illustrated by Fig. 3 showing the pair co
relation functiond11 of dislocations of the same sign a
ranged vertically above each other as a function of the sc
coordinateỹªyAr wherer5r (1)

1 1r (1)
2 and they direction

is normal to the slip plane. The data are well approxima
by the fit function f ( ỹ)}(1/ỹ)exp@20.38ỹ#, i.e., the effec-
tive range of pair correlations is restricted to a few disloc
tion spacings.

It can be shown by symmetry arguments that, under z
stress, the pair correlation functions for a single slip syst
are invariant~i! with respect to a change of sign of bo
dislocations and~ii ! with respect to the transformationr→
2r. When an external stress is applied, these symme
still hold for the correlation function of dislocations of th
same sign. The simulations indicate that this function is pr
tically unchanged unless the stresses are very high. For
locations of opposite sign, however, the symmetries are b
ken and only invariance under the simultaneous inversion
signs and space coordinates of the dislocations is preser
d12(r)5d21(2r). Under applied external stress, the m
tual arrangement of dislocations of opposite signs chan

s

FIG. 3. Decay of the correlation function of dislocations of t
same sign in they direction.
2-6
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such that these dislocations exert a back stress on each
which offsets the externally applied stress. The correspo
ing ‘‘polarization’’ of the pair correlation functiond12 is
seen in Fig. 4; the asymmetry of this function increases
proportion with the applied stress. In physical term
this monitors the polarization of dislocation dipoles a
multipoles.

V. PAIR CORRELATIONS AND DISLOCATION
PATTERNING

The range of dislocation-dislocation correlations scales
proportion with the average dislocation spacing. Therefo
accounting for pair correlations introduces a characteri
length scale into the equations of evolution of the dislocat
densities. To illustrate this, we consider again the simp
case, namely, an arrangement of equal numbers of edge
locations of both signs of total densityr, on one slip system
and without external stress. In this case, the equation
evolution of the dislocation densities can be written as

1

bm
] tr~r!52¹xE $f~r!f~r8!@11df~r2r8!#

1r~r!r~r8!dr~r2r8!%s~r2r8!d2r 8, ~17!

1

bm
] tf~r!52¹xE $r~r!f~r8!@11df~r2r8!#

1f~r!r~r8!dr~r2r8!%s~r2r8!d2r 8.

~18!

Here r(r)5r (1)
1 (r)1r (1)

2 (r) is the local dislocation density
fªr (1)

1 (r)2r (1)
2 (r) the local surplus dislocation densit

and the effective pair correlation functions are given bydf
5@1/2#(d111d12) anddr5@1/2#(d112d12).

FIG. 4. Correlation function of dislocations of opposite signs
scaled coordinates, external stress50.15/(GbAr).
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We now study the linear stability of an initially homoge
neous dislocation arrangement,r(r)5r5const, f(r)50,
with respect to small space- and time-dependent pertu
tions. We consider the special case where the polariza
f5r (1)

1 2r (1)
2 of the dislocation arrangement remains ze

~A more detailed analysis including effects of polarizati
and nonzero external stress as well as nonlinear effects
be published elsewhere.! Under these restrictions, the equ
tion of evolution of the total dislocation density variatio
dr(r)5r1(r)1r2(r)2r becomes

] tdr~r!52bmr¹xE dr~r8!dr~r2r8!s~r2r8!d2r 8,

~19!

where the effective pair correlation functions are those in
initial, homogeneous dislocation arrangement. We exp
dr(r8) up to fourth order inr. This yields

1

bm

]@dr#

]t
52Dx

(2) ]2@dr#

]x2
2Dxx

(4) ]4@dr#

]x4
2Dxy

(4)]
4@dr#

]x2]y2

~20!

with the second-order expansion coefficientDx
(2)

5* x̃dr( r̃)s( r̃)d2r̃ , and the fourth-order expansion coeffi
cients Dxx

(4)5@1/r#*( x̃3/6)dr( r̃)s( r̃)d2r̃ and Dxy
(4)

5@1/r#*( x̃ỹ2/2)dr( r̃)s( r̃)d2r̃ . A numerical evaluation of
these terms using the stress field of an edge dislocation
the pair correlation functions depicted in Figs. 3~a! and 3~b!
yields Dx

(2)52.0231023Gb/(12n), Dxx
(4)52.271023Gb/

@r(12n)#, Dxy
(4)59.2431023Gb/@r(12n)# where n is

Poisson’s number. For all other derivatives ofdr of less than
sixth order the corresponding coefficients vanish for symm
try reasons.

Inserting the ansatzdr(r,t)5dr0exp@L(q)t#exp(iqr) into
Eq. ~20! yields the dispersion relation

L~q!5bn@Dx
(2)qx

22Dxx
(4)qx

42Dxy
(4)qx

2qy
2#. ~21!

L(q) can be interpreted as an ‘‘amplification factor’’ of th
corresponding mode. The mode with maximum amplificat
has wave vector in thex direction and wavelengthl(Lmax)
52pA2Dx

(4)/Dx
(2)'9.42/Ar. This indicates that the disloca

tion arrangement is unstable with respect to patterning o
length scale of about 10 average dislocation spacings. Th
in qualitative agreement with observations reported in R
34 which give lAr'15. The characteristic time for th
growth of the mode with maximum amplification is given b
Lmax

21 '2.23103(12n)/@rGb2m#. This time is proportional
to 1/r, in agreement with the scaling prediction of Sec. II
We note that the characteristic time for establishing
quasi-steady-state pair correlation functionsd11 and d12

out of an initially random dislocation arrangement is less
a factor of about 100, i.e., patterning proceeds on a slow t
scale on which one can use a quasistatic approximation
the pair correlation functions.
2-7
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VI. DISCUSSION AND CONCLUSIONS

In order to investigate the role of long-range dislocatio
dislocation interaction in dislocation pattern formation a s
tem of straight parallel dislocation is considered. We ha
demonstrated that pair correlations in the dislocation
rangement introduce into the equations of evolution of
dislocation densities a length scale which is proportiona
the average dislocation spacing. This result depends onl
general properties of the evolution equations for the ma
dislocation densities~or correlation functions!. Since these
equations can be derived from the dynamics of the disc
dislocations in a rigorous manner, we have demonstrated
the first time how length scales in a density-based formu
tion of dislocation dynamics can be obtained without invo
ing ad hoc assumptions. To achieve this it was, howev
necessary to go beyond single-dislocation densities an
take into account the presence of correlations in the dislo
tion arrangement in an explicit manner. It is expected that
present results carry over to more complicated deforma
geometries: Because of the general scaling relations
cussed in Sec. II, any pair correlation functions in a hom
geneous and stationary dislocation arrangement depen
the scaled coordinater̃5rAr only, and therefore length
scales of patterns derived from an analysis as in Sec. V
always be proportional to the average dislocation spac
The pattern wavelength of the order of 10 average dislo
tion spacings which we derive is of the order of typical v
ues observed by experiment.

What is the physical origin of this patterning? Our E
~21! is very similar to the equation Holt7 derived within an
irreversible thermodynamics framework, although the form
approach we use is completely different: While the pres
results are derived from statistically averaging the dynam
of discrete dislocations, Holt’s results derive from the a
sumption that the dynamics of dislocationdensities~as op-
posed to individual dislocations! minimizes an energy func
tional, i.e., he considers ‘‘energetically driven’’ dislocatio
density patterning. Comparison of our results with those
Holt may be useful to achieve an improved conceptual
derstanding of the mechanisms governing the evolution
dislocation patterns.

As pointed out by Wilkens,8 without invoking pair corre-
lations it is virtually impossible to formulate a meaningf
energy functional which relates the stored elastic energ
the dislocation densities. Holt obtains a nonsingular ene
functional by assuming a pair correlation function which
consistent with our Eq.~16!. More generally speaking: be
cause of the necessity of introducing pair correlations,
‘‘energetic’’ theory which uses dislocation densities as st
variables necessarily contains hidden variables, viz the
correlation functions. The properties of these functions m
be of crucial importance for the dynamics. Holt’s main r
sult, namely, al;1/Ar proportionality, relies on the~cor-
rect! ad hoc assumption that the range of dislocation p
correlations scales in proportion with the dislocation spaci
The correlation function is assumed isotropic, and the ani
ropy of dislocation interactions and the constraints aris
from dislocation motion on glide planes are neglected. A
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cordingly the result is an isotropicL(q) function. In the
present work, on the other hand, we find that anisotropy
dislocation motion and interactions leads to anisotropic c
relations~Figs. 1–3!. Accordingly, patterning is strongly an
isotropic. For the slip geometry analyzed in Sec. V, the mo
of maximum instability characterizes density modulations
the slip direction while any density modulations normal
this direction are damped, i.e., the instability leads to
formation of ‘‘dislocation walls’’ normal to the slip plane.

In extreme cases, a ‘‘wrong’’ pair correlation functio
may even suppress the patterning. This is seen, for insta
by inserting into Eq.~19! the pair correlation functiond̃( r̃)
5d0( r̃ )d(u2p/2) where the radial functiond0( r̃ ) is chosen
such thatd̃( r̃) complies with the properties formulated i
Sec. III. Evaluating Eq.~19! with this correlation function
yields L(q)50 for all q. The reason is the following: Ener
getically driven dislocation-density patterning results fro
the fact that dislocations, by clustering, reduce their scre
ing radius and thereby the elastic energy. For the fictitio
pair correlation functiond̃, however, only a densification in
the y direction would enhance screening. This is impossi
since, for the slip geometry considered, dislocations
move in thex direction only. Our particular choice of the pa
correlation function in this counterexample is, of cours
completely unphysical—d̃ corresponds to a random arrang
ment of pairs of edge dislocations of opposite signs wh
the dislocations of each pair are vertically above each ot
i.e., in an unstable configuration. However, there is noa
priori method to decide which pair correlation function
physically correct. Apart from an educated guess, one ha
rely on determination of pair correlations from discrete d
location dynamics simulations or on solving the integrod
ferential equations for the pair densities.

To summarize, we note that any dislocation patterning
‘‘energetically driven’’ in the sense that the motion of disl
cations is driven by forces, i.e., they move downhill in
energy functional. However, the question is how the hig
dimensional energy functional which characterizes the ma
dislocation system can be projected on a low-dimensio
phase space where~single-!dislocation densities are the onl
state variables. We have shown that already the very de
tion of an elastic energy functional necessitates the consi
ation of pair correlations which, from the point of view of
density-based dynamics, are hidden variables. Since t
properties influence the emerging patterns both quantitativ
and qualitatively, these variables should be made visible
considered explicitly. In dynamic situations an even stron
caveat applies. In materials with high dislocation mobili
the dislocation system is during plastic deformation in
close-to-critical state.35,36 Under these circumstances, corr
lation functions ofall orders become relevant and it is virtu
ally impossible to project the high-dimensional dynamics
the interacting dislocations on a low-dimensional pha
space. Models of dislocation motion and patterning in su
situations must explicitly account for the high-dimension
nature of the dynamics. This can be done by introduc
appropriately defined random processes into the evolu
equations for the dislocation densities.9,35,36The influence of
2-8
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these random processes depends on how they couple t
dislocation densities.~i! The ‘‘noise’’ due to collective dislo-
cation motions may be neglected when it simply super
poses on a slow and low-dimensional, energetically driv
pattern evolution.~ii ! When the ‘‘noise’’ couples to the dis
location densities in a multiplicative manner, however, it
not possible to disentangle the fast, high-dimensional
namics of the interacting dislocations from the slow dyna
ics of the patterns. In such situations, the method used in
present work~as well as any low-dimensional ‘‘energetic
te

an

,

22410
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approach! is not adequate for characterizing the evolution
dislocation structures.
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22E. Kröner, Kontinuumstheorie der Versetzungen und Eigensp

nungen~Springer, Berlin, 1958!.
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