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Accessibility of quantum effects in mesomechanical systems
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We consider the quantum properties of an elastic bar subject to compression. If strain rather than stress is
held fixed, the system remains stable beyond the buckling instability, supporting two potential minima. The
classical equilibrium transverse displacement is analogous to a Ginsburg-Landau order parameter, with strain
playing the role of temperature. We calculate the quantum and thermal fluctuations as a function of strain.
Excitation energies and quantum fluctuation amplitudes are compared for silicon beams and carbon nanotubes.
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The drive towards semiconductor device miniaturizat
and integration has resulted in fabrication technologies
are capable of producing artificial structures with featu
approaching the ten nanometer length scale. To go bey
this scale, naturally occurring and chemically organiz
structures are receiving much attention. These top-down
bottom-up fabrication techniques have been used to m
ultrasmall mechanical systems to probe new areas
mesomechanics.1–5 Recently, two reports have appeared th
describe two-state nanomechanical systems. In one,6 crossed
carbon nanotubes were suspended between supports an
suspended element was electrostatically flexed between
states. In the second,7 it was proposed to use an electrosta
cally flexed cantilever to explore the possibility of tunnelin
in a nanomechanical system.

Here we discuss the accessibility of quantum effects i
two-state mechanical system that has a tunable, symm
potential function. This mechanical system has analogie
the superconducting interference device in which the ob
vation of a coherent superposition of macroscopically d
tinct states was recently reported.8 Specifically, we consider
an elastic bar under longitudinal compression. The comp
sion is used to adjust the potential energy for transverse
placements, as illustrated in Fig. 1, with strain playing a r
analogous to temperature in a Ginzburg-Landau system
the compressional strain is increased toward the Euler b
ling instability,9 the frequency of the fundamental vibration
mode drops toward zero. By controlling the separation
tween the ends of the bar, i.e., fixing the strain, the sys
remains stable beyond the instability and develops a dou
well potential for the transverse motion. Since both the w
depth and asymmetry are tunable, a variety of quantum p
nomena may be explored and controlled, including ze
point fluctuations, tunneling, and coherent superposition
macroscopically distinct states. In the latter two cases,
system may provide a mechanical realization of models s
ied in Refs. 10 and 11, respectively. We have applied
model to silicon beams and carbon nanotubes, and show
in both cases the critical quantum fluctuations in position
about 0.1 Å, an order of magnitude greater than the rela
values. We show that the crossover between the quantum
thermal fluctuation regimes is a function of strain as well
temperature. Finally, we comment on the fact that tunne
in this mechanical system will be difficult to observe becau
of the stringent requirements on the applied strain.
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We start from the well-known12 normal mode description
of an elastic rectangular bar of lengthl, width w, and thick-
nessd satisfying the conditionsl @w.d. With d smaller
thanw, only transverse displacementsy(x,t) in the ‘‘d’’ di-
rection are considered. The equation of motion for small d
placements, when the bar is held fixed at both ends with
strain, is

m ÿ1Fk2y~4!50, ~1!

wherem5m/ l is the mass per unit length andF is the linear
modulus of the bar.F is related to the elastic modulusQ of
the material byF5Qwd. The bending momentk is given by
k25d2/12 for a bar of rectangular cross section.

The normal modes of the bar are described in genera
a combination of trigonometric and hyperbolic functions, d
pending on the boundary conditions.12 The boundary condi-
tions appropriate to hinged end points,y(6 l /2)505y9
(6 l /2), lead to normal modes with~angular! frequencies

vn5AQ
r

kS np

l D 2

. ~2!

Clamped end points have boundary conditionsy(6 l /2)50
5y8(6 l /2), and their normal mode frequencies are given
good approximation by replacingn with (n1 1

2 ) in Eq. ~2!.
The following analysis applies equally well to both cases.
the few instances where it makes a numerical difference
shall refer to the hinged case because of its simplicity.

FIG. 1. Potential energyV as a function of the fundamenta
mode displacementY. This function is harmonic above critica
strain «.«c ~a!, quartic at critical strain«5«c ~b!, and a double-
well below,«,«c,0 ~c!.
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The mean square displacement of the bar, which inclu
both quantum and thermal contributions, is an incoher
superposition of contributions from each normal mode.
the center, only even-parity modes contribute, so that

^@y~0!#2&5 (
oddn

\

2m* vn
@112 f ~\vn /kT!#, ~3!

where f (x)51/(ex21) is the thermal excitation number o
the nth mode. For hinged boundary conditions,m* 5m/2
exactly, whereas in the clamped casem* is slightly smaller
and weakly mode dependent. In either case the fundame
mode is responsible for more than half the total mean squ
displacement.

Longitudinal compression of the bar lowers the freque
cies, with a corresponding increase in the zero-point mot
Compressive or tensile strain contributes the ‘‘elastic’’ pote
tial energyVe5(F/2l 0)( l t2 l 0)2, where l t5*dxA11(y8)2

' l 1 1
2 *dx(y8)2 is the total~dynamic! length of the bar,l is

the end-point separation, andl 0 is the unstressed equilibrium
length. We subtract the static contribution (F/2l 0)( l 2 l 0)2

since it contributes nothing to the dynamics, and add
‘‘bending’’ contribution Vb;*dx(y9)2 to get

V@y~x!#5
1

2 E dx@Fk2~y9!21F«~y8!2#

1
F

8l 0
S E dx~y8!2D 2

, ~4!

where«[( l 2 l 0)/ l 0 is the strain, positive if tensile and neg
tive if compressive. From the Lagrangian,L@y(x,t)#
5(m/2)*dx( ẏ)22V@y(x)#, we find the equation of motion

m ÿ1Fk2y~4!2F«y92
1

2
FS E dx8@y8~x8!#2D y950,

~5!

which generalizes Eq.~1!. The third term represents the te
sion induced by externally-imposed stretching, and the
harmonic fourth term is the enhancement of tension due
the dynamic stretching effect of transverse motion; this te
arises from the geometry of the system.

In the harmonic regime where the fourth term can be
glected, the normal mode frequencies under hinged boun
conditions are given by

ṽn
25vn

2F11«S l

npk D 2G , ~6!

wherevn are the relaxed (l 5 l 0) frequencies of Eq.~2!. The
quantum and thermal fluctuations are given by Eq.~3! with
vn replaced byv̄n . Of course, the harmonic approximatio
breaks down for the fundamental mode as we approach
critical strain,

«c[
l c2 l 0

l 0
52S pk

l D 2

. ~7!

At critical strain, the effective potential for the fundamen
mode is purely quartic whereas the higher modes rem
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harmonic in leading order, with the first harmonic frequen
being reduced by about 13% from its relaxed~uncom-
pressed! value.

To address the quantum properties when the fundame
mode becomes anharmonic, we consider the Hamiltonia

H5
1

2m E dxP21V@y~x!#, ~8!

whereP(x,t)5dL/d ẏ(x,t)5m ẏ(x,t) is the canonical mo-
mentum. In the subcritical compression regime, a norm
mode expansion ofH leads to a phonon description of th
transverse motion with interactions arising from the anh
monic term. These interactions occur physically beca
transverse phonons stretch the bar. Even the zero-point
tion has a stretching effect, but this can be absorbed in
length parameterl. Thus, at temperatures below the first ha
monic threshold,kT,\ṽ2 , the anharmonic effect on th
fundamental is its own self-interaction. So the effecti
Hamiltonian for the fundamental mode, obtained by taki
the ground-state expectation value in all higher modes,
quartic function of the ‘‘fundamental displacement’’Y, the
Fourier component of the fundamental mode.13 The energy
eigenvaluesE and eigenfunctionsC(Y) describing the fun-
damental vibrational states are then given by the Schro¨dinger
equation,

S 2
\2

2m*
]2

]Y2 1
a

2
Y21

b

4
Y4DC~Y!5EC~Y!, ~9!

where2 i\]/]Y5P is the momentum operator canonical
conjugate toY. This simple description is possible becau
the intrinsic nonlinearity is restricted to a single mode. Sin
this fundamental transverse mode has a very small w
number (p/ l ), the continuum elastic theory is valid and d
termines both the form and parameter values of Eq.~9!.

The potential energy has the form of a Ginzburg-Land
free energy,14 with strain playing the role of temperature:

a5m* ṽ1
25m* v1

2S «c2«

«c
D . ~10!

The displacementY is analogous to the order parameter,
that its classical equilibrium value vanishes above criti
strain but takes a nonzero valueY→6Ymin56Auau/b be-
low it ~«,«c,0, Fig. 1!, breaking the reflection symmetr
of the Hamiltonian. Of course the quantum mechani
ground state haŝY&50, but sufficiently far into the double
well regime, this ground state is a superposition of mac
scopically distinct states. Thus, monitoring the position
the bar on a time scale less than the tunneling time wo
yield results clustered about just one of the potential minim
Ymin or 2Ymin , not both. The usual definition of quantum
fluctuations,DY25^Y2&2^Y&2, becomes inappropriate a
the system moves into the double-well regime. A more
propriate measure of the observable quantum fluctuation
DY25^min(Y6Ymin)

2&, the rms departure from the neare
potential minimum. We plot the ground- and first-excite
state energies in Fig. 2~a!, and in Fig. 2~b! the ground-state
quantum fluctuationsDY, as functions of the strain near it
1-2
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critical value. These are plotted in dimensionless energy
length units,E/Ec andDY/DYc , whereEc andDYc are the
ground-state values at critical strain,

Ec50.42S \2

m* D 2/3

b1/3 and DYc50.68S \2

m* b D 1/6

,

~11!

and the departure from critical strain,g5(1.6k/DYc)
2(«c

2«)/«c , is scaled so thatg521 when the barrier heigh
V05a2/4b is equal toE1 . Figure 2~b! shows thatDY as
defined above is much less than the well separation for fa
modest negative values ofg. In the regiong;21, where
this is no longer the case, this definition loses its phys
meaning and larger fluctuations may be expected, as
gested by the dot-dash line in Fig. 2~b!. The dashed curves B
show DY similarly defined but calculated in the harmon
approximation, with the resultDY;u«2«cu21/4. The har-
monic approximation is accurate outside a small region n
the critical point~roughly26,g,3!, where the divergence
is prevented by the quartic term in the potential energy.

To address the magnitude of quantum fluctuations in
systems, Table I lists the first excitation energiesDE5E2
2E1 and ground-state~quantum! fluctuationsDY ~Ref. 13!
for rectangular silicon bars and cylindrical multiwalled ca
bon nanotubes. Numbers are given for two cases—the c
cal and the relaxed states. Schro¨dinger equation parameter
are calculated using hinged boundary conditions, with
resultsm* 5m/2 and b5m* (v1/2k)2. Nanotube frequen-
cies were found using Eq.~2! with k25(d2

21d1
2)/16, where

d1 andd2 are inner and outer diameters. The dimensions

FIG. 2. ~a! Ground- and first-excited-state energies,E1 andE2 ,
respectively, of the fundamental vibrational mode as functions
the departure from critical straing. The dotted curve shows th
barrier height dependence ong. ~b! Curve A is the ground-state
fluctuationDY, calculated using the full quartic potential. The so
portions of the curve are obtained from the calculations; the d
dashed region is a guide to the eye. For comparison, curveB shows
DY obtained in the harmonic approximation. The dotted cu
shows the positionYmin of the potential minimum.
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the larger tubes listed are typical of the multiwalled tub
studied by Treacyet al.,15 whose vibrational properties ar
consistent with continuum elastic theory. The smaller dim
sions listed represent the smallest multiwalled tube obser
to buckle without losing its elastic integrity.16 In the critical
and double-well regimes, because of cylindrical symme
the nanotube states will be described by a Mexican hat
tential rather than the one-dimensional double well appro
ate for the rectangular silicon bars. Figures 2~a! and 2~b!
refer specifically to the one-dimensional case. For nanotu
Eq. ~9! still applies with Y replaced by a two-componen
vector. To compare nanotubes and silicon bars, the entrie
Table I refer to a single Cartesian component ofY.

Remarkably, quantum fluctuations may be enhanced b
order of magnitude by applying critical strain. At the sam
time, the excitation energies are reduced by about two ord
of magnitude, so that thermal fluctuations can exceed
quantum contributions. Thus, these mesomechanical sys
offer the possibility for parametrically controlled quantu
fluctuations, and a means to explore the region betw
quantum and thermal fluctuations.

The large differences between the relaxed and compre
energy scales suggests that these systems could be s
cooled by compression toward their critical points. For e
ample, the smaller carbon nanotube could be prepared
tially very close to its ground state by cooling to 500 m
Critical compression without heat transfer would then co
the tube to a few mK, at the same time enhancing its ze
point motion by a factor of about 10~see Table I!. Subse-
quent equilibration17 to 500 mK would then bring the tube t
a ‘‘classical’’ equilibrium state with thermal fluctuationDYt
'0.25 Å,18 a further factor of 3 enhancement.

Finally, we comment on the possibility of observing tu
neling in mesomechanical systems such as those consid
here. The barrier heightV0 divided by the level spacing\ṽ1
provides a rough estimate for the numberN of bound states
with energy below the top of the barrier:

f

t-

e

TABLE I. Table of excitation energiesDE5E22E1 and rms
midpoint fluctuationsDY for Si bars~linear dimensionsl, d, w!, and
C nanotubes of lengthl and outer~inner! diametersd2(d1). The
Young’s modulus and density of Si areQ5130 GPa andr
52330 kg/m3. The values taken for C nanotubes are~Ref. 15! Q
51.8 TPa andr52150 kg/m3. EnergiesDE are given in tempera-
ture units~note that 1 GHz548 mK!.

Si bar Si bar C nanotube C nanotub

l ~nm! 500 50 l ~nm! 500 50
d ~nm! 10 5 d2 ~nm! 10 5
w ~nm! 20 10 d1 ~nm! 5 1

Relaxed
DE0 ~mK! 6.5 330 24 1100
DY0 ~Å! 0.0081 0.0072 0.0080 0.0066

Critical
DEc ~mK! 0.023 1.7 0.086 5.9
DYc ~Å! 0.12 0.092 0.12 0.083
1-3



-

u

-
or
of
n-
tion

RAPID COMMUNICATIONS

S. M. CARR, W. E. LAWRENCE, AND M. N. WYBOURNE PHYSICAL REVIEW B64 220101~R!
N;S k

DY0
D 2S «c2«

«c
D 3/2

. ~12!

Taking the smaller bar, if we go to twice the critical com
pression,«52«c , thenN;33106. In order to tune the po-
tential to hold about 10 bound states in each well, one wo
s,

l.

E

.
,

22010
ld

have to apply strain with extreme delicacy,«2«c
;1024«c . Controlling the strain to this precision for suffi
cient time to identify tunneling, as distinct from thermal
other noise, will be difficult. Thus, while the observation
tunneling will be challenging, the prospect of exploring tu
able quantum fluctuations in this system, and the connec
to Ginzburg-Landau theory, are intriguing.
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