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Accessibility of quantum effects in mesomechanical systems
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We consider the quantum properties of an elastic bar subject to compression. If strain rather than stress is
held fixed, the system remains stable beyond the buckling instability, supporting two potential minima. The
classical equilibrium transverse displacement is analogous to a Ginsburg-Landau order parameter, with strain
playing the role of temperature. We calculate the quantum and thermal fluctuations as a function of strain.
Excitation energies and quantum fluctuation amplitudes are compared for silicon beams and carbon nanotubes.
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The drive towards semiconductor device miniaturization We start from the well-knowt? normal mode description
and integration has resulted in fabrication technologies thatf an elastic rectangular bar of lengthwidth w, and thick-
are capable of producing artificial structures with featuresnessd satisfying the conditiond>w>d. With d smaller
approaching the ten nanometer length scale. To go beyorilanw, only transverse displacementéx,t) in the “d” di-
this scale, naturally occurring and chemically organizedeCtion are considered. The equation of motion for small dis-
structures are receiving much attention. These top-down an@lacements, when the bar is held fixed at both ends without
bottom-up fabrication techniques have been used to mak&rain, Is
ultrasmall mechanical systems to probe new areas of . 20,(4) _
mesomechanics.® Recently, two reports have appeared that my+Fry =0, 2)
describe two-state nanomechanical systems. I"anessed  wherex=m/l is the mass per unit length addis the linear
carbon nanotubes were suspended between supports and thedulus of the barF is related to the elastic modul@ of
suspended element was electrostatically flexed between twfie material by = Qwd. The bending momenk is given by
states. In the secor{df was proposed to use an electrostati- x2=d2/12 for a bar of rectangular cross section.
cally flexed cantilever to explore the possibility of tunneling  The normal modes of the bar are described in general by
in a nanomechanical system. a combination of trigonometric and hyperbolic functions, de-
Here we discuss the accessibility of quantum effects in gending on the boundary conditiotfsThe boundary condi-
two-state mechanical system that has a tunable, symmetrifons appropriate to hinged end pointg(+1/2)=0=y"
potential function. This mechanical system has analogies tp+|/2), lead to normal modes wittangulay frequencies
the superconducting interference device in which the obser-

vation of a coherent superposition of macroscopically dis- \P (nw 2
wp="\/—K
P

tinct states was recently reporté@pecifically, we consider I @

an elastic bar under longitudinal compression. The compres-

sion is used to adjust the potential energy for transverse dig°lamped end points have boundary conditigs:1/2)=0
placements, as illustrated in Fig. 1, with strain playing a role=Y'(=1/2), and their normal mode frequencies are given to
analogous to temperature in a Ginzburg-Landau system. Agood approximation by replacing with (n+3) in Eq. (2).

the compressional strain is increased toward the Euler buckthe following analysis applies equally well to both cases. In
ling instability? the frequency of the fundamental vibrational the few instances where it makes a numerical difference we
mode drops toward zero. By controlling the separation beshall refer to the hinged case because of its simplicity.
tween the ends of the bar, i.e., fixing the strain, the system

remains stable beyond the instability and develops a double-

\Y

well potential for the transverse motion. Since both the well ah &
depth and asymmetry are tunable, a variety of quantum phe-

nomena may be explored and controlled, including zero-

point fluctuations, tunneling, and coherent superpositions of

macroscopically distinct states. In the latter two cases, the

system may provide a mechanical realization of models stud-

ied in Refs. 10 and 11, respectively. We have applied the Y

model to silicon beams and carbon nanotubes, and show that
in both cases the critical quantum fluctuations in position are
about 0.1 A, an order of magnitude greater than the relaxed
values. We show that the crossover between the quantum and
thermal fluctuation regimes is a function of strain as well as  FIG. 1. Potential energy) as a function of the fundamental
temperature. Finally, we comment on the fact that tunnelingnode displacemeny. This function is harmonic above critical
in this mechanical system will be difficult to observe becausestraine>«, (a), quartic at critical strairs=¢. (b), and a double-
of the stringent requirements on the applied strain. well below, e <e.<0 (c).
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The mean square displacement of the bar, which includesarmonic in leading order, with the first harmonic frequency
both quantum and thermal contributions, is an incoherenbeing reduced by about 13% from its relaxédncom-
superposition of contributions from each normal mode. Atpressedlvalue.
the center, only even-parity modes contribute, so that To address the quantum properties when the fundamental

mode becomes anharmonic, we consider the Hamiltonian

<[y<0>]2>=o§n [1+2f(ho,/kT)], (3

*
2m* szif dXIT2+ Vy(0)], ®
where f(x)=1/(e*—1) is the thermal excitation number of H
the nth mode. For hinged boundary conditioms} =m/2  wherell(x,t)=6L/dy(x,t)=uy(X,t) is the canonical mo-
exactly, whereas in the clamped cagg is slightly smaller mentum. In the subcritical compression regime, a normal
and weakly mode dependent. In either case the fundamentaiode expansion of leads to a phonon description of the
mode is responsible for more than half the total mean squariansverse motion with interactions arising from the anhar-
displacement. monic term. These interactions occur physically because

Longitudinal compression of the bar lowers the frequentransverse phonons stretch the bar. Even the zero-point mo-
cies, with a corresponding increase in the zero-point motiontion has a stretching effect, but this can be absorbed in the
Compressive or tensile strain contributes the “elastic” potendength parametdr Thus, at temperatures below the first har-
tial energyVe=(F12l0)(I,—1,)%, wherel,=[dx\1+(y’)?  monic thresholdkT<%®,, the anharmonic effect on the
~|+3[dx(y")? is the total(dynamid length of the barl is  fundamental is its own self-interaction. So the effective
the end-point separation, ahglis the unstressed equilibrium Hamiltonian for the fundamental mode, obtained by taking
length. We subtract the static contributiofF/gl,)(I—1,)2  the ground-state expectation value in all higher modes, is a
since it contributes nothing to the dynamics, and add théjuartic function of the “fundamental displacement; the
“bending” contribution V,~ [dx(y")? to get Fourier component of the fundamental mdd&he energy
eigenvalues and eigenfunction® (YY) describing the fun-

1 2 a V2 damental vibrational states are then given by the Sthger
V[Y(X)]:E AX[Fr(y")"+ Fe(y')?] equation,

f
+8To(f dx(y’)?

wheree= (1 —14)/l is the strain, positive if tensile and nega- where —ifd/d9Y =P is the momentum operator canonically

tive if compressive. From the Lagrangiar,[y(X,t)] conjugate toY. This simple description is possible because

=(w/2)fdx(¥)?>—V[y(x)], we find the equation of motion, the intrinsic nonlinearity is restricted to a single mode. Since
this fundamental transverse mode has a very small wave
number ¢r/1), the continuum elastic theory is valid and de-
termines both the form and parameter values of (@j.

(5) The potential energy has the form of a Ginzburg-Landau

free energy;* with strain playing the role of temperature:

’ P e Ble—gv. (@
, (4) “omr a2t Y g (Y)=E¥(Y), (9

1
uy+ff<2y<4>—?sy”—§f(f dX’[y’(X’)]Z)y”=O,

which generalizes Eq1). The third term represents the ten-

sion induced by externally-imposed stretching, and the an- e—g

harmonic fourth term is the enhancement of tension due to a=m*oHi=m* wi( £ ) (10
the dynamic stretching effect of transverse motion; this term gc

arises from the geometry of the system. The displacemenY is analogous to the order parameter, in

In the harmonic regime where the fourth term can be nethat its classical equilibrium value vanishes above critical
glected, the normal mode frequencies under hinged boundagyrain put takes a nonzero valYe— * Y ;== \[a[/3 be-
conditions are given by low it (e<e,<O0, Fig. 1), breaking the reflection symmetry

| )2 of the Hamiltonian. Of course the quantum mechanical
1+ 8( )
NmTkK

, (6)  ground state ha§y)=0, but sufficiently far into the double-
well regime, this ground state is a superposition of macro-
wherew, are the relaxedl€1,) frequencies of Eq(2). The scopically disti_nct states. Thus, monitoring the ppsition of
quantum and thermal fluctuations are given by Ey.with the bar on a time scale Iess_, than the tunneling yme .w'ould
o, replaced bya,. Of course, the harmonic approximation yield results clustered about just one of the potential minima,

breaks down for the fundamental mode as we approach itSmin O = Yumin, QOt bgth. Thf usual definition of quantum
critical strain fluctuations, AY*=(Y*)—(Y)*, becomes inappropriate as

the system moves into the double-well regime. A more ap-
l.—lo (WK)Z propriate measure of the observable quantum fluctuations is

~2__ 2
wp= Wy,

8= T — T (M AY?=(min(Y= Y2, the rms departure from the nearest
potential minimum. We plot the ground- and first-excited-

At critical strain, the effective potential for the fundamental state energies in Fig.(&, and in Fig. 2b) the ground-state
mode is purely quartic whereas the higher modes remaiguantum fluctuationdY, as functions of the strain near its
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8 TABLE |. Table of excitation energieAE=E,—E; and rms
w midpoint fluctuation\ Y for Si bars(linear dimensiong d, w), and
36: C nanotubes of length and outer(inner) diametersd,(d,). The
® i_ Young’s modulus and density of Si ar@=130GPa andp
5 st =2330 kg/mi. The values taken for C nanotubes &Ref. 15 Q
of =1.8 TPa ang=2150 kg/ni. EnergiesAE are given in tempera-
1r ture units(note that 1 GHz 48 mK).
0
(a) Si bar Si bar C nanotube C nanotube
2 I(nm 500 50 | (nm) 500 50
d (nm) 10 5 d, (hm) 10 5
w (nm) 20 10 d; (nm) 5 1
21 Relaxed
AEy,(mK) 6.5 330 24 1100
AYy (A) 0.0081  0.0072 0.0080 0.0066
03 2 40 1 2 3 Critical
(b) ¥ AE.(MK) 0023 17 0.086 5.9
FIG. 2. (a) Ground- and first-excited-state energiEg,andE,, AY: (A) 0.12 0.092 0.12 0.083

respectively, of the fundamental vibrational mode as functions of
the departure from critical strair. The dotted curve shows the
barrier height dependence on (b) Curve A is the ground-state the larger tubes listed are typical of the multiwalled tubes
ﬂuCtUatiOnAY, calculated USing the full qual’tic potential. The solid Stud|ed by Treacwt al_,l5 Whose V|brat|ona| propertles are
portions of the curve are obtained from the calculations; the dOt'consistent with continuum elastic theory. The smaller dimen-
dashed region is a guide to th.e Eye. Fo.r comparison, ddisrows sions listed represent the smallest multiwalled tube observed
AY obtained in the harmonic approximation. The dotted curve . L s . ..

i S to buckle without losing its elastic integrit§.In the critical
shows the positiorY ,;, of the potential minimum.

and double-well regimes, because of cylindrical symmetry,

critical value. These are plotted in dimensionless energy anfi¢ Nanotube states will be described by a Mexican hat po-
length unitsE/E, andAY/AY,, whereE, andAY, are the tential rather than the one-dimensional double well appropri-

ground-state values at critical strain, ate for the rectangular silicon bars. Figureg)2and 2b)
refer specifically to the one-dimensional case. For nanotubes,
2\23 12 \1e Eq. (9) still applies with Y replaced by a two-component
Ec=0-42( W) pY* and AYcZO-GB( mT,B) , vector. To compare nanotubes and silicon bars, the entries in

(11)  Table I refer to a single Cartesian componentYof
Remarkably, quantum fluctuations may be enhanced by an

and the departure from critical strait,=(1.6x/AYc)*(ec  order of magnitude by applying critical strain. At the same
—¢)le, is scaled so thay=—1 when the barrier height time, the excitation energies are reduced by about two orders
Vo=a’/4B is equal toE,. Figure 2b) shows thatAY as  of magnitude, so that thermal fluctuations can exceed the
defined above is much less than the well separation for fairlyjuantum contributions. Thus, these mesomechanical systems
modest negative values of In the regiony~—1, where  offer the possibility for parametrically controlled quantum
this is no longer the case, this definition loses its physicafyctuations, and a means to explore the region between
meaning and larger fluctuations may be expected, as suguantum and thermal fluctuations.
gested by the dot-dash line in Figh? The dashed curves B The large differences between the relaxed and compressed
show AY similarly defined but calculated in the harmonic energy scales suggests that these systems could be super-
approximation, with the resuldY~|e—e | Y% The har-  cooled by compression toward their critical points. For ex-
monic approximation is accurate outside a small region neagmple, the smaller carbon nanotube could be prepared ini-
the critical point(roughly —6< y<3), where the divergence tially very close to its ground state by cooling to 500 mK.
is prevented by the quartic term in the potential energy.  Critical compression without heat transfer would then cool

To address the magnitude of quantum fluctuations in reahe tube to a few mK, at the same time enhancing its zero-
systems, Table | lists the first excitation energieE=E, point motion by a factor of about 1Gee Table )l Subse-
—E; and ground-statéquantum fluctuationsAY (Ref. 13  quent equilibratioh’ to 500 mK would then bring the tube to
for rectangular silicon bars and cylindrical multiwalled car- a “classical” equilibrium state with thermal fluctuatiak,
bon nanotubes. Numbers are given for two cases—the criti~0.25 A ' a further factor of 3 enhancement.
cal and the relaxed states. Safirger equation parameters Finally, we comment on the possibility of observing tun-
are calculated using hinged boundary conditions, with theéeling in mesomechanical systems such as those considered
resultsm* =m/2 and B=m* (w/2x)%. Nanotube frequen- here. The barrier height, divided by the level spacinto;
cies were found using E@2) with K2=(d§+d§)/16, where  provides a rough estimate for the numidéof bound states
d, andd, are inner and outer diameters. The dimensions ofvith energy below the top of the barrier:
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k \?[es—e\3? have to apply strain with extreme delicacy—e.
N~| 3y - (12 ~10“s.. Controlling the strain to this precision for suffi-
0 c

cient time to identify tunneling, as distinct from thermal or
other noise, will be difficult. Thus, while the observation of
Taking the smaller bar, if we go to twice the critical com- tunneling will be challenging, the prospect of exploring tun-
pressiong =2s., thenN~3x 1CP. In order to tune the po- able quantum fluctuations in this system, and the connection
tential to hold about 10 bound states in each well, one wouldo Ginzburg-Landau theory, are intriguing.
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