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Electromagnetomotive force fields in noninertial reference frames and accelerated superconducting
guantum interferometers
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We discuss the prospects of detecting with high precision the force fields related to noninertiality in super-
conducting circuits. Special emphasis is laid on the perfectly conducting and perfect diamagnetism analogues
of the Tolman-Stewart and Barnett effects, respectively. The influence of acceleration and rotation on the
electrodynamics of superconducting interferometers is explicitly described. In particular, we show how motion
induced changes of the oscillation frequency of the local Josephson oscillators in superconducting quantum
interference filters can be used for precision measurements of acceleration in free space.
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[. INTRODUCTION phenomenon which enables the precise measurements of
bare quantities related to the charge and mass of the electron.
The detection of electromagnetic fields induced by accelin the quantum Hall effect, one measures in effect the fine
eration in magnetizable materials and metals has a historstructure constan¢?/4meyhic, which can be determined to
reaching back more than one centlifwo famous experi- an accuracy of 0.1 ppb in comparative measurements be-
ments stand out in this respect. In 1915, Barnett measuremveen two Hall probe$? In superconducting quantum inter-
the magnetic field of a magnetizable material induced byference devicegsSQUID’s), the quantum of(Cooper pair
rotating it?> One year later, Tolman and Stewart measured thélux ®,=h/2|e| is used as a standard to measure magnetic
electromotive force if metals afénearly) accelerated They  fields with unprecedented precision. The properties of Jo-
thereafter concluded on the effective mass of the curremnsephson junctions also made possible, e.g., the confirmation
carrier! which turned out be somewnhat different from that of of constancy of theslectrogravitochemicapotential(as op-
the electronin vacua A more modern experiment with in- posed to the conventional electrochemical potential without
creased precision in rotationally accelerated conductors hake inclusion of a gravitational contributirin a circuit with
been carried out,where it was found that the mass is the two Josephson junctions separated 7.2 cm in height, which
electron mass in vacuum to within about one per€ent. amounts to perpetuating a voltage constancy 6% over
Superconductors and, more generally, macroscopically time span of ten hourS.Correspondingly, due to the fact
coherent quantum systems, are distinguished by the fact théiat the ratian/2|e| is on a level of at least one ppm the bare
the mass of the current carriers has been measured, withiatio of the vacuum, a superconductor should be able to mea-
currently achievable precision of a few ppm to be exactlysure its own state of rotation and, more general, acceleration
twice the bare mags,, of the electronsn vacuo The mass is  with very high accuracy.
subject to very smallrelativistic) corrections only, so small In the following, we give an account of the influence of
as to currently elude precise experimental determination. Thaoninertial forces on macroscopic quantum devices, as spe-
measurement of the bare mass proceeds via the magnetonuifically represented by SQUID’s and Josephson junction ar-
chanical effect in superconductors, the London monieht. rays. This includes a study of the perfectly conducting and
The London magnetic field induced by rotatigsf. Eq. (13) perfect diamagnetism analogues of, respectively, the Tolman-
below] is proportional to the rotation velocity and to the ratio Stewart and Barnett effects, the latter effect in the supercon-
of twice the massn of the superconducting current carriers ductor being represented by the London moment. The pros-
divided by their charge). The best measurement to ddte pects of detecting with high precision the force fields related
yielded for the current carrying Cooper pairs a mag8m,  to noninertiality are given.
=1.000084(21). The fact that the exact bare mass appears in the London
The London moment is a universal magnetomechanicatquation, which relates mechanical and magnetic quantities,
property of rotating superconductors, independent of specifianplies that an effective theory, describing the motion of the
material properties, and verified not only in conventional su-massive current carriers, may be construed in a particularly
perconductors, but also in the high!' and heavy fermion transparent way. Specifically, in the linear in velocity, non-
species? It furnishes a generalization of the familiar phe- relativistic limit and for small deviations from the
nomenon of Meissner screening to noninertial, material refMinkowski metric of flat space-time, a general gauge invari-
erence frames of the superconducting state. The London mance principle can be satisfiéwhich puts mechanical and
ment, then, represents a particularly striking instance of g@roper electromagnetic forces on an equal footing, uniting
quantum protectorat€ for which the phenomenon of mac- them into electromagnetomotive forces. This program of
roscopic quantum coherencthe fact that the quantum of generalized gauge invariance is described in the following
actionh=2x# appears within a macroscopically measurableSec. Il on the basis of nonrelativistic kinematics. In an ap-
quantity) “protects” the bare property of a particle. It is this pendix, we outline the derivation of this gauge invariance
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program extracted from relativistic geodesic motion, and re-
late the potentials of the noninertial force fields to metric
coefficients in weakly perturbed Minkowski space-time. In
Sec. Il we describe the influence of electromagnetomotive
force fields on the electrodynamics of superconducting quan-
tum interferometers. In particular, the influence of accelera-
tion and rotation on the voltage response function of one-
dimensional Josephson junction arrays is discussed. For
special Josephson junction arrays, so-called superconducting
quantum interference filter$; it is explicitly shown how
such devices can be used for precision measurements of ro-
tation. The knowledge of the electromagnetomotive force
fields in the superconductor enables as an application the
sensitive tracking of thérajectory of the quantum interfer-
ence device. The procedure to be used for that purpose will
be outlined in Sec. IV.

Il. ELECTROMAGNETOMOTIVE FORCE FIELDS
FOR ACCELERATED SAMPLES

IN RIGID BODY ROTATION FIG. 1. A Cooper pair in a rotating and accelerating supercon-

The noninertial force on a massive test particle inside glucting quantum interference devi€gQUID), with two Josephson

rotating and accelerating probe, as measured in the probeuénctions. Its position and velocity are given by their valuesdv
rest frame, is given by the stanéard expression in the frame rotating with angular velocit2 about a prescribed
' axis, which is located at &ime dependentlaboratory frame posi-

F noninertia™= 2Mv X @ —mOQ X QX r—m(3,2) X r—mV P tion ro. For representation purposes, the axis is in this picture lo-
cated at the center of the SQUID and perpendicular to its surface.
- mﬁfro, (1 ¢, and g are the gauge invariant phase differences associated to

. . . . . the Josephson junctions.
whereQ is the rotation velocity:- mV ® is a possible scalar

force on the particle, e.g., gravity, arbl its potential. The tials into a generalized vector potential, incorporating the
first term on the right-hand side of E({) represent$minus  coupling constants chargeand massn,?°

the Coriolis force, the second one the centripetal force, and

the third term is due to temporal changes of the angular A=0gA+ma, (6)
velocity. The vector is the position of the center of rota- g g generalized scalar potential

tion, andd?ry is an (externally imposeqlinear acceleration

of this center of rotatioricf. Fig. 1). X=—09Ag—Ma. (7)

¢ Cqmpare the relatiottl) to the expression for the Lorentz The sum of the generalizedectromotiveandmagnetomotive

orce: forces, acting on a charged particle, consisting of noninertial
FLorent=0qv XB+qE  (Lorent2 (2) plus proper Lorentz and electric forces, then takes on the

' form
where as usual, provided that the conventional homogeneous
Maxwell equations F,=+tuv X5, (8
rotE=—4,B, divB=0 3) where the generalized electric and magnetic fields are given

by the potentials4 and y:
hold, the magnetic and electric fields are derivable from vec-

tor and scalar potentials as E=—-Vyx—d. A=qE+mVa,—mdga
E=VA,—dA, B=VXA. 4) =qE—mQOQX (QXr)—m(3,Q)Xr—mVd—md?ry,
We, then, define vector and scalar potentials associated t0 3=V x 4=qB+2mQ. (9

noninertiality as follows: )
As a consequence of relatid®) for the total force, the usual

1 expression for the drift velocity of the charge carriers, result-

a=QXxr+drg, ao=iﬂzrf—q). ) ing from zero total force in perpendicular electric and mag-
netic fields, experiences the obvious modification tEat

wherer, is the distance vector perpendicular to the axis of—& andB— B, so thatvp=EX B/B2.

rotation. Summing the mechanical and electromagnetical The generalized electromagnetic force fields displayed in

forces, we may infer that for a charged massive particle likeEgs. (8) and (9) give a theory possessing in effect twg

electron ¢=—|e|) or Cooper pair §=—2|e|), we can gauge symmetries. The standardlJJfrom electromagne-

merge the above potentials and the electromagnetic potettism, with coupling constang (charge, and another (1)
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gauge symmetry, with coupling constant (inertial rest
mass. The gauge potential of this second1Y has a scalar i(p,dW: N,h, (19
partay and a vectorial pard;. The homogeneous Maxwell
equations whereN, is the winding number of phasg so that the total
canonical momentum
rot€= — o5, (10
p=AV 0=mv+ A=mv+méoro+mQXr+gA, (16)
divB=0 (11

wherewvg is the Cooper pair velocity field. The momentum
then follow from the existence of the generalized potentialshas a mechanical contribution proportionaht@nd a proper
A andy in Egs.(6) and(7), which give the field andBin  electromagnetic contributiogA. The uniqueness condition
Eqg. (9). They are identical to the conventional homogeneousf the collective phase represented in ELp) then leads to
Maxwell equations in Eq(3) with the replacement&—&  the quantization of the sum of a Sagnac i’ and the
and B—B. That the Faraday lawl0) holds is due to our magnetic flux
admitting a variation of the angular velocity with time and
the resulting force term in Eql). We stress that the fields _ _
and B are both referring to the frame corotating as well as = 3€C(A,dr>—q ﬁ(A,drM—m i(ﬂxr,dr) (17
comoving with the quantum interference device with respect
to the laboratory frame. The laboratory frame velodity, as
well as the rotation rat€2 can be time dependent in an ZQJ <B,dS>+2mf (€,dS)
arbitrary manner.

The gauge invariant particlenass current induced by the B B
electromotive force field is in linear response = | (B.dS)=N,h, (18
Jnd_g. & (12) if we take a path in the bulk of the electron liquid, for which
[ i< -

: _ _ the integral ofmv may be neglected. This flux quantization

Observe that the left hand side contains the induced massile associated with the fielfl corresponds to the fact that a
current density rather than the electric current density. Thgortex represented by a zero in theollective) electron
associated response coefficienf is measured in units of wave function, where the phagebecomes singular, is fun-
[7]=[0e/92]. In the case of two coupling constantsand ~ damentally characterized by its winding numié¢y alone.
g, it is the number of particles crossing a unit area per unifNO Properties of the medium in which it lives, in particular
time, which is the relevant observable. This quantity is pro-h€ mass and charge of the medium’s constituents, enter the
portional to the electromotive force fielf, which causes guantum of generalized flux, which is given by Planck’s
these particles to move. quantum of action alone. The relation for the London mo-

Evidence for the necessity of usingparticle transport Mentin Eq.(13), expressing vanishing magnetomotive force
equation in the form of Eq12) comes from the existence of fi€ld, corresponds to zero winding number of the phése
the London field in superconductors. Complete expulsion ofl N€ classical property of zero generalized magnetic feld
the field B deep inside in a superconductor requires the par=0 expressed by the London moment is hence rooted in the
ticle conductivity o to have a contribution proportional to '?heene[f}alllrﬁl %hiiﬁzlrﬁgc%reig”F()atrlfme;or’ezggéhg; ]r}%Iates to
L, which yields a term on the right hand side of &), T?}e vanishing of the f?elcg inythe FE)ulk of a noni'nertial
proportional to the generalized vector potentiél Corre- 9 S o
sponding to complete Meissner type screeniti: rotA superconductofin the _sta_tlc I|r_n|t of zero f_requen()ymphes
_ _ o that the proper electric field is nonzero inside the supercon-
=0gB+2mQ=0, the London spontaneous fiel, then ;
takes the value ductor, and given by

m
B .=—2— Q. (13

q
This relation corresponds to zero winding number of the
phased, cf. Egs.(15)—(18) below. Equatior(13) was derived
by London’ and has been verified experimentally already 35 (19)
years agd,in an experiment in which it was used to infer the
Compton wavelength of superconducting electrons. If we indt is composed of the centrifugal, time variation &, ®
sert on the left hand side of E€L3) the bare electron values potential and linear acceleration parts. If the total accelera-
m=2m, andq=—2|e|, we have tion g is the gravitational acceleration on the surface of the

earth,|g|=9.81 m/se¢, we have the value

m
ETZE[_VaOJF &ta]

m , m
= a(Q><Q><r+ HOAXTI+3rg+ VD)=~ a g.

B |=7.15x10 1 T (14)

_ —11
for |Q|=2m/sec. Quantum coherence properties are ex- |Er|=5.58<10 Vim (20
pressed by the requirement for the line integral of collectivefor the electric field induced in the superconductor. The total
particle momentum along a closed path to be quantized: electromotive force field is thus simply
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loops can have different shapes and sizes. In particular, judi-
ciously choosing the distribution of the area loop sizes in a
suitable unconventional way, 1D parallel arrays can be used
as sensors of absolute strength and orientation of magnetic
fields. This is due to the fact that 1D parallel arrays are
magnetic field to voltage converters, if they are driven by a
bias current of suitable strength. Because of their unique re-
sponse to applied magnetic fields, such 1D parallel arrays
with unconventional grating are named quantum interference
filters (SQIF’s) and are explained in greater detail in Refs. 17
and 18.

FIG. 2. Superconducting quantum interferometer Wthoseph- In the following the Josephson junctions are assumed to
son junctions. Its local frame rotates with angular velo€kybout  pe shortjunctions such that any spatial variations of the cur-
a prescribed axis, which is located aftene dependentiaboratory  rent density along the barriers of the weak links can be safely

frame positionr,. For representation purposes, the axis is in thisneglected. In this case each junction can be described by a
picture located at the center of the interferometer and perpendiculz-gauge invariant phase difference

to its plane surfacep, is the gauge invariant phase difference as-

sociated to thenth Josephson junction in the array aB¢denotes 2
the nth orientated area element. ©=01—0,+ 1/hJ’ (A,dr) (23
1
&=q(E-Er)=qE+mg, (21 of the macroscopic BCS pairing wave functions on either
and takes a form analogous to the total magnetomotive forcéide of the weak link labeled 1 and 2 respectively. Within the
field range of validity of the resistively and capacitively shunted
junction (RCSJ modef® the current through the Josephson
B=q(B—B_)=gB+2mQ. (22)  junction | is a superposition of the dissipationless macro-

. - . scopic supercurrent, with a normal current, characterized
The fact that there is an electric field associated to acceler%—y .'Eshunri resistantéa and shunt capacitane@

tion (which may be material dependent for nonperfect con-
ductorg was measured by Tolman and Stewart in metals. 4C 7

The general phenomenon associate§,toe., the occurrence (@)= 2—&t2¢+ ﬁ&t(p-l— I.sin(p). (29

of a magnetic field if the sample is rotated, was observed for el €]

magnetizable materials by Barnétwith a (possibly aniso-  For an idealS-1-S junction the supercurrent is connected to
tropic) ratio of magnetic field and rotation different from the o phase difference across the tunneling barrier by
one dlsplqyed by superconduc_tors e>_<pre55|ble via th_e Lon£|csin(¢)' wherel . is the maximum dissipationless super-
don equatior(13). The Tolman fieldEy is a property of(in ¢ \rrent, that can flow through the junction. Of course, in 1D
the limit of zero frequencyperfect conductors. The London arrays each junction can have individual parameersC, ,
field B, in turn, is a signature of perfect diamagnetism foran(“C o

rotating samples. Perfect diamagnetism may thus be under- |, Eq. (23) there appears the generalized vector potential
stooq as a hallmqu of supercor)duc'tors in general, be they fom Eq.(6) in the definition of the gauge invariant phase
considered in an inertial or noninertial reference frame. INyifterence. According td9), this indicates that, in principle
short: The fieldEr is measured i is vanishing andB, is  {he electro- and magnetomotive force fielland B can be

detected if53 is completely(Meissney screened. measured by superconducting quantum interferometers. For
1D parallel Josephson junction arrays, the basic relations are
ll. ACCELERATED JOSEPHSON JUNCTION ARRAYS now discussed.

Devices based on superconductive quantum interference According to the fundamental Josephson relation the rate

can be used as ultrasensitive detectors for magnetic ﬁeldg.f change of the time dependent phase differentt) is

They consist of one, two or even a plurality of Josephsoi}elat_ed to the electromotive force field across the junction

junctions or weak links which are connected as an array t arrier by

form one or several superconducting loops. Prominent expo- 5

nents are devices containing two junctions per loop, like the hap(t)= _J (&,dr). (25)

dc-SQUID shown in Fig. 1. It consists of two junctions 1

shunted parallel to form one single loop. Other devices oﬁn the case of an electromotive force fieddthe Josephson

this class are series arrays of dc-SQUID's or one- . . X phse

dimensional1D) parallel arrays which can contain a plural- frquengy’f 1;0r alsn;lgEIe 21‘;”0“‘;? r(]a\_/al'::]ates frko?1 thtg ”glht

ity of Josephson junctions. A superconducting interferometet1an side integral o 425), which 1S the wo.r unctiona

based on an 1D parallel array is shown schematically in Figgssomated with the electromotive force field:

2. It consists ofN Josephson junctions shunted parallel in

such a way that there afd-1 individual superconducting hv=41
t

o1
| im=[e(t) = (0)]. (26
loops. In general th&l-1 areasS,, of these superconducting o

—
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Scaling this in experimentally relevant units, we have that Using the RCSJ modé24) and Kirchhoff’s rule, the total
the electric field (200 induced by an accelerationg| currentl, flowing through the array is obtained as thlease

=9.81 m/set corresponds to sensitive superposition of the individual junction currents
In(en)
I
v1=27.0 Hz—, (27) N
mm
6= 2, In(¢n). (31)

wherel is the total length of the superconducting regitme

length of the integration path in Eq26) joining the two  The gauge invariant phase differenggsof adjacent Joseph-
sides of the junctiof in which the fieldEy exists. son junctions in the array are not independent, but are con-
~ Consider now theith loop of the 1D array containing the nected to each other by the condition of flux quantization
junctions labelech andn+1, respectively. From E25) it (29). Neglecting the Biot-Savart type inductive couplifigs
follows among the currents flowing in the array, it follows from Eq.
(29) that one can eliminate all phase variabiggt) in favor
of a single phase variable, s@t) = ¢4(t). In this casg31)
can be used to map the problem Nfcoupled Josephson
junctions onto a virtuasingle Josephson junction model and
where the patlt,, circulates around the boundary of the sur-there results a scal&@RCSJ-like differential equation deter-
face elementS, just once. The electromotive force fiell  mining the phase differencé(t).t’
determines via Eq.28) the temporal evolution of the differ- The decisive quantity determining the response of the 1D
ence of the variableg,, and ¢, 1 associated to the Joseph- parallel Josephson junction array omagnetomotivdorce
son junctions in the considered loop. Thé$el equations fields (22) is the complex structure factdiy(B),!” given by
describe the effects of the electromotive force fi€letf. Eq.
(9)] on accelerated 1D parallel arrays of Josephson junctions.

The basic formula describing the effects of magnetomo- Sn(B) =
tive effects on superconducting interferometers is the condi-

tion of flux quantization. The generalized magnetic il \ypere the critical currents of the individual junctions &g
through the area of .theth_elementary loops, in an 1D (their average over alN junctions isl;) and S, are the
parallel array determines via orientated area elements of the arréyith S,=0). The
quantity Sy, is strongly affected by the geometry of the array,
ﬁ(%_%ﬂ):@n:f (B,dS), (29 i.e., the ch.oice .of the individual area eleme8ts(cf. Fig. 2), .
Sh and describes interference effects between the array junction
currents in the presence of magnetomotive force fields.
the difference of the phase differences of the two junctions |n the overdamped junction regime and for static magne-
which form this loop. Taken severely this relation holds pro-tomotive fields the scalar differential equation of the single
vided the superconducting loop is made of a material thicKvirtual) Josephson junction model can be solved analytically
compared to the magnetic penetration depthn this case under conditions where a constant currgnis biased. The
there exists a path inside the wire connecting the junctions splution ¢(t) then determines via/(t)=%/2|e|d,4(t) the
andn+1, on which the superfluid velocity fields becomes  voltage drop between the electrodes of the array. It turns
negligibly small. So/iV6= A along this path. In Eq(29)  out!” that if the bias current, exceeds the maximal critical
n is the generalized flux from E@18), incorporating both  array currentNI¢|Sy(B)|, the absolute valugSy(B)| influ-

the conventional magnetic flux ar(dvice) the flux of the  ences the time averaged voltagé) across the array by
rotation field. Therefore superconducting interferometers can

in principle be used to determine the rate of rotatforvia hy Ip |2
the detection of the London spontaneous fi@d corre- mz(V)zlcR \/(NI ) —|Sn(B) 2.
sponding toQ) [cf. Eq. (13)].

By the generalized Faraday’s laf40) the electromotive
force field € along the integration patfi, that circulates the
nth closed loop in the array just once is directly connected t
the time derivative of the flux threading this area element

d j—
hgilonemD=" § (€40 @9

2 ',— r{}; 2 <B,sm>} (32

ZIH

(33

Here R denotes the average ohmic resistance of all array
junctions. Taking into account all inductive couplings, the
ualitative behavior of the array voltage response does get
not affected, i.e., Eq(33) also qualitatively describes the
g voltage response in this caSe.
o _ If the bias current, is adjusted slightly above the array
dtf (B,dS)= fﬁ (£.dr). (30 critical current, the presence of magnetomotive force fields
gives an effect of shifting the frequendyespectively the
A comparison of the time derivative of EQ9) with Eq.(28)  voltage which is orders of magnitude larger than the fre-
indicates that these basic relations describing the effects @fuency shift displayed in E427). The relevant quantity here
electromagnetomotive force fields on 1D parallel arrays arés the maximum voltage transfer factor of the voltage re-
consistent with the generalized Faraday’s law. sponse function:
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" " " " " " " currents) flowing through the wires of suitably orientated
1.1F . compensation cdi), to reconstruct the absolute value, the
= 10} “ W w \' w N 1 orientation and even the phase of the rate of rotation, i.e., to
- determine the full angular velocity vect®2(t) and its time
g 09 F dependence.
S\ 0.8F ] A basic problem for the sensitive detection of rotation and
~ o7k 3 other noninertial fields is that the device has to be shielded
’ against external magnetic fields, like that of the earth. It has
0.6 ] been shown in Ref. 24 by Satterthwaite and Gawlinski for
ost ] the stationary case, that superconducting shielding, which
) . ) : . ) ) delivers the shielding factors required to detect rotations as
0~4_3 =2 -1 0 1 2 3 slow as, e.g., that of the earth, implies that the apparatus
<BL, Sma.x)/q)o cannot distinguish between applied rotation and applied

proper magnetic flux: The corotating superconducting shield

FIG. 3. Voltage response due to rotation of a quantum interferprevents such a distinction. The current induced by a rotation
ence filter, withN=30 (overdampejl Josephson junctions for bias with  is the same as that induced by an external, applied
currentl,=1.INI.. The time averaged voltag®/) in units of ;R magnetic field—B, , because the device cannot tell from
is plotted versus the normalized magnetic {8 ,Sna9/®Po Which  which of the two parts of8 the induced current actually
the London spontaneous fiellj induces in the largest area element comes from. Shielding is not necessdand, indeed, not
Siax Of the array. The loop areds§,| are all in plane and randomly possiblé for charge neutral quantum interference devices,
distributed between 0.1 and 1/@a,- which are thus capable of detecting absolute rotation,
whereas superconductively shielded SQUID’s or Josephson
arrays are not. Whas measurable by superconducting inter-
ferometers are the fields and £ coming from the(acceler-
ated motion relative to the external shield, which remains
which determines the maximum sensitivity of the array onfixed with respect to the local frame of inertia. In particular,
magnetomotive fields. Scaling E@3) in experimentally rel- SQIF’s can measure relative motion on an absolute scale.
evant units, we have fdi)|=2mx/sec that the magnetomo- However, a gyromagnetic gyroscope based on this idea needs
tive field (14), i.e., the London spontaneous fiddg, corre- some mechanics and therefore cannot be more sensitive than

d(2[e[(V))

N~ IB ) (34)

max

sponds to a mechanical gyroscope itself.
One possibility to build a gyromagnetic gyroscope with-
TN out any moving parts, is to use a material with a magneto-
v =3.46x10" Hz VT’ (39 mechanic factory different from the factory=—2m/q, oc-

curring in the London equatiofi3) for the superconducting
provided the array is driven at its most sensitive point ofshield. In this case it is possible to circumvent the problem of
operation. Typical experimental values for the transfer factoindistinguishability, i.e., to which parts @& an induced cur-
of bare 1D parallel arrayévith N=30) are of the order of rent is related. For example a ferromagnetic material, whose
Ty~107—10° VIT.'® As can be derived from Eq33) the  magnetic field induced by rotation is itself measured by a
transfer factor scales with the numherof junctions in the  SQUID which is shielded by a superconducting shield, can
array, so thatZy can be increased witN. Using additional measure the rotation fiefd.But such a device is not a su-
flux-focusing structures, e.g., superconducting pickup loopsperconducting gyroscope in a narrower séhsehich exclu-
the transfer factor can be further increased by several ordesively relies on the superconductors’ response to rotation.
of magnitudes up tdl~10° V/T. According to Eq.(35),

such devices are then very sensitive to rotations and can IV. TRAJECTORY TRACKING
measure the angular velocify very precisely. o _ _ i
In Fig. 3 the voltage response, according to &), of a The determination of the trajectory(t)+xy(t) of an

quantum interference filter due to rotation with angular ve-€lectron(or Cooper pairin an accelerated superconductor

locity Q is shown. For vanishing magnetic fieR=0, the ~ amounts to solving the second order differential equation

normalized voltag&V)/(I.R) is plotted versus the normal- _ ‘

ized magnetic flux(B, ,Snay/Po the London spontaneous d’' g dx¥ g B

field B, = —2m/qQ induces in the largest area elem&nt, a2 + EEiik(BL)kH“L E(ET)i =0, (36)

of the array. The SQIF contaié= 30 junctions and the loop

areasS,=|S,| are randomly distributed between 0.1 and 1.0which is Eq. (1) with Fpgnineria= md?x'/dt?, where the in

|Smad . FOr maximal voltage swing the bias curregtis ad-  general time dependent proper magnetic and electric fields

justed slightly aboveN| .. B, and E; are determined from Eqg13) and (19). The
For vanishing magnetic fiel8=0, the voltage response electric fieldE; is, according to Eq(19), in the rotational

is indeed aunique function of the London fieldB,| and part position dependent, linear in the distance veator

hence of|Q| around itsglobal minimum at|B,|=0. This =x'g from the center of solid body rotatiory.?’ In the

suggests that it would be possible, e.g., by measuring contréddppendix, Eq.(36) is explained in terms the geodesic equa-

214509-6



ELECTROMAGNETOMOTIVE FORCE FIELDS IN . .. PHYSICAL REVIEW B4 214509

tion (A1), and the field€; andB, are identified as connec- B 1 B

tion coefficients on a Riemannian manifold, i.e., on a mani- I#a=51""(ga,ythpya=hNav p)- (A3)

fold representing space-time with some metric coefficients. ) o
We now use that the spatial components of &{l) arée

V. CONCLUSION g2 i i dxi i dxi dxK

Moving superconducting circuits consisting of current bi- ae Too= 210 g ik gt gt
ased superconducting quantum interference fil{&QIF’S , i
are local oscillators that undergo a characteristic and unique Lo oo _d_><’+1,0_ dx dx|dx
change of their oscillation frequency under acceleration and 00 0 gt ik dgt dt|dt
rotation. However, by the very nature of the combined vector )
field A, Eqg. (6), such a superconducting interferometer is [ o d_X' (A4)
only capable to detect the combined magnetomotive fild 0o O dt

Eq. (22), and the combined electromotive fiefi] Eq. (21). The last line holds if we consider the lowedbkhean order in

Employing a suitable shield such SQIF’'s can neverthelesa1e charge velocity, whose magnitude is assumed to be

measure relative motion on an absolute scale. The aforemepﬁuch less than the speed of light. The rotation @tei.c.,

tioned devices might be used, for example, to construct aﬂwe invariant(vorticity) measure of the proper veloci
absolute detector of noninertial motion in the context of seis- . Y prop 9

Xr induced by rotation, is taken into account upQ¢Q?),

in the form of I"'yy. Terms which are quadratic in [last

term in the first line of Eq(A4)], and those of higher order
ACKNOWLEDGMENTS than quadratic if2 andv and their product$terms in the
second line of Eq(A4)] are neglected.
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APPENDIX: NONINERTIAL FORCE FIELDS mF:quo_ mI oo+ (GFy—2mI ¥ g)v!
FROM THE GEODESIC EQUATION

The motion of a test particle, upon which no external
(electromagneticforce is acting, is describable by the geo-
desic equation in space-time,

) 1
=q(FyotFyiv')— m( hio,0— EhOOK)

—m(hyo; + hyi o= hoi o' (A5)
du# i B This relation leads to the generalizeléctromotiveandmag-
FJFF apt“u"=0, (A} netomotiveforce fields, reinstating the speed of lightand

neglecting the time derivative df;,,
with the four-velocity normalized to unity, i.eu*u,=—1.
The connection coefficients”, ; serve to describe any kind
of “acceleration” du®/dr, caused by the transformation to
the curvilinear coordinates of a rotating and accelerating
frame [cf. Eq. (1) valid for a rigidly rotating frame, and v X B=vX(qB+mcV Xxhg). (A7)
nonrelativistic particle velocitigsThe true four-acceleration The relations(A6) and (A7) result in the following identifi-
is invariantly zero for a geodesic: The equation above dezations with the potentials in E¢5):
scribes the(kinematig autoparallel property of the four-
velocity with componentsu®. If electromagnetic fields are )
present, the right-hand side of EGA1) is no longer zero, 5CNoo=a0, cho=a. (A8)
and the covariant Lorentz force four-acceleration equation on . i )
a particle of charge and inertial rest mass in the presence Measuring the field$, and Ey in Egs. (13) and(19) thus

of an electromagnetic field acting on the particle reads ~ Yields the connection coefficients oo andI'"o; (spatial co-
ordinates are in a Cartesian frame

1
5:qE+ EmCZVhOO_mC(?tho, (A6)

(%~ ml% g umu” A2 m
where we have brought the connection coefficient term to the m om
right hand side. (BL)j€ikj=—2—(Q)jeinj= — — 'y (A9)
In the weak field limitg,, = 7,,+h,,, in which raising q a
and lowering of indices is to lowest order th|<| 77,”| For the distinction and understanding of “real” electromag-

accomplished by, = diag(—1,1,1,1), the connection coef- netism and generalized electromagnetism as expounded here,
ficients take on the form it is of importance to bear in mind th&; andB, , if under-
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stood as connection coefficients like in the relations above,

have noexactcoordinate invariant meaning as tensor fields—I"40,=1",0,= = 5 (No,.st N0~ oy 1)
like the proper electromagnetic fields and B have. They

gain anapproximatecoordinate invariant meaning only in =Fur= A= A, (A10)

the weak field limit|h,,,|<|7,,[, and if 3;h; is negligible,  |n the specified limit of small velocities and small deviations

because in this limit thé"“,, in Eq. (A3) transform tenso-  from Minkowski space-time, we can thus ascribe coordinate

rially, and the field strength is identified to be invariant, i.e., tensorial meaning 18,,, .
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