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Electromagnetomotive force fields in noninertial reference frames and accelerated superconductin
quantum interferometers

Uwe R. Fischer, Christoph Ha¨ussler, Jo¨rg Oppenla¨nder, and Nils Schopohl
Eberhard-Karls-Universita¨t Tübingen, Institut fu¨r Theoretische Physik, Auf der Morgenstelle 14, D-72076 Tu¨bingen, Germany
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We discuss the prospects of detecting with high precision the force fields related to noninertiality in super-
conducting circuits. Special emphasis is laid on the perfectly conducting and perfect diamagnetism analogues
of the Tolman-Stewart and Barnett effects, respectively. The influence of acceleration and rotation on the
electrodynamics of superconducting interferometers is explicitly described. In particular, we show how motion
induced changes of the oscillation frequency of the local Josephson oscillators in superconducting quantum
interference filters can be used for precision measurements of acceleration in free space.
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I. INTRODUCTION

The detection of electromagnetic fields induced by acc
eration in magnetizable materials and metals has a his
reaching back more than one century.1 Two famous experi-
ments stand out in this respect. In 1915, Barnett meas
the magnetic field of a magnetizable material induced
rotating it.2 One year later, Tolman and Stewart measured
electromotive force if metals are~linearly! accelerated.3 They
thereafter concluded on the effective mass of the cur
carrier,4 which turned out be somewhat different from that
the electronin vacuo. A more modern experiment with in
creased precision in rotationally accelerated conductors
been carried out,5 where it was found that the mass is th
electron mass in vacuum to within about one percent.6

Superconductors and, more generally, macroscopic
coherent quantum systems, are distinguished by the fact
the mass of the current carriers has been measured, w
currently achievable precision of a few ppm to be exac
twice the bare massme of the electronsin vacuo. The mass is
subject to very small~relativistic! corrections only, so smal
as to currently elude precise experimental determination.
measurement of the bare mass proceeds via the magnet
chanical effect in superconductors, the London moment7–9

The London magnetic field induced by rotation@cf. Eq. ~13!
below# is proportional to the rotation velocity and to the rat
of twice the massm of the superconducting current carrie
divided by their chargeq. The best measurement to date10

yielded for the current carrying Cooper pairs a massm/2me
51.000084(21).

The London moment is a universal magnetomechan
property of rotating superconductors, independent of spe
material properties, and verified not only in conventional
perconductors, but also in the high-Tc

11 and heavy fermion
species.12 It furnishes a generalization of the familiar ph
nomenon of Meissner screening to noninertial, material
erence frames of the superconducting state. The London
ment, then, represents a particularly striking instance o
quantum protectorate,13 for which the phenomenon of mac
roscopic quantum coherence~the fact that the quantum o
actionh52p\ appears within a macroscopically measura
quantity! ‘‘protects’’ the bare property of a particle. It is thi
0163-1829/2001/64~21!/214509~8!/$20.00 64 2145
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phenomenon which enables the precise measuremen
bare quantities related to the charge and mass of the elec
In the quantum Hall effect, one measures in effect the fi
structure constante2/4pe0\c, which can be determined to
an accuracy of 0.1 ppb in comparative measurements
tween two Hall probes.14 In superconducting quantum inte
ference devices~SQUID’s!, the quantum of~Cooper pair!
flux F05h/2ueu is used as a standard to measure magn
fields with unprecedented precision. The properties of
sephson junctions also made possible, e.g., the confirma
of constancy of theelectrogravitochemicalpotential~as op-
posed to the conventional electrochemical potential with
the inclusion of a gravitational contribution!, in a circuit with
two Josephson junctions separated 7.2 cm in height, wh
amounts to perpetuating a voltage constancy of 10222 V over
a time span of ten hours.15 Correspondingly, due to the fac
that the ratiom/2ueu is on a level of at least one ppm the ba
ratio of the vacuum, a superconductor should be able to m
sure its own state of rotation and, more general, accelera
with very high accuracy.

In the following, we give an account of the influence
noninertial forces on macroscopic quantum devices, as
cifically represented by SQUID’s and Josephson junction
rays. This includes a study of the perfectly conducting a
perfect diamagnetism analogues of, respectively, the Tolm
Stewart and Barnett effects, the latter effect in the superc
ductor being represented by the London moment. The p
pects of detecting with high precision the force fields rela
to noninertiality are given.

The fact that the exact bare mass appears in the Lon
equation, which relates mechanical and magnetic quanti
implies that an effective theory, describing the motion of t
massive current carriers, may be construed in a particul
transparent way. Specifically, in the linear in velocity, no
relativistic limit and for small deviations from the
Minkowski metric of flat space-time, a general gauge inva
ance principle can be satisfied,16 which puts mechanical and
proper electromagnetic forces on an equal footing, unit
them into electromagnetomotive forces. This program
generalized gauge invariance is described in the follow
Sec. II on the basis of nonrelativistic kinematics. In an a
pendix, we outline the derivation of this gauge invarian
©2001 The American Physical Society09-1
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program extracted from relativistic geodesic motion, and
late the potentials of the noninertial force fields to met
coefficients in weakly perturbed Minkowski space-time.
Sec. III we describe the influence of electromagnetomo
force fields on the electrodynamics of superconducting qu
tum interferometers. In particular, the influence of accele
tion and rotation on the voltage response function of o
dimensional Josephson junction arrays is discussed.
special Josephson junction arrays, so-called supercondu
quantum interference filters,17–19 it is explicitly shown how
such devices can be used for precision measurements o
tation. The knowledge of the electromagnetomotive fo
fields in the superconductor enables as an application
sensitive tracking of thetrajectory of the quantum interfer-
ence device. The procedure to be used for that purpose
be outlined in Sec. IV.

II. ELECTROMAGNETOMOTIVE FORCE FIELDS
FOR ACCELERATED SAMPLES

IN RIGID BODY ROTATION

The noninertial force on a massive test particle insid
rotating and accelerating probe, as measured in the pro
rest frame, is given by the standard expression

Fnoninertial52mv3V2mV3V3r2m~] tV!3r2m¹F

2m] t
2r0 , ~1!

whereV is the rotation velocity;2m“F is a possible scala
force on the particle, e.g., gravity, andF its potential. The
first term on the right-hand side of Eq.~1! represents~minus!
the Coriolis force, the second one the centripetal force,
the third term is due to temporal changes of the angu
velocity. The vectorr0 is the position of the center of rota
tion, and] t

2r0 is an ~externally imposed! linear acceleration
of this center of rotation~cf. Fig. 1!.

Compare the relation~1! to the expression for the Lorent
force:

FLorentz5qv3B1qE ~Lorentz!, ~2!

where as usual, provided that the conventional homogene
Maxwell equations

rotE52] tB, divB50 ~3!

hold, the magnetic and electric fields are derivable from v
tor and scalar potentials as

E5“A02] tA, B5“3A. ~4!

We, then, define vector and scalar potentials associate
noninertiality as follows:

a5V3r1] tr0 , a05
1

2
V2r'

2 2F, ~5!

wherer' is the distance vector perpendicular to the axis
rotation. Summing the mechanical and electromagnet
forces, we may infer that for a charged massive particle
electron (q52ueu) or Cooper pair (q522ueu), we can
merge the above potentials and the electromagnetic po
21450
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tials into a generalized vector potential, incorporating t
coupling constants chargeq and massm,20

A5qA1ma, ~6!

and a generalized scalar potential

x52qA02ma0 . ~7!

The sum of the generalizedelectromotiveandmagnetomotive
forces, acting on a charged particle, consisting of noniner
plus proper Lorentz and electric forces, then takes on
form

FL5E1v3B, ~8!

where the generalized electric and magnetic fields are g
by the potentialsA andx:

E52“x2] tA5qE1m“a02m] ta

5qE2mV3~V3r!2m~] tV!3r2m“F2m] t
2r0 ,

B5“3A5qB12mV. ~9!

As a consequence of relation~8! for the total force, the usua
expression for the drift velocity of the charge carriers, resu
ing from zero total force in perpendicular electric and ma
netic fields, experiences the obvious modification thatE
→E andB→B, so thatvD5E3B/B 2.

The generalized electromagnetic force fields displayed
Eqs.~8! and ~9! give a theory possessing in effect two U~1!
gauge symmetries. The standard U~1! from electromagne-
tism, with coupling constantq ~charge!, and another U~1!

FIG. 1. A Cooper pair in a rotating and accelerating superc
ducting quantum interference device~SQUID!, with two Josephson
junctions. Its position and velocity are given by their valuesr andv
in the frame rotating with angular velocityV about a prescribed
axis, which is located at a~time dependent! laboratory frame posi-
tion r0. For representation purposes, the axis is in this picture
cated at the center of the SQUID and perpendicular to its surf
wL andwR are the gauge invariant phase differences associate
the Josephson junctions.
9-2
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gauge symmetry, with coupling constantm ~inertial rest
mass!. The gauge potential of this second U~1! has a scalar
part a0 and a vectorial partai . The homogeneous Maxwe
equations

rotE52] tB, ~10!

divB50 ~11!

then follow from the existence of the generalized potent
A andx in Eqs.~6! and~7!, which give the fieldsE andB in
Eq. ~9!. They are identical to the conventional homogeneo
Maxwell equations in Eq.~3! with the replacementsE→E
and B→B. That the Faraday law~10! holds is due to our
admitting a variation of the angular velocity with time an
the resulting force term in Eq.~1!. We stress that the fieldsE
and B are both referring to the frame corotating as well
comoving with the quantum interference device with resp
to the laboratory frame. The laboratory frame velocity] tr0 as
well as the rotation rateV can be time dependent in a
arbitrary manner.

The gauge invariant particle~mass! current induced by the
electromotive force field is in linear response

Ji
ind5s̃i j Ej . ~12!

Observe that the left hand side contains the induced m
current density rather than the electric current density. T
associated response coefficients̃ i j is measured in units o

@s̃#5@sel /q
2#. In the case of two coupling constants,m and

q, it is the number of particles crossing a unit area per u
time, which is the relevant observable. This quantity is p
portional to the electromotive force fieldE, which causes
these particles to move.

Evidence for the necessity of using aparticle transport
equation in the form of Eq.~12! comes from the existence o
the London field in superconductors. Complete expulsion
the fieldB deep inside in a superconductor requires the p
ticle conductivity s̃ to have a contribution proportional t
1/iv, which yields a term on the right hand side of Eq.~12!,
proportional to the generalized vector potentialA. Corre-
sponding to complete Meissner type screening,B5rotA
5qB12mV50, the London spontaneous fieldBL then
takes the value

BL522
m

q
V. ~13!

This relation corresponds to zero winding number of
phaseu, cf. Eqs.~15!–~18! below. Equation~13! was derived
by London,7 and has been verified experimentally already
years ago,8 in an experiment in which it was used to infer th
Compton wavelength of superconducting electrons. If we
sert on the left hand side of Eq.~13! the bare electron value
m52me andq522ueu, we have

uBLu57.15310211 T ~14!

for uVu52p/sec. Quantum coherence properties are
pressed by the requirement for the line integral of collect
particle momentum along a closed path to be quantized:
21450
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C
^p,dr&5Nvh, ~15!

whereNv is the winding number of phaseu, so that the total
canonical momentum

p[\“u5mvs1A5mvs1m] tr01mV3r1qA, ~16!

wherevs is the Cooper pair velocity field. The momentu
has a mechanical contribution proportional tom and a proper
electromagnetic contributionqA. The uniqueness condition
of the collective phase represented in Eq.~15! then leads to
the quantization of the sum of a Sagnac flux21,22 and the
magnetic flux

F5 R
C
^A,dr&5q R

C
^A,dr&1m R

C
^V3r,dr& ~17!

5qE ^B,dS&12mE ^V,dS&

5E ^B,dS&5Nvh, ~18!

if we take a path in the bulk of the electron liquid, for whic
the integral ofmvs may be neglected. This flux quantizatio
rule associated with the fieldB corresponds to the fact that
vortex, represented by a zero in the~collective! electron
wave function, where the phaseu becomes singular, is fun
damentally characterized by its winding numberNv alone.
No properties of the medium in which it lives, in particula
the mass and charge of the medium’s constituents, ente
quantum of generalized flux, which is given by Planck
quantum of action alone. The relation for the London m
ment in Eq.~13!, expressing vanishing magnetomotive for
field, corresponds to zero winding number of the phaseu.
The classical property of zero generalized magnetic fieldB
50 expressed by the London moment is hence rooted in
generalized Meissner prescriptionNv50, and thus relates to
the quantum coherence property expressed by Eq.~18!.

The vanishing of the fieldE in the bulk of a noninertial
superconductor~in the static limit of zero frequency! implies
that the proper electric field is nonzero inside the superc
ductor, and given by

ET5
m

q
@2“a01] ta#

5
m

q
~V3V3r1] tV3r1] t

2r01“F![2
m

q
g.

~19!

It is composed of the centrifugal, time variation ofV, F
potential and linear acceleration parts. If the total accele
tion g is the gravitational acceleration on the surface of
earth,ugu59.81 m/sec2, we have the value

uETu55.58310211 V/m ~20!

for the electric field induced in the superconductor. The to
electromotive force field is thus simply
9-3
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FISCHER, HÄUSSLER, OPPENLA¨ NDER, AND SCHOPOHL PHYSICAL REVIEW B64 214509
E5q~E2ET!5qE1mg, ~21!

and takes a form analogous to the total magnetomotive fo
field

B5q~B2BL!5qB12mV. ~22!

The fact that there is an electric field associated to accel
tion ~which may be material dependent for nonperfect c
ductors! was measured by Tolman and Stewart in meta3

The general phenomenon associated toB, i.e., the occurrence
of a magnetic field if the sample is rotated, was observed
magnetizable materials by Barnett,2 with a ~possibly aniso-
tropic! ratio of magnetic field and rotation different from th
one displayed by superconductors expressible via the L
don equation~13!. The Tolman fieldET is a property of~in
the limit of zero frequency! perfect conductors. The Londo
field BL , in turn, is a signature of perfect diamagnetism
rotating samples. Perfect diamagnetism may thus be un
stood as a hallmark of superconductors in general, be
considered in an inertial or noninertial reference frame.
short: The fieldET is measured ifE is vanishing andBL is
detected ifB is completely~Meissner! screened.

III. ACCELERATED JOSEPHSON JUNCTION ARRAYS

Devices based on superconductive quantum interfere
can be used as ultrasensitive detectors for magnetic fie
They consist of one, two or even a plurality of Josephs
junctions or weak links which are connected as an array
form one or several superconducting loops. Prominent ex
nents are devices containing two junctions per loop, like
dc-SQUID shown in Fig. 1. It consists of two junction
shunted parallel to form one single loop. Other devices
this class are series arrays of dc-SQUID’s or on
dimensional~1D! parallel arrays which can contain a plura
ity of Josephson junctions. A superconducting interferome
based on an 1D parallel array is shown schematically in F
2. It consists ofN Josephson junctions shunted parallel
such a way that there areN-1 individual superconducting
loops. In general theN-1 areasSn of these superconductin

FIG. 2. Superconducting quantum interferometer withN Joseph-
son junctions. Its local frame rotates with angular velocityV about
a prescribed axis, which is located at a~time dependent! laboratory
frame positionr0. For representation purposes, the axis is in t
picture located at the center of the interferometer and perpendic
to its plane surface.wn is the gauge invariant phase difference a
sociated to thenth Josephson junction in the array andSn denotes
the nth orientated area element.
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loops can have different shapes and sizes. In particular, j
ciously choosing the distribution of the area loop sizes in
suitable unconventional way, 1D parallel arrays can be u
as sensors of absolute strength and orientation of magn
fields. This is due to the fact that 1D parallel arrays a
magnetic field to voltage converters, if they are driven by
bias current of suitable strength. Because of their unique
sponse to applied magnetic fields, such 1D parallel arr
with unconventional grating are named quantum interfere
filters ~SQIF’s! and are explained in greater detail in Refs.
and 18.

In the following the Josephson junctions are assumed
beshort junctions such that any spatial variations of the c
rent density along the barriers of the weak links can be sa
neglected. In this case each junction can be described
gauge invariant phase difference

w5u12u211/\E
1

2

^A,dr & ~23!

of the macroscopic BCS pairing wave functions on eith
side of the weak link labeled 1 and 2 respectively. Within t
range of validity of the resistively and capacitively shunt
junction ~RCSJ! model23 the current through the Josephso
junction I is a superposition of the dissipationless mac
scopic supercurrentI s with a normal current, characterize
by a shunt resistanceR and shunt capacitanceC

I ~w!5
\C

2ueu
] t

2w1
\

2ueuR
] tw1I c sin~w!. ~24!

For an idealS-I -S junction the supercurrent is connected
the phase differencew across the tunneling barrier byI s
5I c sin(w), whereI c is the maximum dissipationless supe
current, that can flow through the junction. Of course, in 1
arrays each junction can have individual parametersRn , Cn ,
and I c,n .

In Eq. ~23! there appears the generalized vector poten
A from Eq.~6! in the definition of the gauge invariant phas
difference. According to~9!, this indicates that, in principle
the electro- and magnetomotive force fieldsE andB can be
measured by superconducting quantum interferometers.
1D parallel Josephson junction arrays, the basic relations
now discussed.

According to the fundamental Josephson relation the
of change of the time dependent phase differencew(t) is
related to the electromotive force field across the junct
barrier by

\] tw~ t !52E
1

2

^E,dr &. ~25!

In the case of an electromotive force fieldE the Josephson
frequencyn for a single junction evaluates from the righ
hand side integral of Eq.~25!, which is the work functional
associated with the electromotive force field:

hn5\ lim
t→`

1

t
@w~ t !2w~0!#. ~26!

s
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ELECTROMAGNETOMOTIVE FORCE FIELDS IN . . . PHYSICAL REVIEW B64 214509
Scaling this in experimentally relevant units, we have t
the electric field ~20! induced by an accelerationugu
59.81 m/sec2 corresponds to

nT527.0 Hz
l

mm
, ~27!

wherel is the total length of the superconducting region@the
length of the integration path in Eq.~26! joining the two
sides of the junction#, in which the fieldET exists.

Consider now thenth loop of the 1D array containing th
junctions labeledn andn11, respectively. From Eq.~25! it
follows

\
d

dt
~wn2wn11!52 R

Cn

^E,dr&, ~28!

where the pathCn circulates around the boundary of the su
face elementSn just once. The electromotive force fieldE
determines via Eq.~28! the temporal evolution of the differ
ence of the variableswn andwn11 associated to the Josep
son junctions in the considered loop. TheseN-1 equations
describe the effects of the electromotive force fieldE @cf. Eq.
~9!# on accelerated 1D parallel arrays of Josephson juncti

The basic formula describing the effects of magnetom
tive effects on superconducting interferometers is the co
tion of flux quantization. The generalized magnetic fluxFn
through the area of thenth elementary loopSn in an 1D
parallel array determines via

\~wn2wn11!5Fn5E
Sn

^B,dS&, ~29!

the difference of the phase differences of the two junctio
which form this loop. Taken severely this relation holds p
vided the superconducting loop is made of a material th
compared to the magnetic penetration depthl. In this case
there exists a path inside the wire connecting the junctionn
andn11, on which the superfluid velocity fieldvs becomes
negligibly small. So,\¹u5A along this path. In Eq.~29!
Fn is the generalized flux from Eq.~18!, incorporating both
the conventional magnetic flux and~twice! the flux of the
rotation field. Therefore superconducting interferometers
in principle be used to determine the rate of rotationV via
the detection of the London spontaneous fieldBL corre-
sponding toV @cf. Eq. ~13!#.

By the generalized Faraday’s law~10! the electromotive
force fieldE along the integration pathCn that circulates the
nth closed loop in the array just once is directly connected
the time derivative of the flux threading this area elemen

d

dtESn

^B,dS&52 R
Cn

^E,dr&. ~30!

A comparison of the time derivative of Eq.~29! with Eq. ~28!
indicates that these basic relations describing the effect
electromagnetomotive force fields on 1D parallel arrays
consistent with the generalized Faraday’s law.
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Using the RCSJ model~24! and Kirchhoff’s rule, the total
currentI b flowing through the array is obtained as thephase
sensitivesuperposition of the individual junction curren
I n(wn)

I b5 (
n51

N

I n~wn!. ~31!

The gauge invariant phase differenceswn of adjacent Joseph
son junctions in the array are not independent, but are c
nected to each other by the condition of flux quantizat
~29!. Neglecting the Biot-Savart type inductive couplings17

among the currents flowing in the array, it follows from E
~29! that one can eliminate all phase variableswn(t) in favor
of a single phase variable, sayf(t)5w1(t). In this case~31!
can be used to map the problem ofN coupled Josephson
junctions onto a virtualsingleJosephson junction model an
there results a scalar~RCSJ-like! differential equation deter-
mining the phase differencef(t).17

The decisive quantity determining the response of the
parallel Josephson junction array onmagnetomotiveforce
fields ~22! is the complex structure factorSN(B),17 given by

SN~B!5
1

N (
n51

N
I c,n

I c
expF i

\ (
m50

n21

^B,Sm&G , ~32!

where the critical currents of the individual junctions areI c,n
~their average over allN junctions is I c) and Sm are the
orientated area elements of the array~with S050). The
quantitySN is strongly affected by the geometry of the arra
i.e., the choice of the individual area elementsSm ~cf. Fig. 2!,
and describes interference effects between the array junc
currents in the presence of magnetomotive force fields.

In the overdamped junction regime and for static mag
tomotive fields the scalar differential equation of the sing
~virtual! Josephson junction model can be solved analytica
under conditions where a constant currentI b is biased. The
solution f(t) then determines viaV(t)5\/2ueu] tf(t) the
voltage drop between the electrodes of the array. It tu
out,17 that if the bias currentI b exceeds the maximal critica
array currentNIcuSN(B)u, the absolute valueuSN(B)u influ-
ences the time averaged voltage^V& across the array by

hn

2ueu
5^V&5I cRAS I b

NIc
D 2

2uSN~B!u2. ~33!

Here R denotes the average ohmic resistance of all ar
junctions. Taking into account all inductive couplings, t
qualitative behavior of the array voltage response does
not affected, i.e., Eq.~33! also qualitatively describes th
voltage response in this case.17

If the bias currentI b is adjusted slightly above the arra
critical current, the presence of magnetomotive force fie
gives an effect of shifting the frequency~respectively the
voltage! which is orders of magnitude larger than the fr
quency shift displayed in Eq.~27!. The relevant quantity here
is the maximum voltage transfer factor of the voltage
sponse function:
9-5
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TN5U]~2ueu^V&!

]B U
max

, ~34!

which determines the maximum sensitivity of the array
magnetomotive fields. Scaling Eq.~33! in experimentally rel-
evant units, we have foruVu52p/sec that the magnetomo
tive field ~14!, i.e., the London spontaneous fieldBL , corre-
sponds to

nL53.463104 Hz
TN

V/T
, ~35!

provided the array is driven at its most sensitive point
operation. Typical experimental values for the transfer fac
of bare 1D parallel arrays~with N530) are of the order of
T N'1022103 V/T.18 As can be derived from Eq.~33! the
transfer factor scales with the numberN of junctions in the
array, so thatTN can be increased withN. Using additional
flux-focusing structures, e.g., superconducting pickup loo
the transfer factor can be further increased by several or
of magnitudes up toT N'106 V/T. According to Eq.~35!,
such devices are then very sensitive to rotations and
measure the angular velocityV very precisely.

In Fig. 3 the voltage response, according to Eq.~33!, of a
quantum interference filter due to rotation with angular v
locity V is shown. For vanishing magnetic fieldB50, the
normalized voltagêV&/(I cR) is plotted versus the norma
ized magnetic flux̂ BL ,Smax&/F0 the London spontaneou
field BL522m/qV induces in the largest area elementSmax
of the array. The SQIF containsN530 junctions and the loop
areasSn5uSnu are randomly distributed between 0.1 and 1
uSmaxu. For maximal voltage swing the bias currentI b is ad-
justed slightly aboveNIc .

For vanishing magnetic fieldB50, the voltage respons
is indeed aunique function of the London fielduBLu and
hence ofuVu around itsglobal minimum at uBLu50. This
suggests that it would be possible, e.g., by measuring con

FIG. 3. Voltage response due to rotation of a quantum inter
ence filter, withN530 ~overdamped! Josephson junctions for bia
currentI b51.1NIc . The time averaged voltage^V& in units of I cR
is plotted versus the normalized magnetic flux^BL ,Smax&/F0 which
the London spontaneous fieldBL induces in the largest area eleme
Smax of the array. The loop areasuSnu are all in plane and randomly
distributed between 0.1 and 1.0uSmaxu.
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current~s! flowing through the wires of suitably orientate
compensation coil~s!, to reconstruct the absolute value, th
orientation and even the phase of the rate of rotation, i.e
determine the full angular velocity vectorV(t) and its time
dependence.

A basic problem for the sensitive detection of rotation a
other noninertial fields is that the device has to be shiel
against external magnetic fields, like that of the earth. It
been shown in Ref. 24 by Satterthwaite and Gawlinski
the stationary case, that superconducting shielding, wh
delivers the shielding factors required to detect rotations
slow as, e.g., that of the earth, implies that the appara
cannot distinguish between applied rotation and app
proper magnetic flux: The corotating superconducting sh
prevents such a distinction. The current induced by a rota
with V is the same as that induced by an external, app
magnetic field2BL , because the device cannot tell fro
which of the two parts ofB the induced current actually
comes from. Shielding is not necessary~and, indeed, not
possible! for charge neutral quantum interference devices25

which are thus capable of detecting absolute rotati
whereas superconductively shielded SQUID’s or Joseph
arrays are not. Whatis measurable by superconducting inte
ferometers are the fieldsB andE coming from the~acceler-
ated! motion relative to the external shield, which remai
fixed with respect to the local frame of inertia. In particula
SQIF’s can measure relative motion on an absolute sc
However, a gyromagnetic gyroscope based on this idea n
some mechanics and therefore cannot be more sensitive
a mechanical gyroscope itself.

One possibility to build a gyromagnetic gyroscope wit
out any moving parts, is to use a material with a magne
mechanic factorg different from the factorg522m/q, oc-
curring in the London equation~13! for the superconducting
shield. In this case it is possible to circumvent the problem
indistinguishability, i.e., to which parts ofB an induced cur-
rent is related. For example a ferromagnetic material, wh
magnetic field induced by rotation is itself measured by
SQUID which is shielded by a superconducting shield, c
measure the rotation field.26 But such a device is not a su
perconducting gyroscope in a narrower sense24 which exclu-
sively relies on the superconductors’ response to rotation

IV. TRAJECTORY TRACKING

The determination of the trajectoryxi(t)1x0
i (t) of an

electron~or Cooper pair! in an accelerated superconduct
amounts to solving the second order differential equation

d2xi

dt2
1

q

m
e i jk~BL!k

dxj

dt
1

q

m
~ET! i50, ~36!

which is Eq. ~1! with Fnoninertial5md2xi /dt2, where the in
general time dependent proper magnetic and electric fi
BL and ET are determined from Eqs.~13! and ~19!. The
electric fieldET is, according to Eq.~19!, in the rotational
part position dependent, linear in the distance vector
5xiei from the center of solid body rotationr0.27 In the
Appendix, Eq.~36! is explained in terms the geodesic equ

r-
9-6
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tion ~A1!, and the fieldsET andBL are identified as connec
tion coefficients on a Riemannian manifold, i.e., on a ma
fold representing space-time with some metric coefficien

V. CONCLUSION

Moving superconducting circuits consisting of current
ased superconducting quantum interference filters~SQIF’s!
are local oscillators that undergo a characteristic and un
change of their oscillation frequency under acceleration
rotation. However, by the very nature of the combined vec
field A, Eq. ~6!, such a superconducting interferometer
only capable to detect the combined magnetomotive fieldB,
Eq. ~22!, and the combined electromotive fieldE, Eq. ~21!.
Employing a suitable shield such SQIF’s can neverthe
measure relative motion on an absolute scale. The aforem
tioned devices might be used, for example, to construc
absolute detector of noninertial motion in the context of se
mology.
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APPENDIX: NONINERTIAL FORCE FIELDS
FROM THE GEODESIC EQUATION

The motion of a test particle, upon which no extern
~electromagnetic! force is acting, is describable by the ge
desic equation in space-time,

dum

dt
1Gm

abuaub50, ~A1!

with the four-velocity normalized to unity, i.e.,umum521.
The connection coefficientsGm

ab serve to describe any kin
of ‘‘acceleration’’ dua/dt, caused by the transformation t
the curvilinear coordinates of a rotating and accelerat
frame @cf. Eq. ~1! valid for a rigidly rotating frame, and
nonrelativistic particle velocities#. The true four-acceleration
is invariantly zero for a geodesic: The equation above
scribes the~kinematic! autoparallel property of the four
velocity with componentsua. If electromagnetic fields are
present, the right-hand side of Eq.~A1! is no longer zero,
and the covariant Lorentz force four-acceleration equation
a particle of chargeq and inertial rest massm in the presence
of an electromagnetic field acting on the particle reads

m
dum

dt
5~qFm

n2mGm
anua!un, ~A2!

where we have brought the connection coefficient term to
right hand side.

In the weak field limitgmn.hmn1hmn , in which raising
and lowering of indices is to lowest order inuhmnu!uhmnu
accomplished byhmn5diag(21,1,1,1), the connection coe
ficients take on the form
21450
i-
.

e
d
r

s
n-
n
-

-

l

g

-

n

e

Gm
an5

1

2
hmb~hba,n1hbn,a2han,b!. ~A3!

We now use that the spatial components of Eq.~A1! are28

d2xi

dt2
52G i

0022G i
0 j

dxj

dt
2G i

jk

dxj

dt

dxk

dt

1FG0
0012G0

0 j

dxj

dt
1G0

jk

dxj

dt

dxk

dt Gdxi

dt

.2G i
0022G i

0 j

dxj

dt
. ~A4!

The last line holds if we consider the lowest~linear! order in
the charge velocityv, whose magnitude is assumed to
much less than the speed of light. The rotation rateV, i.e.,
the invariant~vorticity! measure of the proper velocityV
3r induced by rotation, is taken into account up toO(V2),
in the form of G i

00. Terms which are quadratic inv @last
term in the first line of Eq.~A4!#, and those of higher orde
than quadratic inV and v and their products@terms in the
second line of Eq.~A4!# are neglected.

Equation ~A2! then gives the following spatial compo
nents:

m
d2xk

dt2
5qFk02mGk

001~qFki22mGk
0i !v

i

5q~Fk01Fkiv
i !2mS hk0,02

1

2
h00,kD

2m~hk0,i1hki,02h0i ,k!v
i . ~A5!

This relation leads to the generalizedelectromotiveandmag-
netomotiveforce fields, reinstating the speed of lightc, and
neglecting the time derivative ofhik ,

E5qE1
1

2
mc2

“h002mc] th0 , ~A6!

v3B5v3~qB1mc“3h0!. ~A7!

The relations~A6! and ~A7! result in the following identifi-
cations with the potentials in Eq.~5!:

1

2
c2h005a0 , ch05a. ~A8!

Measuring the fieldsBL and ET in Eqs. ~13! and ~19! thus
yields the connection coefficientsG i

00 and G i
0 j ~spatial co-

ordinates are in a Cartesian frame!:

~ET!k5
m

q
Gk

00,

~BL! je ik j522
m

q
~V! je ik j52

2m

q
Gk

0i . ~A9!

For the distinction and understanding of ‘‘real’’ electroma
netism and generalized electromagnetism as expounded
it is of importance to bear in mind thatET andBL , if under-
9-7
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stood as connection coefficients like in the relations abo
have noexactcoordinate invariant meaning as tensor fie
like the proper electromagnetic fieldsE and B have. They
gain anapproximatecoordinate invariant meaning only i
the weak field limituhmnu!uhmnu, and if ] thik is negligible,
because in this limit theGa

bg in Eq. ~A3! transform tenso-
rially, and the field strength is identified to be
r-

er

n

21450
e,
2Gm0n5Gn0m52

1

2
~h0m,n1hmn,02h0n,m!

5Fmn5]mAn2]nAm . ~A10!

In the specified limit of small velocities and small deviatio
from Minkowski space-time, we can thus ascribe coordin
invariant, i.e., tensorial meaning toFmn .
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