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Magnetic properties of finite superconducting cylinders. I. Uniform applied field
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A model for the calculation of the magnetic levitation force for finite type-ll superconductors in the critical
state is presented in a series of two papers. In the first paper, we describe the main features of the model and
understand the effect of demagnetizing fields in the magnetic properties of finite superconductors by consid-
ering the case of a superconducting cylinder in the presence of a homogeneous applied field. Field and current
profiles are calculated from a minimization of the magnetic energy in the superconductor after a change in the
applied field. Results are presented for both constant and field-dependent critical currents. The procedure is
general enough to be applied to the case of nonuniform applied fields, as long as the cylindrical geometry is
preserved.
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I. INTRODUCTION mogeneous applied fields, as required for levitation experi-
ments. Actually, the models for superconducting levitation

Stable magnetic levitation is one of the most impressivepresented up to now have not solved the demagnetization
exhibitions of the unique properties of superconductors.problem. All these models either neglected the effect of de-
Magnetic levitation forces result from the interaction be-magnetizing fields(such as in Refs. 9—12or considered
tween an external magnetic field and the currents in the sitthem by the simple approximation of a constant demagneti-
perconductor. Although type-l superconductors can levitatezation factor:® with the exception of works dealing with
the most interesting case for the study and application of thénin-film geometry, for which demagnetizing effects were
levitation phenomena is that of type-Il superconductors, foiconsidered®® In the second paper of this series we will
which the levitation is “rigid” for a wide range of positions provide a brief survey of the theoretical models proposed for
and orientations of the superconductotHowever, even in  describing the superconductor levitation; from this, one can
the simple case of a superconduct&C) levitating over a  conclude that a complete model of superconducting levita-
permanent magnet, the modeling and understanding of thgon has not been proposed till now.
levitation force is complicated by factors such as the nonlin-  Our aim in this series of papers is to introduce a realistic
ear response of the type-Il superconductor to the field of thenodel for the levitation of superconductors in the presence
magnet and the demagnetizing effects arising from the magsf an external spatially inhomogeneous magnetic field. The
netic poles at the surfaces of the superconductor. model is based on calculating current profiles in the super-

A successful model of superconducting levitation thus reconductor by a minimization of its magnetic energy after a
quires an adequate treatment of the magnetization of the sghange in the applied field. In this first paper of this series we
perconductor which results from the application of a mag-describe the model, and present a systematic study of the
netic field. In general, owing to the complexity of the magnetization of a type-ll superconductor resulting from a
microscopic description of the vortex state, the magnetic respatially uniform applied magnetic field as a function of
sponse of type-Il SC’s has been studied by means of approxsome of the superconductor parameters, in order to discuss
mations which describe the observed macroscopic behaviothe main features of the magnetic response of the supercon-
The most common approach is the critical-state médel,ductors associated with the demagnetizing effects. In the sec-
which assumes that the currents circulating in the SC’s flowond paper we use the basic formalism presented here to study
with a density that only depends upon the local magneticthe case of inhomogeneous fields, from which levitation
field, J=J.(H;). It has been found that the critical-state forces occur for the superconductor. Although the model is
model adequately describes the magnetic properties akadily applicable to any system with cylindrical symmetry,
granular and melt-textured samples of highsuperconduct- the calculations and results in this work will deal with the
ors with a strongJ.(H;) dependence which is often well most typical case encountered in levitation experiments,
described by an exponential deCfyThese types of samples which is the case of a superconductor levitating in the field
are the most used in levitation experiments. of a coaxial permanent magnet.

Important advances were recently made in the modeling The validity of the model results will be checked in two
of macroscopic magnetic properties of finite superconductelifferent forms. First, for the case of a constant applied mag-
ors, for which the study of the demagnetizing effects has tmetic field, we will compare the model results with both the
be included. Brandtand Doyleet al® presented methods of analytical formulas that are known for the limits of infinitely
solutions for the magnetization of finite cylinders and disks,long cylinders® and very thin disks! and, for superconduct-
based on assuming that the superconductor response arisgs of intermediate size, with those obtained from other nu-
from macroscopic material lawB(H) and J(E). However, merical approachesA very satisfactory agreement is ob-
these methods were not applied to the case of spatially inhdained in all casegsee Sec. VIA of this papgr Second,
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results corresponding to nonuniform applied fields and leviis modified, the superconductor responds by pushing the cur-
tation forces are compared with both analytical expressionsent front inward.
in some limits and experimental levitation force curves and In the virgin magnetization curve, shielding the magnetic
other features observed in actual experiments. As we discudield in the superconductor volume by induction of currents
in Sec. V of the second paper, we find that our model deis equivalent to minimizing the magnetic energy resulting
scribes the characteristics experimentally found. from the application of the applied field. Then, in order to
This paper is structured as follows. In Sec. Il we discusssimulate the macroscopic process, in our model we find a
the general properties of superconductors in the critical stateurrent-penetrated region that ensures the maximum shield-
In Sec. lll, we describe the model details. The model resulténg for each value of the applied field by finding the regions
are presented for two different cases: in Sec. IV we discusat which setting a current with valug.(H;) minimizes the
the case of constardt; in order to analyze the influence of magnetic energy. The minimization of the energy for finding
demagnetizing effects in the simplest situation, whereas wéhe macroscopic magnetic properties of type-ll supercon-
devote Sec. V to a study of the more general casd.of ductors was used by Badé al'® For the reverse curve, we
depending upon the local fieldk(H;). In Sec. VI we com- shall simulate the magnetic shielding by the conventional
pare some of our results with both experimental results andritical-state model procedure of superimposing a current
theoretical predictions from other existing theories, in sev-distribution with opposite sign to the “frozen” field profiles,
eral limits. The conclusions of the first part of this work are as in Refs. 19 and 20.
presented in Sec. VII.

IIl. MODEL DESCRIPTION
II. MACROSCOPIC VIEW OF SUPERCONDUCTORS IN

THE CRITICAL STATE A. Geometry description and main formulas

From a macroscopic point of view, superconductors A!though in this paper we will deal with only uniform
present two main characteristic magnetic behaviors. Whe@PPplied fields, here we introduce formulas for the general
they are cooled through the critical temperature in the presc@se of a nonuniform applied field, in order to use them in
ence of an applied magnetic field, the magnetic flux preserH“e Igwtatlon ca!culatlons. We qonS|der a cyllmdr'lcally sym-
in the superconductor interior is expellédleissner effegt ~ Metric external fieldd®(p,z) applied over a cylindrical zero-
The other important effect, the one in which we are inter-field cooled superconductor of radigsand lengthL with the
ested here, occurs when a magnetic field is applied to a S8&me axis of symmetry. We use common cylindrical coordi-
under isothermal conditions; the SC reacts by excluding th8ates p, ¢,z). We assume that the SC does not influence the
magnetic field in its interior, so that the total magnetic field Sources of the external applied field. _
is equal to zero in the bulk of the SC. For type-Il supercon- The applied field can have neither an azimuthal compo-
ductors with pinning, a complete magnetic shieldiegcept nent nor angular dependence. Its general expression is there-
for a surface region of depth at the surfaces, where shield- fore
ing current flow$ occurs when the total field is below the
value of the lower critical field.;. For higher fields, there a a - a A
appear some bulk currents which tend to shield the interior H%(p,2)=H,(p,2)p+Hz(p,2)z. @
region, that is, to make the internal fidglj=B/uy=0 there.
Wherever there are curren87#0. So, two regions appear: o . )
(@ an interior region with neither magnetic field nor bulk DU to the cylindrical symmetry, any induced current will
currents, andb) an exterior region with a magnetic field and flow in the azimuthal directiod=J,(p,z) ¢. We model the
current different from zerdin the critical-state model, the superconductor as a setiok m coaxial rings of rectangular
value of the current in this region is the critical gnEurther ~ section(see Fig. 1. Typical values used in this work are
increasing the applied field makes the central field-free rexXm=60x60. We defineAR=R/n and AL=L/m. Each
gion shrink, until it eventually vanishes. If the sense of therectangular section has, thus, a surfad&®)(AL). We con-
sweeping rate of the external applied field is reverged  sider that linear currents may flow through the center of that
verse curvg the effect on the superconductor is the samesection with a valud =J.(AR)(AL). Due to the rotational
induced supercurrents tend to shield the interior of the supesymmetry of the problem, it is sufficient to find a solution at
conductor, that is, to preserve the field distribution alreadyany of the(semjplanes of constant angle.

present. So the two regions are n@ya frozen-field interior ~ We assume the SC to be in the critical state. The applied
region, and(b) an exterior region with a critical current and fieldsH, will always be such thatl ;;<H ,<H,. In general,
a modified internal field. we will consider a dependence of the critical current upon

We can summarize the previous behavior by consideringnternal magnetic field, sd,=J.(|H;|).
that type-Il superconductors in the critical state behave mac- We now introduce some of the quantities involved in the
roscopically after a quasistatically variation of an externalmodel. In cylindrical geometry, only the vertical component
applied field as follows: a macroscopic current is set in theof the magnetic field contributes to the total magnetic flux
SC in order to shield the magnetic field in the largest pos®;; that threads the area closed by a current ring indexed as
sible region inside the superconductor. Since the current hdg. There will be two contributions to the total flux: the in-
a maximum possible densit}(H;), when the applied field ternal fluxd)}}“, created by the currents present in the super-
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Z defining po;=0 and, thus®;,=0. The radial component of
4 the field can be calculated from the values of the axial com-
i x ponent by imposing the condition that the divergenc® @

j=m =mp |, equal to zero, so that
° ° ° ® °® ) <
i=n 1 1]7YB,i—1i B.iji Biiis1
Bilar *} ( R tan G0 ©
° ° . . . ° Pij
-
Wlth BI‘,Oj:O'
=1 Since only azimuthal currents will be present in the su-
o s ® g hd d perconductor, the magnetic moment created by them will
= =2l =3 I=n ! have only axial component. We define the magnetization as
PR the magnetic moment divided by the superconductor volume
P - "
m, 1 nm ,
FIG. 1. Sketch of the division used in the simulation of a cylin- M,= TR2L R2L ; lij pij - ©6)

drical superconductor. A semiplane of constant angles shown.

The points represent the linear circuits where current can flow. . . . . .
P P The applied field enters into our calculations as shown in

. . . L Eqg. (3), which makes our approach free from the problems
conductor(including the current in the ring itseifand the  ,¢55ciated with implementing boundary conditions in points
external flux®i;™, due to the externally applied field. These ¢4 from the superconductor or through a surface 1&yafe
magnitudes are calculated as would like to remark that an important advantage of the
model is that it can be applied to nonuniform external fields,
as studied in the second paper of this series.

q’:?t:%‘z M ijl ki s 2
B. Uniform magnetic-field case
In the rest of this paper we will consider a uniform ap-
t_
i —ZWO(AR)Ej pikHZ ik 3 plied field of the form
whereH2,, is the vertical component of the external applied H3=H,z )

field evaluated at the points where the curirliows, picis |y yhjg case, we will obtain symmetrical current and field

thf? radiuls(/lof the cirﬁuitk, piklz.(id_ 1/2)(AR)B and the rclo' _ profiles not only in the azimuthal direction but also with
efiicientsM\ ;; are the mutual inductances between the Cir-ognec1 19 the central layer of the superconductor.

cuits located at the circuitsl andij, which are calculated by As stated above, in the present procedure the external

the known formulas for linear circular circufts. field only appears in Eq3), which in the constant applied
The self-inductances are included in the summation of quield case is simplified as

(2). It is known that the self-inductance of a strictly linear

current diverges. This problem was solved in the literature in q)ﬁ,xtz Moﬁpﬁ H,. (8)

different ways(see Ref. 7, for exampleln our work, we

have calculated the self-inductances as the mutual induc- S

tances between two close linear circuits. We have considered C. Energy-minimization procedure

two circuits of radiusp andp+ e, calculated the mutual in-  We now describe the method for obtaining the current and

ductance between them, and found the vadubat fits this  field profiles. We first focus on the Bean cas® field de-

value with the one found by the expression for a linear cir-pendence for the critical currépteaving the introduction of

cuit of sectionAR.?? We have found that the optimum choice a field dependence for Sec. 11 D.

for € is e~0.78AR. As expected, as the mesh gets finer, the We first consider the initial curve. Let us assume a given

e dependence of the results decreases. Actually, for the mesgjurrent distribution corresponding to an applied fielg (if

sizes we have used, our results are, within numerical precinve are calculating the first point after the initial state, then

sion, independent of. the initial current distribution is zero everywher&etting a
The total density of magnetic flux, after a current profile currentl at a circuit indexed asi (j) requires an energy

is obtained, can be calculated either from the Biot-Savart

formula or from the flux values. The axial component at a

— int_
point indexed byij can be obtained from the flux as Eij=1®j =l %: Mic,ij ©)
O —D, while it contributes to reduce the ener@gurrent has oppo-
B.ij =”2—'2_1J, (4)  site sign toH,) by a factorldDier‘. We find in this way the
m(pij — pi-1j) circuit that yields the largest decrease of energy, and set a
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currentl there. Following Bean’s critical state model, we put 1.0 '

— .
a current with valud =J ,ARAL. s (a) ]

This process is repeated until it becomes impossible tao 0.5 \ |
decrease the magnetic energy by setting a new current any 0.0 I

where. Then, from the existing current profiles, we calculate L _
B profiles from Eqs(4) and(5) and the magnetization from -0.5 - _
Eq. (6). WhenH, is further increased, the same procedure 1.0 L
starts again from the previous current values. ' ' ' : : ' : '
When the applied field has reached a maximum value 2 -1 0 1 2
Haxand is lowered, as we explained in Sec. I, we apply the 04 ' ' '
same minimization procedure, taking into account only the 0.2 i \ \ (b) ]
currents induced during this reversal stage, that is, those in = | |
duced due to the variation of the field frokh,,,, to some 'z

0.0
H.<Hnmax, and we superpose these currents to the frozerg L |
ones in the interior. This procedure, typical of critical-state ™ -0.2 |- _
models, has been used in the literature in the two limit case.E L 1
for which analytical expressions for the magnetization of su- -0.4 . ' ' '
perconducting cylinders can be found, that is, for infinite -2 -1 0 1 2
cylinders® and very thin disks! This process yields a mag- 1o ———T — — T ]
netization for the reverse curvd (H,,H,) that is re- - (C)_
lated to the initial magnetization curid (H) by?® 05T
0.0
H max— H I
Mre\XHa:Hmax):M(Hmax)_ZM(%)- (10 05| |
1o0p . L \ : 1 : 1
D. J.(H;) dependence P 4 0 1 5

The previous procedure should be modified when we
want to introduce some dependence of the critical current H /H
upon the internal magnetic field since, whep changes, the a p
internal field will also be modified, and therefore so will the £ 2. Magnetization loops for constant critical current
value of the already induced currents. ThgH;) depen-  as a function of the applied fielda L/R=10. (b) L/R=1.
dence could be introduced by means of an iterative algo¢c) L/rR=0.1.
rithm. However, in our modelization we can increase the
external applied field in amounts small enough as to consider . :
that the n2€v induced currents do not modﬁ]‘y much the al_normallz_ed “_’ the VaIUHP:_‘JC.R’ which corresponds to the .
ready induced ones during this step of variation of field. The?€netration field for the infinite case, whereas the magneti-
procedure can be then regarded as just the first step of Zqtion is normalized td.R/3, which corresponds to the satu-
iterative method. However, we have checked that this “firstration magnetization for all cases. This normalization makes
iteration” method is satisfactory by confirming that further the results independent of the particular valued oandR.
iterations do not significantly modify the results provided The effect of the sample size is clearly displayed in the
that the applied field is increased in small steps. figure. For smallerL/R ratios the loops present the main

The procedure consists in the following. After increasingdifference: the initial slopes in both the virgin and reverse
the applied field, the new currents are set accomplishing theurves become largeiin absolute value with decreasing
chosen material law.(H;). When no new current minimizes L/R. In relation to this, the saturation valgachieved when
the energy further, we calculate the magnetic field inside thehe superconductor becomes fully penetratisdreached at
superconductor and change the valnet the distributionof  lower applied fields for shorter samples. In all cases, when
the already induced currents according to the material lawthe SC is fully penetrated, the value of the magnetization is
After this, the applied field can again be increased and théne same, since the saturation magnetizatibe magnetic

process restarted. moment per volumeis independent of the/R value in the
Bean approximation of a constay.
IV. RESULTS FOR THE CONSTANT J. CASE In Fig. 3 we plot the calculated current penetration pro-

files for the three samples of Fig. 2 and for different applied
fields, all in the initial curve. It can be seen that currents

We first discuss the case of constdptfor simplicity. In ~ penetrate from the lateral surface to the interior and that the
Fig. 2 we show the calculated magnetization curves for supenetration close to both the bottom and end of the SC is
perconducting cylinders with different length-to-radiuéR ~ deeper than in the central layer. This behavior is accentuated
values and the same critical curreht. The applied field is  whenL/R decreases.

A. Magnetization and current profiles: Sample size dependence
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currents induced during this stage again shield the interior of

the samplé:**'8Thus the current and field distributions in-

side this shielded region remain frozen.

b In a finite sample, as soon as the applied fidig is in-

L/R=0.1 creased from zero, currents are induced in some of the su-

perconductor regions in response to the field change. In this

(7 case, the depth of current penetration is not vertically the

J( H | same, because a straight finite vertical penetration cannot

ié; { ‘ shield a constant applied field in the internal region of a finite
)' sample, assuming a constant current density. As seen in Fig.
) 3, near the ends of the superconductor, currents penetrate

; deeper into the superconductor. The current profiles in the

{ finite case can be explained as follows. Since the supercon-

l( ductor tends to shield an internal region from a uniform ap-

l

(

(

)

)

plied field, the distribution of current should create a con-
stant field inside the internal region. As stated, this cannot be
achieved by a vertically constant profile. The currents ap-
pearing in the region close to the cylinder ends have to sub-
stitute for the effect of an infinitely long set of currents that is

‘ \ LN ;,ggﬁsk ] not present in a finite sample. This current distribution cre-
NG ] 1] ates a field that modifies the external field everywhewt
S T TN LU only in the interior region, as in the infinite cas&herefore,
PR —— TEEEEe

outside the superconductor, the magnetic field is no longer
L/R=10 H, except in points far from the superconductor.
In particular, the effect of the field produced by the first
FIG. 3. Current profiles for three different cylinders. In each penetrated currentén the cornersover the other loops is to
case the axis of the Cylinder is at the rlght of each figure. For thanrease the field in some regionS, so that the real field in the
cases./R=10 and 0.1, the small dimension has been doubled folatera| surface of the cylinder is larger than the applied field.

clarity. As a result, the magnetization produced by such currents
apparently corresponds to larger values of the applied field
B. Current and field penetration in infinite and finite cylinders: H,. Thus the effect of this is to increase the slope of the

Effect of demagnetizing fields initial M (H,) curve. The initial slope of the reverse curve is

The features mentioned above result from the effects ogxplained in the same way. Moreover, the thinner the sample,
the demagnetizing fields, and can be analyzed using thée larger the contribution from the end regions, and thus the
framework provided by our model. We shall first recall how larger the slope.
the current and field behave throughout a hysteresis loop in
the conventional critical state model, i.e., for an infinite cyl- C. Full penetration field
inder in angitudinal appl'ied'fit_eld, an'd then see how the same e process of penetration depends strongly on the
process is understood in finite cylinders and why the disgy e size, as indicated above. In particular, the applied

cu?sed factsf_o:ijcur. led infinitel | ducti | field at which the cylinder is totally penetratell,,, de-
n a zero-field-cooled infinitely long superconducting cyl- pends onL/R. Once the full penetration is reached, as long

inder, ;Nhen _adfield;a Iis apt)plit?d_tallor:g thel ;:ylir?derfaxis, as the applied field is not decreased, the magnetization has a
currents are induced along thiafinitely long) lateral surface saturation valua .= JR/3, independent ok /R.

of the cylinder, creating a constant vertical field opposed to . . .
the applied one in the interior and a null field outside. Thus, By calculating the field caused by a full penetration of

S S . o “Scurrents in finite cylinders, Forkl obtained a formula for the
the mtenpr region is shielded from the appllgd f|g|d, and in enetration fieldH ,¢,, which normalized to the penetration
the exterior of the §uperconduc’gor the total field is equal t ield of an infinite sampleJ.R as a function of the ratio
the applied one. With a further increase lf, the current L/R is
penetrates deeper into the cylinder, so that the shielded re-
gion shrinks. In this initial state of penetration the magneti- Hpen L
zation curveM(H,) is an increasing functioriin absolute IR ﬁln
valug of H, . At a field H,= J.R the cylinder becomes fully ¢
penetrated by supercurreftds a consequence, sindghas  Our results foH e, [which can be obtained either by finding
a constant value, the sample magnetizatigiven by the the field at which the last possible current is set, or directly
magnetic moment created by supercurrengnot increase, from theM(H,) data as the field at which the initial and the
and saturates. The reverse magnetization curve, obtaingdverse curves mergagree with the formula given by Forkl
when reversing the sense of sweeping the applied field afterithin our numerical accuracy for all values bfR. In Sec.
reaching a maximum fieldH ., is understood in similar V we will study howH ., changes when some dependence
terms because, following the critical-state model, the reversaif J. uponB is considered.

2R
L

1+ 7 (12)

4R2) 1/2}
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T T T 12 T 1.2 T T T T
4 \: -1 0.8} P = 0_ 08} Hmax= Hpe/z_
\‘\‘ 04} { 04l
3F “‘\ - 0.0 0.0
8. \‘\\ -041 4 -04}
<
n:o 2 -‘~ \\\\ - -0.81 1 -0.8F
- -1.2 -1.2
2 2 1 0 1 2
1
12 T 1.2 T T
08} p= 2- 0.8 Hmax= Hpe 1
0
04r 1 04}
0.0 g e
0.0 0.0
—
EN 04} 1 -4t -
FIG. 4. Dependences of the critical current densifyas a fun- 2 08l ] 08l
tion of the modulus of the internal fieldH;| used in this series of
. . . . . g -1.2 -1.2
papers.J. is normalized to the penetration field of an infinite cyl- 2 2 10 1 2
inderH . divided by cylinder radiu®; |H;| is normalized toH . " s .
Note that with the normalization shown, the function depends only ' B H =2H
onp. Solid, dotted, and dashed lines correspond+d, 2, and 10, 08f p=10] os e pe
respectively. 04l | oa}
0.0 0.0
V. RESULTS FOR THE J.(H;) CASE oe =
0.4} ] -04f N
A. Exponential dependence sl 1 08l
As mentioned in the introduction, the critical state in most 2 T B B R

type-ll superconductors is best described witld awhich
depends on the local field;=B/ u at the current position.

In this section we study the influence of demagnetizing fields Ha/H
in the realistic case of a material with a givég(H;) depen- P

dence. In this paper, the dependence will be of exponential F|G. 5. Magnetization loops for a long sampléR=10. In the
type?6'16 left column each plot has a fixed valuepfas showhand different
values ofH ,,/Hpe (0.5, 1, and 2 In the right column each plot has
a fixed value ofH,/H,. (as showi and different values op
(p=0, 2, and 10
wherek and Hy, are positive constants, since this depen-

dence is very adequate to describe magnetic properties of

granular highT, superconductor$:?”° though our general 1. p dependence

framework allows the introduction of any arbitrary function In F|g 5 we show the calculated magnetization |00ps for
Jo(Hi). A useful parameter to describe the strength of thehe casd./R=10. Different values op have been used. For
exponential decay al, with H; is p, defined a¥ illustration we chose three values lef,.,: lower than, equal
to, and higher than the penetration fiehtle (Hmax/Hpe
=0.5, 1, and 2, respectivelyOur results are practically co-
incident with the analytical results for infinite samples, so we
The limit p—0 corresponds to independedt (Bean's can regard the case/R=10 as the infinitely long sample
mode), and in general the largeris the stronger the depen- limit for discussions.

dence. Another useful parameterHs,, defined as Figure 6 shows the dependencep)qf the magnetiz.ation
loops calculated for a superconducting cylinder withR

=1. Similar to the known results for infinite cylindet%?’
increasing the value of the paramegeresults in a decrease
: , L . of the value ofM for high applied fields, and the appearance
rivrriltzhsgcr)r:r)erzrmnds to the field of total penetration in an Nof a peak in t.he initial curve for fields lower thl&mpe'and

: ) ) ) another one in the reverse curve at a negative field. The
I the applied fields involved in the problem are normal- gyonger the value o is, the sharper these peaks become.
ized with Hye and the length dimensions with the radi8s  These features are general for any valueLfR, and their
then the results only depend on th€R ratio and the value appearance can be explained as in the infinite case: when
of p. In Fig. 4 we plot the different shapes &f(H;) depen- >0, when the applied field is small, some currents penetrate
dencies we will use in the following sections for studying into the superconductor with high value, and the magnetiza-
how the variation orp affects the shape af.(H;). tion increasegin absolute value As the applied field in-

c

chkeXFJ(—|Hi|/H0e), (12

B. Magnetization curves

p=KR/Hge. (13)

Hpe=HoelN(1+p), (14

214506-6



MAGNETIC PROPERTIES OF FINIE ... . I ... PHYSICAL REVIEW B 64 214506

12 . 12— . . . | '
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° 0.4f / 1 04f _ j - 0.0 [
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11 04} 0.4 \ 04 |
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= | oo . 06 |
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FIG. 7. Magnetization loops for different: (@) p=0, (b) p
Ha/Hpe =2, and(c) p=10. In each figure, solid line correspondsLttR
=10, the dotted line td./R=1, and the dashed line to/R=0.1.

FIG. 6. Same as Fig. 5, for the casER=1.

i i of p), and thus the sharper the peak in the magnetization.

creases further, so does the internal field; thus the value (N;Ioreover, the peak shifts toward the,=0 axis. This effect
the current decreases while it penetrates further. This progas gjready found in theoretical calculations for thin s#fips
duces two opposite effects: if the currents fill a larger volume, g disk® with a given J.(H,) dependence, and also in
the absolute value of the magnetization tends to increas%o(perimental data for aY—I%a—ICu-O thin fifA The physical
whereas if the current value decreases the value tends {@550ns for this effect can be understood in the framework of
decrease. A minimum in the initial magnetization appearg,;r model. as explained in the following.
when the rela_tive im_portance o_f thgse two tendencies \ynen p=0, induced supercurrents have a constant den-
changes when increasing the applied field. Although the desjty ang penetrate the superconductor, producing a certain
scribed behavior is general for alfR values, the demagne- aqnetization, since the interior is shielded from the applied
fuzmg f|eld_s arising from the f|n|te_ size mdeed have an aCt“alnagnetic field. Whemp>0, as seen in Fig. 4, the supercur-
influence in the results, as we discuss in Sec. VB 2. rent at low fields is larger in value than that corresponding to
p=0; thus, to shield the same applied field, it penetrates a
lesser distance inside the SC. The magnetization at lower

In Fig. 7 we show the calculateld (H,) curves display- fields is, thus, larger than in the=0 case. The largqris the
ing the dependence oo/R for materials characterized by more accentuated this behavior becomes, and the larger the
different values ofp [p=0 in Fig. 71a), p=2 in Fig. 7b), initial slope of the magnetization. When the applied field
andp=10 in Fig. 1c)]. For the sake of simplicity, we only increases, and thus the internal field also tends to increase,
show results for the cade,a/Hpe=2. the value of the current decreases and the magnetization at-

Since in each figur@ has the same value, the observedtains a minimum value. Whel/R decreases, this minimum
differences between the different curves are associated onbalue is reached at lower external field values, because the
with shape effects and not with intrinsic properties. The gendemagnetization fields increase the internal field value
eral effect of the demagnetizing fields is that the thinner thgwhich is responsible for the dependenceJgf above the
sample, the larger the initial slope of ti(H,) in both the applied field value. This explains the sharper peak at low
virgin and reverse curveshis is a general fact, independent L/R values.

2. L/R dependence
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1.2 ———— —————— transverse applied field will have a very small penetration
field and are therefore ideal for experimentally extract the

1.0 J.(H;) function from magnetization measurements. This is
especially true if the expected dependence is strong. A de-
0.8 tailed treatment of this topic can be found in Ref. 33.
Eg 0.6 E. Current profiles
IQ.

In this section, we calculate the current profiles corre-
sponding to some of the studied cases in order to see how the
current distribution depends iR andp. In Fig. 9 we show
the p dependence of the penetration profiles for the case
L/R=1. As discussed above, we find that the effect of the
finite size over the current profile is to increase the deep of

LR penetration in the regions near the ends of the cylinder. It is
also observed that whem=0 the current penetration depth

FIG. 8. Field of full penetration as a function bfR. The solid  in the central layer is a linear function of the applied figdd
line corresponds to Forkl's formula, and different labels to differentindicated by the constant separation between two consecu-

0.4

0.2

0.0%

values ofp as indicated in the figure. tive lines; see Fig. @], as happens in the current-penetrated
o region in an infinite sample in Bean's critical state. When
C. Penetration field for the J.(H;) case p>0 the behavior is different: at low fields the current pro-

As explained in Sec. IV C, the field of full penetration file penetrates les§for a given applied field because the
depends on the/R value. It also depends on tipevalue. In  value of the current is higheisee Fig. 4, whereas, as the
Fig. 8 we plot the calculated full penetration field normalizedfield is increased, the value of the current decreases and the
to the field of full penetration of an infinite sampité, (for ~ current penetrates more deeply for a given field increment, as
eachp), as a function oL/R and for different values op. ~ shown in Figs. t) and Fig. 9c). Obviously, the largep is
Forkl’'s formula corresponding to the=0 casgEq. (11)] is the more accentuated this behavior becomes.
also plotted for comparison. Current profiles for the reverse curve are displayed with

As seen in Fig. 8, our results for the cgse 0 coincide thin lines in Fig. 9. In this reverse stage, the behavior is just
with the analytical expression of EL1). Whenp>0 the  the opposite of that for the initial curve: since at the early
field of full penetration decreases when the sample become$age the fields are large, the current is low and has to pen-

shorter. This fact is due to the demagnetization effects as igtrate deeper in order to shield a given field variation. As the
the casep=0. For a givenL/R, it is seen thatH pen/Hpe applied field decreases the current value increases, and the

increases with increasing (being, obviously, 1 whe/R  distance between two consecutive field profiles is reduced.
>1 for all p’s). For largep at low fields, currents have high When the field decreases to negative values the current value
value and penetrate less, so the field of penetration is exncreases and the profiles separate again. This behavior is, of
pected to be larger. The thinner the sample, the more acceROUrse, more evident for large as can be seen in Fig(d9.

tuated this behavior becomes, since full penetration is atFor the constant current casp=0), the depth of current
tained at lower fields. penetration in the central layer resulting from a given field

step is always the same, independently of the particular ap-

D. Extraction of the J.(H;) function from the experimental plied field value.

magnetization curve

The function J.(H;) is often extracted from measure- VI. DISCUSSION
ments of the magnetization loops of superconducting cylin- ) ) _ o
ders by applying the formuld.(H)=3AM(H)/2R, where A. Comparison with experiments, model checks and limits
AM(H) is the width of the loop at the applied field. This The procedure we have described is based on the minimi-
formula is known to be valid when the internal field is not zation of the magnetic energy of a system of currents which
very different from the applied one, and when the superconrepresents the superconductor. There were, recently several
ductor is fully penetrate*! Moreover, its use has been other alternative methods presented in the literature to solve
justified until now only for infinite samples. the critical-state problem in cylinders. The magnetization and
When demagnetization effects are present, extracting thihe current profiles we have found using our method have
intrinsic dependencé.(H;) is complicated since the internal been checked with those from other models, whenever com-
field is in general not uniform. Our results show that in gen-parable results exist, as we briefly summarize in this section.
eral a good agreement between the actual and the magneti- The method calculates the field of full penetration. For
cally extracted].(H;) function is found for fields larger than p=0, our results coincide with those by Forkl, as discussed
the penetration field, as discussed in Ref. 32. Since the peim Sec. Il C.
etration field decreases drastically when decreasing.tke We obtain the same values for the initial slope of the
ratio, we find that samples with a large aspect ratio and &1(H,) curves as those calculated by Brandind Chen

214506-8
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FIG. 9. Calculated current profiles for the caséR=1, for
different values of: p=0 (top), 2 (middle), and 10(bottom). Thick

and thin lines represent the profiles in the initial and reverse mag- . - . .
P P ?§tantJC, and with a simple one-step iteration fay(H;).

netization curves, respectively. The axis of the cylinder is shown i
the right. The applied field is increaséand decreasedrom 0 to
Hmax=2Hpe in steps of 0.H .

et al** for a wide range of /R values, with less than a 1%
deviation (for the comparison with the data of Chenal.
one should use their results for1 susceptibility. The

PHYSICAL REVIEW B 64 214506

data with experimental results of niobium cylinddes de-
tailed discussion on this can be found in Ref).35

The case of long samples gives correct results when com-
paring with results for Bean’s moddbr the case of constant
critical current and with those of Ref. 16 for the exponential
dependence. In the opposite limit of very thin disks, our
calculated current profiles, averaged over the superconductor
thickness, are coincident within numerical precision with the
analytical results of Ref. 17 for the studied casepefO,
whereas, for theJ.(H;) case, our magnetization curves
agree, within numerical precision, with the ones numerically
calculated by Shantsest al2%3¢

For finite cylinders, some of the profiles and magnetiza-
tion curves for the case=0 were also calculated by Brafdt
using a different numerical approach. Within numerical ac-
curacy, our results coincide with his.

B. Model extensions

An important advantage of our model is that it is equally
applicable to any form of the applied magnetic field, as long
as it keeps the cylindrical symmetry. In the following paper
(part Il) we present an application of our method to the case
of an inhomogeneous applied magnetic field, that of a per-
manent magnet, which allows us to calculate the current and
field profiles and levitation force in the superconductor.

However, our procedure is not applicable for an arbitrary
applied field, because the trajectories followed by supercur-
rents are in general not knovan priori. Nevertheless, if by
some means a way of obtaining such trajectories is devel-
oped, our approach could be used to solve the gefthrale-
dimensional problem of current penetration in samples of
arbitrary shape in an arbitrary applied field. The main equa-
tions would remain the same, and only the mutual inductance
coefficients(which are always expressable in terms of easy
numerically computed integralcorresponding to the par-
ticular current trajectories would have to be input in the
equations.

VII. CONCLUSIONS

We have presented a model for understanding the process
of current and field penetration in finite type-ll supercon-
ducting cylinders. One of its advantages is that in order to
understand the physical effects of demagnetizing fields one
does not need to rely on complicated distributions of surface
poles, but instead the complete magnetic field distribution
can be obtained as the linear superposition of fields created
by simple current loops. Our process is noniterative for con-

The effects of demagnetizing fields in the magnetic re-
sponse of the superconductor have been systematically ana-
lyzed. In particular, in a first step we have discussed the
dependence of the magnetization loops upon the cylinder
aspect ratio for a constant critical-current density, whereas in
a second step we have added the effect of the dependence of

agreement has been also shown to exist when comparing otire critical-current density upon the internal field.
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