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Magnetic properties of finite superconducting cylinders. I. Uniform applied field
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A model for the calculation of the magnetic levitation force for finite type-II superconductors in the critical
state is presented in a series of two papers. In the first paper, we describe the main features of the model and
understand the effect of demagnetizing fields in the magnetic properties of finite superconductors by consid-
ering the case of a superconducting cylinder in the presence of a homogeneous applied field. Field and current
profiles are calculated from a minimization of the magnetic energy in the superconductor after a change in the
applied field. Results are presented for both constant and field-dependent critical currents. The procedure is
general enough to be applied to the case of nonuniform applied fields, as long as the cylindrical geometry is
preserved.
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I. INTRODUCTION

Stable magnetic levitation is one of the most impress
exhibitions of the unique properties of superconducto1

Magnetic levitation forces result from the interaction b
tween an external magnetic field and the currents in the
perconductor. Although type-I superconductors can levit
the most interesting case for the study and application of
levitation phenomena is that of type-II superconductors,
which the levitation is ‘‘rigid’’ for a wide range of positions
and orientations of the superconductor.1–3 However, even in
the simple case of a superconductor~SC! levitating over a
permanent magnet, the modeling and understanding of
levitation force is complicated by factors such as the non
ear response of the type-II superconductor to the field of
magnet and the demagnetizing effects arising from the m
netic poles at the surfaces of the superconductor.

A successful model of superconducting levitation thus
quires an adequate treatment of the magnetization of the
perconductor which results from the application of a ma
netic field. In general, owing to the complexity of th
microscopic description of the vortex state, the magnetic
sponse of type-II SC’s has been studied by means of appr
mations which describe the observed macroscopic beha
The most common approach is the critical-state mod4

which assumes that the currents circulating in the SC’s fl
with a density that only depends upon the local magn
field, J5Jc(H i) . It has been found that the critical-sta
model adequately describes the magnetic properties
granular and melt-textured samples of high-Tc superconduct-
ors with a strongJc(H i) dependence which is often we
described by an exponential decay.5,6 These types of sample
are the most used in levitation experiments.

Important advances were recently made in the mode
of macroscopic magnetic properties of finite supercondu
ors, for which the study of the demagnetizing effects has
be included. Brandt7 and Doyleet al.8 presented methods o
solutions for the magnetization of finite cylinders and dis
based on assuming that the superconductor response a
from macroscopic material lawsB(H) and J(E). However,
these methods were not applied to the case of spatially in
0163-1829/2001/64~21!/214506~10!/$20.00 64 2145
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mogeneous applied fields, as required for levitation exp
ments. Actually, the models for superconducting levitati
presented up to now have not solved the demagnetiza
problem. All these models either neglected the effect of
magnetizing fields~such as in Refs. 9–12! or considered
them by the simple approximation of a constant demagn
zation factor,13 with the exception of works dealing with
thin-film geometry, for which demagnetizing effects we
considered.14,15 In the second paper of this series we w
provide a brief survey of the theoretical models proposed
describing the superconductor levitation; from this, one c
conclude that a complete model of superconducting lev
tion has not been proposed till now.

Our aim in this series of papers is to introduce a realis
model for the levitation of superconductors in the prese
of an external spatially inhomogeneous magnetic field. T
model is based on calculating current profiles in the sup
conductor by a minimization of its magnetic energy afte
change in the applied field. In this first paper of this series
describe the model, and present a systematic study of
magnetization of a type-II superconductor resulting from
spatially uniform applied magnetic field as a function
some of the superconductor parameters, in order to dis
the main features of the magnetic response of the super
ductors associated with the demagnetizing effects. In the
ond paper we use the basic formalism presented here to s
the case of inhomogeneous fields, from which levitati
forces occur for the superconductor. Although the mode
readily applicable to any system with cylindrical symmet
the calculations and results in this work will deal with th
most typical case encountered in levitation experimen
which is the case of a superconductor levitating in the fi
of a coaxial permanent magnet.

The validity of the model results will be checked in tw
different forms. First, for the case of a constant applied m
netic field, we will compare the model results with both t
analytical formulas that are known for the limits of infinite
long cylinders16 and very thin disks,17 and, for superconduct
ors of intermediate size, with those obtained from other
merical approaches.7 A very satisfactory agreement is ob
tained in all cases~see Sec. VI A of this paper!. Second,
©2001 The American Physical Society06-1
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ALVARO SANCHEZ AND CARLES NAVAU PHYSICAL REVIEW B 64 214506
results corresponding to nonuniform applied fields and le
tation forces are compared with both analytical expressi
in some limits and experimental levitation force curves a
other features observed in actual experiments. As we dis
in Sec. V of the second paper, we find that our model
scribes the characteristics experimentally found.

This paper is structured as follows. In Sec. II we discu
the general properties of superconductors in the critical st
In Sec. III, we describe the model details. The model res
are presented for two different cases: in Sec. IV we disc
the case of constantJc in order to analyze the influence o
demagnetizing effects in the simplest situation, whereas
devote Sec. V to a study of the more general case oJc
depending upon the local fieldJc(H i) . In Sec. VI we com-
pare some of our results with both experimental results
theoretical predictions from other existing theories, in s
eral limits. The conclusions of the first part of this work a
presented in Sec. VII.

II. MACROSCOPIC VIEW OF SUPERCONDUCTORS IN
THE CRITICAL STATE

From a macroscopic point of view, superconducto
present two main characteristic magnetic behaviors. W
they are cooled through the critical temperature in the p
ence of an applied magnetic field, the magnetic flux pres
in the superconductor interior is expelled~Meissner effect!.
The other important effect, the one in which we are int
ested here, occurs when a magnetic field is applied to a
under isothermal conditions; the SC reacts by excluding
magnetic field in its interior, so that the total magnetic fieldB
is equal to zero in the bulk of the SC. For type-II superco
ductors with pinning, a complete magnetic shielding~except
for a surface region of depthl at the surfaces, where shield
ing current flows! occurs when the total field is below th
value of the lower critical fieldBc1. For higher fields, there
appear some bulk currents which tend to shield the inte
region, that is, to make the internal fieldH i5B/m050 there.
Wherever there are currents,BÞ0. So, two regions appea
~a! an interior region with neither magnetic field nor bu
currents, and~b! an exterior region with a magnetic field an
current different from zero~in the critical-state model, the
value of the current in this region is the critical one!. Further
increasing the applied field makes the central field-free
gion shrink, until it eventually vanishes. If the sense of t
sweeping rate of the external applied field is reversed~re-
verse curve! the effect on the superconductor is the sam
induced supercurrents tend to shield the interior of the su
conductor, that is, to preserve the field distribution alrea
present. So the two regions are now~a! a frozen-field interior
region, and~b! an exterior region with a critical current an
a modified internal field.

We can summarize the previous behavior by conside
that type-II superconductors in the critical state behave m
roscopically after a quasistatically variation of an exter
applied field as follows: a macroscopic current is set in
SC in order to shield the magnetic field in the largest p
sible region inside the superconductor. Since the current
a maximum possible densityJc(H i) , when the applied field
21450
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is modified, the superconductor responds by pushing the
rent front inward.

In the virgin magnetization curve, shielding the magne
field in the superconductor volume by induction of curren
is equivalent to minimizing the magnetic energy resulti
from the application of the applied field. Then, in order
simulate the macroscopic process, in our model we fin
current-penetrated region that ensures the maximum sh
ing for each value of the applied field by finding the regio
at which setting a current with valueJc(H i) minimizes the
magnetic energy. The minimization of the energy for findi
the macroscopic magnetic properties of type-II superc
ductors was used by Badiaet al.18 For the reverse curve, we
shall simulate the magnetic shielding by the conventio
critical-state model procedure of superimposing a curr
distribution with opposite sign to the ‘‘frozen’’ field profiles
as in Refs. 19 and 20.

III. MODEL DESCRIPTION

A. Geometry description and main formulas

Although in this paper we will deal with only uniform
applied fields, here we introduce formulas for the gene
case of a nonuniform applied field, in order to use them
the levitation calculations. We consider a cylindrically sym
metric external fieldHa(r,z) applied over a cylindrical zero
field cooled superconductor of radiusR and lengthL with the
same axis of symmetry. We use common cylindrical coor
nates (r,f,z). We assume that the SC does not influence
sources of the external applied field.

The applied field can have neither an azimuthal com
nent nor angular dependence. Its general expression is th
fore

Ha~r,z!5Hr
a~r,z!r̂1Hz

a~r,z!ẑ. ~1!

Due to the cylindrical symmetry, any induced current w
flow in the azimuthal directionJ5Jf(r,z)f̂. We model the
superconductor as a set ofn3m coaxial rings of rectangula
section~see Fig. 1!. Typical values used in this work aren
3m560360. We defineDR5R/n and DL5L/m. Each
rectangular section has, thus, a surface (DR)(DL). We con-
sider that linear currents may flow through the center of t
section with a valueI 5Jc(DR)(DL). Due to the rotational
symmetry of the problem, it is sufficient to find a solution
any of the~semi!planes of constant angle.

We assume the SC to be in the critical state. The app
fieldsHa will always be such thatHc1!Ha!Hc2. In general,
we will consider a dependence of the critical current up
internal magnetic field, soJf5Jc(uH i u).

We now introduce some of the quantities involved in t
model. In cylindrical geometry, only the vertical compone
of the magnetic field contributes to the total magnetic fl
F i j that threads the area closed by a current ring indexe
i j . There will be two contributions to the total flux: the in
ternal fluxF i j

int , created by the currents present in the sup
6-2
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MAGNETIC PROPERTIES OF FINITE . . . . I. . . . PHYSICAL REVIEW B 64 214506
conductor~including the current in the ring itself!; and the
external fluxF i j

ext , due to the externally applied field. Thes
magnitudes are calculated as

F i j
int5(

kl
Mkl,i j I kl , ~2!

f i j
ext52pm0~DR!(

k< j
r ikHz,ik

a , ~3!

whereHz,ik
a is the vertical component of the external appli

field evaluated at the points where the currentik flows,r ik is
the radius of the circuitik, r ik5( i 21/2)(DR), and the co-
efficientsMkl,i j are the mutual inductances between the c
cuits located at the circuitskl andi j , which are calculated by
the known formulas for linear circular circuits.21

The self-inductances are included in the summation of
~2!. It is known that the self-inductance of a strictly line
current diverges. This problem was solved in the literature
different ways~see Ref. 7, for example!. In our work, we
have calculated the self-inductances as the mutual ind
tances between two close linear circuits. We have consid
two circuits of radiusr andr1e, calculated the mutual in
ductance between them, and found the valuee that fits this
value with the one found by the expression for a linear c
cuit of sectionDR.22 We have found that the optimum choic
for e is e;0.78DR. As expected, as the mesh gets finer,
e dependence of the results decreases. Actually, for the m
sizes we have used, our results are, within numerical pr
sion, independent ofe.

The total density of magnetic flux, after a current profi
is obtained, can be calculated either from the Biot-Sav
formula or from the flux values. The axial component a
point indexed byi j can be obtained from the flux as

Bz,i j 5
F i j 2F i 21 j

p~r i j
2 2r i 21 j

2 !
, ~4!

FIG. 1. Sketch of the division used in the simulation of a cyl
drical superconductor. A semiplane of constant anglef is shown.
The points represent the linear circuits where current can flow.
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definingr0 j50 and, thus,F i050. The radial component o
the field can be calculated from the values of the axial co
ponent by imposing the condition that the divergence ofB is
equal to zero, so that

Br ,i j 5F 1

~DR!
1

1

r i j
G21S Br ,i 21 j

~DR!
1

Bz,i j

~DL !
2

Bz,i j 11

~DL ! D , ~5!

with Br ,0j50.
Since only azimuthal currents will be present in the s

perconductor, the magnetic moment created by them
have only axial component. We define the magnetization
the magnetic moment divided by the superconductor volu
as

Mz5
mz

pR2L
5

1

R2L
(
i j

nm

I i j r i j
2 . ~6!

The applied field enters into our calculations as shown
Eq. ~3!, which makes our approach free from the proble
associated with implementing boundary conditions in poi
far from the superconductor or through a surface layer.7 We
would like to remark that an important advantage of t
model is that it can be applied to nonuniform external fiel
as studied in the second paper of this series.

B. Uniform magnetic-field case

In the rest of this paper we will consider a uniform a
plied field of the form

Ha5Haẑ. ~7!

In this case, we will obtain symmetrical current and fie
profiles not only in the azimuthal direction but also wi
respect to the central layer of the superconductor.

As stated above, in the present procedure the exte
field only appears in Eq.~3!, which in the constant applied
field case is simplified as

F i j
ext5m0pr i j

2 Ha . ~8!

C. Energy-minimization procedure

We now describe the method for obtaining the current a
field profiles. We first focus on the Bean case~no field de-
pendence for the critical current!, leaving the introduction of
a field dependence for Sec. III D.

We first consider the initial curve. Let us assume a giv
current distribution corresponding to an applied fieldHa ~if
we are calculating the first point after the initial state, th
the initial current distribution is zero everywhere!. Setting a
currentI at a circuit indexed as (i , j ) requires an energy

Ei j 5IF i j
int5I(

kl
Mkl,i j I kl , ~9!

while it contributes to reduce the energy~current has oppo-
site sign toHa) by a factorIF i j

ext . We find in this way the
circuit that yields the largest decrease of energy, and s
6-3
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ALVARO SANCHEZ AND CARLES NAVAU PHYSICAL REVIEW B 64 214506
currentI there. Following Bean’s critical state model, we p
a current with valueI 5JcDRDL.

This process is repeated until it becomes impossible
decrease the magnetic energy by setting a new current
where. Then, from the existing current profiles, we calcul
B profiles from Eqs.~4! and~5! and the magnetization from
Eq. ~6!. When Ha is further increased, the same procedu
starts again from the previous current values.

When the applied field has reached a maximum va
Hmax and is lowered, as we explained in Sec. II, we apply
same minimization procedure, taking into account only
currents induced during this reversal stage, that is, those
duced due to the variation of the field fromHmax to some
Ha,Hmax, and we superpose these currents to the fro
ones in the interior. This procedure, typical of critical-sta
models, has been used in the literature in the two limit ca
for which analytical expressions for the magnetization of
perconducting cylinders can be found, that is, for infin
cylinders16 and very thin disks.17 This process yields a mag
netization for the reverse curveM rev(Ha ,Hmax) that is re-
lated to the initial magnetization curveM (H) by23

M rev~Ha ,Hmax!5M ~Hmax!22M S Hmax2Ha

2 D . ~10!

D. Jc„H i… dependence

The previous procedure should be modified when
want to introduce some dependence of the critical curr
upon the internal magnetic field since, whenHa changes, the
internal field will also be modified, and therefore so will th
value of the already induced currents. TheJc(Hi) depen-
dence could be introduced by means of an iterative a
rithm. However, in our modelization we can increase
external applied field in amounts small enough as to cons
that the new induced currents do not modify much the
ready induced ones during this step of variation of field. T
procedure can be then regarded as just the first step o
iterative method. However, we have checked that this ‘‘fi
iteration’’ method is satisfactory by confirming that furth
iterations do not significantly modify the results provid
that the applied field is increased in small steps.

The procedure consists in the following. After increasi
the applied field, the new currents are set accomplishing
chosen material lawJc(Hi). When no new current minimize
the energy further, we calculate the magnetic field inside
superconductor and change the value~not the distribution! of
the already induced currents according to the material
After this, the applied field can again be increased and
process restarted.

IV. RESULTS FOR THE CONSTANT Jc CASE

A. Magnetization and current profiles: Sample size dependence

We first discuss the case of constantJc for simplicity. In
Fig. 2 we show the calculated magnetization curves for
perconducting cylinders with different length-to-radiusL/R
values and the same critical currentJc . The applied field is
21450
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normalized to the valueHp5JcR, which corresponds to the
penetration field for the infinite case, whereas the magn
zation is normalized toJcR/3, which corresponds to the satu
ration magnetization for all cases. This normalization ma
the results independent of the particular values ofJc andR.

The effect of the sample size is clearly displayed in t
figure. For smallerL/R ratios the loops present the ma
difference: the initial slopes in both the virgin and rever
curves become larger~in absolute value! with decreasing
L/R. In relation to this, the saturation value~achieved when
the superconductor becomes fully penetrated! is reached at
lower applied fields for shorter samples. In all cases, wh
the SC is fully penetrated, the value of the magnetization
the same, since the saturation magnetization~the magnetic
moment per volume! is independent of theL/R value in the
Bean approximation of a constantJc .

In Fig. 3 we plot the calculated current penetration p
files for the three samples of Fig. 2 and for different appli
fields, all in the initial curve. It can be seen that curren
penetrate from the lateral surface to the interior and that
penetration close to both the bottom and end of the SC
deeper than in the central layer. This behavior is accentu
whenL/R decreases.

FIG. 2. Magnetization loops for constant critical curre
as a function of the applied field.~a! L/R510. ~b! L/R51.
~c! L/R50.1.
6-4
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MAGNETIC PROPERTIES OF FINITE . . . . I. . . . PHYSICAL REVIEW B 64 214506
B. Current and field penetration in infinite and finite cylinders:
Effect of demagnetizing fields

The features mentioned above result from the effects
the demagnetizing fields, and can be analyzed using
framework provided by our model. We shall first recall ho
the current and field behave throughout a hysteresis loo
the conventional critical state model, i.e., for an infinite c
inder in longitudinal applied field, and then see how the sa
process is understood in finite cylinders and why the d
cussed facts occur.

In a zero-field-cooled infinitely long superconducting cy
inder, when a fieldHa is applied along the cylinder axis
currents are induced along the~infinitely long! lateral surface
of the cylinder, creating a constant vertical field opposed
the applied one in the interior and a null field outside. Th
the interior region is shielded from the applied field, and
the exterior of the superconductor the total field is equa
the applied one. With a further increase ofHa , the current
penetrates deeper into the cylinder, so that the shielded
gion shrinks. In this initial state of penetration the magne
zation curveM (Ha) is an increasing function~in absolute
value! of Ha . At a field Hp5JcR the cylinder becomes fully
penetrated by supercurrents.4 As a consequence, sinceJc has
a constant value, the sample magnetization~given by the
magnetic moment created by supercurrents! cannot increase
and saturates. The reverse magnetization curve, obta
when reversing the sense of sweeping the applied field a
reaching a maximum fieldHmax, is understood in similar
terms because, following the critical-state model, the reve

FIG. 3. Current profiles for three different cylinders. In ea
case the axis of the cylinder is at the right of each figure. For
casesL/R510 and 0.1, the small dimension has been doubled
clarity.
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currents induced during this stage again shield the interio
the sample.4,24,16Thus the current and field distributions in
side this shielded region remain frozen.

In a finite sample, as soon as the applied fieldHa is in-
creased from zero, currents are induced in some of the
perconductor regions in response to the field change. In
case, the depth of current penetration is not vertically
same, because a straight finite vertical penetration can
shield a constant applied field in the internal region of a fin
sample, assuming a constant current density. As seen in
3, near the ends of the superconductor, currents pene
deeper into the superconductor. The current profiles in
finite case can be explained as follows. Since the superc
ductor tends to shield an internal region from a uniform a
plied field, the distribution of current should create a co
stant field inside the internal region. As stated, this canno
achieved by a vertically constant profile. The currents
pearing in the region close to the cylinder ends have to s
stitute for the effect of an infinitely long set of currents that
not present in a finite sample. This current distribution c
ates a field that modifies the external field everywhere~not
only in the interior region, as in the infinite case!. Therefore,
outside the superconductor, the magnetic field is no lon
Ha except in points far from the superconductor.

In particular, the effect of the field produced by the fir
penetrated currents~in the corners! over the other loops is to
increase the field in some regions, so that the real field in
lateral surface of the cylinder is larger than the applied fie
As a result, the magnetization produced by such curre
apparently corresponds to larger values of the applied fi
Ha . Thus the effect of this is to increase the slope of t
initial M (Ha) curve. The initial slope of the reverse curve
explained in the same way. Moreover, the thinner the sam
the larger the contribution from the end regions, and thus
larger the slope.

C. Full penetration field

The process of penetration depends strongly on
sample size, as indicated above. In particular, the app
field at which the cylinder is totally penetrated,Hpen, de-
pends onL/R. Once the full penetration is reached, as lo
as the applied field is not decreased, the magnetization h
saturation valueM sat5JcR/3, independent ofL/R.

By calculating the field caused by a full penetration
currents in finite cylinders, Forkl25 obtained a formula for the
penetration fieldHpen, which normalized to the penetratio
field of an infinite sampleJcR as a function of the ratio
L/R is

Hpen

JcR
5

L

2R
lnF2R

L
1S 11

4R2

L2 D 1/2G . ~11!

Our results forHpen @which can be obtained either by findin
the field at which the last possible current is set, or direc
from theM (Ha) data as the field at which the initial and th
reverse curves merge# agree with the formula given by Fork
within our numerical accuracy for all values ofL/R. In Sec.
V we will study howHpen changes when some dependen
of Jc uponB is considered.

e
r
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V. RESULTS FOR THE Jc„H i… CASE

A. Exponential dependence

As mentioned in the introduction, the critical state in mo
type-II superconductors is best described with aJc which
depends on the local fieldH i5B/m0 at the current position
In this section we study the influence of demagnetizing fie
in the realistic case of a material with a givenJc(Hi) depen-
dence. In this paper, the dependence will be of exponen
type,26,16

Jc5kexp~2uHi u/H0e!, ~12!

where k and H0e are positive constants, since this depe
dence is very adequate to describe magnetic propertie
granular high-Tc superconductors,16,27,5 though our genera
framework allows the introduction of any arbitrary functio
Jc(Hi). A useful parameter to describe the strength of
exponential decay ofJc with Hi is p, defined as16

p5kR/H0e . ~13!

The limit p→0 corresponds to independentJc ~Bean’s
model!, and in general the largerp is the stronger the depen
dence. Another useful parameter isHpe , defined as

Hpe5H0eln~11p!, ~14!

which corresponds to the field of total penetration in an
finite sample.

If the applied fields involved in the problem are norma
ized with Hpe and the length dimensions with the radiusR,
then the results only depend on theL/R ratio and the value
of p. In Fig. 4 we plot the different shapes ofJc(Hi) depen-
dencies we will use in the following sections for studyin
how the variation onp affects the shape ofJc(Hi).

FIG. 4. Dependences of the critical current densityJc as a fun-
tion of the modulus of the internal fielduHi u used in this series o
papers.Jc is normalized to the penetration field of an infinite cy
inder Hpe divided by cylinder radiusR; uHi u is normalized toHpe .
Note that with the normalization shown, the function depends o
on p. Solid, dotted, and dashed lines correspond top50, 2, and 10,
respectively.
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B. Magnetization curves

1. p dependence

In Fig. 5 we show the calculated magnetization loops
the caseL/R510. Different values ofp have been used. Fo
illustration we chose three values ofHmax: lower than, equal
to, and higher than the penetration fieldHpe (Hmax/Hpe
50.5, 1, and 2, respectively!. Our results are practically co
incident with the analytical results for infinite samples, so
can regard the caseL/R510 as the infinitely long sample
limit for discussions.

Figure 6 shows the dependence onp of the magnetization
loops calculated for a superconducting cylinder withL/R
51. Similar to the known results for infinite cylinders,16,27

increasing the value of the parameterp results in a decreas
of the value ofM for high applied fields, and the appearan
of a peak in the initial curve for fields lower thanHpe and
another one in the reverse curve at a negative field.
stronger the value ofp is, the sharper these peaks becom
These features are general for any value ofL/R, and their
appearance can be explained as in the infinite case: whp
.0, when the applied field is small, some currents penet
into the superconductor with high value, and the magnet
tion increases~in absolute value!. As the applied field in-

y

FIG. 5. Magnetization loops for a long sampleL/R510. In the
left column each plot has a fixed value ofp ~as shown! and different
values ofHmax/Hpe ~0.5, 1, and 2!. In the right column each plot ha
a fixed value ofHmax/Hpe ~as shown! and different values ofp
~p50, 2, and 10!.
6-6
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MAGNETIC PROPERTIES OF FINITE . . . . I. . . . PHYSICAL REVIEW B 64 214506
creases further, so does the internal field; thus the valu
the current decreases while it penetrates further. This
duces two opposite effects: if the currents fill a larger volu
the absolute value of the magnetization tends to incre
whereas if the current value decreases the value tend
decrease. A minimum in the initial magnetization appe
when the relative importance of these two tendenc
changes when increasing the applied field. Although the
scribed behavior is general for allL/R values, the demagne
tizing fields arising from the finite size indeed have an act
influence in the results, as we discuss in Sec. V B 2.

2. LÕR dependence

In Fig. 7 we show the calculatedM (Ha) curves display-
ing the dependence onL/R for materials characterized b
different values ofp @p50 in Fig. 7~a!, p52 in Fig. 7~b!,
andp510 in Fig. 7~c!#. For the sake of simplicity, we only
show results for the caseHmax/Hpe52.

Since in each figurep has the same value, the observ
differences between the different curves are associated
with shape effects and not with intrinsic properties. The g
eral effect of the demagnetizing fields is that the thinner
sample, the larger the initial slope of theM (Ha) in both the
virgin and reverse curves~this is a general fact, independe

FIG. 6. Same as Fig. 5, for the caseL/R51.
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of p), and thus the sharper the peak in the magnetizat
Moreover, the peak shifts toward theHa50 axis. This effect
was already found in theoretical calculations for thin strip28

and disks29 with a given Jc(Hi) dependence, and also i
experimental data for a Y-Ba-Cu-O thin film.30 The physical
reasons for this effect can be understood in the framewor
our model, as explained in the following.

When p50, induced supercurrents have a constant d
sity and penetrate the superconductor, producing a cer
magnetization, since the interior is shielded from the appl
magnetic field. Whenp.0, as seen in Fig. 4, the supercu
rent at low fields is larger in value than that corresponding
p50; thus, to shield the same applied field, it penetrate
lesser distance inside the SC. The magnetization at lo
fields is, thus, larger than in thep50 case. The largerp is the
more accentuated this behavior becomes, and the large
initial slope of the magnetization. When the applied fie
increases, and thus the internal field also tends to incre
the value of the current decreases and the magnetizatio
tains a minimum value. WhenL/R decreases, this minimum
value is reached at lower external field values, because
demagnetization fields increase the internal field va
~which is responsible for the dependence ofJc) above the
applied field value. This explains the sharper peak at l
L/R values.

FIG. 7. Magnetization loops for differentp: ~a! p50, ~b! p
52, and~c! p510. In each figure, solid line corresponds toL/R
510, the dotted line toL/R51, and the dashed line toL/R50.1.
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ALVARO SANCHEZ AND CARLES NAVAU PHYSICAL REVIEW B 64 214506
C. Penetration field for the Jc„H i… case

As explained in Sec. IV C, the field of full penetratio
depends on theL/R value. It also depends on thep value. In
Fig. 8 we plot the calculated full penetration field normaliz
to the field of full penetration of an infinite sampleHpe ~for
eachp), as a function ofL/R and for different values ofp.
Forkl’s formula corresponding to thep50 case@Eq. ~11!# is
also plotted for comparison.

As seen in Fig. 8, our results for the casep50 coincide
with the analytical expression of Eq.~11!. When p.0 the
field of full penetration decreases when the sample beco
shorter. This fact is due to the demagnetization effects a
the casep50. For a givenL/R, it is seen thatHpen/Hpe
increases with increasingp ~being, obviously, 1 whenL/R
@1 for all p’s!. For largep at low fields, currents have hig
value and penetrate less, so the field of penetration is
pected to be larger. The thinner the sample, the more ac
tuated this behavior becomes, since full penetration is
tained at lower fields.

D. Extraction of the Jc„H i… function from the experimental
magnetization curve

The function Jc(Hi) is often extracted from measure
ments of the magnetization loops of superconducting cy
ders by applying the formulaJc(H)53DM (H)/2R, where
DM (H) is the width of the loop at the applied fieldH. This
formula is known to be valid when the internal field is n
very different from the applied one, and when the superc
ductor is fully penetrated.24,31 Moreover, its use has bee
justified until now only for infinite samples.

When demagnetization effects are present, extracting
intrinsic dependenceJc(Hi) is complicated since the interna
field is in general not uniform. Our results show that in ge
eral a good agreement between the actual and the mag
cally extractedJc(Hi) function is found for fields larger than
the penetration field, as discussed in Ref. 32. Since the
etration field decreases drastically when decreasing theL/R
ratio, we find that samples with a large aspect ratio an

FIG. 8. Field of full penetration as a function ofL/R. The solid
line corresponds to Forkl’s formula, and different labels to differe
values ofp as indicated in the figure.
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transverse applied field will have a very small penetrat
field and are therefore ideal for experimentally extract
Jc(Hi) function from magnetization measurements. This
especially true if the expected dependence is strong. A
tailed treatment of this topic can be found in Ref. 33.

E. Current profiles

In this section, we calculate the current profiles cor
sponding to some of the studied cases in order to see how
current distribution depends onL/R andp. In Fig. 9 we show
the p dependence of the penetration profiles for the c
L/R51. As discussed above, we find that the effect of
finite size over the current profile is to increase the deep
penetration in the regions near the ends of the cylinder.
also observed that whenp50 the current penetration dept
in the central layer is a linear function of the applied field@as
indicated by the constant separation between two cons
tive lines; see Fig. 9~a!#, as happens in the current-penetrat
region in an infinite sample in Bean’s critical state. Wh
p.0 the behavior is different: at low fields the current pr
file penetrates less~for a given applied field! because the
value of the current is higher~see Fig. 4!, whereas, as the
field is increased, the value of the current decreases and
current penetrates more deeply for a given field incremen
shown in Figs. 9~b! and Fig. 9~c!. Obviously, the largerp is
the more accentuated this behavior becomes.

Current profiles for the reverse curve are displayed w
thin lines in Fig. 9. In this reverse stage, the behavior is j
the opposite of that for the initial curve: since at the ea
stage the fields are large, the current is low and has to p
etrate deeper in order to shield a given field variation. As
applied field decreases the current value increases, and
distance between two consecutive field profiles is reduc
When the field decreases to negative values the current v
increases and the profiles separate again. This behavior
course, more evident for largep, as can be seen in Fig. 9~c!.
For the constant current case (p50), the depth of current
penetration in the central layer resulting from a given fie
step is always the same, independently of the particular
plied field value.

VI. DISCUSSION

A. Comparison with experiments, model checks and limits

The procedure we have described is based on the min
zation of the magnetic energy of a system of currents wh
represents the superconductor. There were, recently se
other alternative methods presented in the literature to s
the critical-state problem in cylinders. The magnetization a
the current profiles we have found using our method h
been checked with those from other models, whenever c
parable results exist, as we briefly summarize in this sect

The method calculates the field of full penetration. F
p50, our results coincide with those by Forkl, as discuss
in Sec. III C.

We obtain the same values for the initial slope of t
M (Ha) curves as those calculated by Brandt7 and Chen

t

6-8
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MAGNETIC PROPERTIES OF FINITE . . . . I. . . . PHYSICAL REVIEW B 64 214506
et al.34 for a wide range ofL/R values, with less than a 1%
deviation ~for the comparison with the data of Chenet al.
one should use their results for21 susceptibility!. The
agreement has been also shown to exist when comparing

FIG. 9. Calculated current profiles for the caseL/R51, for
different values ofp: p50 ~top!, 2 ~middle!, and 10~bottom!. Thick
and thin lines represent the profiles in the initial and reverse m
netization curves, respectively. The axis of the cylinder is show
the right. The applied field is increased~and decreased! from 0 to
Hmax52Hpe in steps of 0.1Hpe .
21450
ur

data with experimental results of niobium cylinders~a de-
tailed discussion on this can be found in Ref. 35!.

The case of long samples gives correct results when c
paring with results for Bean’s model4 for the case of constan
critical current and with those of Ref. 16 for the exponent
dependence. In the opposite limit of very thin disks, o
calculated current profiles, averaged over the supercondu
thickness, are coincident within numerical precision with t
analytical results of Ref. 17 for the studied case ofp50,
whereas, for theJc(Hi) case, our magnetization curve
agree, within numerical precision, with the ones numerica
calculated by Shantsevet al.29,36

For finite cylinders, some of the profiles and magnetiz
tion curves for the casep50 were also calculated by Brand7

using a different numerical approach. Within numerical a
curacy, our results coincide with his.

B. Model extensions

An important advantage of our model is that it is equa
applicable to any form of the applied magnetic field, as lo
as it keeps the cylindrical symmetry. In the following pap
~part II! we present an application of our method to the ca
of an inhomogeneous applied magnetic field, that of a p
manent magnet, which allows us to calculate the current
field profiles and levitation force in the superconductor.

However, our procedure is not applicable for an arbitra
applied field, because the trajectories followed by superc
rents are in general not knowna priori. Nevertheless, if by
some means a way of obtaining such trajectories is de
oped, our approach could be used to solve the general~three-
dimensional! problem of current penetration in samples
arbitrary shape in an arbitrary applied field. The main eq
tions would remain the same, and only the mutual inducta
coefficients~which are always expressable in terms of ea
numerically computed integrals! corresponding to the par
ticular current trajectories would have to be input in t
equations.

VII. CONCLUSIONS

We have presented a model for understanding the pro
of current and field penetration in finite type-II superco
ducting cylinders. One of its advantages is that in order
understand the physical effects of demagnetizing fields
does not need to rely on complicated distributions of surf
poles, but instead the complete magnetic field distribut
can be obtained as the linear superposition of fields cre
by simple current loops. Our process is noniterative for c
stantJc , and with a simple one-step iteration forJc(Hi).

The effects of demagnetizing fields in the magnetic
sponse of the superconductor have been systematically
lyzed. In particular, in a first step we have discussed
dependence of the magnetization loops upon the cylin
aspect ratio for a constant critical-current density, wherea
a second step we have added the effect of the dependen
the critical-current density upon the internal field.

g-
n
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Our model represents an alternative to other rec
approaches for calculating the magnetic response of fi
superconductors. Our approach is especially adeq
for studying the case of a nonuniform applied field as
quired in levitation experiments, as we show in the followi
paper.
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