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Phase diagram of high-Tc cuprates: Stripes, pseudogap, and effective dimensionality

V. V. Moshchalkov, J. Vanacken, and L. Trappeniers
Laboratorium voor Vaste-Stoffysica en Magnetisme, Katholieke Universiteit Leuven, Celestijnenelaan 200 D, B-3001 Heverlee,

~Received 28 July 2000; revised manuscript received 30 April 2001; published 1 November 2001!

The key problem in the physics of highTc cuprates@J. G. Bednorz and K. A. Mu¨ller, Z. Phys. B64, 188
~1988!# is whether doping is inhomogeneous and holes are expelled into one-dimensional~1D! stripes. We
demonstrate that the scattering mechanism defining the transport properties and the universal superlinearr(T)
behavior in underdoped YBa2Cu3Ox thin films @J. Vanacken, Physica B294–295, 347 ~2001!# is the same in
spin ladders and underdoped cuprates. This implies that transport through conducting charge stripes in cuprates
is fully controlled by the inelastic length coinciding with the magnetic correlation length in the ladders, i.e.,
holes in stripes behave very similarly to holes in spin ladders. The 1D stripe transport model describes
remarkably well the temperature dependences of the resistivity and the scaling behavior of magnetic and
transport properties of underdoped cuprates~including transport in fields up to 50 T! using essentially one
fitting parameter—the spin gap—decreasing with hole doping. In the framework of this model the hole-rich
stripes are just spin ladders with an even number of chains, and therefore the pseudogap is simply the spin gap
in spin ladders. The effective dimensionality is 2D at high temperature and 1D in the pseudogap stripe regime.
Disorder can lead to a pinning of stripes and their fragmentation, thus enforcing the interstripe hopping which
effectively recovers the 2D transport regime at low temperatures.

DOI: 10.1103/PhysRevB.64.214504 PACS number~s!: 74.25.Fy, 74.20.Mn, 75.10.Jm
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I. INTRODUCTION

An undoped CuO2 plane in cuprates can be considered
an insulating antiferromagnet.1,2 Doping the planes with
holes, leads to a variety of phenomena: suppression of
long-range antiferromagnetic~AF! order, an increase of con
ductivity resulting in an insulator-metal transition, the ons
of the hole concentration~p!-dependent superconductivity,
transition from the insulating tetragonal to the metallic o
thogonal structure, etc. The evolution of transport proper
of high-Tc cuprates is extremely sensitive to the underlyi
microscopic magnetic structure,3–8 and specific to the charg
distribution in the CuO2 planes. There is also growing ex
perimental and theoretical evidence that the CuO2 planes are
not doped homogeneously, but instead, hole-rich o
dimensional~1D! features~‘‘stripes’’ ! are formed. In order to
account for the possible inhomogeneous intercalation of
insulating regions and metallic hole-rich stripes, a 1D str
transport model was recently developed.4 This model de-
scribes transport in the 1D striped regime, which becom
applicable below a certain temperatureT* where the
pseudogap develops.9 Rapidly growing experimenta
evidence10–12 indicates that this 1D scenario might also
relevant for the description of the transport properties of
underdoped high-Tc cuprates. Since mobile carriers in th
case are expected to be expelled from the surrounding M
insulator phase into the stripes, the latter then provide
lowest resistance paths. This makes the transport prope
very sensitive to the formation of stripes, both static a
dynamic. From this point of view,a systematic study of th
transport properties provides a unique possibility to pro
the evolution of conducting stripes with the hole doping. The
main focus of the present paper is to demonstrate the a
cability of the 1D stripe model to a description of the r
markable universal scaling behavior of the transport prop
ties of the underdoped cuprates. We begin with a b
0163-1829/2001/64~21!/214504~10!/$20.00 64 2145
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description of the model, and then test it on a well-defin
case: transport in spin ladders~Sec. II!. After that we use the
very close similarity of the temperature dependence of
resistivity in two ~seemingly different! compounds—spin
ladders and underdoped cuprates. We argue that the 1D s
model works very well for the underdoped cuprates~Sec.
III !. In the framework of this model, the temperature dep
dences of the resistivity and the Knight shift give the sa
spin gap valueD. The doping dependence ofD is discussed
in Sec. III. The effects of disorder on the 1D stripes a
presented in Sec. IV. Finally, theT(p) phase diagram is dis
cussed in terms of the stripe formation and effective dim
sionalities~Sec. V!.

II. DEVELOPMENT OF THE QUANTUM TRANSPORT
MODEL IN DOPED 1D AND 2D HEISENBERG SYSTEMS

Figure 1 presents the scaled resistivity (r2r0)/(rD

2r0) versus the scaled temperatureT/D @r0 is the residual
resistivity andrD5r(T5D)#. This figure will act as a start-
ing point for our discussion of the three differentr(T) re-
gimes which we define as follows: linear behavior~I! T
.T* , superlinear behavior~II ! TMI,T,T* , and ‘‘insulat-
ing’’ behavior ~III !, T,TMI with resistivity increasing atT
→0. It is important to note here that we can interpretr(T)
curves in regime I in terms of a model of quantum transp
in doped 2D Heisenberg systems.3 Regime II can be related
to the quantum transport in the 1D stripe phase.4,5,13

The CuO2 planes in high-Tc cuprates play a crucial role in
the determination of the transport properties. The confi
ment of the charge carriers in these planes reduces the
mensionality for charge transport to two dimensions or ev
to one dimension if stripes are formed. Depending on
effective dimensionality~2D or 1D!, the transport properties
will change accordingly. In both cases, however, it is reas
©2001 The American Physical Society04-1



ca

he

vi
vit

fo

r
s
t

h

he

et

is

at

e

der

q.

res-
he
ven-
e of
the

ce of

ms

q.

st

ns-
ant

n-
its

wn

ely

the

nge
the
Eq.

V. V. MOSHCHALKOV, J. VANACKEN, AND L. TRAPPENIERS PHYSICAL REVIEW B64 214504
able to expect that the following three basic assumptions
be fulfilled.3,4

~1! The dominant scattering mechanism in HTS in t
whole temperature range is ofmagnetic origin;

~2! The specific temperature dependence of the resisti
r(T) can be described by the inverse quantum conducti
s21 with the inelastic lengthLf being fully controlled,~via
a strong interaction of holes with Cu21 spins14,15! by the
magnetic correlation lengthjm , Lf;jm .

~3! The proper 1D or 2D expressions should be used
calculating the quantum conductivity.

The 2D quantum conductivity is proportional to ln(Lf)
whereas the quantum conductivity of a single 1D wire is
linear function of the inelastic lengthLf ,16

r2D
21~T!5s2D~T!;

1

b

e2

\
ln~Lf / l !, ~1!

r1D
21~T!5s1D~T!;

1

b2

e2

\
Lf , ~2!

with l the elastic length andb the thickness of the 2D layer o
the diameter of the 1D wire. These expressions for the re
tivity of the 2D layers and 1D wires can be used further on
calculater(T) by simply inserting into the elastic lengt
Lf;jm ~jm being the magnetic correlation length! into Eqs.
~1! and~2!. The determination of the precise behavior of t
resistivity in the 2D Heisenberg (T.T* ) and the 1D striped
(T,T* ) regimes thus requires a knowledge of the magn
correlation lengths in 2D(jm2D) and 1D(jm1D) cases.

In the framework of the 2D Heisenberg model, which
certainly applicable for the doped CuO2 planes without any
stripes present, the temperature dependence of the correl
lengthjm2D is expressed as17

jm2D~T!5
e\c

832pF2 S 12
T

232pF2DexpS 2pF2

T D ~3!

with c being the spin velocity andF a parameter that can b
directly related to the exchange interactionJ, where 2pF2

FIG. 1. Scaled zero-field resistivity datar(T) for the
YBa2Cu3Ox films ~from x56.4 tox56.95!. The regions of different
r(T) behavior are indicated, as well as the energy scaleD and the
crossover temperatureT* '2D; r0 is the residual resistivity, and
rD is the resistivity atT5D.
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5J. Equation~3! was derived forundoped2D Heisenberg
systems. Numerical Monte Carlo simulations,18 however,
also demonstrated its validity for weakly doped systems.

For the 1D striped phase, the striking similarity ofr(T)
curves in underdoped cuprates and spin ladders~see below!
implies that the 1D even-chain Heisenberg AF spin-lad
model can be employed to describe ther(T) of the striped
phase. The 1D spin-correlation lengthjm1D found for the
undoped ladders by Monte Carlo simulations19 is given by

~Djm1D!215
2

p
1AS T

D DexpS 2D

T D , ~4!

whereA'1.7 andD is the spin gap. We assume here that E
~4! can still be applied for weakly doped ladders as well.

The next natural step is the combination of these exp
sions for the 1D and 2D spin correlation lengths with t
proper expressions for the quantum resistance, which e
tually gives expressions for the temperature dependenc
the resistivity. In the 2D Heisenberg regime, remarkably,
resistivity is a linear function of temperature3 due to the mu-
tual cancellation in the limitT!2J of the logarithmicr(jm)
dependence and the exponential temperature dependen
jm . Therefore, the linearr versusT universal behavior at
T.T* can be related to the doped 2D Heisenberg syste
regime:

r2D~T!5@s2D~T!#21;@ ln~jm!#21;FlnXexpS J

TD CG21

;
b\T

e2J
.

~5!

The 1D spin-ladder resistivity can be described by E
~6!, with Ji the intrachain coupling anda the spacing be-
tween the 1D wires~Ji comes in to recalculate the theori
units!:4,6

r1D~T!5@s1D~T!#215
\b2

e2a H 2D

pJi
1A

T

Ji
expS 2

D

T D J .

~6!

Note that this expression isnot an empirical interpolation
formula. On the contrary, this expression is derived for tra
port in the spin ladders, and therefore it combines import
microscopic parameters~D and Ji! describing the spin-gap
and exchange interaction in the spin ladders.

To verify the validity of the proposed model of the qua
tum transport in the 1D spin ladder model, a crucial test is
application to the resistivity data obtained on the well-kno
even-chain spin-ladder compound Sr2.5Ca11.5Cu24O41.

20 This
compound, due to its specific crystalline structure, definit
contains a two-leg (nc52) Cu2O3 ladder, and therefore its
resistivity along the ladder direction should indeed obey
1D conductivity expression given by Eq.~6!. The results of
the r(T) fit with Eq. ~6! are shown in Fig. 2~a!. This fit
demonstrates a very good quality over the temperature ra
T;25– 300 K, except for the lowest temperatures where
onset of the localization effects, not taken into account in
4-2
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~6!, is clearly visible in the experiment. Moreover, the fittin
parametersr0 , C, andD all show very reasonable values.

The expected residual resistance forb;2a;7.6 Å, D
;200 K, andJi;1400 K ~the normal value for the CuO2
planes! is r0;0.531024 V cm, which is in good agreemen
with r0;0.8331024 V cm found from the fit. The fitted gap
D;216 K ~at 8 GPa! @Fig. 2~a!# is close toD;320 K deter-
mined for the undoped superlattice~SL! SrCu2O3 from in-
elastic neutron scattering experiments.21 In doped systems i
is natural to expect a reduction of the spin gap upon dop
Therefore, the difference between the fitted value~216 K!
and the one measured in an undoped system~320 K! seems
to be quite fair. Finally the calculated fitting parameterC
5(Apr0)/2D50.0103 ~in units of 1024 V cm K! is to be
compared withC50.013 @from the 8-GPa fit in Fig. 2~a!#.
Using the fitting procedure for the two pressures 4.5 G
(D;219 K) and 8 GPa (D;216 K), we have obtained a
weak suppression of the spin-gap under pressuredD/dp;
21 K/GPa.

Another model system to check the validity of the 1
transport model4 is the PrBa2Cu4O8 compound. This com-
pound has a well-known double Cu-O chain. The results
the high-pressure studies of this Pr124 material suggest
the metallic conduction here is governed by the double C
chains, and not by the CuO2 plane.22 The metallic behavior
along the Cu-O chain in Pr124 deserves a special atten

FIG. 2. ~a! Temperature dependence of the resistivity for
Sr2.5Ca11.5Cu24O41 even-chain spin-ladder single crystal at 4.5 an
GPa~experimental data points after Ref. 20!. The solid line repre-
sents a fit using Eq.~6! describing transport in 1D SL’s.~b! Tem-
perature dependence of theb-axis resistivity of PrBa2Cu4O8 ~Ref.
22! together with a fit using Eq.~6!.
21450
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because it can provide a unique and interesting opportu
to study the 1D two-leg ladders. As can be concluded from
fit using Eq.~6!, the 1D expression for the resistivity work
rather well for this double chain compound. Both the fit a
the experimental data22 are shown in Fig. 2~b!.

The next crucial step in our analysis is the comparison
the r(T) curves in the spin ladders and underdoped highTc
cuprates. Interestingly, both compounds, seemingly belo
ing to different dimensional regimes, show practically t
same temperature dependence of the scaled resistivity~Fig.
3!.

The superlinearr(T) behavior observed in the dope
even-chain SL under external pressure indicates, by its s
larity with the S-shapedr(T) in underdoped HTS, that the
picture of 1D transport might be relevant to the HTS atT
,T* , where a superlinearr(T) behavior is clearly seen
~Figs 1–3!. To investigate the possibility of using the 1
scenario for describing transport properties of the 2D Cu2
planes of the high-Tc superconductors, it is appropriate
compare the temperature dependence of the resistivity
typical underdoped high-Tc material YBa2Cu4O8 with that of
the even-chain SL compound Sr2.5Ca11.5Cu24O41.

The crystal structure of the YBa2Cu4O8 compound
~‘‘124’’ ! differs substantially from that of the more commo
YBa2Cu3O7 ~‘‘123’’ !, since 124 contains double CuO chai
stacked along thec-axis and shifted byb/2 along theb
axis.23 These chains are believed to act as charge reserv
therefore, they may have a strong influence on the trans
in the CuO2 planes themselves. In the 124 case, the 1D f
tures of this double CuO chain can be expected to induce
intrinsic doping inhomogeneity in the neighboring CuO2
planes, thus enhancing the formation of 1D stripes in
planes in a natural way. A weak coupling of the 1D chains
the 2D planes might be sufficient to reduce the effect
dimensionality by preferentially orienting the stripes in t
CuO2 planes along the chains. But even in pure 2D plan
without coupling to the 1D structural elements the formati
of the 1D stripes is possible. Using a simple scaling para
eterD, a perfect overlap of the two sets of data was foun
(r2r0)/r(D) versusT/D ~with r0 being the residual resis
tance! for YBa2Cu4O8 and Sr2.5Ca11.5Cu24O41 ~Fig. 3!. Note
that r0 should be subtracted fromr(T) sincer0 , depending

FIG. 3. Scaling analysis on the temperature dependence o
resistivity of the underdoped high-Tc superconductor YBa2Cu4O8

and the even-leg spin-ladder Sr2.5Ca11.5Cu24O41.
4-3
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on the sample quality, may contain contributions from s
eral additional scattering mechanisms.

This perfect scaling of ther(T) data of an underdope
HTS on one side and an even-leg spin ladder on the o
side has very important implications for the understanding
the nature of the charge transport and the scattering in
high-Tc cuprates’ CuO2 layers. It convincingly demonstrate
that resistivity vs temperature dependence of underdoped
prates in the pseudogap regime at T,T* and even-chain SL
with a spin-gapD are governed by the same underlying 1
(magnetic) scattering mechanism.

Early experiments on twinned high-Tc samples however
created an illusion that all planar Cu sites in the CuO2 planes
are equivalent. Recent experiments on perfect untwin
single crystals have strongly questioned this belief. A v
large anisotropy in theab plane of twin-free samples wa
reported for resistivity@ra /rb(YBa2Cu3O7)52.2 ~Refs. 24
and 25! and ra /rb~YBa2Cu4O8!53.0 ~Ref. 26!#, thermal
conductivity @ka /kb(YBa2Cu4O8)53 – 4 ~Ref. 27!# super-
fluid density,28,29 and optical conductivity.29,30 In all these
experiments, much better metallic properties have b
clearly seen along the direction of the chains~the b axis!.
And what is truly remarkable, that this in-plane anisotro
can be partly suppressed by a vary small~only 0.4%! amount
of Zn,29 which is known to replace copper, at least for Z
concentrations up to 4%, only in the CuO2 planes.31,32 The
latter suggests that theab anisotropy cannot only be ex
plained just by assuming the existence of highly conduct
CuO chains. Instead, the observation of anisotropy in
transport properties in theab plane for YBa2Cu4O8 ~Ref. 26!
and YBa2Cu3O7,

24 interpreted as a large contribution o
strongly metallic Cu-O chainsrchain(T), might be reinter-
preted taking into account the fact that the in-plane anis
ropy is caused by certain processes in the CuO2 planes them-
selves, where the substitution of Cu by Zn takes place. In
situation we may expect that the chains are actually impos
certain preferential directions in the CuO2 planes for the for-
mation of 1D stripes.

However, inelastic neutron-scattering experiments
YBa2Cu3O7 ~Refs. 33–35! show evidence of the existence
rather dynamic stripes, and the observation of 1D feature
the transport properties should therefore not be limited to
Cu-O chain-direction only. Moreover, although the 1
stripes are dynamic, no averaging of the transport prope
will occur, since, even for dynamic stripes, the charge w
automatically follow the most conducive paths, i.e., strip
even if they are moving fast. Fitting the 1D quantum tran
port model4 to the inplaner(T) curve for YBa2Cu4O8 @Eq.
~6!# results in a very nice fit,4–8 yielding a spin gapD
522465 K ~Figs. 3 and 4!. The slope of ln@(r2r0)/T# versus
1/T ~see the inset in Fig. 4! defines the spin-gap value, thu
reducing the number of the fitting parameters in this cas
only one:r0 . Therefore, we can conclude that the resistiv
of underdoped cuprates belowT* ~see the inset in Fig. 4!
simply reflects the temperature dependence of the magn
correlation lengthin the even-chain SL’s, associated wi
stripes and the pseudo-gap is the spin-gap formed in the
stripes.
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In order to substantiate these observations, we can
similar ideas in the analysis of other physical properti
Since in underdoped cuprates the spin-gap temperaturD
found from ther(T) scaling works equally well for resistiv
ity as for Knight-shift dataKS ,38 theseKS data can also be
used for fitting with the expressions derived from the 1D
models. For a two-leg SL, the temperature dependence o
Knight shift KS is.37

KS~T!;T21/2exp~2D/T! ~7!

Fitting theKS(T) data37 for YBa2Cu4O8 with this expression
gives an excellent result~Fig. 5! with a spin gapD5222
620 K, which is very close to the valueD522465 K de-
rived from the resistivity data.

FIG. 4. Temperature dependence of the resistivity of
YBa2Cu4O8 single crystal~open circles!; the solid line represents
the fit using Eq. ~6!. The fit parameters arer050.024
31024 V cm, C50.0024231024 V cm/K, and D5224 K. The
high-temperature data taken on another crystal~Ref. 36! shown in
the inset, illustrate the 1D-2D crossover~linear behavior! at T
.T* . Insert~upper left!: the determination of the spin gapD from
the special plot based on Eq.~6!. This plot gives the spin gap, usin
only one fitting parameter (r0).

FIG. 5. Knight-shift dataKS(T) for the YBa2Cu4O8 system
~Ref. 36! fitted with Eq. ~7! ~see also the inset! for two-leg spin
ladders~Ref. 37!. The resulting fitting parameters areK(0)5(0.6
62)31022%, K1D5(870640)31022%, and D5(222620) K
~Refs. 7 and 8!.
4-4
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Therefore, for an underdoped HTS, we have related
linear r(T) behavior aboveT* with quantum transport in a
2D AF Heisenberg system and the S-shaped superlinea
havior belowT* with a 1D quantum transport model fo
even-chain spin ladders~the striped phase!. In the next sec-
tions we will interpret the universalr(T) behavior in the
framework of this 1D-2D model, extract the spin gapD, and
discuss the experimentalT(p) phase diagram.

III. DOPING DEPENDENCE OF THE SPIN GAP IN
YBa2Cu3Ox

As can be seen from Fig. 1, the in-plane resistivityrab(T)
of underdoped YBa2Cu3Ox shows a linearr(T) dependence
at high temperaturesT.T* , a superlinear behavior atT
,T* , and an increasing resistivity at the lowest tempe
tures for strongly underdoped samples. This insulating-
r(T) behavior was revealed by the application of very hi
magnetic fields in order to suppress superconductivit39

Doping the high-Tc materials reduces the tendency towa
insulating behavior, and lowers the crossover temperatureT*
so that the superlinearrab(T) gives way for the linear re-
gion, which is expanding to lower temperatures. These
plane resistivities are shown to scale onto one unive
curve ~Fig. 1!. From this plot, a perfect scaling in regimes
~linear part! and II @curved, superlinearr(T)# was observed
for all the zero-field curves. In the insulating regime~III !, the
scaling is of less good quality. The perfect scaling of t
metallic in-plane resistivities for these compounds is a str
indication that one scattering mechanism is dominant for
strongly underdoped samples up to the near optimally do
samples. Only the energy scale~the scaling parameterD and
the crossover temperatureT* '2D! varies with doping.
Based on the analysis given in the previous paragraph,
reasonable to try to correlate this ‘‘dominant process’’ w
the magnetic scattering mechanisms in one and two dim
sions, introduced there.

For T.T* , where short-range AF fluctuations are seen
inelastic neutron scattering experiments, the resistivity
found to have a linear temperature dependency~region I!.
This regime is thus described by Eq.~5! for quantum trans-
port in a 2D Heisenberg system with the inelastic len
determined by the magnetic~2D! correlation length.13

For temperatures belowT,T* '2D, 1D stripes are
formed, thus reducing the effective dimensionality from 2
to 1D, and the spin gapD is clearly seen in the S-shape
universal scaledr(T) ~regime II!. This regime should then
be accurately described by Eq.~6!, corresponding to quan
tum transport in a 1D striped material with again the inelas
length being determined by the magnetic~1D! correlation
length. To check this, ther(T) curve shown in Fig. 1 de-
scribes both these expressions@Eqs. ~5! and ~6!# and the
experimental data. A perfect overlap with the data is est
lished up to slightly aboveT/D51. The scaling of the data
was performed such that the data fall onto the unive
r(T)5r01C T exp(2D/T) curve withC5exp(1)52.718. In
that way, the scaling parameters necessary to obtain the
lapsing rab(T) traces directly yield estimates for the sp
21450
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pseudo-gapD within this model for transport in a 1D stripe
case.

In Fig. 6, the estimates for the spin pseudogapD and the
crossover temperatureT* '2D are, for the YBa2Cu3Ox
system,2 plotted versus the oxygen contentx. Like T* , the
spin-gap decreases upon doping, approaching the cri
temperatureTc near the optimally doped case. This is a we
documented trend for the pseudogap, and is not restricte
the YBa2Cu3Ox compounds~for a review, see Ref. 40!.

A crucial check for the 1D conductivity model4 is the
direct comparison of our values for the pseudogap with e
mates from the literature. In Fig. 7, we replot ourD(x) data
on thin films ~open diamonds! together with estimates from
resistive measurements on other YBa2Cu3Ox thin films,38 and
on twinned41 and detwinned27 single crystals. Within the er-
ror bars, these data agree well. Additionally, we have plot
estimates of the pseudogap as derived from the CuO2 plane
17O and 63Cu Knight-shift measurements on aligne
powders.42,43 Also these data, although obtained with a t
tally different technique, resulted in spin-gap values that

FIG. 6. Spin gapD and crossover temperatureT* '2D for the
YBa2Cu3Ox thin films, as derived from the scaling of their in-plan
resistivitiesrab(T) with the curve for 1D quantum transport.

FIG. 7. The spin gapD of YBa2Cu3Ox vs oxygen contentx,
from the scaling of therab(T) data with the curve for the 1D
quantum transport for the thin films in this work~open diamonds!
and a direct fit on the films from Ref. 38~down triangles!, twinned
crystals~Ref. 41! ~up triangles! and detwinned crystals~Ref. 24!
~squares!. The spin gap obtained from a fit of the Knight shift o
17O ~Ref. 43! ~filled diamonds! and on 63Cu and 17O ~Ref. 42!
~circles! is also added.
4-5
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in good agreement with ourD(x) data. This proves that th
1D quantum transport model,4 used to describe the transpo
in underdoped cuprates atT,T* ,5,6 not only agrees qualita
tively, but also yields very reasonable values for the pse
spin-gapD that agree well with other independent data.

Although this correspondence is quite convincing,
should be mentioned that experimental techniques prob
charge excitations~like angle-resolved photoemission spe
troscopy, quasiparticle relaxation measurements, and tun
ing experiments! give pseudogapDp values that are signifi-
cantly higher~about a factor 2! than the spin-excitation ga
Ds , as observed in NMR and INS experiments.40,44In the 1D
quantum transport model, where the inelastic length is
sumed to be dominated by the magnetic correlation len
the agreement of our data with the gap-value determi
from NMR experiments then seems to be natural.

The only difference in this discussion comes from t
often-cited 89Y NMR data on underdoped YBa2Cu3Ox re-
ported by Alloul and co-workers.45 These Knight-shift data
were shown earlier to scale very well, using the same sca
temperatureT0 that was derived from the scaling o
rab(T).38 This was interpreted as a strong indication that
opening of the spin-gap seen in the Knight shift is relev
also for transport properties thus motivating the developm
of the 1D/2D quantum transport model.4–6 This argument
still holds. However, when fitting the expression for t
Knight shift KS(T) ~as in figure 5! to these data, the resultin
values for the pseudo-gap are about a factor 2 higher than
gap values determined from resistivity measurements or
data on in-plane17O and 63Cu Knight-shift on aligned
powders.42,43 The origin of this deviation is not clear bu
could be due to the use of non-aligned powders45 or possible
differences between NMR measurements probing inter-p
89Y or in-plane17O and63Cu.

If one looks at theT* (x) or D(x) experimental data, one
can see that, as a function of oxygen content, arounx
;6.6 a plateau arises in both curves, just like in theTc(x)
curve. Therefore, there seems to be a common concentr
dependency for both the opening of the spin gap, and for
occurrence of superconductivity.

IV. DISORDER-INDUCED STRIPE PINNING AND
FRAGMENTATION AT LOW TEMPERATURES

At low temperatures,T,TMI , the metallic behavior of
the resistivity in regions I and II transforms into an insula
ing, diverging,r(T) ~region III!.2,39 The diverging high-field
r(T) data were shown to agree better with the ln(1/T) diver-
gence than with a simple power lawT2a.46 Although the
origin of such a logarithmic divergence is still strongly d
bated, it is interesting to analyze our data for the normal-s
resistivity within the framework of the model considerin
stripe formation in the CuO2 plane.

In the charge-stripe picture,6,7,12,14,35,47 dynamic
metallic30,48,49 stripes are thought to dominate the transp
properties. So, within this model, one expects a strong in
ence on the transport properties when, for some reasons
1D charge stripes are fragmented and/or pinned. In the p
ence of stripe fragmentation, charge carriers are forced
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hop to neighboring metallic stripes or their fragments pa
ing through the intercalating Mott-insulator areas. This lea
to an increased resistivity49 ~see Fig. 9 below!. Interstripe
hopping recovers effectively the 2D transport regime a
then the low-temperature ln(1/T) increase of the high-field
resistivity can be interpreted as weak localization effec
typical for the 2D case.

One possible type of pinning centers which might be
sponsible for stripe pinning and fragmentation is the crys
lographic disorder in the CuO2 plane, in the form of disloca-
tions. These dislocations will also alter the local electro
and magnetic structure in the plane and at low temperatu
when the stripes are less mobile; they can be expected to
the magnetic domain walls formed by the charge strip
Moreover, in the case of strong pinning, stripe fragmentat
is predicted to occur.50

Experimentally, the pinning of charge stripes has be
seen by neutron-diffraction experiments on the Nd-dop
and pure La22xSrxCuO4.

12 The striking result derived from
these data is that, although the incommensurate features~i.e.,
the stripes! are almost identical, the scattering in the pu
near optimally doped, (La22xSrx)CuO4 system is inelastic
~dynamic stripes! whereas in the (La1.62xNd0.4Srx)CuO4 sys-
tem elastic scattering is observed, corresponding to st
stripes. In general, pinning of these stripes is correlated w
the onset of an increasing resistivity,48 although stripe pin-
ning has been found in underdoped samples that are me
~but close to the metal-insulator transition!,49 suggesting
stripe fragmentation to be as important as pinning for
creation of an insulating state.

So, for dynamic stripes, the resistivity will be quasi-1
metallic and the Hall response in a magnetic field will r
main finite, since dynamic charge stripes are still able
respond to the transverse electric field acting on the cha
carriers. For pinned stripes that are not fragmented, the
sistivity can be expected to remain essentially metallic si
the 1D metallic wires remain unbroken. However, such
reduced mobility of the stripes can be expected to hav
noticeable influence on the Hall effect. When the stripes
pinned, they cannot properly react to the Lorentz force act
on the charge carriers, and only a reduced Hall field~and
thus Hall resistivityrxy! is built up. However, in the pres
ence of stripe fragmentation or interstripe hopping, also H
effect will be present due to the charge interstripe hopp
across the Mott-insulator phase. This will result in an ins
lating longitudinal resistivity and a small but finite Hall e
fect.

Recently, based on the Hall effect and x-ray measu
ments on Nd-doped La22xSrxCuO4 crystals,48 it was argued
that the Hall conductivitysxy @Eq. ~8!# could be related to
the inverse stripe order:

sxy~H !5
ryx

rxx
2 1rxy

2 '
ryx

rxx
2 5

RHBz

rab
2 '

RHm0H

rab
2 ~H !

. ~8!

In order to check this idea, we have combined our hig
field rab(T) curves with theRH(T) data obtained on the
same samples, above and belowTc to calculate the Hall con-
ductivity sxy using Eq.~8!. The results are summarized i
4-6
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Fig. 8 for all the samples showing a pronounced diverge
of the low-temperature resistivity.

From the plots in Fig. 8, it is clear that, once the resist
ity starts increasing at low temperatures~at T,TMI!, also the
Hall conductivity goes down rapidly and hence, according
the analysis made in Ref. 48, stripe order in these un
doped YBa2Cu3Ox and Y0.6Pr0.4Ba2Cu3Ox samples increases
However, a significant difference from Ref. 48 must
pointed out: in our data, the decreasing Hall conductivitysxy

is almost completely due to the strongly diverging longitu
nal resistivityrab(T), whereas the Hall responseRH(T) re-
mains finite ~and approximately temperature independe!
down to the lowest temperatures used in our experiment

When combining this result with the discussion about d
namic versus static pinned stripes, it becomes clear tha
low temperatures, the charge stripe picture can only
brought into agreement with our normal state transport d
by assuming stripe fragmentation or/and interstripe hopp
effects. This causes an effective recovery of the 2D regi
By inserting the temperature dependence of the inela
length Lf , of the scattering mechanisms applicable for t
intercalating insulating phase, into the conductivity expr
sion for 2D quantum transport@Eq. ~8!# one can calculate the
low-temperature ln(1/T) divergence of the high-field resistiv
ity. For example, the inelastic length for electron-electron
electron-phonon scattering,Lf;1/Ta,16 combined with the
2D quantum transport, gives a ln(1/T) correction to the low-
temperature resistivity. Also electron interference effects
the 2D weak-localization theory can be responsible for
ln(1/T) behavior. Moreover, this 2D weak-localization mod
also agrees with our finding of a constant Hall coefficie
RH(T) at low temperatures.

FIG. 8. The off-diagonal conductivitysxy , calculated by com-
bining the Hall coefficientRH and the in-plane resistivityrab at 40
Tesla@Eq. ~8!#. The arrows indicate the temperatureTMI where the
resistivity starts to increase with lowering temperature, and thx
axis is drawn atsxy50.
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V. T„p… PHASE DIAGRAM: STRIPES DEFINE
PSEUDOGAP AND EFFECTIVE DIMENSIONALITY

The construction of theT(p) phase diagram, describin
the superconducting and normal-state transport propertie
the YBa2Cu3Ox compounds, requires the combination of o
high-field transport data and the estimates for the carrier c
centration from the Hall effect. This experimental phase d
gram can now be discussed in the framework of the 1D-
quantum transport model3–7 ~Fig. 9!. Of course, regardless o
this interpretation, the experimentalT(p) phase diagram, in-
cluding its crossover lines, remains valid. Three different
gimes~I–III ! are present in theT(p) diagram. In Region I, a
metallic linear temperature dependence of the resistivity
observed (T.T* ). It can be described by the expression f
a 2D Heisenberg system where short-range AF fluctuati
are revealed in inelastic neutron scattering experiments
Region II, when an underdoped high-Tc cuprate is cooled
below T* , an S-shapedr(T) develops, that can be scale
onto a single universal curve for the Y-Ba-Cu-O compoun
This curve is accurately described by the model for transp
in a 1D striped regime~region II!, and yields values for the
spin gap that agree well with estimates found from the
erature.The stripes correspond to the doped spin ladd
with an even number of legs.4 From this point of view, the
pseudogap is just the spin gap in the ladder compounds. This
gap decreases with an increase the hole concentrationp. The
1D striped regime is defined by the four boundaries in
T(p) diagram. At low doping levels, the bulk antiferroma
netic order is recovered and the stripes disappear. At h
doping levels, the distance between stripes is expecte
decrease; charges start to leak into the Mott insulator ph
between the stripes and as a result, the charge stripes

FIG. 9. The genericT(p) phase diagram for the YBa2Cu3Ox

~diamonds, solid line! thin films. Indicated are the 2D-1D crossove
temperatureT* ~filled symbols!, the superconducting critical tem
peratureTc ~open symbols!, and the boundaryTMI between the
metallic and the insulating regimes forr(T). All are plotted versus
the fraction of holes per Cu atom in the CuO2 plane. In regime~I!
2D quantum transport takes place; in regime II, 1D stripe transp
dominates; finally, in region III, 2D transport is effectively reco
ered due to the interstripe hopping and stripe pinning.
4-7



y
e
ti

2
t

-

on

d
e
de

-

o

ra
is

se
e

ns

a
du

n
op

r-

r
en
-
y

m

n

o

-
pi

ear
in

how
ser-
uld
ly.
ing
y-
st

ast.
gth
a-

ns-
gth
an
ta
nds
e
D

der
an-

en
cal

der-

r-
ic
n-

-

-

ell
rt at

tion

er,
the

n
ere
ag-

the
ral.
un-
-
lso

ng,
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lapse completely whenTc→0. At high temperatures, entrop
effects and stripe meandering are expected to destroy th
regime, recovering the 2D regime with antiferromagne
fluctuations. At low temperaturesT,TMI , stripe pinning,
fragmentation and interstripe hopping effects establish a
insulating regime~region III!. In theT(p) diagram, the onse
of this insulating regime is indicated byTMI , below which
the resistivity increases with lowering temperature.Depend-
ing on the disorder, the MI transition line at T50 K can be
shifted. At low temperaturesT,Tc , the onset of a macro
scopic coherence between the so-called pre-formed pairs14,15

is predicted to result in the recovery of the bulk superc
ductivity ~in the absence of high magnetic fields!.

VI. CONCLUSIONS

The universal r(T) behavior in the underdope
YBa2Cu3Ox thin films is a strong indication of one singl
scattering mechanism being dominant over the whole un
doped regime in the Y123 system. Only the energy scale~the
scaling parameterD—the spin gap—and the crossover tem
peratureT* '2D! varies upon doping.

Any model trying to explain the extraordinary features
the normal-state transport properties of the high-Tc’s @linear
r(T) at high temperatures, S-shapedr(T) at intermediate
temperatures and logarithmically divergingr(T), etc.#
should also account for the complex magnetic phase diag
for these high-Tc cuprates. In the underdoped region of th
diagram, at moderate temperaturesT.T* , 2D antiferromag-
netic correlations are present in the CuO2 planes. Moreover,
an increasing amount of experimental and theoretical ob
vations is clearly in favor of the existence of dynamic on
dimensional charge stripes in the CuO2 planes atT,T* ,
acting as domain walls for the antiferromagnetic fluctuatio
These local charge inhomogeneities~1D charge stripes! will
confine the AF regions, resulting in the formation of
pseudo-spin-gap at temperatures far above the supercon
ing critical temperatureTc .

It is then tempting to assign the origin of the domina
scattering mechanism for charge transport to the microsc
magnetic correlations in the planes of the high-Tc cuprates.
The importance of the CuO2 planes for the transport prope
ties is a widely documented feature of the high-Tc cuprates.
The confinement of the charge carriers in these planes
duces the dimensionality for charge transport to two dim
sions~or less when stripes are formed! and makes the con
ductivity s in such 2D metallic system to be controlled b
quantum transport. In this case the approach based on
following three basic assumptions can be used.3,4 ~i! The
dominant scattering mechanism in HTS in the whole te
perature range is of magnetic origin.~ii ! The specific tem-
perature dependence of the resistivityr(T) can be described
by the inverse quantum conductivitys21 with the inelastic
lengthLf being fully controlled by the magnetic correlatio
length jm(Lf;jm). Finally, ~iii ! the proper 1D or 2D ex-
pressions should be used for calculating the quantum c
ductivity.

At high temperaturesT.T* , in the 2D Heisenberg re
gime, the combination of the expressions for the 2D s
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correlation length with the quantum resistance gives a lin
temperature dependence of the resistivity. This result is
agreement with a well-known linearr(T) behavior at high
temperatures.

At intermediate temperaturesTMI,T,T* , in the 1D
striped regime, inelastic neutron scattering experiments s
evidence of the existence of dynamic stripes, and the ob
vation of the 1D features in the transport properties sho
therefore not be limited to the Cu-O chain-direction on
Moreover, although the 1D stripes are dynamic, no averag
of the transport properties will occur, since, even for d
namic stripes, the charge will automatically follow the mo
conducting paths, i.e., stripes, even if they are moving f
So, in transport experiments the magnetic correlation len
jm 1D of a dynamic insulating AF interstripe domain perm
nently imposes the constraintLf;jm 1D on metallic stripes,
thus providing a persistent 1D character of the charge tra
port in underdoped cuprates. Inserting this inelastic len
into the expression for 1D quantum conductivity yields
S-shapedr(T) that perfectly describes the resistivity da
obtained on the even-chain spin-ladder compou
Sr2.5Ca11.5Cu24O41 and PrBa2Cu4O8. These compounds, du
to their specific crystalline structure, definitely contain a 1
spin ladder, and therefore their resistivity along the lad
direction should indeed obey the expression for the 1D qu
tum transport.

As a next step, a convincing scaling was found betwe
the resistivity of the 1D spin-ladder compound and a typi
underdoped high-Tc material, YBa2Cu4O8, demonstrating
that the resistivity versus temperature dependences of un
doped cuprates in the pseudogap regime atT,T* and even-
chain SL with a spin-gapD are governed by the same unde
lying 1D ~magnetic! scattering mechanism. This magnet
origin of the scattering of the charge carriers is further co
firmed by the fact that the scaling parameterD—the spin
gap—used in ther(T) scaling works equally well for resis
tivity as well as for the Knight-shift dataKS(T). For the
theoretical analysis of theKS(T) data we have used the ex
pressions derived for 1D SL systems.

Ther(T) data of YBa2Cu3Ox thin films with varying oxy-
gen content, scaled onto one universal curve, are all w
described by the expression for the 1D quantum transpo
TMI,T,T* . The values of the spin gapD, estimated from
this fit, are in agreement with an independent determina
of D from resistive measurements on other YBa2Cu3Ox thin
films and twinned and detwinned single crystals. Moreov
they agree with estimates of the pseudogap derived from
CuO2 plane 17O and 63Cu Knight-shift measurements o
aligned powders. In the 1D quantum transport model, wh
the inelastic length is assumed to be dominated by the m
netic correlation length, the agreement of our data with
gap determined from NMR experiments seems to be natu
This proves that our analysis, describing the transport in
derdoped cuprates atT,T* by taking into account the pres
ence of the 1D stripes, not only agrees qualitatively, but a
yields values for the pseudo-spin-gapD that agree well with
independent estimates.

At low temperaturesT,TMI , the metallic behavior of the
resistivity at high temperatures transforms into an insulati
4-8
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diverging,r(T) curve that was shown to agree with a ln(1/T)
law. Our normal-state resistivity and Hall effect data we
analyzed by considering the possibility of the stripe form
tion in the CuO2 plane. In this charge-stripe picture, d
namic, metallic stripes are thought to control the transp
properties. So, within this model, one expects a strong in
ence on the transport properties when, for some reason
1D charge stripes are fragmented or/and pinned thus pro
ing the interstripe hopping.

These processes invoke a strong influence of the inte
lating Mott insulator phase on the charge transport, yield
a 2D insulating resistivity and a finite Hall response. B
inserting the temperature dependence of the inelastic le
Lf , of the scattering mechanisms applicable for the inter
lating insulating phase, into the conductivity expression
2D quantum transport, one can obtain the low-tempera
ln(1/T) divergence of the high-field resistivity. For examp
the inelastic length for electron-electron or electron-phon
scattering,Lf;1/Ta, combined with the expression for 2D
quantum transport, gives an ln(1/T) correction to the low-
temperature resistivity. This 2D weak-localization mod
also agrees with our finding of a constant Hall coefficie
RH(T) at low temperatures.
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The main resultof this paper is the demonstration of
very successful application of the Moshchalkov’s 1D tran
port model4 @Eq. ~6!# to describe a universal superlinear r
sistivity r(T) in the underdoped cuprates. The analysis of
universal scaling behavior of the transport properties and
Knight-shift data have also revealed that the 1D meta
stripes in highTc’s behave as dynamic even-leg spin ladde
~also see Refs. 51!, and thereforethe pseudogap seen at
,T* is just the spin gap in these ladders. Disorder effects
result in the fragmentation of stripes and in their pinnin
thus forcing the charge carriers to hop from one pinned fr
ment of charge carriers to another via an insulating AF
main. This interstripe hopping leads to the recovery of
2D character of the transport properties with theDr(T)
; ln(1/T) insulating behavior corresponding to weak loca
ization effects in the 2D regime.
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