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Josephson current between chiral superconductors
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We study chiral interface Andreev bound states and their influence on the Josephson current between clean
superconductors. Possible examples are superconducting Sr2RuO4 and theB phase of the heavy-fermion
superconductor UPt3. We show that, under certain conditions, the low-energy chiral surface states enhance the
critical current of symmetric tunnel junctions at low temperatures. The enhancement is substantially more
pronounced in quantum point contacts. In classical junctions dispersive chiral states result in a logarithmic
dependence of the critical current. This logarithmic behavior contains the temperature, the barrier transparency,
and the broadening of the bound states and depends on the detailed relation between these parameters. The
Josephson current through the domain wall does not acquire this logarithmic enhancement, although the
contribution from the bound states is important in this case as well.
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I. INTRODUCTION

Superconductors in a state with both time-reversal sy
metry and parity with respect to the inversion of a crys
axis broken are sometimes named chiral superconduc
The ‘‘chirality’’ can be associated with, for example, a no
zero projection of the orbital angular momentuml of Cooper
pairs along an axisz, i.e., l zÞ0. Superconducting Sr2RuO4
and the heavy-fermion superconductor UPt3 in its B phase
~i.e., the low-temperature and low-field phase! are leading
candidates for chiral superconductors of this type. Anot
possible reason for a nonzero chirality of a superconduc
state to appear is a complex admixture of two pairing ch
nels belonging to different irreducible representations.
two-dimensional~2D! chiral superconductors there is a top
logical invariant associated with the chirality.1

One of the important features of superconductors is
presence of surface or interface Andreev bound states. T
can take place in the vicinity of surfaces or interfaces if
order parameter varies in space or takes different values
incoming and outgoing momentum directions along a qu
classical trajectory traveled by a quasiparticle in a reflect
or a transmission event. Surface and interface quasipar
states arising in superconductors already in the absence
magnetic field have been studied theoretically for ma
years~for example, see Refs. 2 and 3!. They have attracted
much attention in investigating high-temperature superc
ductivity. For instance, zero-energy surface states ind-wave
superconductors appear near an impenetrable smooth su
as a consequence of a sign change of the order param
along quasiparticle trajectories connected by scattering
the surface. Zero-energy bound states lead at low temp
tures to a zero-bias conductance peak of N-I-D~normal-
metal–isolating-barrier–d-wave-superconductor! tunnel
junctions,4–7 which was observed in experiments.8–19 Low-
temperature anomalies, originating from the zero-ene
bound states, are also seen in the Josephson cr
current20–24 and in the penetration depth.25,12,26,27 The
strength of these effects depends on the broadening of
bound states by surface roughness21,25,26 and bulk
0163-1829/2001/64~21!/214503~14!/$20.00 64 2145
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impurities,28 as well as on their shift from zero on account
junction transparency.20,22,29

Zero-energy surface states are dispersionless states, w
Andreev bound states with nonzero energy are dispers
the energy depends on the quasiparticle momentum di
tion. Bound states at energies on the order ofD(pf) can
manifest themselves, for example, in the current-volta
characteristics of a junction along with the low-energy bou
states.7,30 They do not, however, modify noticeably equilib
rium characteristics like the Josephson critical current or
penetration depth. In contrast, the zero- and/or low-ene
states can have a strong influence on the equilibrium qua
ties at low temperatures.

Chiral surface states1,31,32 make up a special type of An
dreev bound states. They form dispersive branches, w
can cross the zero level only for isolated quasiparticle m
mentum directions. The spontaneous surface current in ch
superconductors,1,32 the spectrum of the surface chiral boun
states at an impenetrable wall,31,32 and their contributions to
the density of states, the conductance peak of the tun
junctions,31–34 and the low-temperature penetration depth35

have already been studied theoretically in the literatu
There are, however, various open problems in the field, p
of which is addressed in the present paper. We report
theoretical results for the spectra of chiral surface and in
face states and their contribution to the Josephson crit
current of junctions between chiral superconductors. In
periments to date the Josephson effect has been studied
in junctions between Sr2RuO4 ~or UPt3) and a conventiona
superconductor.36,37 Our results show that extending expe
mental investigations of the Josephson critical current
symmetric junctions of the ruthenates~or UPt3) would sen-
sitively probe the chiral nature of these superconductors

Our numerical approach is to solve the quasiclass
transport equation and to determine the profile of the or
parameter self-consistently. Our analytical results desc
spectra of the chiral states at interfaces of any transpare
assuming spatially constant~non-self-consistent! order pa-
rameters. These calculations are improved further for lo
energy states in the tunnel-junction limit, where surface p
©2001 The American Physical Society03-1
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breaking may be taken into account analytically as well.
is demonstrated below, the low-energy parts of the ch
branches of the surface Andreev bound-state spectra
dominate and strengthen the Josephson critical curren
symmetric tunnel junctions at sufficiently low temperatur
The low-temperature enhancement of the Josephson cr
current j c is substantially more pronounced for quantu
point contacts. It is of similar origin as the low-temperatu
anomaly in j c of junctions between d-wave super-
conductors.20,21 In classical junctions the dispersion of th
chiral states strongly modifies the anomalous lo
temperature behavior ofj c , leading eventually to an addi
tional logarithmic factor, which can be large under certa
conditions: if the broadening of the bound states and
transparency of the junction are sufficiently small. The ze
temperature value ofj c is then determined by a presumab
small broadening of the bound states and/or a small junc
transparency that cuts off the logarithmic divergen
asT→0.

We also study the Josephson current through a dom
wall, considering a junction between identical equally o
ented superconductors with opposite chiralities. We dem
strate the crucial role of the Andreev interface states for
taining a finite Josephson current in the system with
crystalc axis parallel to the interface. Disregarding the pre
ence of surface states and assuming spatially constant o
parameters, one can apply at the interface the bulk exp
sion for the Green’s function. Then the tunnel Joseph
critical current across the domain wall vanishes. If thec axis
is along the interface normal and the interface itself is sy
metric with respect to rotations around the normal, then
dc Josephson current actually vanishes, which has b
known for a long time for junctions between supercondu
ors with opposite projections of the angular momentum
Cooper pairs.38,39 For thec axis parallel to the surface, van
ishing current is, however, a shortcoming of the oversim
fied approach. We show that the interface influence result
this case both in Andreev bound states and in a finite Jos
son current close to the conventional value.

We perform our analytical and numerical calculation
first, for a quasi-two-dimensional tetragonal superconduc
choosing several particular basis functions, which are c
sidered as candidates for superconducting pairing
Sr2RuO4. Possible candidates for the order parameter
Sr2RuO4 are still intensively discussed.40–48,34,49–62For our
study we take three types of two-component triplet or
parameters forming thep-wave, thef xy-wave, and thef x22y2

superconducting (1,6 i ) phases.
We also present analytical results, demonstrating

analogous chiral interface bound states and low-tempera
enhancement in the Josephson current take place in a t
dimensional hexagonal superconductor like UPt3. For many
years the two-component tripletE2u-representation and sin
glet E1g-representation order parameters were considere
the probable candidates for the pairing state in UPt3.63–66 In
particular, (1,6 i ) superconducting phases are supposed
form at low temperatures and in weak magnetic fields. T
analysis of experimental data now available has led to a
sumably definite choice in favor of theE2u type of pairing in
21450
s
l
an
in
.
al

-

e
-

n
e

in
-
n-
-

e
-
der
s-
n

-
e
en
-
f

-
in
h-

,
r,

n-
in
n

r

at
re

ee-

as

to
e
e-

UPt3.67–69The so-called ‘‘3D’’ model for the order paramete
in tetragonal Sr2RuO4 is based on an analogous type
pairing.46 We examine pairing both in theE2u and in theE1g
representation for three-dimensional superconductors
find that in the former case the anomaly in the Joseph
current is weakened due to its specific sensitivity to a m
mentum direction dependence of the transmission coe
cient.

II. CHIRAL SURFACE AND INTERFACE QUASIPARTICLE
STATES

A. Chiral order parameters

Let a superconductor breaking time-reversal symme
occupy a half-space with a surface~or interface! normal
along thex axis. The superconductor may be both triplet
singlet. Triplet order parameters,D̂(pf)5d(pf)•ŝi ŝy , con-
sidered below, have only the component,dz(pf)[D(pf),
nonzero.

Unconventional order parameters are in general quite s
sitive to any inhomogeneity in the superconductor that gi
rise to quasiparticle scattering and this in particular to
boundary. We represent a chiral order parameter near a
face or interface as D(pf ,x)5@D1(pf ,x)eif1(x)

1 ixD2(pf ,x)eif2(x)#eiF5uD(pf ,x)ueif(pf ,x), where the two
real componentsD1(pf ,x) and D2(pf ,x) have presumably
opposite parities with respect to the inversion of thex axis.
The parameterx561 corresponds to two possible values
‘‘chirality.’’ The phasesf1(x) andf2(x) vanish in the bulk
but may be nonzero in the vicinity of the boundary.

Assuming a model with a single cylindrical Fermi su
face, the two components of thep-wave order parameter in
tetragonal superconductor with the crystalx0 axis along the
surface normal can be taken in the bulk asD1,b

p (pf)
5Db

p cosw andD2,b
p (pf)5Db

p sinw. Here and beloww is the
angle which the vector (pf ,x ,pf ,y,0) makes with thex axis.
For the f xy-wave order parameter in the bulk, one h
D1,b

f xy(pf)5Db
f xy sin 2w cosw and D2,b

f xy(pf)5Db
f xy sin 2w sinw.

For the bulk f x22y2-wave order parameter,D1,b
f x22y2

(pf)

5Db
f x22y2

cos 2w cosw andD2,b
f x22y2

(pf)5Db
f x22y2

cos 2w sinw.
If w describes the incoming momentum direction, spe

lar quasiparticle reflection from the surface gives (p2w) for
the outgoing momentum. This corresponds to the invers
of the x axis. One can easily see that order-parameter c
ponentsD1(pf) and D2(pf) have opposite parities with re
spect to the inversion of thex axis in all cases considered
Since the total order parameter represents a complex mix
of D1(pf) and D2(pf), we get, indeed, chiral order param
eters describing superconducting states with both tim
reversal symmetry and parity with respect to the inversion
the x axis broken. An additional feature, which makes o
analytical results comparatively simple, is that in all cas
we consideruDb(pf)u does not change in the reflection eve
@if f1,2(x)50, thenuD(pf ,x)u does not change#.

In Fig. 1 we show order-parameter profiles at an impe
etrable barrier separating a D1(pf ,x)eif1(x)

1 iD2(pf ,x)eif2(x) ~left side! and a D1(pf ,x)eif1(x)
3-2
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JOSEPHSON CURRENT BETWEEN CHIRAL SUPERCONDUCTORS PHYSICAL REVIEW B64 214503
2 iD2(pf ,x)eif2(x) ~right side! superconductor. The tempera
ture is 0.001Tc . The order-parameter components are rep
sented in the forms D1(pf ,x)eif1(x)[D1(x)c2(pf),
6 iD2(pf ,x)eif2(x)[D2

l (r )(x)c2(pf), which define the pro-

files D1,2
l (r )(x) displayed in Fig. 1. They are computed using

single cylindrical Fermi surface and the pairing potent
V(p,p8)5V0@c1(p)c1(p8)1c2(p)c2(p8)# in a factorized
form with the simple, normalized, basis functions

„c1~pf !,c2~pf !…5HA2~cosw,sinw! ~p wave!,

2~cosw,sinw!sin 2w ~f xy wave!.
~1!

For thep-wave case our self-consistent numerical resu
are in agreement with those represented in Ref. 32.
should note the vanishingD1(x, pf) at the surface and, as
consequence, the increase inD2(0, pf) as compared to its
bulk value. An inhomogeneous profileD1(x,pf) near the sur-
face slightly modifies the surface valueD2(0,pf) as well.32 If
the crystal axisx0 makes a finite anglea in the xy plane
with the surface normal, for thep-wave superconductor ther
is no dependence ona. The surface state of anf-wave su-
perconductor, however, will depend ona. The surface pro-
o

x
e
.

e

e

n
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files of the f-wave order parameters with anglesa50 and
a545° are shown in Fig. 1 and correspond to the m
extreme casesf xy and f x22y2, respectively. We note that th
f xy-wave order parameter behaves quite similar to
p-wave case near a surface. Forp-wave andf xy-wave pair-
ings the phasesf1(x) and f2(x) obey f1(x)5f2(x)[0,
while for the f x22y2-wave order parameterf1(x)52f2(x)
Þ0. For all pairing states we see that the order param
recovers its bulk value after roughly 15j0 (j05v f /2pTc). If
instead the right superconductor were calculated with
same chirality as the left one, the order parameter wo
change as„D1(pf ,x),D2(pf ,x)…→„D1* (pf ,x),2D2* (pf ,x)…
on the right side. When we continue to study the Joseph
coupling of two chiral superconductors we shall assume
the Josephson currents generated are much smaller tha
bulk critical current and do not affect the spatial depende
of the order parameter or the surface currents~see below!.

For three-dimensional models of chiral superconduct
states we assume, for simplicity, a spherical Fermi surf
and choose bulk order parameters in the formDz,b

t (pf)
5Db

t cosu sin2 uei(2xw1F) for the E2u representation~triplet
pairing! and Db

s(pf)5Db
scosu sinuei(xw1F) for the E1g ~sin-

glet pairing!. Hence, for theE2u and E1g pairings, respec-
tively, we get
D1,b
t ~pf !5Db

t cosu sin2 u cos 2w, D1,b
s ~pf !5Db

s cosu sin u cosw,

D2,b
t ~pf !5Db

t cosu sin2 u sin 2w, D2,b
s ~pf !5Db

s cosu sinu sinw.
~2!
ple
n-

-
m

of
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c-
Here u and w are standard angles in a spherical system
coordinates in momentum space with thex axis along the
surface normal.F is a spatially constant part of the comple
phase of the order parameter. Order-parameter compon
D2

t (pf ,x) andD1
s(pf ,x) vanish on an impenetrable surface

B. Interface chiral bound states

Consider a junction between identical equally orient
chiral superconductors. Solving Eqs.~A4!–~A6! of the Ap-
pendix with spatially constant anisotropic order paramet

FIG. 1. The spatial profiles of the order-parameter compone
D1,2(x) ~in units of 2pTc).
f

nts

d

rs

on both sides of the interface we find comparatively sim
analytical expressions for the energies of chiral interface A
dreev bound states. Ifx̃[x lx r51, i.e., if the superconduct
ors have identical chiralities, we get the following spectru
for two-dimensionalp-wave andf x22y2-wave order param-
eters as well as for the three-dimensional singletE1g pairing:

«B
p, f x22y2,s

~pf !

56uDb
p, f x22y2,s

~pf !uFR sin2 w1D cos2S F

2 D G1/2

. ~3!

For theE2u and f xy pairings we obtain

«B
t ~pf !56uDb

t ~pf !uFR cos2 2w1D cos2S F

2 D G1/2

, ~4!

«B
f xy~pf !56uDb

f xy~pf !uFR cos2 w1D cos2S F

2 D G1/2

. ~5!

HereD andR are transmission and reflection coefficients
the interface barrier which in general depend on the qu
particle momentum direction. The phase differenceF5F r

2F l , whereF r ,l are the phases of the order parameters
the right and left superconductors, is separated from the
trinsic chiral phasesw, as defined in the preceding subse
tion. The spectra in Eqs.~3!–~5! depend on momentum

ts
3-3
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directions both explicitly and viaD and R. They
significantly differ from the bound-state energies in jun
tions between conventional superconductors70–73 «B(pf)
56uDuA12D sin2(F/2).

Positive and negative branches in Eqs.~3!–~5! always
touch on the Fermi surface~on the zero-energy level! for
momentum directions along possible nodes ofuD(pf)u. In
addition, if the phase differenceF is equal top ~or for any
F, but in the limit of an impenetrable wallD50), the
branches described by Eqs.~3! and~4! acquire new crossing
points~or lines! lying on the Fermi surface. These addition
momentum directions are atw50, p for the p wave, the
f x22y2 wave, and the three-dimensionalE1g pairing, while at
w56p/4,63p/4 for the E2u pairing. In accordance with
Eq. ~5! for the f xy pairing the spectrum of the bound stat
takes zero value only for directions along the nodes of
order parameter, i.e., atw50,p,6p/2. At the glancing tra-
jectoriesw56p/2 the nodes in the spectrum have a high
multiplicity.

It is worth comparing the interface states in Eqs.~3!–~5!
with the respective surface chiral branches at an imp
etrable wall:

«B
p,s, f x22y2

~pf !5x sgn~x!uDb
p,s, f x22y2

~pf !usinw, ~6!

«B
f xy~pf !52x sgn~x!Db

f xy sin 2w cosw,

«B
t ~pf !52x sgn~xpy!uDb

t ~pf !ucos 2w. ~7!

One can see that finite transmission andFÞp result in an
effective ‘‘repulsion’’ and a reconnection of the branch
from two sides of the barrier plane. Chiral states on an
penetrable surface of thep-wave superconductor were ob
tained earlier in Refs. 31 and 32. In the particular caseF
5p, Eqs.~6! and~7! describe as well the states on interfac
with arbitrary transparency if compensated by a factorAR.

The chiral spectra in Eqs.~6! and ~7! are antisymmetric
with respect to the inversionpy→2py ~or equivalentlyw
→2w), as well as to the inversion of the total momentu
pf→2pf ~or w→w1p). Since at zero temperature the sta
with negative~positive! energies are occupied~empty!, the
chiral states carry a spontaneous current along the surfac1,32

This can be considered as a characteristic feature of c
states. The current flows near the surface parallel to thy
axis within a thickness of the order of the coherence len
j0. With the model of a constant order parameters we find
zero temperaturej y52zxsgnx evfNfDb , where zp51,
z f x22y250.5, z f xy521, z t'0.08, andzs50.25. The induced
screening supercurrents decay on the order of the penetr
depthl, so that the total surface current is actually zero.

As follows from Eqs.~6! and~7!, the quasiparticle surfac
states on the two sides of the impenetrable wall are relate
«B

l (w)52x̃•«B
r (w), where x̃[x lx r . Hence, if x̃51 the

spontaneous currents on either side of the interface flow
opposite directions but with equal magnitude. In the case
finite transparency the surface chiral states from both s
couple into interface states. The absence of the total inter
current on the scalej0 is accompanied by the recovery of th
21450
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symmetrypy→2py in the spectra in Eqs.~3!–~5! ~unless
F5p when there is no coupling between the surface sta
from two sides!. It is worth noting that at small transparenc
the local spectral weight of the states atx520 ~or x5
10) is still asymmetric~see Fig. 3 below!.

If identical, equally oriented, massive superconductors
each side of the interface have opposite chiralities, the ju
tion can be considered as an isolating domain wall betw
two degenerate chiral phases of the bulk superconduc
state. In this casex̃521 and spontaneous surface curren
in the two banks of the interface flow along the same dire
tion. Then the recovery of symmetry due to the finite tran
parency does not take place. Indeed, solving Eqs.~A4!–~A6!
of the Appendix with a model spatially constant anisotrop
order parameter, having opposite chiralities on the two si
of the junction, results in

«B
p, f x22y2,s

~pf !5x r uDb
p, f x22y2,s

~pf !u

3SA12Dcos2
F

2
sinw6AD cos

F

2
cosw D ,

~8!

«B
t ~pf !52x rsgn ~py!uDb

t ~pf !u

3SA12D sin2
F

2
cos 2w6AD sin

F

2
sin 2w D ,

~9!

«B
f xy~pf !52x rsgn ~pxpy!uDb

f xy~pf !u

3SA12D sin2
F

2
cosw6AD sin

F

2
sinw D .

~10!

These branches are asymmetric with respect to the inver
py→2py .

The surface current, the vector potential, and the indu
magnetic field at an impenetrable barrier separating
h1(pf)1 ih2(pf) ~left side! and anh1(pf)2 ih2(pf) ~right
side! superconductor are given in Fig. 2. They decay in t
depth of the superconductor on a scale given by the pene

FIG. 2. Spatial dependence of the surface currentj y , the vector
potentialAy , and the surface magnetic fieldBz . The penetration
depth is set to 20j0 and the unit of current isev fNfDb .
3-4
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tion depth. For thep-wave case there is an agreement of o
results with those in Ref. 32. If instead the right superc
ductor were calculated with the same parity as the left
the currents, the vector potential, and the magnetic fi
would be reversed in the right half-space.

As was shown in the preceding subsection, the order
rameters vary significantly from their bulk forms in the v
cinity of the interface. This raises the question of the ap
cability of the approach used just above and based o
simple model of spatially constant anisotropic order para
eters. We now report the results, taking into account spa
variations of the order parameters. As will be seen, they
play good qualitative agreement with Eqs.~3!–~10!. Quanti-
tative distinctions, however, take place.74

The surface pair breaking modifies the low-energy ch
bound states in a simple way. Spatial profiles of the or
parameters near impenetrable surfaces can be taken int
count analytically in the expressions for the energies, by
placing the order parameters at the surface by effective o
In general, we havef1,2(x)Þ0 and the expressions for th
effective surface order parameters are quite cumbersome
get a simple answer if the surface influence retainsf1(x)
5f2(x)50. The last condition holds, in particular, for th
21450
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p-wave pairing~see Fig. 1! and we represent here the resu
for this simplest case~the other cases are considered in t
Appendix!.

Taking advantage of the approach of Refs. 7 and 29~see
also the Appendix!, we obtain the bound-state energies
close vicinity of the nodes ofD2

p(pf):

«B
p~pf !56x sgn~vxdw!uD21,e f f

p ~pf ,60!u. ~11!

Here and below the upper~the lower! sign corresponds to the
right ~the left! half-space;dw is the deviation ofw from the
direction of a nodeD2

p(pf)50 ~that is, atw50 or w5p for
the p wave!. The effective surface order parameters are
fined as

uD i j ,e f f~pf ,60!u

5

E
0

6`

uD i~pf ,x!uexpS 7
2

uvxu
E

0

x

uD j~pf ,x8!udx8D dx

E
0

6`

expS 7
2

uvxu
E

0

x

uD j~pf ,x8!udx8D dx

.

~12!
FIG. 3. The local angular resolved surface density of states shown~left to right! for the p-wave, thef xy-wave, and thef x22y2-wave
junctions. The transparencyD50.01 and the phase difference is zero. The top row contains all symmetric junctions (x̃511)
while the bottom row contains junctions with opposite chiralities (x̃521). The DOS is given in the intervalw52p/2 to w5p/2
in equally spaced steps.
3-5
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Equations~11! and ~12! should be compared with Eq.~6!,
generalizing it to spatially dependent order parameters.

The transformation of the spectrum of surface bou
states into one of interface states due to finite transparenc
the tunnel junction, i.e., forD!1, can be described analyt
cally taking the surface pair breaking into account iff i(x)
50 ~see the Appendix!. For instance, for the symmetri
junction (x̃51) we get the following result in the vicinity o
a momentum directionpf ,0 , for which «B(pf ,0)uD5050:

«B
p~pf !56H @«B

p~pf !uD50#21D cos2 S F

2 D F 2

uvxu

3E
0

1`

expS 2
2

uvxu
E

0

x

uD1
p~pf ,x8!udx8D dxG22J 1/2

,

~13!

In the case of opposite chiralities (x̃521) we obtain

«B
p~pf !5«B

p~pf !uD506AD cosS F

2 D S 2

uvxu

3E
0

1`

expS 2
2

uvxu
E

0

x

uD1
p~pf ,x8!udx8D dxG21

.

~14!
In Fig. 3 we show the numerically computed local inte

face density of states~DOS!, using the self-consistently de
termined self-energies. The angle-resolved DOS in the
superconductor is defined as

N~w,«!52
1

2
Nf Im$Tr@ t̂3ĝ~w,02 ;«!#% ~15!

and calculated at zero phase difference with one and
same transparencyD50.01 for all momentum directions
Here and below we use the normalization conditi
ĝ2521 for the quasiclassical Green’s function. The DOS
the right superconductor are for these symmetric juncti
simply related to the DOS in the left by substitutin
« r52x̃•« l . Qualitatively, peak positions are well describ
by Eqs.~6! and~7!, obtained in the tunneling limit. The fin
structure of the peaks is due to a finite transmission. T
densities of states for junctions with bound states disper
in pf and having«B50 at w50, i.e., for thep-wave and for
the f x22y2-wave pairings, show a split DOS, by an amou
AD at «50 @in accordance with Eqs.~3! and ~8!; see also
Eqs. ~13! and ~14!#. At finite anglesw the DOS show the
predicted dependence on the relative chirality of
two superconductors. For thex̃511 junction, since
«B,D50

r 52«B,D50
l , there is only a very small spectra

weight in the DOS from the bound state«B,D
r induced in the

left superconductor through the junction in the tunneli
limit. For the x̃521 junction we have«B,D50

r 5«B,D50
l .

Hence, there is almost equal weight in the two states s
around«B,D50(w). The split again}AD @see Eq.~14!#. For
small angles (w'0) thep-wave and thef x22y2-wave super-
conductors lead to qualitatively similar DOS. For th
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f xy-wave superconductors the chiral branches take on
energies only for momentum directions close to the node
the order parameter and the main part of the low-ene
spectral weight belongs to glancing trajectories. Thef xy

wave with x̃521 does not show splitting ifF50, in ac-
cordance with Eq.~10!.

III. LOW-TEMPERATURE ANOMALY
OF THE JOSEPHSON CURRENT

A. Josephson current in quantum point contacts

Consider the Josephson current across junctions with
ral interface states first assuming spatially constant order
rameters. For a quantum point contact we can find the
rent in symmetric junctions~with x̃51) as70–73

j 52e(
a

d«B
a

dF
nf~«B

a !522e (
«B

a
.0

d«B
a

dF
tanh

«B
a

2T
.

Here the spectrum is presumably even and the sum is ta
over different channels. Making use of the relationsh
d«B /dF52uDu2D sinF/4«B , which easily follows from
Eqs.~3!–~5! for all pairings we discuss, leads to the Josep
son current

j 5
euDu2D sinF

2«B
tanh

«B

2T
~16!

for one channel in a quantum point contact.
Equation~16! is applicable also to contacts between is

tropic s-wave superconductors. In this case, however,
bound-state energies are mainly on the order ofD. They can
take low-energy values only in highly transparent junctio
and for phase differencesF in a narrow vicinity ofp. There
are well-known specific features of the Josephson cur
manifested in conventional superconductors w
microconstrictions.76 For the phase differenceF'p, how-
ever, sinF in Eq. ~16! is very small as well, precluding the
low-temperature features of the Josephson critical curren
discuss below. By contrast, under certain conditions ch
bound states can take low-energy values at any phase d
enceF. For thep-wave and thef x22y2-wave order param-
eters, as well as for the three-dimensionalE1g type of pair-
ing, this is the case, in particular, in tunnel junctions (D
!1) for quasiparticles with momenta aligned almost~or ex-
actly! parallel to the interface normalw'0,p.

For a nonzero energy and sufficiently low temperatur
when T!«B , we get from Eq.~16! the zero-temperature
value of the Josephson currentj 5euD0u2D sinF/2«B . Here
D0 is the zero-temperature order parameter. Hence, the z
temperature critical current is much greater for channels w
«B!uD0u, as compared with channels where«B;uD0u, for a
given F, D, anduD0u.

If «B!T!Tc , which can be satisfied only by low-energ
states, we find from Eq.~16! that the Josephson curren
3-6
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JOSEPHSON CURRENT BETWEEN CHIRAL SUPERCONDUCTORS PHYSICAL REVIEW B64 214503
can vary substantially in the low-temperature regio
being inversely proportional to the temperature:j
5euD0u2D sinF/4T.

To be specific, consider thep-wave order parameter an
«B5Db

pAR sin2 w1D cos2(F/2). Here w is the parameter
characterizing the quantum state in the channel. The bou
state energy is small, i.e.,«B!Db

p , for example ifuwu!1 and
D!1. Then the zero-temperature current is quite la
and equal to either (eDb,0

p D sinF)/2uwu when max„T/Db
p ,

ADucos(F/2)u…!uwu!1 or to eDb,0
p AD sgn@cos(F/2)# sin(F/

2) if T/Db
p !uwu!ADucos(F/2)u!1. In the last case the Jo

sephson current in the tunnel junction turns out to be prop
tional toAD, in contrast to the linear dependence onD of the
conventional tunneling current. As we see, the lo
temperature value of the Josephson current depends o
dimensionless parameterADuDuucos(F/2)u/T containing the
transparency. This parameter appears from the expressio
the energy of the interface bound states when comparin
with the temperature. At sufficiently low temperatures t
parameter is large even ifD!1.

It follows from Eqs. ~3!–~5! that the condition«B(pf)
!D(pf) is satisfied for any phase difference for the tunn
junctions with w near the nodes atw0'0,p of the chiral
bound states for thep-wave, thef x22y2-wave, and the three
dimensionalE1g order parameters. For thef xy-wave order
parameter the above condition takes place only for glanc
trajectories, which contribute negligibly to the Josephs
current. For the three-dimensionalE2u type of pairing the
nodes of the bound states, not coinciding with the node
the order parameter, lie atw0

t 56p/4,63p/4. For this rea-
son theE2u pairing (UPt3) has a contribution from the low
energy chiral surface bound states to the Josephson cu
that turns out to be especially sensitive to the momen
dependence of the tunneling probability,D(pf). This con-
trasts theE1g pairing as well as thep- andf-wave supercon-
ductors. The sensitivity is associated with the fact that
transparency of a barrier quickly diminishes with increas
deviation of the momentum direction from the surface n
mal ~unless the barrier is sufficiently thin!. Thus, the trans-
mission can become quite small for momenta withw0

t 5

6p/4 or 63p/4. For example, for a model for the tunnelin
barrier with a uniform probability distribution within an ac
ceptance cone about the interface normal, and zero ou
the cone, the effect considered is entirely absent unless
acceptance cone contains~or its boundary is very close to!
w0

t 56p/4,63p/4. For a narrow Gaussian-distributio
model the tunneling atw0

t 56p/4,63p/4 is not strictly
zero, although exponentially small. For a sufficiently th
and high barrier, however, the transparency is approxima
proportional to (n•pf)

2 and then the contribution to the Jo
sephson current from low-energy chiral surface states
comes important even forE2u-triplet pairing. In the last case
the particularpf dependence of the tunneling probability
D(pf)5D0 cos2 w for two-dimensional models with a cylin
drical Fermi surface andD(pf)5D0 sin2 u cos2 w for three-
dimensional models with a spherical Fermi surface.
21450
,

d-

e

r-

-
the

for
it

l

g
n

of

ent
m

e
g
-

ide
he

ly

e-

B. Critical current in classical tunnel junctions

The low-temperature anomalous behavior of the Jose
son current described above is quite similar to what w
theoretically found for the case ofd-wave superconductors in
the presence of zero- and low-energy surface and inter
states.20–22 However, the similarity takes place only in con
sidering one channel, which is appropriate to quantum po
contacts. In classical junctions, where quasiparticles h
various momentum directions, the parameterw appears in
the expression for the Josephson current as an integra
variable in averaging over the Fermi surface. If the bou
states are substantially dispersive, manifesting strong de
dence of their energy on the momentum direction, the av
aging can noticeably weaken the low-temperature deviati
of the Josephson current from its conventional behavior.

The eventual result can be easily understood qualitativ
if one notices that the integration of the 1/uwu term ~see the
preceding subsection! over the interval (max„T/Db

p ,
ADucos(F/2)u…,wc) ~wherewc!1) leads to logarithmic low-
temperature dependences on the temperature or the tran
ency. Below we present a more careful analysis of the lo
temperature features of the critical current.

For a classical symmetric junction~with x̃51) between
quasi-two-dimensional superconductors we get, instead
Eq. ~16!,

j x5E
2p/2

1p/2

dw
ev fNfD~w!cosw sinFuD~w!u2

«B~w!

3tanh~«B~w!/2T!. ~17!

Assuming the logarithmic functions mentioned above
be large, one can use a logarithmic approximation, consi
ing only a part of the integral in Eq.~17!, which contains the
zero-level crossing of the chiral branchespf ,0 . Then for a
symmetric tunnel junction between quasi-two-dimensio
superconductors with cylindrical Fermi surfaces we get fr
Eq. ~17!

j x' (
w0

pf ,x.0

evfNfD~w0!cosw0 sinFuD~w0!u2

3E
w0

w01dwc
dw

1

«B~w!
tanhS «B~w!

2T D , ~18!

where«B(w) is defined by Eqs.~3! and ~4!, and«B(w)uD50
is to be evaluated to linear order indw. Heredwc is a cutoff
parameter. The sum is taken over thosew0, which correspond
to pf ,x.0. For thep- or the f x22y2-wave pairing onlyw0

p, f

50 satisfies this condition. In the case of three-dimensio
superconductors withE2u or E1g pairings, an additional in-
tegration *0

p/2 sin2 udu has to be carried out in Eq.~17!,
whereD, uDu and«B , depend on bothw andu. For theE2u

and theE1g one should consider the variationsdw from w0
t

56p/4 andw0
s50, respectively.

The contribution to the Josephson current from lo
energy bound states in the tunnel junctions can be also
culated analytically, taking into account surface pair bre
3-7
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ing. Indeed, from Eqs.~13! and ~A14! we easily get
d«B /dF52uD̃u2D sinF/4«B , where the effective order pa
rameteruD̃(pf ,0)u near the nodes of the bound states is
fined in the right half-space,

1

uD̃~pf ,0!u
5

2

uv f ,x~pf !u

3E
0

`

expS 2
2

v f ,x~pf !
E

0

x1
uD~pf ,x2!u

3sin@h~pf ,x2!2f~pf ,x2!#dx2D dx1,

~19!

and analogously in the left half space. Hence, spatial dep
dence of the order parameters introduces in this case the
modification in Eq.~18!: the order parameteruD(w)u should
be replaced there by the effective surface order param
uD̃(w)u.

For temperatures AD(pf ,0)uD̃(pf ,0)uucos(F/2)u!T
!Dbdwc,Tc one can put tanh@«B(w)/2T#'1 near the upper
limit of the integral in Eq.~18! and use Eqs.~3! and ~4! for
«B

p, f x22y2
(w),«B

s,t(u,w)}dw. Then we find a logarithmic tem
perature dependence of the integral near the lower limitw0 in
Eq. ~18!. Qualitatively, the temperature is a lower cut of t
integral, but for fixing numerical factors we checked
asymptotic behavior numerically. Thus, at sufficiently lo
temperatures, when contributions to the current from qu
particles with energies the order ofuD(pf)u already take their
zero-temperature value, the Josephson current assoc
with the low-energy part of the chiral bound states and
scribed by Eq.~18! can still grow logarithmically with de-
creasing temperature. As a result, the total Josephson cu
can be represented for the low-temperature inter
AD(pf ,0)uD̃(pf ,0)uucos(F/2)u!T!Tc as

j x~T!5a jc,0 lnS bDb

T D sinF, ~20!

where j c,05LeNfvfD0Db (Lp52/3, L f x22y2'0.45, L f xy

52/5, Ls51/9, andLt52/21), Db5Db
p, f x22y2, f xy ,s,t , a andb

are constants the order of unity. In our analytical results h
and below the transparency is taken for high and thin po
tial barriers as was represented at the end of the prece
subsection. Further, disregarding surface pair breaking,
calculate analytically a total Josephson current and find
low temperatures, after comparison with Eq.~20!, ap53/2,
bp'0.69, af x22y2'2.23, bf x22y2'0.44, as53/2, and bs

'0.23, at53/4A2, andbt'0.95. In neglecting not only a
surface pair breaking~that is, a spatial dependence of th
order parameter!, but the presence of any surface bou
states at all, one can use spatially constant~bulk! values of
Green’s functions for the calculation of the Josephson c
rent. This oversimplified approach leads for the symme
tunnel junction to the Josephson critical currentj c,0 . As the
argument of the logarithmic function in Eq.~20! is supposed
21450
-

n-
nly

ter

i-

ted
-

ent
l

re
n-
ng
e

at

r-
c

to be quite large~for the logarithmic approximation to be
valid!, the Josephson currentj x(T) can noticeably exceed
j c,0 .

For temperaturesT!AD0Dbucos(F/2)u the lower cut of
the integral is associated with the transparency of the ba
and we find from Eq.~18!

j x~0!5a jc,0 lnS d

AD0ucos~F/2!u
D sinF. ~21!

The logarithmic function in Eq.~21! is supposed to take
large values as well. Disregarding surface pair breaking,
find dp'1.21, df x22y2'0.78, ds'1.21, anddt'1.88.

Based on Eqs.~8!–~10!, one can easily get the Josephs
current in junctions with opposite chiralities. We do n
present here the corresponding analytical results in de
since there is no unconventional low-temperature increas
the critical current in the casex̃521. In disregarding sur-
face pair breaking the Josephson current in tunnel junctio
T!Tc in the casex̃521 is written as

j x5u jc,0 sinF, ~22!

where up59/8, uf xy55/3, uf x22y2'1.95, us59/8, and ut

'0.142. The ‘‘reference’’ currentj c,0 is taken here the sam
as in Eqs.~20! and ~21! in order to make clear that th
Josephson current in the case of opposite chiralities is of
conventional order of magnitude without any logarithmic e
hancement. The smaller numerical factorut is associated
with the lower transparency forw0

t 56p/4 as compared with
w0

p, f x22y2,s
50. Surface chiral bound states in the whole ran

of subgap energies form the current in the particular ca
even at low temperatures. One can show that the low-en
chiral quasiparticle states lead to a current which is redu
compared to Eq.~22! by the small cutoff parameterdwc and
it does not matter whether surface pair breaking is taken
account or not.

Another reason for choosing the ‘‘reference’’ currentj c,0

in the casex̃521 same as forx̃51 is that in neglecting
both the surface pair breaking and the presence of Andr
surface bound states, and simply using the bulk express
for the Green’s functions, the tunnel Josephson critical c
rent across the domain wall (x̃521) vanishes. This in sharp
contrast with Eq.~22!. For a vanishing Josephson current o
needs, for example, different projections of the orbital an
lar momentum, i.e., different values ofl z , of the Cooper
pairs in the left and right superconductors together with
conservation ofl z in the tunneling process. The current va
ishes, for instance, ifl z is along the interface normal and th
interface is symmetric with respect to rotations around
normal.38,39As we demonstrate in Eq.~22!, if l z is along an
axis parallel to the interface, the interface influence result
interface bound states and the possibility of a nonzero t
neling of Cooper pairs. Equation~22! applies to tunnel junc-
tions. Effects of high transparency can also lead to fin
critical current.77

On account of the bound states, the Green’s function
pends on the distance from the surface even when disreg
3-8
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FIG. 4. The temperature de
pendence of the critical current di
vided by the maximal transpar
ency D0 plotted for different
values of D0. The junctions
are modeled with the angle
dependent transparencyD(w)
5D0 exp(216 sin2 w). To the left
we show two coupledp-wave su-
perconductors and to the right tw
f x22y2-wave ones.
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ing a spatial dependence of the order parameter. There
important qualitative difference between the surface and b
values of the propagators as a function of momentum di
tion. In particular, the anglew is an important part of the
phase not only for the chiral order parameter, but for the b
value of the off-diagonal components of the Green’s funct
as well. Since we consider thez axis to be parallel to the
surface, the surface breaks conservation of the projectio
angular momentum. For this reason the anglew drops out
from the phase in the surface value of the off-diagonal co
ponents. This can be obtained on account of the continuit
the quasiclassical Green’s function, taken for incoming a
outgoing trajectories~with anglesw andp2w respectively!
at the impenetrable surface. Thus, on account of surface
fects, the Josephson tunnel current across the domain w
of the conventional value@see Eq.~22!#.

The logarithmic behavior of the critical current foun
above for classical symmetric junctions withx̃51 is observ-
able only at sufficiently low temperatures and at low juncti
transparencies when the logarithmic approximation can
justified. This is demonstrated in Fig. 4, where we show
result of numerical calculations for the temperature dep
dence of the critical current for different values of barr
transparency.

As seen for thex̃511 junctions, the termD0 ln D0 is
present in the tunneling limit in the dependence of the ze
temperature critical current on the transparency@see Eq.
~21!#. Further, the low-temperature range, where the criti
current linearly depends on lnT @see Eq.~20!#, becomes well
pronounced only for transparencies less than 1022. The finite
transparency efficiently cuts off the logarithmic temperat
dependence of the critical current. The lower the transp
ency, the larger the low-temperature range. The character
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temperature, below which the transparency influence
comes noticeable, is proportional toAD, again in agreemen
with our analytical results.

In Fig. 5 we show the analogous result for thef xy-wave
superconductor. Since the low-energy contribution from
bound states is associated in this case only with glanc
trajectories, there are no anomalies in the critical current

C. Effects of broadening of the bound states

Broadening of the chiral low-energy bound states can s
stantially modify the low-temperature behavior of the critic
current found above. Even a small broadeningg!Db has a
profound influence on the low-energy parts of chir
branches. We take a small broadening into account in
polelike term of the retarded quasiclassical Green’s functi
where we simply replace the factor 1/@«2«B(pf)# with
1/@«2«B(pf)1 ig#, analogously to what is done in Ref. 26
This slightly modifies the analysis of Ref. 21 for the cont
bution from the low-energy bound states to the Joseph
current in tunnel junctions. We evaluate the current in
tunneling limit assuming a momentum-independent broad
ing substantially greater than the low-energy bound state
the temperature:T,AD0Dbucos(F/2)u!g!Db . The lower
cut of the integral in Eq.~18! is associated in this case wit
g rather than the temperature or the bound state energy. T
we find for the Josephson current

j x~0!5a jc,0 lnS wDb

g D sinF. ~23!

For spatially constant order parameters we getwp'0.61,
wf x22y2'0.39, ws'0.21, andwt'0.84.
3-9
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There are various contributions to the broadening of
bound states. These are in particular associated with sur
roughness, nonmagnetic and magnetic impurities, and ine
tic scattering. We assume here that nonmagnetic impur
dominate the scattering and thus the broadening. Then
calculate the effect of small scattering rates on the beha
of the Josephson current at low temperatures using the u
t-matrix approximation and assuming an isotropic impur
potential,u. The impurity self-energy is in this case

Ŝ~«!5G
^ĝ~«!&

12s@11^ĝ~«!&2#
, ~24!

where the scattering strengths5 sin2 ds (ds is the s-wave
scattering phase shift, 0<ds<p/2) and the scattering rateG
parametrizeu and the impurity densitynimp as

s5
~pNfu!2

11~pNfu!2
, G5

pNfu
2

11~pNfu!2
nimp . ~25!

Due to the low-energy bound states, the Matsub
Green’s function can take quite large values in the lo
temperature region if the broadening and the transpare
are sufficiently small. However, the low-energy states fo
only a small part of the chiral branches; i.e., for most of t
quasiparticle trajectories the energy of the chiral states is
order ofDb(pf). For this reason the quasiclassical propaga
for the chiral superconductor, averaged over the Fermi
face,^g(«)&, does not take large values but is of the order
unity or less. This differs greatly from the case of

FIG. 5. The temperature dependence of the critical current
culated as in Fig. 4 but for thef xy-wave superconductor.
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45°-orientedd-wave superconductor for which each traje
tory has an Andreev bound state at zero energy. There^g(«)&
can take large values along with the polelike term in t
quasiclassical Green’s function.28

In Fig. 6 we show the influence of impurity effects on th
temperature dependence of critical current. In order to g
wide range of well-pronounced dependences of the crit
current on the small broadening, we take the extreme tun
limit and putD051025. One can see from the Fig. 6 that fo
observing the logarithmic low-temperature enhancemen
j c , one needs superconductors of high purity.

IV. SUMMARY

Chiral interface Andreev bound states have been obta
and studied above both analytically and numerically. W
showed that the low-energy chiral states result in the lo
temperature enhancement of the Josephson current bet
clean chiral superconductors in symmetric tunnel junctio
The enhancement is more pronounced in quantum point c
tacts. In classical junctions the zero-temperature current
quires an additional logarithmic dependence on low transp
ency or on the broadening of the bound states. Under
conditions considered, the Josephson current through the
main wall does not vanish due to the bound-state contri
tion.
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APPENDIX: ENERGIES OF THE INTERFACE
BOUND STATES

In the presence of a quasiparticle bound state«B(pf) the
quasiclassical retarded propagatorĝ has a pole at«
5«B(pf). One can introduce the residue of the propagatoĝ
as

ĝ̃„pf ,r;«B~pf !…5 lim
«→«B~pf !

$@«2«B~ pf !#ĝ~pf ,r;«!%,

~A1!

which is finite and satisfies the same transport equation aĝ
but completed with the relation

@ ĝ̃„pf ,r;«B~pf !…#
250, ~A2!

rather than the normalization condition.
For calculating the bound-state energies, the Eilenbe

equation for ĝ̃ can be solved in terms of the followin
ansatz:7

l-
3-10
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FIG. 6. The temperature
dependence of the critica
current for a junction modeled
with the transparency D(w)
5D0 exp(216 sin2 w) and D0

51025. Here j c(T) is calculated
at different scattering ratesG/Tc .
The scattering strength is wea
and put tos50.1.
n

e

-
.

ht

th

-

n-
be-

ical

ate
der

o-
f̃ 1
„pf ,x;«B~pf !…5g̃„pf ,x;«B~pf !…exp@2 ih~pf ,x!#,

f̃ „pf ,x;«B~pf !…52g̃„pf ,x;«B~pf !…exp@ ih~pf ,x!#.
~A3!

The whole number of quasiclassical equations can the
reduced to the one scalar equation

2
v f ,x

2
]xh~pf ,x!1«B~pf !2uD~pf ,x!u

3cos@h~pf ,x!2f~pf ,x!#50, ~A4!

completed with the condition at the interface29

D sinS h l ,0~pf ,l !2h r ,0~pf ,r !

2 D sinS h l ,0~pf ,l !2h r ,0~pf ,r !

2 D
5 sinS h l ,0~pf ,l !2h l ,0~pf ,l !

2 D sinS h r ,0~pf ,r !2h r ,0~pf ,r !

2 D
~A5!

and the asymptotic conditions in the right and the left sup
conductors

v f ,x~pf !sin@h`~pf !2f`~pf !#sgnx.0, x→6`.
~A6!

Equations~A4!–~A6! are valid both for singlet supercon
ductors and for triplet ones with a (0,0,dz) order parameter
Equation~A5! connects solutions of Eq.~A4! with momenta
pf ,l , pf ,r of incoming quasiparticles from the left and rig
sides of the interface with the momentapf ,l , pf ,r of reflected
ones. For specular reflection, the momentum parallel to
interface is conserved, i.e.,pf ,l

i 5pf ,l
i 5pr , f

i 5pf ,r
i . In the limit
21450
be

r-

e

of an impenetrable wall Eq.~A5! reduces to a continuity
condition for h0(pf), taken for incoming and outgoing mo
menta along a quasiparticle trajectory.

Equation~A4! can be easily solved for spatially indepe
dent order parameters. Thus, for a symmetric junction
tween thep-wave superconductors~with any chiralities! one
gets

h l~pf ,l !5F l1x lw2arccosS «B~pf ,l !

Db
p D ,

h l~pf ,l !5F l1x l~p2w!1arccosS «B~pf ,l !

Db
p D ,

h r~pf ,r !5F r1x rw1arccosS «B~pf ,l !

Db
p D ,

h r~pf ,r !5F r1x r~p2w!2arccosS «B~pf ,l !

Db
p D . ~A7!

Substitution of Eq.~A7! into Eq. ~A5! results in Eq.~3!
for the spectrum of the bound states in the case of ident
chiralities and in Eq.~8! for opposite chiralities. Similar deri-
vations with the other types of pairing lead to Eqs.~3!–~5!
and Eqs.~8!–~10!.

Calculations of surface and interface chiral bound-st
energies, taking into account the spatial profile of the or
parameter, are carried out for the low-energy states with m
menta close to the nodes~or to low-energy minima! pf ,0 of
the chiral branches«B(pf). Consider, for example, the
p-wave order parameter. We note thatD2

p(pf ,x)50 for two
3-11
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particular momentum directions:w0
p50 andp. On the other

hand,w0
p50 andp correspond to the incoming and outgoin

momenta in a reflection event whereD1
p(pf ,x) changes its

sign. Hence, the zero-energy surface bound states take
near an impenetrable surface for these particular quasip
cle trajectories. For thep-wave order parameter the solutio
of Eq. ~A4! for the zero-energy states ishp

(0)5F
1(p/2)sgn(x). At an impenetrable surface a chiral bran
crosses the zero energy with a slope, which can be found
a spatially dependent order parameter. Indeed, consideri
small deviationdw5w2w0

p from any of the two trajectories
we linearize Eq.~A4! and get the following first-order cor
rections tohp

(0) :

hp
(1)~x,pf !52

2

vx
E

x

6`

@«B
p~pf !2x r ( l )sgn~pyx8!uD2

p~pf ,x8!u#

3expS 7
2

uvxu
E

x

x8
uD1

p~pf ,x9!udx9D dx8. ~A8!

Here and below the upper and lower signs correspond
half-spacesx.0 andx,0, respectively.

At the impenetrable wall h(pf ,x50)5hp
(0)1hp

(1)(x
50, pf) is one and the same for incoming and outgoing m
mentum directions. Taking this into account we find Eq.~11!
for the bound-state energies close tow0

p for p-wave pairing.
Calculations for theE1g case are very close to thep-wave

pairing since the orbital parts of the order parameters con
identical dependence onpx andpy . Thus, we get in this cas
«B

s (pf)56x sgn(vxdw)uD21,e f f
s (pf ,60)u with the same no-

tation as in Eq.~11!.
Analogous considerations can be carried out for theE2u

triplet pairing. Then zero-energy bound states occur at f
21450
ace
rti-

or
a

to

-

in

r

particular momentum directions withw0
t 56p/4,63p/4,

and this at any fixed value ofu. The solution of Eq.~A4! for
w5w0

t is h t
(0)5F1(p/2)@11sgn(xxpypz)#. Corrections to

h t
(0) linear in small deviationsdw from w0

t are described by
the equation

h t
(1)~x,pf !52

2

uvxu
E

x

6`

@«B
t ~pf !sgn~vx!

2x r ( l )sgn~x8dw!uD1
t ~pf ,x8!u#

3expS 7
2

uvxu
E

x

x8
uD2

t ~pf ,x9!udx9D dx8.

~A9!

Then in a narrow region of the nodes o
D1

t (pf) we obtain for an impenetrable wall«B
t (pf)

56x sgn(vxdw)uD12,e f f
t (pf ,60)u wheredw is the deviation

of w from the direction of a node:D1
t (pf)50.

If the equalityf i(x)50, assumed above, is not satisfie
the result for the effective surface order parameter beco
more cumbersome. First, one should find the funct
h (0)(x) satisfying the equation

v f

2
]xh

(0)~x!1uD1~pf ,0 ,x!ucos@h (0)~x!2f1~x!2F#50

~A10!

and the asymptotic conditionsh (0)(6`)5F1(p/2)sgnx.
Then, introducing the notationz i(x)5h (0)(x)2f i(x)

2F, we obtain, for example, for thef x22y2-wave pairing the
following result:
«B
f x22y2

~pf !5x r ( l )sgn vy

E
0

6`

uD2~pf ,x!usinz2~x!expS 2
2

uvxu
E

0

x

uD1~pf ,x8!usinz1~x8!dx8D dx

E
0

6`

expS 2
2

uvxu
E

0

x

uD1~pf ,x8!usinz1~x8!dx8D dx

. ~A11!

Let now the transmission be finite, but sufficiently small. Assumef i(x)50, which takes place, for instance, for thep-wave
pairing. In vicinities of the momentum directionspf ,0

p , whereD2,b
p (pf ,0

p )50 ~that is,w5w0
p), we gethp

(0)5F1(p/2)sgn(x)
2sgn(xvx)«B

p(pf ,0
p )/uD1,b

p (pf ,0
p )u. Equation~A8! can be then generalized to the presence of nonzero transparency:

hp
(1)~x,pf !52

2

vx
E

x

6`S «B
p~pf !2

uD1
p~pf ,x8!u

uDb
p~pf !u

«B
p~pf ,0

p !2x r ( l )sgn~vxx8dw!uD2
p~pf ,x8!u D expS 7

2

uvxu
E

x

x8
uD1

p~pf ,x9!udx9D dx8.

~A12!

Analogously, near momentum directionspf ,0
t , for which D1,b

t (pf ,0
t )50 ~that is, w056p/4,63p/4) we get h t

(0)5F
1(p/2)@11sgn(xxpypz)#2sgn(xvx)«B

t (pf ,0
t )/uD2,b

t (pf ,0
t )u. Then in the presence of a nonzero transparency we get
3-12
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h t
(1)~x,pf !52

2

vx
E

x

6`S «B
t ~pf !2

uD2
t ~pf ,x8!u

uDb
t ~pf !u

«B
t ~pf ,0

t !

2x r ( l )sgn~vxx8dw!uD1
t ~pf ,x8!u D

3expS 7
2

uvxu
E

x

x8
uD2

t ~pf ,x9!udx9D dx8.

~A13!

For finding the bound-state energies one should insert
lutions from Eq.~A12! @Eq. ~A13!# into the condition at the
interface @Eq. ~A5!#, taking account of the first non
vanishing corrections in transparency or indw. For a sym-
metric tunnel junction, when the order parameters on b
sides coincide for every momentum direction and, in parti
lar, have identical chiralities, this expansion leads to E
~13! for thep-wave pairing as well as for theE1g pairing. For
the E2u type of pairing we get in this case
J.

Y.

y

H.

h,

.

.

ev

21450
o-

th
-

s.

«B
t ~pf !56F @«B

t ~pf !uD50#21D cos2S F

2 D X 2

uvxu

3E
0

1`

expS 2
2

uvxu
E

0

x

uD2
t ~pf ,x8!udx8D dxC22G1/2

.

~A14!

For the domain wall (x̃521) the spectrum for thep-wave
pairing is described by Eq.~14!. The same expression i
valid as well for theE1g pairing. For theE2u type of pairing
we get in the case of opposite chiralities

«B
t ~pf !5«B

t ~pf !uD506AD sinS F

2 D F 2

uvxu

3E
0

1`

expS 2
2

uvxu
E

0

x

uD2
t ~pf ,x8!udx8D dxG21

.

~A15!
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-
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