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We study chiral interface Andreev bound states and their influence on the Josephson current between clean
superconductors. Possible examples are superconductifuGy and theB phase of the heavy-fermion
superconductor URtWe show that, under certain conditions, the low-energy chiral surface states enhance the
critical current of symmetric tunnel junctions at low temperatures. The enhancement is substantially more
pronounced in quantum point contacts. In classical junctions dispersive chiral states result in a logarithmic
dependence of the critical current. This logarithmic behavior contains the temperature, the barrier transparency,
and the broadening of the bound states and depends on the detailed relation between these parameters. The
Josephson current through the domain wall does not acquire this logarithmic enhancement, although the
contribution from the bound states is important in this case as well.
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I. INTRODUCTION impurities?® as well as on their shift from zero on account of
junction transparenc3f:?%2°

Superconductors in a state with both time-reversal sym- Zero-energy surface states are dispersionless states, while
metry and parity with respect to the inversion of a crystalAndreev bound states with nonzero energy are dispersive:
axis broken are sometimes named chiral superconductorthe energy depends on the quasiparticle momentum direc-
The “chirality” can be associated with, for example, a non- tion. Bound states at energies on the orderAgp;) can
zero projection of the orbital angular momentuwf Cooper  manifest themselves, for example, in the current-voltage
pairs along an axig, i.e., |,#0. Superconducting SRuO,  characteristics of a junction along with the low-energy bound
and the heavy-fermion superconductor YRt its B phase  states.** They do not, however, modify noticeably equilib-
(i.e., the low-temperature and low-field phasege leading rium characteristics like the Josephson critical current or the
candidates for chiral superconductors of this type. Anothepenetration depth. In contrast, the zero- and/or low-energy
possible reason for a nonzero chirality of a superconductingtates can have a strong influence on the equilibrium quanti-
state to appear is a complex admixture of two pairing chanties at low temperatures.
nels belonging to different irreducible representations. For Chiral surface statés'*?make up a special type of An-
two-dimensional2D) chiral superconductors there is a topo- dreev bound states. They form dispersive branches, which
logical invariant associated with the chirality. can cross the zero level only for isolated quasiparticle mo-

One of the important features of superconductors is thenentum directions. The spontaneous surface current in chiral
presence of surface or interface Andreev bound states. Thesuperconductors®? the spectrum of the surface chiral bound
can take place in the vicinity of surfaces or interfaces if thestates at an impenetrable w2li*2and their contributions to
order parameter varies in space or takes different values fahe density of states, the conductance peak of the tunnel
incoming and outgoing momentum directions along a quasijunctions®* =34 and the low-temperature penetration dépth
classical trajectory traveled by a quasiparticle in a reflectiorhave already been studied theoretically in the literature.
or a transmission event. Surface and interface quasiparticléhere are, however, various open problems in the field, part
states arising in superconductors already in the absence ofod which is addressed in the present paper. We report on
magnetic field have been studied theoretically for manytheoretical results for the spectra of chiral surface and inter-
years(for example, see Refs. 2 and. Ihey have attracted face states and their contribution to the Josephson critical
much attention in investigating high-temperature superconeurrent of junctions between chiral superconductors. In ex-
ductivity. For instance, zero-energy surface stated-iwwave  periments to date the Josephson effect has been studied only
superconductors appear near an impenetrable smooth surfaegunctions between $SRuQ, (or UPt) and a conventional
as a consequence of a sign change of the order paramesuperconductot®3’ Our results show that extending experi-
along quasiparticle trajectories connected by scattering offnental investigations of the Josephson critical current in
the surface. Zero-energy bound states lead at low tempergymmetric junctions of the ruthenatésr UPt) would sen-
tures to a zero-bias conductance peak of N-lidrmal-  sitively probe the chiral nature of these superconductors.
metal—isolating-barrierd-wave-superconductpbr  tunnel Our numerical approach is to solve the quasiclassical
junctions?~" which was observed in experimefits® Low-  transport equation and to determine the profile of the order
temperature anomalies, originating from the zero-energparameter self-consistently. Our analytical results describe
bound states, are also seen in the Josephson criticapectra of the chiral states at interfaces of any transparency
current®2* and in the penetration depth!??52” The  assuming spatially constarihon-self-consisteitorder pa-
strength of these effects depends on the broadening of themeters. These calculations are improved further for low-
bound states by surface roughrfé€s?® and bulk energy states in the tunnel-junction limit, where surface pair
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breaking may be taken into account analytically as well. ASUPt,.%’~9The so-called “3D” model for the order parameter
is demonstrated below, the low-energy parts of the chiraln tetragonal SiRuQ, is based on an analogous type of
branches of the surface Andreev bound-state spectra caairing®We examine pairing both in tHg,, and in theE 4
dominate and strengthen the Josephson critical current irepresentation for three-dimensional superconductors and
symmetric tunnel junctions at sufficiently low temperatures find that in the former case the anomaly in the Josephson
The low-temperature enhancement of the Josephson criticalirrent is weakened due to its specific sensitivity to a mo-
current j. is substantially more pronounced for quantummentum direction dependence of the transmission coeffi-
point contacts. It is of similar origin as the low-temperaturecient.
anomaly in j. of junctions betweend-wave super-
conductorg®?! In classical junctions the dispersion of the
chiral states strongly modifies the anomalous low-Il- CHIRAL SURFACE AND INTERFACE QUASIPARTICLE
temperature behavior gf,, leading eventually to an addi- STATES
tional logarithmic factor, which can be large under certain
conditions: if the broadening of the bound states and the ) )
transparency of the junction are sufficiently small. The zero- L€t @ superconductor breaking time-reversal symmetry
temperature value df, is then determined by a presumably OCcupy a half-space with a surfager interface normal
small broadening of the bound states and/or a small junctio!Ong thex axis. The superconductor may be both triplet or
transparency that cuts off the logarithmic divergencesinglet. Triplet order parametera,(ps) =d(p;) - @i oy, con-
asT—0. sidered below, have only the componedi(p;)=A(ps),

We also study the Josephson current through a domainonzero.
wall, considering a junction between identical equally ori- Unconventional order parameters are in general quite sen-
ented superconductors with opposite chiralities. We demonsitive to any inhomogeneity in the superconductor that gives
strate the crucial role of the Andreev interface states for obrise to quasiparticle scattering and this in particular to a
taining a finite Josephson current in the system with théooundary. We represent a chiral order parameter near a sur-
crystalc axis parallel to the interface. Disregarding the presface  or interface as A(ps,x)=[A(ps ,x)e' 19
ence of surface states and assuming spatially constant orderi xyA,(p;,x)e'?2¥]e'®=]A(p;,x)|e'*Pr ), where the two
parameters, one can apply at the interface the bulk expreseal component\,(p;,x) and A,(p;,X) have presumably
sion for the Green’s function. Then the tunnel Josephsopposite parities with respect to the inversion of haxis.
critical current across the domain wall vanishes. If¢hexis  The parametey= =1 corresponds to two possible values of
is along the interface normal and the interface itself is sym-chirality.” The phases¢(x) and ¢,(x) vanish in the bulk
metric with respect to rotations around the normal, then thdut may be nonzero in the vicinity of the boundary.
dc Josephson current actually vanishes, which has been Assuming a model with a single cylindrical Fermi sur-
known for a long time for junctions between superconductface, the two components of tipewave order parameter in a
ors with opposite projections of the angular momentum oftetragonal superconductor with the crystglaxis along the
Cooper pairs®* For thec axis parallel to the surface, van- surface normal can be taken in the bulk A%, (p;)
ishing current is, however, a shortcoming of the oversimpli-zAgcogp and Agyb(pf)IAESimp- Here and belowp is the

fied approach. We show that the interface influence results igngle which the vectorp ,,ps ,,0) makes with thex axis.
this case both in Andreev bound states and in a finite JoseplEgr the f,-wave order 'pardmeter in the bulk, one has

son current close to the conventional value. Ay =AM gi fx —Afxyai ;
. , . = sin2pcose and A_XY(ps) =A ¥ sin 2psine.
We perform our analytical and numerical calculations, 1'b(prf]) bblkf 2pcose q 2b(P) =4, fxzfyz ¢
first, for a quasi-two-dimensional tetragonal superconductor; ©F the bulk f,z_y2-wave order parameterd }, = (pr)

choosing several particular basis functions, which are con=A.""Y* cos 2pcose andAfzf;’yz(pfFA;XLVZ cos Zpsine.
sidered as candidates for superconducting pairing in If ¢ describes the incoming momentum direction, specu-
SrLRuQ,. Possible candidates for the order parameter ifar quasiparticle reflection from the surface gives¢) for
Sr,RuQ, are still intensively discusséd-%83449-%%or our  the outgoing momentum. This corresponds to the inversion
study we take three types of two-component triplet orderof the x axis. One can easily see that order-parameter com-
parameters forming the-wave, thef, -wave, and thé,2_,> ponentsA(p;) and A,(ps) have opposite parities with re-
superconducting (1;i) phases. spect to the inversion of the axis in all cases considered.
We also present analytical results, demonstrating tha®ince the total order parameter represents a complex mixture
analogous chiral interface bound states and low-temperatuid A;(p;) and A,(p;), we get, indeed, chiral order param-
enhancement in the Josephson current take place in a thresters describing superconducting states with both time-
dimensional hexagonal superconductor like Jor many reversal symmetry and parity with respect to the inversion of
years the two-component tripl&t, -representation and sin- the x axis broken. An additional feature, which makes our
glet Eq4-representation order parameters were considered aalytical results comparatively simple, is that in all cases
the probable candidates for the pairing state ingJ®t®®In  we considefA(pr)| does not change in the reflection event
particular, (1;£i) superconducting phases are supposed tdif ¢, Ax)=0, then|A(ps,x)| does not chande
form at low temperatures and in weak magnetic fields. The In Fig. 1 we show order-parameter profiles at an impen-
analysis of experimental data now available has led to a prestrable ~ barrier ~ separating  a A,(ps,x)e' 1™
sumably definite choice in favor of tH®,, type of pairingin ~ +iA,(p,x)e'?2® (left side and a A;(p;,x)e'1®)

A. Chiral order parameters
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—iA,(ps ,x)e'2( (right side superconductor. The tempera- files of thef-wave order parameters with angles-0 and
ture is 0.00T,. The order-parameter components are repre¢=45° are shown in Fig. 1 and correspond to the most
sented in the forms Ay(ps,X)e'P1®=A (x)yo(p;),  EXtreme cases,, andf,z_,2, respectively. We note that the
+i A, (py X)eiqsz(x):Al(f)(X) #-(pr), which define the pro- fyy-wave order parameter behaves quite similar to the
f'IesA'(” displaved in Fia. 1. Thev are computed usin ap wave case near a surface. fpwave andf,,-wave pair-
. (x) displayed in Fig. y puted using ings the phaseg;(x) and ¢,(x) obey ¢1(X)= ¢»(x)=0,
smgle, cyI|ndr|caI Fermll surface and/ thg pairing pgtenﬂalwhne for the f>_-wave order parametep; (x) = — b(X)
V(p.p')=Vol #1(P) ¥2(P') + d2(P) Y2(p') ] In a factorized .o For all pairing states we see that the order parameter
form with the simple, normalized, basis functions recovers its bulk value after roughly 45(&,=v /27 T,). If
instead the right superconductor were calculated with the
. same chirality as the left one, the order parameter would
V2(cos,sing) - (p wave, change as(Ay(pr,X),A(pr X)) (A% (pr.X), — A% (Py X))
2(cosg,sing)sin2¢  (f,, wave. on the right side. When we continue to study the Josephson
1) coupling of two chiral superconductors we shall assume that
For thep-wave case our self-consistent numerical resultdshe Josephson currents generated are much smaller than the
are in agreement with those represented in Ref. 32. Onkulk critical current and do not affect the spatial dependence
should note the vanishing,(x, p;) at the surface and, as a of the order parameter or the surface curréaee below
consequence, the increase A3(0, p;) as compared to its For three-dimensional models of chiral superconducting
bulk value. An inhomogeneous profile (x,p;) near the sur-  states we assume, for simplicity, a spherical Fermi surface
face slightly modifies the surface valtg(0,p;) as well®?If ~ and choose bulk order parameters in the foirh,(py)
the crystal axisx, makes a finite angler in the xy plane  =Afcos@sir? 6é@¢*® for the E,, representatior(triplet
with the surface normal, for th@wave superconductor there pamng) and A5 (pr) = Apcosdsin 60 for the Eqq (sin-
is no dependence on. The surface state of aawave su- glet pairing. Hence, for theE,, and E 4 pairings, respec-
perconductor, however, will depend @n The surface pro- tively, we get

(1(pp), a(pr)) =

A% p(pr)=A} cosdsi? 6cos2p, A3 (pr)=Aj cosdsin 6 cose,

2
A% p(pr) = A} cosdsir? sin 2, A3p(pr)=Ap cosésindsing. @

Here 6 and ¢ are standard angles in a spherical system obn both sides of the interface we find comparatively simple
coordinates in momentum space with theaxis along the analytical expressions for the energies of chiral interface An-
surface normald is a spatially constant part of the complex dreev bound states. }f=yx'x"=1, i.e., if the superconduct-
phase of the order parameter. Order-parameter componerggs have identical ch|raI|t|es we get the following spectrum
A5(ps,x) andA(py,x) vanish on an impenetrable surface. for two-dimensionalp-wave andf,> >-wave order param-
eters as well as for the three-dimensional sinBlgt pairing:

B. Interface chiral bound states gp,fxzfyzys( Pr)
B
Consider a junction between identical equally oriented
chiral superconductors. Solving Eq#4)—(A6) of the Ap- +|Ap 2oy, (oo

pendix with spatially constant anisotropic order parameters

16} 1/2
Rsin2<p+Dco§(§” )

For theE,, andf,, pairings we obtain

Ir’L‘n Azl A ‘ Im ‘Az
VAR Re A, Re A, 1/2
02 i I\ 11 ReAslma, | eg(pr) == |AL(pp)|| R cog 2go+'DC052< ) . (4
g Rea, ReA,_ | Ima, "‘," Im A, o\ 12
i ,:' e¥(P)==|8,%(py)]| R cos ¢+Dco§(§> ®)
00 /Re Aslm A, HereD andR are transmission and reflection coefficients of
the interface barrier which in general depend on the quasi-
p-wave J,—wave fz_)z ave particle momentum direction. The phase differedee @'
_0-1—3() —‘20 —;() 0 ]‘0 2‘() 30 =30 —20 I() ] ]() ”() 30-30 —2() ]() 0 Ib 2‘0 30 _(I)Ii Where(I)r’| are the phases Of the Order para‘meters In
xig, xE, X, the right and left superconductors, is separated from the in-
FIG. 1. The spatial profiles of the order-parameter componentérinsic chiral phases, as defined in the preceding subsec-
Ay (x) (in units of 27 T,). tion. The spectra in Egs(3)—(5) depend on momentum
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directions both explicity and viaD and R. They symmetryp,——py in the spectra in Eqsi3)—(5) (unless
significantly differ from the bound-state energies in junc-® = when there is no coupling between the surface states
tions between conventional superconductbrS eg(p;)  from two sides$. It is worth noting that at small transparency

==*|A| [1— D sirX(®/2). the local spectral weight of the statesyat —0 (or x=
Positive and negative branches in E¢3)—(5) always +0) is still asymmetridsee Fig. 3 beloyw
touch on the Fermi surfacéon the zero-energy levefor If identical, equally oriented, massive superconductors on

momentum directions along possible nodes|afp)|. In  each side of the interface have opposite chiralities, the junc-
addition, if the phase difference is equal torr (or for any  tion can be considered as an isolating domain wall between
®, but in the limit of an impenetrable walD=0), the two degenerate chiral phases of the bulk superconducting
branches described by Ed8) and(4) acquire new crossing state. In this casg=—1 and spontaneous surface currents
points(or lineg lying on the Fermi surface. These additional in the two banks of the interface flow along the same direc-
momentum directions are at=0, = for the p wave, the tion. Then the recovery of symmetry due to the finite trans-
fi2_y2 wave, and the three-dimensiori&jy pairing, while at ~ parency does not take place. Indeed, solving E&44)—(A6)
o=*ml4,+3x/4 for the E,, pairing. In accordance with of the Appendix with a model spatially constant anisotropic
Eq. (5) for the f,, pairing the spectrum of the bound statesorder parameter, having opposite chiralities on the two sides
takes zero value only for directions along the nodes of thef the junction, results in

lorder.parameter, ie., ai= 0,77_,trr/2. At the glancing trg- Dfo s, e s

jectoriesp =+ 7/2 the nodes in the spectrum have a highereg * ¥ (Pr) = x"[Ay Y (py)|

multiplicity.

It is worth comparing the interface states in E(3—(5) x /1—2)00528 sing+ Dcos?co&p)
with the respective surface chiral branches at an impen- 2 N 2 '
etrable wall: ®)

o5 (p) =x sgr0|AD S (py)[sing,  (©) oY (p=—x'san (py)|AL(py)]

efsxy(pf):_XSgr(X)AtfaxySi” 2¢ cosg, X \ll—Dsinzgcos 2+ @sin%sin 2<p),
es(Pr) =~ x sgrixpy)| Ay(pr)| cos 2p. (7) ©)
One can see that finite transmission abek 7 result in an szxy(pf): —x"'sgn (pxpy)m;xy(pm

effective “repulsion” and a reconnection of the branches
from two sides of the barrier plane. Chiral states on an im-

P D
1—Dsm27003goi Dsin—sing |.

penetrable surface of thewave superconductor were ob- X

tained earlier in Refs. 31 and 32. In the particular cdse

=, Egs.(6) and(7) describe as well the states on interfaces (10

with arbitrary transparency if compensated by a facf®.  These branches are asymmetric with respect to the inversion
The chiral spectra in Eqg6) and (7) are antisymmetric Py— =Py -

with respect to the inversiop,— —p, (or equivalently¢ The surface current, the vector potential, and the induced

— —¢), as well as to the inversion of the total momentummagnetic field at an impenetrable barrier separating an
Pr— — Py (Or ¢— ¢+ 7). Since at zero temperature the states,), (p) +i,(py) (left side and an»,(p;)—i7(p;) (right
with negative(positive) energies are occupie@mpty, the  sjdg superconductor are given in Fig. 2. They decay in the

chiral states carry a spontaneous current along the surf&ce. depth of the superconductor on a scale given by the penetra-
This can be considered as a characteristic feature of chiral

states. The current flows near the surface parallel toythe : : 0.02 :

axis within a thickness of the order of the coherence lengtt [ ] . ,_\Bz oos |

&o. With the model of a constant order parameters we find a o0 ="

zero temperaturg,=—{xsgnx eviN;A,, where {P=1, a YW

{"-y=0.5, {"v=—1, {'~0.08, and;®=0.25. The induced | ooz | Lol

screening supercurrents decay on the order of the penetrati

depth), so that the total surface current is actually zero. ATl poo ; T
As follows from Eqs(6) and(7), the quasiparticle surface g~ f 11 y O el

states on the two sidqes of the impenetcrlable?/vall are related ¢ \Z_/ \V-o.os L ] “‘“\-{./"\}:f"’

SIB((P) = _} . SrB(QD), Where ’)}E)(l)(r. Hence, |f ’)}: 1 the p—wave fxy—wave f;z_yz—wa" e

spontaneous currents on either side of the interface flOW [F002 g st mml008 o e e o d002 et s

opposite directions but with equal magnitude. In the case o 15, 45, g,

finite transparency the surface chiral states from both sides FIG. 2. Spatial dependence of the surface curfenthe vector
couple into interface states. The absence of the total interfagsotential A,, and the surface magnetic fieRl,. The penetration
current on the scal&, is accompanied by the recovery of the depth is set to 26, and the unit of current isv(N¢A,,.
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tion depth. For theo-wave case there is an agreement of ourp-wave pairing(see Fig. 1 and we represent here the results
results with those in Ref. 32. If instead the right supercon<or this simplest casé&he other cases are considered in the
ductor were calculated with the same parity as the left oné\ppendix.
the currents, the vector potential, and the magnetic field Taking advantage of the approach of Refs. 7 andsz®
would be reversed in the right half-space. also the Appendix we obtain the bound-state energies in
As was shown in the preceding subsection, the order peclose vicinity of the nodes of5(py):
rameters vary significantly from their bulk forms in the vi-
cinity of the interface. This raises the question of the appli- eB(Pr) == x sgv8¢)| A (s, £ 0)]. (11
cability of the approach used just above and based on a )
simple model of spatially constant anisotropic order paramHere and below the uppéthe lowe) sign corresponds to the
eters. We now report the results, taking into account spatidight (the lefy half-space;o¢ is the deviation ofp from the
variations of the order parameters. As will be seen, they disdirection of a noded5(p;) =0 (that is, ate=0 or ¢ = for
play good qualitative agreement with E¢3)—(10). Quanti-  the p wave). The effective surface order parameters are de-
tative distinctions, however, take plate. fined as
The surface pair breaking modifies the low-energy chiral
bound states in a simple way. Spatial profiles of the ordetAij,ef(Pr,*0)|
parameters near impenetrable surfaces can be taken into ac-

. . . . +oo 2 X
count analytically in the expressions for the energies, by re- f |Ai(ps ,x)|ex;{ 1_f A (pr ,x’)|dx’)dx
placing the order parameters at the surface by effective ones. ~ Jo luyl Jo
In general, we havep; ,(x) #0 and the expressions for the - +oo 2 [x
effective surface order parameters are quite cumbersome. We f ex I| | fo |Aj(ps,x")]dx" |dx
get a simple answer if the surface influence retaingx) X
= ¢,(x)=0. The last condition holds, in particular, for the (12
p—wave —wave 12 -wave
T ® T [ 1% T TEA &8 ¢ TEewsm] e e TET K¢ TSP m T E]e§d 58 | &7 og 1 TEra T [F 5L EF PR
e’ g i — ~———
— Pooe Y —_— —
T . S ~— A | L= ~_ |
—} { —f’\ ”h— L= ~ |
<t A ——/—\ e ‘\ ~——
B — 11 ——— — j: S—
_g_> /du‘ “ /| i
A — ey — —
— il | —
A X\ ~— _ ~ T3 ~p
I— === — ===
- AN 1 o \ / S
—— S — — ———————
\ \
Ny —_— ———— ———
~ Y —
f e — - <
4 — A — ———
e == —
0 e ]
| N I A NI 1 e
—0.6 —0.6 -0.3 0.0 0.3 0.6 -0.6 -0.3 0.0 0.3 0.6
e/2nT €/2nT,
T T =0 T T
—" [ o—
"N | LA fa SRR
A T 4 | Dy ~——
;ﬂf‘\ 4 dii e = —
[ = —" i ——
g .
I >  \s—
'e' P fo— |
@ ———
< S
¥
i
===
-0.6 -0.6 -0.3 0.0 0.3 0.6
e/2nT,

FIG. 3. The local angular resolved surface density of states sfiaftrto right) for the p-wave, thef,,-wave, and thef,2_,2-wave
junctions. The transparenc®=0.01 and the phase difference is zero. The top row contains all symmetric junciioas-{)
while the bottom row contains junctions with opposite chiralitigs=(—1). The DOS is given in the intervap=— /2 to o= /2
in equally spaced steps.
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Equations(11) and (12) should be compared with Ed6), fy,-wave superconductors the chiral branches take on low

generalizing it to spatially dependent order parameters.  energies only for momentum directions close to the nodes of
The transformation of the spectrum of surface boundhe order parameter and the main part of the low-energy

states into one of interface states due to finite transparency spectral weight belongs to glancing trajectories. The

the tunnel junction, i.e., foD<1, can be described analyti- ave withy=—1 does not show splitting i®=0, in ac-

cally taking the surface pair breaking into accounti{x) cordance with Eq(10).

=0 (see the Appendix For instance, for the symmetric

junction (y=1) we get the following result in the vicinity of

a momentum directiop o, for which eg(p; o)|p-o=0: IIl. LOW-TEMPERATURE ANOMALY
OF THE JOSEPHSON CURRENT

eB(pp) == [ [eB(pr)|p=o]®+Dcod (%) [i A. Josephson current in quantum point contacts
vl Consider the Josephson current across junctions with chi-
+oo 2 [x —2)172 ral interface states first assuming spatially constant order pa-
X fo ex;{ - WJO |AR(ps,x")[dx" | dx : rameters. For a quantum point contact we can find the cur-
g rent in symmetric junctiongwith y=1) ag® "3
(13
In the case of opposite chiralitieg((: —1) we obtain ded de?d 8
j=2e>, —an(g§)=—2e > — tanh—2.
D\ 2 a do i, do 27
B
£B(pr) = &B(pp) p-o+ VD cos 5)(m
X
1 Here the spectrum is presumably even and the sum is taken
> j+mex _ ifxmp(p x")|dx’ | dx over different channels. Making use of the relationship
0 loy Jo! "1 deg/d®=—|A|?>Dsin®/4eg, which easily follows from
(14) Egs.(3)—(5) for all pairings we discuss, leads to the Joseph-

. . : son current
In Fig. 3 we show the numerically computed local inter-

face density of state®0S), using the self-consistently de-

termined self-energies. The angle-resolved DOS in the left _ e|AI’Dsin® £g
i i j= ——=———tanh—= (16)
superconductor is defined as 2 2T
1 ~ A
N(¢.e)=— 5N Im{Tr[739(¢,0- ;&)]} (15  for one channel in a quantum point contact.

Equation(16) is applicable also to contacts between iso-
and calculated at zero phase difference with one and th&opic swave superconductors. In this case, however, the
same transparenc=0.01 for all momentum directions. bound-state energies are mainly on the ordek oThey can
Here and below we use the normalization conditiontake low-energy values only in highly transparent junctions

g?=—1 for the quasiclassical Green’s function. The DOS inand for phase differenceb in a narrow vicinity ofzr. There

the right superconductor are for these symmetric junctiongre well-known specific features of the Josephson current
simply related to the DOS in the left by substituting manifested in _ conventional superconductors  with
e'=—-¢'. Qualitatively, peak positions are well described microconstrictions? For the phase differencé~m, how-

by Egs.(6) and (7), obtained in the tunneling limit. The fine Ve S in Eq. (16) is very small as well, precluding the
structure of the peaks is due to a finite transmission. ThdPW-temperature features of the Josephson critical current we
densities of states for junctions with bound states dispersing'scuss below. By contrast, under certain conditions chiral
in p; and havingsg=0 at =0, i.e., for thep-wave and for ound states can take low-energy values at any phase differ-
the f,2_,2-wave pairings, show a split DOS, by an amount&nce®. For thep-wave and thef,z_,>-wave order param-
JD at £=0 [in accordance with Eqg3) and (8); see also gters, as 'weII as for th.e threg-dmensmﬁ% type of paur-
Egs. (13 and (14)]. At finite anglese the DOS show the ing, this is the case, in particular, in tunnel junctior® (

predicted dependence on the relative chirality of the<1) for quasiparticles with momenta aligned almst ex-

w duct For the=+1 iuncti . actly) parallel to the interface normal~0,.
Vo superconductors. - For ther= junction, - since For a nonzero energy and sufficiently low temperatures,
€gp-o= —€pp-o, there is only a very small spectral

D=0~ ) . when T<eg, we get from Eq.(16) the zero-temperature
weight in the DOS from the bound statg ,, induced in the  \51ue of the Josephson curreint e|Ao|2D sind/2e5. Here

left superconductor through the junction in the tunnelingy s the zero-temperature order parameter. Hence, the zero-
limit. For the y=—1 junction we haveeg'mozsgypzo. temperature critical current is much greater for channels with
Hence, there is almost equal weight in the two states splitg<|A,|, as compared with channels wherg~|A|, for a
aroundsg p—o(). The split agaire /D [see Eq(14)]. For  given®, D, and|A|.

small angles ¢~0) thep-wave and the,>_2-wave super- If eg<T<T,., which can be satisfied only by low-energy
conductors lead to qualitatively similar DOS. For the states, we find from Eq(16) that the Josephson current
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can vary substantially in the low-temperature region, B. Critical current in classical tunnel junctions
being 2|nvgrsely proportional to the temperaturg: The low-temperature anomalous behavior of the Joseph-
=e[Ag|“Dsin®/4T. son current described above is quite similar to what was

To be specific, consider thewave order parameter and theoretically found for the case dfwave superconductors in
eg=ALVR sirf o+ D cos(®/2). Here ¢ is the parameter the presence of zero- and low-energy surface and interface
characterizing the quantum state in the channel. The boundtates®~?2 However, the similarity takes place only in con-
state energy is small, i.esg<Ap, for example if | <1 and  sidering one channel, which is appropriate to quantum point
D<1. Then the zero-temperature current is quite largecontacts. In classical junctions, where quasiparticles have
and equal to either AP ;Dsin®)/2|¢| when maxT/Ap, various momentum directions, the parameteappears in

\/5|cos@/2)|)<|<p|<1 or to EAE,O D sgr cos@®/2)] sin(@/ the expression for the Josephson current as an integration

. Dl e < _ variable in averaging over the Fermi surface. If the bound
2) it TIA, <|¢|< \D|cos{b/2)|<1. In the last case the Jo states are substantially dispersive, manifesting strong depen-

sephson current in the tunnel junction turns out to be proporgance of their energy on the momentum direction, the aver-
tional to \D, in contrast to the linear dependence®of the  4ging can noticeably weaken the low-temperature deviations
conventional tunneling current. As we see, the Iow-of the Josephson current from its conventional behavior.
temperature value of the Josephson current depends on the The eventual result can be easily understood qualitatively
dimensionless parametefD|A||cos(P/2)|/T containing the if one notices that the integration of the @/ term (see the
transparency. This parameter appears from the expression fpreceding subsection over the interval (mal/Ap,
the energy of the interface bound states when comparing i\t,/1—7| cos(D/2)|), ¢.) (Wherep.<1) leads to logarithmic low-
with the temperature. At sufficiently low temperatures thetemperature dependences on the temperature or the transpar-
parameter is large even 0<<1. ency. Below we present a more careful analysis of the low-

It follows from Egs. (3)—(5) that the conditioneg(ps) temperature features of the critical current.
<A(py) is satisfied for any phase difference for the tunnel  For a classical symmetric junctiofwith y=1) between
junctions with ¢ near the nodes ap,~0,7 of the chiral  quasi-two-dimensional superconductors we get, instead of
bound states for thp-wave, thef,2_,2-wave, and the three- Eq. (16),
dimensionalE, 4 order parameters. For thig,-wave order
parameter the above condition takes place only for glancing
trajectories, which contribute negligibly to the Josephson
current. For the three-dimensiongb, type of pairing the
nodes of the bound states, not coinciding with the nodes of Xtanh(eg(¢)/2T). (17)

the order parameter, lie aty=* m/4,+3m/4. For this rea- Assuming the logarithmic functions mentioned above to
son theE,, pairing (UP%) has a contribution from the low- pe |arge, one can use a logarithmic approximation, consider-
energy chiral surface bound states to the Josephson currefg only a part of the integral in Eq17), which contains the
that turns out to be especially sensitive to the momentunzero-level crossing of the chiral branchp§0_ Then for a
dependence of the tunneling probabili®(p;). This con- symmetric tunnel junction between quasi-two-dimensional
trasts theE, 4 pairing as well as the- andf-wave supercon- superconductors with cylindrical Fermi surfaces we get from
ductors. The sensitivity is associated with the fact that theEq. (17)

transparency of a barrier quickly diminishes with increasing

¢

J‘+ﬂ'/2d evN¢D(¢p)cose Sinq>|A((P)|2
— a2 eg(@)

deviation of the momentum d_irgction frpm the surface nor- i~ > evN{D(gg)cose, Sin®|A(¢g)|2

mal (unless the barrier is sufficiently thinThus, the trans- @0

mission can become quite small for momenta with= Pr x>0

+ /4 or = 37/4. For example, for a model for the tunneling 00+ 8¢ 1 ep(@)

barrier with a uniform probability distribution within an ac- X dgo8 o) tan 5T | (18
ceptance cone about the interface normal, and zero outside 0 B

the cone, the effect considered is entirely absent unless theheresg(¢) is defined by Eqs(3) and (4), andeg(¢)|p-0
acceptance cone contaifr its boundary is very close Yo is to be evaluated to linear order &ip. Here ¢, is a cutoff
po=*ml4,*+3ml4. For a narrow Gaussian-distribution parameter. The sum is taken over thggewhich correspond
model the tunneling atpgzia-r/4,i 3m/4 is not strictly  to p; ,>0. For thep- or the f,2_,2-wave pairing onlygog'f
zero, although exponentially small. For a sufficiently thin =0 satisfies this condition. In the case of three-dimensional
and high barrier, however, the transparency is approximatelguperconductors witk,, or E;4 pairings, an additional in-
proportional to (- pg)? and then the contribution to the Jo- tegration fg’zsin2 0#d6 has to be carried out in Eq17),
sephson current from low-energy chiral surface states bewhereD, |A| andeg, depend on botlp and 6. For theE,,
comes important even fdt,, -triplet pairing. In the last case and theE,4 one should consider the variatiodg from <pg

the particularp; dependence of the tunneling probability is = + /4 ande5=0, respectively.

D(ps) =D, cog ¢ for two-dimensional models with a cylin- The contribution to the Josephson current from low-
drical Fermi surface an@®(p;) =D, sir? cos ¢ for three-  energy bound states in the tunnel junctions can be also cal-
dimensional models with a spherical Fermi surface. culated analytically, taking into account surface pair break-
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ing. Indeed, from Egs.(13) and (A14) we easily get to be quite largefor the logarithmic approximation to be
deg/d®=—|A|>Dsin®/4e g, where the effective order pa- Valid), the Josephson currenf(T) can noticeably exceed
rameter|A (p;,0)| near the nodes of the bound states is dedc.o-

fined in the right half-space For temperatured < \DyA|cos®/2)| the lower cut of
’ the integral is associated with the transparency of the barrier
1 2 and we find from Eq(18)
A(pr,0)|  [orx(Po)l d )
jx(0)=aj;gln| ——=————/sin®. (21
]x( JC,O \/D_O|COS(CD/2)|

® 2 X1
o e -2 [P
0 vix(Pr) Jo The logarithmic function in Eq(21) is supposed to take
large values as well. Disregarding surface pair breaking, we
X sin 7(ps ,X2) — d(Pr ,xz)]dxz) dxq, find dP~1.21, d"*-¥’~0.78, d°~1.21, andd'~1.88.
Based on Eq98)—(10), one can easily get the Josephson
(19 current in junctions with opposite chiralities. We do not

present here the corresponding analytical results in detalil,

and analogously in the left half space. Hence, spatial deperince there is no unconventional low-temperature increase in
dence of the order parameters introduces in this case the only . - ...o1 <\ rrent in the case=— 1. In disregarding sur-

modification in Eq.(18): the order_ parametgn ()| should face pair breaking the Josephson current in tunnel junction at
be replaced there by the effective surface order parameter i ~ ) )
IZ(zp)I T<T, in the casey=—1 is written as

For  temperatures D(py o)A (pr o)l|cosb/2)|<T = Ujgosin®, (22
<Apde.<T. one can put tariBg(¢)/2T |~ 1 near the upper
limit of the integral in Eq.(18) and use Eqs(3) and (4) for ~ where uP=9/8, u"v=5/3, u"**-y*~1.95, us=9/8, and u'
Sg'fxzfyz(go),ggt(e, ¢)* 8¢. Then we find a logarithmic tem- ~0.142. The “reference” current; , is taken here the same
perature dependence of the integral near the lower liin @S in EQs.(20) and (21) in order to make clear that the
Eq. (18). Qualitatively, the temperature is a lower cut of the Josephson current in the case of opposite chwalmgs is of the
integral, but for fixing numerical factors we checked its conventional order of magnitude yvlthout any Iogarlth_mlc en-
asymptotic behavior numerically. Thus, at sufficiently low @ncement. The smaller numterlcal factdr is associated
temperatures, when contributions to the current from quasiW'trf‘ Eh% Lower transparency faso= * /4 as compared with
particles with energies the order [a&f(p;)| already take their @y *~"°=0. Surface chiral bound states in the whole range
zero-temperature value, the Josephson current associatetisubgap energies form the current in the particular case,
with the low-energy part of the chiral bound states and deeven at low temperatures. One can show that the low-energy
scribed by Eq.(18) can still grow logarithmically with de- chiral quasiparticle states lead to a current which is reduced
creasing temperature. As a result, the total Josephson currecimpared to Eq22) by the small cutoff paramete¥e. and
can be represented for the low-temperature intervait does not matter whether surface pair breaking is taken into
VDpr 9K (pr 0| cos@pr2) <T<T, as account or not.

Another reason for choosing the “reference” currggt,
in the casey=—1 same as foiy=1 is that in neglecting
both the surface pair breaking and the presence of Andreev
surface bound states, and simply using the bulk expressions
where joo=LeNyvDoA, (LP=2/3, L"*-v~0.45, L™  for the Green's functions, the tunnel Josephson critical cur-
=2/5,L°=1/9, anstZZ/Zl),Ab=AE’fx27yz'fxy’s’t, aandb  rent across the domain walf& — 1) vanishes. This in sharp
are constants the order of unity. In our analytical results hereontrast with Eq(22). For a vanishing Josephson current one
and below the transparency is taken for high and thin potenaeeds, for example, different projections of the orbital angu-
tial barriers as was represented at the end of the precedingr momentum, i.e., different values ¢f, of the Cooper
subsection. Further, disregarding surface pair breaking, wpairs in the left and right superconductors together with a
calculate analytically a total Josephson current and find agonservation of, in the tunneling process. The current van-
low temperatures, after comparison with E80), a®P=3/2,  ishes, for instance, i, is along the interface normal and the
bP~0.69, ah*-v’~2.23, b"*-y’~0.44, a®=3/2, and b® interface is symmetric with respect to rotations around the
~0.23, a'=3/4\2, andb'~0.95. In neglecting not only a normal®®*°As we demonstrate in Eq22), if |, is along an
surface pair breakingthat is, a spatial dependence of the axis parallel to the interface, the interface influence results in
order parameter but the presence of any surface boundinterface bound states and the possibility of a nonzero tun-
states at all, one can use spatially constaundk) values of neling of Cooper pairs. Equatigq2) applies to tunnel junc-
Green’s functions for the calculation of the Josephson curtions. Effects of high transparency can also lead to finite
rent. This oversimplified approach leads for the symmetriccritical current’’
tunnel junction to the Josephson critical currggng. As the On account of the bound states, the Green’s function de-
argument of the logarithmic function in EO) is supposed pends on the distance from the surface even when disregard-

sin®d, (20

. . bAj
ix(T)= aJc,OIn T

214503-8



JOSEPHSON CURRENT BETWEEN CHIRAL SUPERCONDUCTORS PHYSICAL REVIEV848214503

0.40 F 0.20 E
J030 TN 015 £ TTINN 1
S\ ------- N Nemee p—_yptyy mm———— ~
& 020 N 0.10 | =) .
'~ e -~ P -
o010 | = 1 oos kb =) | FIG. 4. The temperature de-
—+1 L f 11 pendence of the critical current di-
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’ 2.0 -1.0 00 2.0 -1.0 0.0 ency D, plotted for different
log(T/T ) log(TIT ) values of D,. The junctions
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ing a spatial dependence of the order parameter. There is aemperature, below which the transparency influence be-
important qualitative difference between the surface and bullcomes noticeable, is proportional {D, again in agreement
values of the propagators as a function of momentum direcwith our analytical results.
tion. In particular, the angle is an important part of the In Fig. 5 we show the analogous result for thg-wave
phase not only for the chiral order parameter, but for the bullsuperconductor. Since the low-energy contribution from the
value of the off-diagonal components of the Green'’s functiorbound states is associated in this case only with glancing
as well. Since we consider thleaxis to be parallel to the trajectories, there are no anomalies in the critical current.
surface, the surface breaks conservation of the projection of
angular momentum. For this reason the anglelrops out
from the phase in the surface value of the off-diagonal com-
ponents. This can be obtained on account of the continuity of Broadening of the chiral low-energy bound states can sub-
the quasiclassical Green’s function, taken for incoming andgtantially modify the low-temperature behavior of the critical
outgoing trajectorie$with anglese and 7— ¢ respectively ~ current found above. Even a small broadeningA,, has a
at the impenetrable surface. Thus, on account of surface eprofound influence on the low-energy parts of chiral
fects, the Josephson tunnel current across the domain wall Bfanches. We take a small broadening into account in the
of the conventional valugsee Eq(22)]. polelike term of the retarded quasiclassical Green'’s function,
The logarithmic behavior of the critical current found Where we simply replace the factor[&/-eg(ps)] with

above for classical symmetric junctions wjh=1 is observ- 118 ~&s(Pr) Tiv], analogously to what is done in Ref. 26.
able only at sufficiently low temperatures and at low junction NiS slightly modifies the analysis of Ref. 21 for the contri-
transparencies when the logarithmic approximation can bution from the low-energy bound states to the Josephson
justified. This is demonstrated in Fig. 4, where we show thefUIent in tunnel junctions. We evaluate the current in the
result of numerical calculations for the temperature depentunneling limit assuming a momentum-independent broaden-
dence of the critical current for different values of barrier "9 substantially greater than the low-energy bound state and
transparency. the temperatureT,DyA,|cos@®/2)|<y<A,. The lower

cut of the integral in Eq(18) is associated in this case with
oY rather than the temperature or the bound state energy. Then

we find for the Josephson current

C. Effects of broadening of the bound states

As seen for they=+1 junctions, the ternD,In Dy is
present in the tunneling limit in the dependence of the zer
temperature critical current on the transpareiisge Eq.
(21)]. Further, the low-temperature range, where the critical
current linearly depends on Th[see Eq(20)], becomes well
pronounced only for transparencies less than?1The finite
transparency efficiently cuts off the logarithmic temperature
dependence of the critical current. The lower the transparFor spatially constant order parameters we @ét=0.61,
ency, the larger the low-temperature range. The characteristiw*-y*~0.39, ws~0.21, andw'~0.84.

sin®d. (23

. . WA
Jx(o):a]c,oln T
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0.02 ' ' 45°-orientedd-wave superconductor for which each trajec-
- tory has an Andreev bound state at zero energy. T{gr€) )
- D0=10_4 can take large values along with the polelike term in the
— D=10 quasiclassical Green’s functigh.
=== D=10 In Fig. 6 we show the influence of impurity effects on the
001 || === DDZIO_I T temperature dependence of critical current. In order to get a
—-— D =10 wide range of well-pronounced dependences of the critical
current on the small broadening, we take the extreme tunnel
limit and putD,=10"°. One can see from the Fig. 6 that for
observing the logarithmic low-temperature enhancement of
0 jc,» one needs superconductors of high purity.

4]

JAT)D

f-wave y=+1

0.00 t L
-2.0 -1.0

0.03 T T IV. SUMMARY

~ Chiral interface Andreev bound states have been obtained
and studied above both analytically and numerically. We
showed that the low-energy chiral states result in the low-
temperature enhancement of the Josephson current between
clean chiral superconductors in symmetric tunnel junctions.
0.01 | . The enhancement is more pronounced in quantum point con-
tacts. In classical junctions the zero-temperature current ac-
quires an additional logarithmic dependence on low transpar-
) ency or on the broadening of the bound states. Under the
-2.0 -1.0 0.0 conditions considered, the Josephson current through the do-
log(T/T) main wall does not vanish due to the bound-state contribu-
tion.
FIG. 5. The temperature dependence of the critical current cal-
culated as in Fig. 4 but for thg,,-wave superconductor.

0.02 + 4

J(miD,

| f-wave x=—1
0.00 L
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potential,u. The impurity self-energy is in this case APPENDIX: ENERGIES OF THE INTERFACE

<§(s)> BOUND STATES

- , 24
1-0[1+(g(e))?] 2

where the scattering strength= sir? & (5 is the s-wave
scattering phase shift,<06,=< m/2) and the scattering raté

S(e)=T

In the presence of a quasiparticle bound stai€p;) the
quasiclassical retarded propagatgr has a pole ate
=eg(ps). One can introduce the residue of the propagétor

parametrizeu and the impurity densityy,, as as
(7Nu)? N2 9(pr riea(p))= lim {[e—es(p)]a(pr.rie)},
o= y = n,mp. (25) gHsB(pT)
1+ (mNsu)? 1+ (mNsu)? (A1)

Due’ to th? low-energy bqund states, the' I\/latsub"’"‘%\/hich is finite and satisfies the same transport equatian as
Green’s function can take quite large values in the IOW'but completed with the relation

temperature region if the broadening and the transparency
are sufficiently small. However, the low-energy states form N
only a small part of the chiral branches; i.e., for most of the [9(pr.F;ea(pp)]°=0, (A2)
guasiparticle trajectories the energy of the chiral states is the o .

order ofA,(p;). For this reason the quasiclassical propagatof@ther than the normalization condition. _

for the chiral superconductor, averaged over the Fermi sur- FOr calculating the bound-state energies, the Eilenberger
face,(g(e)), does not take large values but is of the order ofequation forg can be solved in terms of the following
unity or less. This differs greatly from the case of aansatz
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-------------- - SEeemeeTTITIE, =10"5. Here j(T) is calculated
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T (pr x:es(p)=0(p: X:ea(pr))exd —i 7(pr )1, of an impenetrable wall Eq(A5) reduces to a continuity

condition for 7y(ps), taken for incoming and outgoing mo-
menta along a quasiparticle trajectory.
(A3) Equation(A4) can be easily solved for spatially indepen-
dent order parameters. Thus, for a symmetric junction be-
The whole number of quasiclassical equations can then bigveen thep-wave superconductofsvith any chiralitieg one

7(pf X;eg(Pp))= —EJ(pf Xreg(pp))exdin(ps,x)].

reduced to the one scalar equation gets
Uf'
- 7xf7x7](pf X)+eg(pr) —|A(ps,Xx)| n|(pf,|)=¢>|+x|cp—arcco;€%),
b
x cog n(pr,X)— ¢(pr,x)]=0, (Ad)
completed with the condition at the interfate (P ) =B+ x(7— @) +arcco es(Pr.1)
_ AE
. (77I,O(pf,l)_77r,0(pf,r)) [ mo(Pr1)— ﬂr,o(pf,r)>
D sin > sin = > =
7(Ps ) =P, +x <p+arcco{ SB(pf’l))
) (77|,0(Pf,|)—77|,o(pf,|)> _ (ﬁr,o(pf,r)—ﬂr,o(pf,r)> rIn ro N
= sin = sin =
2 2
eg(Pr,1)
(A5 m(pf,r)=<1>r+xr<w—qo>—arcco€ e BRGY
and the asymptotic conditions in the right and the left super- b

conductors Substitution of Eq(A7) into Eq. (A5) results in Eq.(3)

¢ (P SIN 7. (Pr) — b (Pr) ISGNX>0,  X— =0, for the spectrum of the bound states in the case of identical
’ (AB) chiralities and in Eq(8) for opposite chiralities. Similar deri-
vations with the other types of pairing lead to E(3)—(5)
Equations(A4)—(A6) are valid both for singlet supercon- and Eqs(8)—(10).
ductors and for triplet ones with a (0Q) order parameter. Calculations of surface and interface chiral bound-state
Equation(A5) connects solutions of EA4) with momenta  energies, taking into account the spatial profile of the order
Pri, Pty Of incoming quasiparticles from the left and right parameter, are carried out for the low-energy states with mo-
sides of the interface with the momermtg , p;, of reflected menta close to the nodéer to low-energy minimap o of
ones. For specular reflection, the momentum parallel to théhe chiral brancheseg(p;). Consider, for example, the
interface is conserved, i.qa@ylzp‘h:p‘r,f:p‘]l’r .Inthe limit ~ p-wave order parameter. We note thel(p;,x)=0 for two
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particular momentum directiong:f=0 and#. On the other  particular momentum directions witkpy= + 7/4,+ 37/4,
hand,e§=0 and# correspond to the incoming and outgoing and this at any fixed value @f. The solution of Eq(A4) for
momenta in a reflection event whet(p;,x) changes its ¢=¢g is 7](0)_(1)+(77/2)[1+Sgn()()(pypz)] Corrections to
sign. Hence, the zero-energy surface bound states take pla@éo linear in small deviation®¢ from goo are described by
near an impenetrable surface for these particular quasipartine equation
cle trajectories. For thp-wave order parameter the solution
of Eq. (A4) for the zero-energy states is!"=d 2 (==

. : (1) - t
+(m/2)sgnk). At an impenetrable surface a chiral branch 7t (X,Pr)= B |f [eg(Pr)sgn(vy)
crosses the zero energy with a slope, which can be found for X

a spatially dependent order parameter. Indeed, considering a —x"Osgnix’ 6¢)| A} (pr . x")|]
small deviationdg = ¢ — ¢f from any of the two trajectories,
we !rnearrze(gg (A4) and get the following first-order cor- x ex J L(pr,x")|dx" | d
rections toz,”: | x
(A9)
7SI(x, pf)———f [eB(pr) —x"Dsgripyx)|AB(pr ,x")|] Then in a narrow region of the nodes of
Al(ps) we obtain for an impenetrable walk}(p;)
2 [y =% x SgNQEx8®)|Aloe1(Pr, £ 0)| wheredg is the deviation
XEXP( | |f |AR(py, ")|dX") (A8)  of ¢ from the direction of a nodeA!(py)=0.
X

If the equality ¢;(x) =0, assumed above, is not satisfied,
the result for the effective surface order parameter becomes
Here and below the upper and lower signs correspond tmore cumbersome. First, one should find the function
half-spacesx>0 andx<0, respectively. 7(9(x) satisfying the equation
At the impenetrable wall 7(p; ,x=0)=7{"+ n{P(x
=0, ps) is one and the same for incoming and outgoing mo-

mentum directions. Taking this into account we find Eki) Vi 0 ©)
for the bound-state energies closegp for p-wave pairing. 2 0720 +[A1(pr0,X)|c0g 7V(X) = () = P]=0
Calculations for thée ;4 case are very close to tipewave (A10)

pairing since the orbital parts of the order parameters contain

identical dependence qu andp, . Thus, we get in this case

e3(Pr) = = x SIN@,S¢)| A3, 1¢(Pr, =0)| with the same no- and the asymptotic conditiong®)(+ ) =® + (m/2) sgnx.

tation as in Eq(11). Then, introducing the notation;(x)= 7{°(x) — ¢;(X)
Analogous considerations can be carried out forlgg ~ —®, we obtain, for example, for thig2_ 2-wave pairing the

triplet pairing. Then zero-energy bound states occur at foufollowing result:

+oo 2 X
f |A(ps ,X)Isiné“z(X)exp( - —f [A1(p ,X’)Isin§1(X’)dX’)dx
0 |Ux| 0

eV (pr)=x"Vsgn v, (A11)

+oo

J7 exp(—iJX|A1(pf,x’)|sin§l(x’)dx’>dx
0 |Ux| 0

Let now the transmission be finite, but sufficiently small. Assubpex) =0, which takes place, for instance, for thevave
pairing. In vicinities of the momentum drrectromﬁo, whereA$ b(pf 0 =0 (that is, o= ¢}), we getr;(o)—<b+(rr/2)sgné<)
—sgn(xvx)sB(pf o/|AY b(pf o)|- Equation(A8) can be then generalized to the presence of nonzero transparency:

(p ) ) 2 x'
(l)xr)f)———f ( B(pr)— |Z (fp)|| B(p?,o)—x“')sgrrvxx’5¢)IA2(pf,X’)I>exp( IWJ IAE(pf,x”)ldX”>dx
f x| J x

(A12)

Analogously, near momentum drrectrorpffto, for which Al b(pf 0 =0 (that is, ¢o== 7/4,£37/4) we get n(o)—CD
+ (m/2)[1+sgnkxpyp,) ] — sgn(XUX)eB(pf 0)/|A b(pf o|- Then in the presence of a nonzero transparency we get
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| A5(pr X" t ot

77§1)(X,Pf)=—3jtm(8}3(pf)_ . eg(Pr o)
UxJx |Ap(ps) '

—x"Usgrivx’ d¢)| AL (py 'X')|)

2 x! t
X ex I—f |AS(ps,X")|dX" | dX'.
|Ux| X

(A13)
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d\/ 2
StB(pf):i [Sg(pf)|p=o]2+l)cosz<§) (m
e 2 (x , , o712
Xfo eXP(—mfolAz(pf,x )[dx )dx)

(A14)

For the domain wall = —1) the spectrum for the-wave
pairing is described by Eql4). The same expression is

valid as well for theE, 4 pairing. For theE,, type of pairing

For finding the bound-state energies one should insert sove get in the case of opposite chiralities

lutions from Eq(A12) [Eq. (A13)] into the condition at the
interface [Eq. (A5)], taking account of the first non-
vanishing corrections in transparency ordg. For a sym-

metric tunnel junction, when the order parameters on both
sides coincide for every momentum direction and, in particu-
lar, have identical chiralities, this expansion leads to Egs.

(13) for the p-wave pairing as well as for the, ; pairing. For
the E,,, type of pairing we get in this case

2

Joxl

+ o0 2 X
xf ex ——f |AS(ps,x")|dx" | dx
0 |Ux| 0

o
es(Pr)=ex(Pp)|p=o* \/I_DSin( EM

-1

(A15)
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