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Specific-heat exponent of random-field systems via ground-state calculations

A. K. Hartmann* and A. P. Young†
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Exact ground states of three-dimensional random field Ising magnets with Gaussian distribution of the
disorder are calculated using graph-theoretical algorithms. Systems for different strengthsh of the random
fields and sizes up toN5963 are considered. By numerically differentiating the bond-energy with respect toh
a specific-heat-like quantity is obtained, which does not appear to diverge at the critical point but rather
exhibits a cusp. We also consider the effect of a small uniform magnetic field, which allows us to calculate the
T50 susceptibility. From a finite-size scaling analysis, we obtain the critical exponentsn51.32(7), a5

20.63(7), h50.50(3) and find that the critical strength of the random field ishc52.28(1). We discuss the
significance of the result thata appears to be strongly negative.
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I. INTRODUCTION
The random field Ising model1 has been extensivel

studied2–4 both because of its interest as a ‘‘simple’’ fru
trated system and because of its relevance to experim
especially those on the diluted antiferromagnet in a unifo
field.5 The random field Ising magnet~RFIM! Hamiltonian is
given by

H52J(
^ i , j &

SiSj2(
i

hiSi , ~1!

where theSi561 are Ising spins,J is the interaction energy
between nearest neighbors, andhi is the random field. The
valueshi are independently distributed according to a Gau
ian distribution with mean 0 and standard deviationh, i.e. the
probability distribution is

P~hi !5
1

A2ph
expS 2

hi
2

2h2D . ~2!

We shall consider three-dimensional lattices with perio
boundary condition andN5L3 spins.

A sketch of the phase boundary is shown in Fig. 1. At lo
values of the random field and temperatureT, the system is
in a ferromagnetic phase, and at high temperatures or
dom fields, the system is paramagnetic.

In this paper we shall be interested in the values of
critical exponents along the phase boundary. The rand
field is a relevant perturbation at the pure~i.e., h50) fixed
point, and the random-field fixed point is atT50.6,7 Hence,
the critical behavior is the same everywhere along the ph
boundary in Fig. 1~assuming that the transition is alway
second order! except forh50. We can therefore determin
the critical behavior by staying atT50 and crossing the
phase boundary ath5hc , see Fig. 1, which is convenien
because we can determine the ground states of large lat
exactly using efficient optimization algorithms,8–11 as dis-
cussed in Sec. II. This has the advantage that one can s
much larger systems than it is possible in Monte Carlo sim
lations, and, for each realization, there are no statistical
rors or equilibration problems.
0163-1829/2001/64~21!/214419~8!/$20.00 64 2144
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Using these ground-state techniques, most of the crit
exponents have been determined with some precision; f
thorough, recent study see Ref. 12. Most of these expon
are consistent with scaling relations. However, as we s
discuss in Sec. V, those scaling relations predict a spec
heat exponenta close to zero, while Monte Carlo data o
fairly small sizes13 (L<16) find a/n520.4560.05, where
n is the correlation length exponent~which has a value
slightly greater than unity, as discussed in Secs. IV and!.
Interestingly, experiments find14 a logarithmic divergence
corresponding to a specific-heat exponenta50, as expected
from scaling.

In order to try to resolve this puzzle, we calculate here
specific-heat exponent for the RFIM usingmuchlarger sizes
(L<96) than in the Monte Carlo work,13 by using optimiza-
tion methods to determine exact ground states. We also fi
strongly negative value fora, a/n520.4860.05, consis-
tent with earlier Monte Carlo data,13 but in disagreemen
with experiment and apparently in violation of scaling.
Sec. V we will discuss possible ways around this discr
ancy. In addition, we determine the susceptibility, which,
our knowledge, has not been directly computed before us
ground-state methods. Our results are consistent with ea
calculations.

FIG. 1. A sketch of the phase boundary of the random field Is
model. The ferromagnetic phase is denoted by ‘‘F’’ and the pa
magnetic phase by ‘‘P.’’ The critical value of the random field
T50 is denoted byhc . The lines with arrows at both ends indica
the path followed by varyingJ for some fixed value ofh andT.
©2001 The American Physical Society19-1
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II. NUMERICAL TECHNIQUES

We used well known algorithms8–11 from graph
theory15–17 to calculate the ground state of a system at giv
random-field strengthh. To implement them we applied
some algorithms from the LEDA library.18 The calculation
works by transforming the system into a network,19 and cal-
culating the maximum flow in polynomial time.20–24The first
results of applying these algorithms to random-field syste
can be found in Ref. 25. In Ref. 26 these methods w
applied to obtain the exponents for the magnetization,
disconnected susceptibility, and the correlation length fr
ground-state calculations up to sizeL580. Other exact
ground-state calculation of the RFIM can be found in Re
27–29,12. Note that in cases where the ground-stat
degenerate30 it is possible to calculate all the ground-states
one sweep,31 see also Refs. 32,33. For the RFIM with
Gaussian distribution of fields, the ground state is nondeg
erate, except for a two-fold degeneracy at certain value
the randomness, where the ground state changes, see Se
so it is sufficient to calculate just one ground state.

III. QUANTITIES OF INTEREST

In zero random field, the specific-heat exponent is
tained from the singularity in the second derivative of t
free energy with respect to temperature. More generally
determined from the singularity obtained by varying a p
rameter which crosses the phase boundary from the para
netic phase to the ferromagnetic phase. From Fig. 1 we
that this can be conveniently accomplished by keeping
ratio of h/J to T/J fixed, i.e., by varyingJ. The first deriva-
tive of the free energy~per spin! F with respect toJ, which
we call the ‘‘bond energy’’EJ , is given by

EJ[
]F

]J
52

1

N (
^ i , j &

^SiSj&, ~3!

where ^•••& is a thermal average, and the sum is ov
nearest-neighbor pairs.EJ has an energylike singularity in
the vicinity of the phase boundary. Forh50 it is precisely
the energy, apart from an overall factor ofJ.

The total energy per spin,E, is given by

E5JEJ1hEh , ~4!

where the ‘‘field energy’’Eh is given by

Eh[
]F

]h
52

1

N (
i

S hi

h D ^Si&. ~5!

Having differentiatedanalytically with respect toJ, we
now setJ51, considerT50 only, and obtain a specific
heatlike quantity by differentiatingEJ numericallywith re-
spect to the random fieldh. We emphasize that it is no
necessary to vary the temperature in order to observe
specific heat singularity. To observe this singularity the
rection in which the phase boundary is crossed must ha
projection on to the correct scaling field, which means t
the phase boundary should not be approached tangent
The angle at which the phase boundary is approached
21441
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affect the size ofcorrectionsto scaling by mixing in a vary-
ing amount of irrelevant operators, but the asymptotic beh
ior will always be the same~as long as the approach is n
tangential!.

To avoid confusion we point out that the role taken by t
free energy at finite-T is played by the energy atT50, since
the two are equal in this limit. More precisely, theenergy
singularity atT50 has the forme22a, wheree is the devia-
tion from criticality, which is the same as thefree-energy
singularity at a finite-T transition. At finite-T, the energy and
entropy each have a stronger singularity, of the forme12a,
but with opposite signs such that this singularity cancels
the free energy,F5E2TS. A analogous cancellation occur
at T50, but betweenEJ andEh since bothEJ andEh have
singularities with exponent 12a but with amplitudes of op-
posite sign such that this singularity cancels in the total
ergy. To see this note that from Eq.~4!

]E

]h
5J

]EJ

]h
1h

]Eh

]h
1Eh . ~6!

However, atT50 whereF5E, we have]E/]h5Eh , and
so, in this limit,

J
]EJ

]h
1h

]Eh

]h
50. ~7!

Hence, if Eh;uh2hcu12a, then ]Eh /]h and ]EJ /]h each
have singularities of the formuh2hcu2a, but with opposite
signs such that this singularity cancels in]E/]h. We have
verified that this cancellation occurs in our numerical da
From Eqs.~6! and ~7!, ]E/]h has the same singularity a
Eh , i.e., uh2hcu12a, soE;uh2hcu22a, as stated above.

We use the same set of random fields for different val
of h and scale them all by a fixed overall factor. More pr
cisely we takehi5e ih, where thee i are chosen from a
Gaussian distribution with standard deviationunity, and are
the same34 for all values ofh. We use a first-order finite
difference to determine the derivative ofEJ numerically and,
since this is a more accurate representation of the deriva
at the midpoint of the interval than at either endpoint, t
‘‘specific heat,’’C, at T50 is defined to be

CS h11h2

2 D5
@EJ~h1!#h2@EJ~h2!#h

h12h2
, ~8!

whereh1 and h2 are two ‘‘close-by’’ values ofh, and @••
•#h denotes an average over random-field configuratio
which is carried out~approximately! by repeating the calcu
lation for Nsamp independent realizations~samples! of the
random fieldse i . We choose a sufficiently fine mesh o
random-field values that the resulting data forC is smooth.
Error bars are obtained by determining the specific heat fr
the corresponding finite difference as in Eq.~8! for each
sample separately, and computing the standard devia
The error bar is, as usual, the standard deviation divided
ANsamp21.

In Fig. 2 the bond energy per spinEJ for two representa-
tive L58 systems is shown as a function ofh. For very small
values ofh all spins point into the same direction and
9-2
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SPECIFIC-HEAT EXPONENT OF RANDOM-FIELD . . . PHYSICAL REVIEW B64 214419
EJ523. For largeh the spins follow the random fields an
so EJ→0 in this limit. The curves in Fig. 2 are stepwis
constant functions because generically it is not favorable
flip spins if the random field is increased by a small amou
However, at certain discrete field values, the total energy
another state, which differs in the orientation of a cluster
spins, will become degenerate with the energy of the gro
state and for slightly larger values ofh the state with the
cluster flipped will become the new ground state. Althou
the total energy is continuous at the field values where
ground-state configuration changes, the bond energy, w
is just the first term in Eq.~1!, changes discontinuously. A
larger field values the jumps inEJ occur closer together an
would be difficult to distinguish on the scale of a figure. Th
is why we show, in Fig. 3, data for a rather small size. Ev
for small sizes, the jumps occur at different values ofh for
different samples, and so theaveragevalue ofEJ is expected
to be smooth.

This is illustrated in the upper part of Fig. 3 forL516
which shows a smooth variation of@EJ#h with h. The data in

FIG. 2. Bond energy per spin,EJ , defined in Eq.~3!, for two
L58 samples as a function of the random-field strengthh.

FIG. 3. The upper figure shows the average bond-energy@EJ#h

per spin as a function of the random-field strengthh for L516. The
lower figure displays the resulting ‘‘specific heat,’’ calculated fro
Eq. ~8! of the text.
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the lower part of the figure are the average specific h
obtained as the numerical derivative of the data for@EJ#h
according to Eq.~8!. The specific heat is seen to have a pe
as expected. We will investigate the size dependence of
peak in Sec. IV.

In addition to the specific heat, we also calculate the s
ceptibility by considering the response to a small unifo
external fieldH, i.e., we consider the Hamiltonian

H52J(
^ i , j &

SiSj2(
i

hiSi2H(
i

Si . ~9!

For each realization, the sign ofH is chosen in the direction
of the magnetization of the ground state. This prevents
whole system from flipping when applying a magnetic fie
to a system which is almost ferromagnetically ordered. T
scaling behavior of the magnetization should not be affec
by this choice. In Fig. 4, the result is shown for system siz
L54 andL516 near the values of the field, where the su
ceptibility attains a maximum. NearH50, the data points
can be fitted very well with a parabola, the coefficient of t
linear term gives the zero field susceptibilityx
5dm/dHuH50. Thus in order to calculate the susceptibilitie
we perform ground-state calculations for three different v
ues of the uniform fieldHn5nHL (n50,1,2), where, for
each size, the value ofHL used is shown in Table I, along
with the number of samples. We chose the values ofHL for
each size as follows. For the smaller sizes we perform
several fields values, as shown in Fig. 4, to determine
what range of fields a parabola accurately fitted the data.
larger sizes, finite-size scaling tells us that, near the crit
point, the characteristic field scales withL asL2yH where the
‘‘magnetic exponent’’yH is given by (g1b)/n, with g the
susceptibility exponent, andb the order parameter exponen
As discussed further in Sec. V, several calculations giveb
.0,g.2, andn.1.3, and soyH.1.5. We therefore scale
HL for the larger sizes by a factor of roughlyL21.5.

FIG. 4. The average magnetizationm as a function of a uniform
external fieldH near the transition forL54, h53.75 ~inset: L
516, h52.8). The solid lines represent the results of fits to a
rabola, while the dashed lines display the tangents atH50; i.e.,
their slope gives the susceptibility.
9-3
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A. K. HARTMANN AND A. P. YOUNG PHYSICAL REVIEW B 64 214419
For each system size, we fit a parabola through the th
data points for theaveragemagnetizationm(Hn). To esti-
mate the error, we performed a jackknife analysis35 in which
we divided the results for the magnetizations~for each sys-
tem size and each strength of the disorder! into K blocks,
calculated the average valuesK times, each time omitting
one of the blocks, and then performingK fits. The error bar is
estimated from the variance of theK results for the linear
fitting parameter. We usedK550 and checked that the resu
does not depend much on the choice ofK.

IV. RESULTS

We have studied random-field systems with sizes fromL
54 to L596. For each size, simulations were made for s
eral different values ofh, always averaged over many rea
izations of the disorder. Near the ferromagnet-paramag
phase transition, the number of samples used is the lar
ranging from 105 for the smaller system sizes to 3800 f
L596 for each valueh, as shown in Table I. With curren
algorithms, it is in principle possible to study even larg
system sizes, such asL5128 or evenL5256, but, using the
LEDA algorithms, these need more memory than the 5
MBytes available to us. Hence we have restricted our st
to L<96, which is still much larger than sizes that can
simulated using Monte Carlo simulations.

In the thermodynamic limitthe singular part ofthe spe-
cific heat diverges according to

Cs'A6uh2hcu2a, ~10!

where theamplitudes A1 and A2 refer to h.hc and h
,hc , respectively, anda is the specific-heat exponent. I
addition there is aregular piece of the specific heat,Creg,
which is finite at the critical point and sodominatesthere if
a,0. In a finite system, finite-size scaling predicts that

Cs;La/nC̃„~h2hc!L
1/n
…, ~11!

TABLE I. The maximum number of samplesNsamp used, and
sizes of smallest nonzero uniform fieldHL , for each system sizeL.
As discussed in the text, the number of samples used was larg
the vicinity of the peaks in the susceptibility and specific heat th
elsewhere.

L Nsamp HL

4 105 0.05
6 60 000 0.025
8 40 000 0.016
12 30 000 0.008
16 23 000 0.005
24 27 000 0.0028
32 15 000 0.0018
48 15000 931024

64 9000 631024

96 3800 331024
21441
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wheren is the correlation length exponent. The specific-h
peak will occur when the argument of the scaling functionC̃
takes some value,a1 say, so the peak positionh* (L) varies
as

h* ~L !2hc'a1L21/n, ~12!

and the value of the singular part of the specific heat at
peak varies as

Cs
max~L !;La/n. ~13!

In Fig. 5 the specific heatC is shown as a function of the
random-field strengthh for selected system sizes. The err
bars are obtained from the standard deviation of the data
different samples, and are quite small because a large n
ber of samples have been averaged over, see Table I. A
peak can be seen, which moves to the left and increase
height with increasing system size. The number of samp
used is larger near the peak to compensate for the gre
sample to sample fluctuations in this region. For each sys
size, we performed parabolic fits to the region of the peak
obtainh* (L) and the height of the peak,Cmax(L). The shift
of the maximum according to Eq.~12! can be used to esti
mate the infinite-size critical strength of the random field,hc
and the correlation-length exponentn. The best fit gives

hc52.2860.01, 1/n50.7360.02, ~14!

see Fig. 6. We determined the probabilityQ that the value of
x25( i 51

N (yi2 f (xi)/s i)
2, with N data points (xi ,yi6s i) fit-

ted to the functionf, is worse than in the current fit36 to
quantify the quality of the fit. Here we getQ50.20, which is
fair.

Next we try to estimate the specific-heat exponent
looking at how the peak valueCmax scales withL. If a50
one expects logarithmic divergence and the simplest hyp
esis is to fit the data to

Cmax5a1b logL, ~15!

in
n

FIG. 5. ‘‘Specific heat’’C, calculated from Eq.~8!, as a function
of the random-field strengthh for system sizesL54,8,16,32,64, and
96. The vertical dashed line indicates the location of the criti
value of the random field,hc52.28, see Eq.~14!. The inset is an
enlargement of the peaks for the larger sizes.
9-4
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SPECIFIC-HEAT EXPONENT OF RANDOM-FIELD . . . PHYSICAL REVIEW B64 214419
where the constant terma comes partly from the regula
piece of the specific heat. However, Fig. 7 shows that
does not work. A plot ofCmax againstL ~on a log scale!
shows clear curvature, suggesting that the height of the
cific heat will saturate to a finite value asL increases. If one
considers only the data points for sizesL54, . . .,16, as in
Ref. 13, a negative curvature is still visible, but the resul
much less clear.

A peak height which saturates forL→` implies thata is
negative, in which case the specific heat has a finite cus
the critical point, rather than a divergence. We have there
tried a fit of the form

Cmax~L !5C`1a2La/n, ~16!

FIG. 6. A plot of the random field where the specific heat atta
its maximum, as a function of system sizeL. The solid line shows a
fit to the functionh* (L)5hc1a1L21/n with hc52.28, 1/n50.73,
anda152.55. The inset shows the data as a function ofL21/n.

FIG. 7. The maximumCmax of the specific heat as a function o
system sizeL with logarithmically scaledL-axis. The dashed line is
a tangent to the data and a comparison between it and the
demonstrates thatCmax grows slower than logarithmically with sys
tem size. The solid line shows a fit to the functionCmax(L)5C`

1a2La/n with C`52.84, a/n520.48 anda2523.52. The inset
shows the data and the fit as a function ofLa/n.
21441
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in which C` comes from the regular part of the specific he
yielding

c`52.8460.05, a/n520.4860.03. ~17!

This fit is shown in the inset of Fig. 7. The quality of th
fit, Q50.05, is not very good. We have tried different fi
using only the larger system sizes, which increases the q
ity of the fit slightly, but the resulting error bars are ve
large. The central estimate fora actually becomesmore
negativeif we only include the larger sizes. The rather po
fit may indicate difficulty in accurately estimating the err
bars for the location and height of the specific-heat peak.
analysis suggests that the specific-heat exponent is stro
negative, in agreement with Rieger13 though we cannot rule
out a leading singularity witha.0 and a sufficiently small
amplitude that it is hard to see in our data.

To look for this possibility, we also tried more compl
cated fits including corrections to scaling of the form

Cmax~L !5C`1a2La/n~11bL2v!, ~18!

wherev is the leading correction to scaling exponent. T
data did not determine all the parameters cleanly, and th
program,37 which works iteratively, converged to differen
results depending on the starting values, and whether an
the parameters were held fixed. The solutions we found w
of two types:~i! the fit is the same as that in the simpler fit
Eq. ~16! ~i.e., v is essentially zero anda/n and the other
parameters are the the same as found in the simpler fit!, ~ii !
v is quite small,a2 is very large, andb is negative such tha
11bL2v is close to zero. Thus in the second type of fit, t
data are represented as two singularities with large am
tudes which almost cancel. This does not seem physical.
fitting routine did not converge to a solution with a leadin
singularity which has a small amplitude anda.0, plus a
correction term with a larger amplitude.

We will discuss our specific-heat results further in Sec.

FIG. 8. Susceptibilityx as a function of the random-field
strengthh for system sizesL58,16,32,64, and 96. Only data nea
the peaks are shown because the data away from the peaks
lower precision.
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A. K. HARTMANN AND A. P. YOUNG PHYSICAL REVIEW B 64 214419
The susceptibilityx as a function ofh is presented in Fig.
8 for selected system sizes. It is seen that the height of
peak grows much faster than for the specific heat. To ana
the divergence ofx, we have again fitted parabolas to th
data points near the peak to obtain the positionsh* (L) and
xmax(L) of the maximum. By fitting the data forL>32 to a
function xmax(L)5a3L22h, whereh describes the decay o
the ‘‘connected’’ correlations at criticality, we obtain (Q
50.63)

h50.5060.03, ~19!

see Fig. 9.
Finally, we have also estimatedhc and the correlation-

length exponent from the susceptibility data using Eq.~12!,
as we did for the specific heat. Using only sizesL>32 (Q
50.84), we find

hc52.2960.01, 1/n50.8160.05. ~20!

This estimate ofhc agrees with that obtained from th
specific heat, see Eq.~14!, while the estimate for 1/n differs
from that in Eq.~14! by slightly more than the sum of th
error bars, probably indicating some systematic correcti
to scaling.

V. DISCUSSION

We have determined the ‘‘specific heat’’ of the rando
field Ising model atT50 using optimization algorithms. Th
height of the peak increases less fast than logarithmic
with system size, and a finite-size scaling analysis gives
exponents shown in Eqs.~14! and~17!. From the analysis of
the susceptibility, the exponents shown in Eqs.~19! and~20!
are obtained. The final results we quote are

hc52.2860.01, n51.3260.07,
~21!

a520.6360.07, h50.5060.03.

FIG. 9. The maximumxmax of the susceptibility as a function o
system sizeL in a double logarithmic plot. The solid line represen
a fit to the functionxmax(L)5a3L22h, for sizesL>32 yielding 2
2h51.50 anda350.095.
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To determinen and its error we have taken both the values
Eqs.~14! and~20! and used the difference between them a
measure of the systematic error. The errors forh andhc are
purely statistical. The error fora comes both from the erro
in n and the statistical error ina/n.

Our results forhc are compatible with the values 2.2
60.04,26 2.2660.01,27 and 2.27060.00512 obtained from
ground-state calculations of systems of similar size. Val
of n obtained from ground-state calculations a
1.3760.0912 and 1.1960.08,26 which agree well with our
result. Reference 27 argued for a first-order transition,
assuming scaling with respect to the field, a value ofn
51.2560.06 was estimated, also in agreement with our
sult. However, if a power law correction to scaling was tak
into account, instead the result 1.52~without error bars! was
found.

The scaling exponenth describing the susceptibility, ha
not been obtained from exact ground-state calculations
far. In a Monte Carlo simulation13 a value of 0.5060.05 was
found, which is compatible with our result.

The most significant result of this paper is that for t
specific heat, namelya520.63(7). This agrees well with
the valuesa/n520.4560.05, n51.160.2 found by Ref.
13 anda520.5560.20 found by Ref. 29, both using Mont
Carlo simulations on small systems. However, as we s
now see, it appears inconsistent with values for other ex
nents and expected scaling relations.

At conventional second-order phase transitions, all ex
nents can be related totwo ~e.g.,n and h) by scaling rela-
tions. However, because the fixed point of the RFIM is
T50 with temperature a ‘‘dangerous irrelevant variable,’
modified set of scaling relations has been proposed,6,7,38,39

which involvethreeindependent exponents. Scaling relatio
which do not involve the space dimension, e.g.,

a12b1g52, ~22!

are unchanged, but ‘‘hyperscaling’’ relations involving th
space dimensiond, haved replaced byd2u, whereu, the
third exponent, is the scaling exponent for the temperatur
the fixed point. An example of a hyperscaling relation whi
is relevant to the specific heat is

~d2u!n522a. ~23!

Gofmanet al.40 have proposed that the Schwartz-Soffer41 in-
equality, which can be expressed ash>22u, is an equality,
in which case there are only two independent expone
again ~though the hyperscaling relations are different fro
those in conventional two-exponent scaling!. Our results are
consistent with this, sinceb.0 implies thatu.1.5, see,
e.g., Ref. 12, and we have already found thath is about 0.50,
see Eq.~19!.

Other works have found13,26 b.0 ~the most accurate
value is 0.01760.005 in Ref. 12!, and our value forg, ob-
tained fromg[(22h)n is about 2.0 in agreement with se
ries expansion work of Gofmanet al.40 Hence Eq.~22! pre-
dicts a.0, quite different from the value of about20.63
that we find by direct calculation.
9-6
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As noted above, the resultb.0 implies thatu.1.5, so
Eq. ~23! gives a.221.5n. Using our value ofn51.32
60.07 this yieldsa50.060.15. In other words, Eq.~23!
also predicts thata is close to zero.

We have seen that the two scaling relations above wo
be consistent if we inserteda.0, which is the experimenta
value.14 However, by direct calculation, we obtain a strong
negative result,a.20.63, consistent with earlier work13 on
much smaller sizes. Thus the problem with the value of
specific-heat exponent has now been strongly reinforced
our calculations on much larger lattices.

Possible explanations for this discrepancy are:
•The specific heat diverges but slower than logarithm

cally. Examples of this, which are known to occur in oth
systems, are a fractional power of a log and a log–log va
tion. However, there are no calculations which predict t
type of behavior for the RFIM. Furthermore, attempts to
our data to this type of behavior were not very successfu
related possibility, which does not seem impossible look
at Fig. 5, is thata50 might be realized by ajump in the
specific heat, with a lower value in the ferromagnetic regi
the opposite of what occurs in mean field theory.

•The regular contribution to the specific heat varies ra
idly near the critical point. Sinceb.0 the magnetization
increases very rapidly belowhc ~leading to the very rapid
drop in the specific heat seen in Fig. 5!. If much of this drop
comes from the regular part of the specific heat it would
difficult to extract the singular part.

•There are very strong singular corrections to finite-s
scaling which leads to the most singular term in the spec
heat being numerically small compared with correcti
terms, even for the quite large range of sizes that we h
studied here. If thereare strong corrections to scaling, pe
haps the values of other exponents, in addition toa, could be
affected too.

•Scaling does not hold. We find this possibility to be t
least palatable.

Sinceb.0, it is interesting to ask whether the transitio
might be first order and whether this might be the origin
the surprising value ofa. The transition at low-T is first
order in mean field theory for field distributions with a min
mum at zero field.42 A first-order transition for Gaussian dis
tribution has also been suggested for dimension less
four based on series expansion work.43 If the transition is
first order, it must be very weakly so, since fluctuation effe
are very large. Furthermore, one would then expect a la
heat, which, in a finite-size system, gives a specific heat
verging as the volumeLd. In our results, we do not seeany
divergence, let alone a strong one like this. In addition,
most detailed numerical study12 claims thatb while very
small, isgreater than zero. Even if the transition were ult
mately first order, the effective exponents found should
those of the close-by second-order transition, and so sh
21441
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satisfy scaling. We therefore do not feel that the possibility
a first-order transition explains why our value fora does not
satisfy scaling.

In addition to critical exponents, it is useful to discu
amplitude ratios, since these are also universal, see Re
and references therein. For the specific heat amplitudesA1

and A2 , defined in Eq.~10!, one can show45 that A1 /A2

51 for a logarithmic divergence (a50). Furthermore, for
n-component models without random fields one has44,46

A1 /A2.1 for a,0 andA1 /A2,1 if a.0. This implies
that, for both signs ofa, the specific heat decreases from
peak faster on the paramagnetic side than on the ferrom
netic side~we are grateful to D. Belanger for pointing th
out!. By contrast, the situation is reversed in our data,
Fig. 5 where the specific heat appears to decrease faste
h,hc . Whether this indicates that the amplitude ratio is ve
different in the presence of random fields, or that correcti
to scaling are large compared with the leading singularity
this range of sizes remains to be seen.

Clearly more work is needed to understand the spec
heat of the RFIM. Since several recent large-scale nume
calculations, including ours, have used fairly sophistica
algorithms, it is unlikely that a numerical breakthrough
imminent. Hence a better theoretical understanding, e
cially of corrections to scaling, will be needed to sort out th
problem.

Note added. After this work was submitted we receive
the final version47 of Ref. 12 in which, motivated by ou
work, they computed the bond energy using ground-s
methods. They did not numerically differentiate the data
get the specific heat but directly analyzed data for the b
energy at the bulk critical field, the dashed line in Fig. 5. T
size dependence involves the exponent (12a)/n from
which they find results compatible witha50. That they get
a different result from ours by, in effect, considering a d
ferent region of the scaling function in Eq.~11!, indicates
that there are large corrections to finite-size scaling even
such large sizes, or possibly thata.0 corresponds to a
discontiniuty in the specific heat. Both these possibilit
were discussed above. Further work is needed to clarify
situation.
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