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Specific-heat exponent of random-field systems via ground-state calculations
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Exact ground states of three-dimensional random field Ising magnets with Gaussian distribution of the
disorder are calculated using graph-theoretical algorithms. Systems for different strergjtise random
fields and sizes up th=96° are considered. By numerically differentiating the bond-energy with respéct to
a specific-heat-like quantity is obtained, which does not appear to diverge at the critical point but rather
exhibits a cusp. We also consider the effect of a small uniform magnetic field, which allows us to calculate the
T=0 susceptibility. From a finite-size scaling analysis, we obtain the critical exponents327), a=
—0.637), »=0.50(3) and find that the critical strength of the random fieltljs 2.281). We discuss the
significance of the result that appears to be strongly negative.
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I. INTRODUCTION Using these ground-state techniques, most of the critical

The random field Ising modklhas been extensively exponents have been determined with some precision; for a

studied™* both because of its interest as a “simple” frus- thorough, recent study see Ref. 12. Most of these exponents

trated system and because of its relevance to experimentge consistent with scaling relations. However, as we shall

especially those on the diluted antiferromagnet in a uniformjiscuss in Sec. V, those scaling relations predict a specific-
field.’ The random field Ising magn€RFIM) Hamiltonian is  heat exponent: close to zero, while Monte Carlo data on

given by fairly small size$® (L<16) find a/v=—0.45+0.05, where
v is the correlation length exponeftivhich has a value

H= _JE SS _E hsS, (1) slightly greater than unity, as discussed in Secs. IV and V
in 4 Interestingly, experiments fihtl a logarithmic divergence,

) o ) ) corresponding to a specific-heat exponent0, as expected
where theS;= = 1 are Ising spins] is the interaction energy f.om scaling.

between nearest neighbors, amdis the random field. The In order to try to resolve this puzzle, we calculate here the
valuesh; are independently distributed according to a Gaussgpecific-heat exponent for the RFIM usingichlarger sizes

ian distribution with mean 0 and standard deviatipine. the (L<96) than in the Monte Carlo work by using optimiza-
probability distribution is tion methods to determine exact ground states. We also find a
strongly negative value fow, a/v=—0.48+0.05, consis-
tent with earlier Monte Carlo dafd, but in disagreement

! hi2 with experiment and apparently in violation of scaling. In
P(h)=—=exp ~ 52/ 2 ent ! caling.
V2h Sec. V we will discuss possible ways around this discrep-

) ) ) ) ) ~_ancy. In addition, we determine the susceptibility, which, to
We shall consider three-dimensional lattices with periodicoyr knowledge, has not been directly computed before using

boundary condition antii=L° spins. o ground-state methods. Our results are consistent with earlier
A sketch of the phase boundary is shown in Fig. 1. At low¢g|culations.

values of the random field and temperatilitehe system is
in a ferromagnetic phase, and at high temperatures or ran-
dom fields, the system is paramagnetic. h/J
In this paper we shall be interested in the values of the h,/J -
critical exponents along the phase boundary. The random
field is a relevant perturbation at the puie., h=0) fixed
point, and the random-field fixed point is &t=0.57 Hence,
the critical behavior is the same everywhere along the phase
boundary in Fig. 1(assuming that the transition is always
second ordegrexcept forh=0. We can therefore determine
the critical behavior by staying ai=0 and crossing the
phase boundary dt=h., see Fig. 1, which is convenient, ¥
because we can determine the ground states of large lattices N
exactly using efficient optimization algorithrfis;* as dis- FIG. 1. Asketch of the phase boundary of the random field Ising
cussed in Sec. Il. This has the advantage that one can stugypdel. The ferromagnetic phase is denoted by “F” and the para-
much larger systems than it is possible in Monte Carlo simumagnetic phase by “P.” The critical value of the random field at
lations, and, for each realization, there are no statistical erf=0 is denoted by, . The lines with arrows at both ends indicate
rors or equilibration problems. the path followed by varying for some fixed value oh andT.
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Il. NUMERICAL TECHNIQUES affect the size otorrectionsto scaling by mixing in a vary-
ing amount of irrelevant operators, but the asymptotic behav-
ior will always be the saméas long as the approach is not

r]tangentia).

To avoid confusion we point out that the role taken by the
free energy at finitér is played by the energy dt=0, since

; . ; . on o X the two are equal in this limit. More precisely, tle@ergy
culating the maximum flow in polynomial tinf@-24The first singularity atT=0 has the forme2~*, wheree is the devia-

results of applying these algorithms to random-field system o oo ]
can be found in Ref. 25. In Ref. 26 these methods Wertﬁpn from criticality, which is the same as tHeee-energy

applied to obtain the exponents for the magnetization, théwt?gla”;yai:]ahgnge; tsr?rg‘:’]mgp'sﬁ flr;gﬁ;r’ tgfetﬁgi:gi/ﬁ%nd
disconnected susceptibility, and the correlation length fro by v g ingurartty, '

ground-state calculations up to size=80. Other exact "hut with opposite signs such that this singularity cancels in

) . . the free energyi- =E—TS. A analogous cancellation occurs
ground-state calculation of the RFIM can be found in Refs. tT=0, but betweerE, andE, since bothE, andE,, have

27-29,12. Note that in cases where the ground-state i larit ith 4 o but with litud f
degenerat@ it is possible to calculate all the ground-states jnSinguiarnties with exponent - a but with amplitudes ot op-

one sweep! see also Refs. 32,33. For the RFIM with a posite sign such that this singularity cancels in the total en-
Gaussian distribution of fields, the ground state is nondegene—rgy' To see this note that from EG)

erate, except for a two-fold degeneracy at certain values of P = 9E

the randomness, where the ground state changes, see Sec. I, “h =] _hJ + h—hh +Ep. (6)

so it is sufficient to calculate just one ground state. J J J

We used well known algorithrist! from graph
theory®~1"to calculate the ground state of a system at give
random-field strengtth. To implement them we applied
some algorithms from the LEDA librafy. The calculation
works by transforming the system into a netwdtland cal-

However, atT=0 whereF=E, we havedE/oh=E,, and

I1l. QUANTITIES OF INTEREST so, in this limit,
In zero random field, the specific-heat exponent is ob- 9E; 1=
tained from the singularity in the second derivative of the ‘]WH]W:O' (7)

free energy with respect to temperature. More generally it is

determined from the singularity obtained by varying a pa-Hence, ifE,~|h—h¢|1™¢, then 9E,/oh and JE;/dh each
rameter which crosses the phase boundary from the paramalgave singularities of the forth—h.| ™, but with opposite
netic phase to the ferromagnetic phase. From Fig. 1 we sesigns such that this singularity cancelsdB/oh. We have
that this can be conveniently accomplished by keeping theerified that this cancellation occurs in our numerical data.
ratio of h/J to T/J fixed, i.e., by varyingl. The first deriva- From Egs.(6) and (7), JE/éh has the same singularity as
tive of the free energyper spin F with respect taJ, which  E,, i.e.,|h—h"¢% soE~|h—h.|?> ¢, as stated above.

we call the “bond energy’E;, is given by We use the same set of random fields for different values
of h and scale them all by a fixed overall factor. More pre-
E _oF 1 S (ss 3 cisely we takeh;=eh, where thee; are chosen from a
7T N{E (SS), Gaussian distribution with standard deviationity, and are

the sam& for all values ofh. We use a first-order finite
where (---) is a thermal average, and the sum is overdifference to determine the derivative Bf numerically and,
nearest-neighbor pair&; has an energylike singularity in since this is a more accurate representation of the derivative
the vicinity of the phase boundary. Fbe=0 it is precisely  at the midpoint of the interval than at either endpoint, the
the energy, apart from an overall factor bf “specific heat,”C, at T=0 is defined to be
The total energy per spirk, is given by
_ [Es(hy)Jn—[Es(h2) In

h;—h; ’

h;+h,
2

E=JE;+hE,, (4) (8)

where the “field energy’Ey, is given by whereh; and h, are two “close-by” values oth, and[ - -

-], denotes an average over random-field configurations,
(S). (5) which is carried outapproximately by repeating the calcu-

lation for Ngamp independent realizationesample$ of the

Having differentiatedanalytically with respect toJ, we  random fieldse;. We choose a sufficiently fine mesh of

now setJ=1, considerT=0 only, and obtain a specific- random-field values that the resulting data @is smooth.
heatlike quantity by differentiatinge; numericallywith re-  Error bars are obtained by determining the specific heat from
spect to the random fielth. We emphasize that it is not the corresponding finite difference as in E®) for each
necessary to vary the temperature in order to observe trgample separately, and computing the standard deviation.
specific heat singularity. To observe this singularity the di-The error bar is, as usual, the standard deviation divided by
rection in which the phase boundary is crossed must have stamp—l.
projection on to the correct scaling field, which means that In Fig. 2 the bond energy per spify for two representa-
the phase boundary should not be approached tangentiallijve L =8 systems is shown as a functiontofFor very small
The angle at which the phase boundary is approached willalues ofh all spins point into the same direction and so

F 1< [h
e= = 3 7
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FIG. 2. Bond energy per spirfs;, defined in Eq(3), for two

L=8 samples as a function of the random-field strerigth FIG. 4. The average magnetizationas a function of a uniform

external fieldH near the transition fol.=4, h=3.75 (inset: L

. . =16, h=2.8). The solid lines represent the results of fits to a pa-
E,=—3. For largeh the spins follow the random fields and a5ja, while the dashed lines display the tangentsiat0; i.e.,

s0 E;—0 in this limit. The curves in Fig. 2 are stepwise their slope gives the susceptibility.

constant functions because generically it is not favorable to

flip spins if the random field is increased by a small amountthe lower part of the figure are the average specific heat,
However, at certain discrete field values, the total energy opbtained as the numerical derivative of the data[fis];,
another state, which differs in the orientation of a cluster ofaccording to Eq(8). The specific heat is seen to have a peak,
spins, will become degenerate with the energy of the grounds expected. We will investigate the size dependence of this
state and for slightly larger values tf the state with the peak in Sec. IV.

cluster flipped will become the new ground state. Although |n addition to the specific heat, we also calculate the sus-
the total energy is continuous at the field values where theceptibility by considering the response to a small uniform

ground-state configuration changes, the bond energy, whicéxternal fieldH, i.e., we consider the Hamiltonian
is just the first term in Eq(1), changes discontinuously. At

larger field values the jumps iB; occur closer together and

would be difficult to distinguish on the scale of a figure. This H=-32 SS—> hS—HX S. 9

is why we show, in Fig. 3, data for a rather small size. Even D ' !

for small sizes, the jumps occur at different valueshddr - gach realization, the sign bf is chosen in the direction

different samples, and so taeeragevalue ofE, is expected ot the magnetization of the ground state. This prevents the

to be smooth. _ _ whole system from flipping when applying a magnetic field
This is illustrated in the upper part of Fig. 3 fr=16 (4 5 system which is almost ferromagnetically ordered. The

which shows a smooth variation P, ], with h. The datain  gcqjing behavior of the magnetization should not be affected

by this choice. In Fig. 4, the result is shown for system sizes

R L=4 andL =16 near the values of the field, where the sus-
oL ] ceptibility attains a maximum. Ned# =0, the data points
_= C ] can be fitted very well with a parabola, the coefficient of the
H o, b E linear term gives the zero field susceptibilityy
r ] =dn/dH|y_,. Thus in order to calculate the susceptibilities,
r ] we perform ground-state calculations for three different val-
-3 e e I; ues of the uniform fieldH,=nH_ (n=0,1,2), where, for
2 E E each size, the value df_ used is shown in Table I, along
1.5 3 with the number of samples. We chose the valuesl offor
o 1E 3 each size as follows. For the smaller sizes we performed
= ] several fields values, as shown in Fig. 4, to determine for
0.5 & = what range of fields a parabola accurately fitted the data. For
0 ‘; . g: larger sizes, finite-size scaling tells us that, near the critical

g2 24 26 28 point, the characteristic field scales wittasL ~ Y+ where the
h “magnetic exponent'yy is given by (y+ 8)/v, with y the
FIG. 3. The upper figure shows the average bond-engy, ~ Susceptibility exponent, anél the order parameter exponent.
per spin as a function of the random-field strengfior L=16. The ~ As discussed further in Sec. V, several calculations give
lower figure displays the resulting “specific heat,” calculated from =0,y=2, andv=1.3, and soyy=1.5. We therefore scale
Eq. (8) of the text. H, for the larger sizes by a factor of roughly *°.
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TABLE I. The maximum number of samplé$,,, used, and 3 Frrr T Lé,é',,,,',,,,',,,,',,I!,,,',,,,',I,,',,,,'__
sizes of smallest nonzero uniform figh| , for each system size. oo 2.4 1= figbt 14
As discussed in the text, the number of samples used was larger in - ez 32 ]
the vicinity of the peaks in the susceptibility and specific heat than 2.9 - 9%3 1 L i
elsewhere. - 2 w17

2 216 15 3

L Nsamp HL ) E 3 E
4 10° 0.05 1o ¢ ]
6 60 000 0.025 | B B
8 40000 0.016 B ]
12 30000 0.008 05 E
16 23000 0.005 L E
24 27000 0.0028 P T I I N
32 15000 0.0018 2 2.5 3 3.5 4
48 15000 *x10°4 h
64 9000 6<10°* FIG. 5. “Specific heat'C, calculated from Eq(8), as a function
96 3800 3x10°* of the random-field strengthfor system sizes =4,8,16,32,64, and

96. The vertical dashed line indicates the location of the critical

value of the random fieldh,=2.28, see Eq(14). The inset is an
For each system size, we fit a parabola through the threenlargement of the peaks for the larger sizes.

data points for theaveragemagnetizationm(H,). To esti-

mate the error, we performed a jackknife anafysis which ~ wherew is the correlation length exponent. The specific-heat

we divided the results for the magnetizatidifisr each sys-  peak will occur when the argument of the scaling funciidn

tem size and each strength of the disoydato K blocks, takes some valua; say, so the peak positidn* (L) varies

calculated the average valu&stimes, each time omitting as

one of the blocks, and then performikdits. The error bar is

estimated from the variance of the results for the linear h*(L)—he~a,L =", (12

fitting parameter. We useii=50 and checked that the result 5 the value of the singular part of the specific heat at the
does not depend much on the choicekof peak varies as

CI™(L)~Le, (13

In Fig. 5 the specific hedT is shown as a function of the

We have studied random-field systems with sizes ftom random-field strengtih for selected system sizes. The error
=4 toL=96. For each size, simulations were made for sevbars are obtained from the standard deviation of the data for
eral different values oh, always averaged over many real- different samples, and are quite small because a large num-
izations of the disorder. Near the ferromagnet-paramagneier of samples have been averaged over, see Table I. A clear
phase transition, the number of samples used is the largegieak can be seen, which moves to the left and increases in
ranging from 16 for the smaller system sizes to 3800 for height with increasing system size. The number of samples
L=96 for each valuéh, as shown in Table I. With current used is larger near the peak to compensate for the greater
algorithms, it is in principle possible to study even largersample to sample fluctuations in this region. For each system
system sizes, such &s=128 or everL =256, but, using the size, we performed parabolic fits to the region of the peak to
LEDA algorithms, these need more memory than the 512btainh* (L) and the height of the pealk™®{L). The shift
MBytes available to us. Hence we have restricted our studpf the maximum according to Eq12) can be used to esti-
to L=<96, which is still much larger than sizes that can bemate the infinite-size critical strength of the random fidid,

IV. RESULTS

simulated using Monte Carlo simulations. and the correlation-length exponentThe best fit gives
In the thermodynamic limithe singular part ofthe spe-
cific heat diverges according to h.=2.28+-0.01, 1k=0.73+0.02, (14)
see Fig. 6. We determined the probabil@that the value of
C~A.|lh—h ™%, (100 x?=3=N.(y;—f(x)/o})?, with N data points X; ,y; + o) fit-

ted to the functionf, is worse than in the current itto
where theamplitudes A and A_ refer to h>h, and h  quantify the quality of the fit. Here we g&=0.20, which is
<h,, respectively, andr is the specific-heat exponent. In fair. . -~
addition there is aegular piece of the specific hea€, e, Next we try to estimate the specific-heat exponent by
which is finite at the critical point and stominatesthere if ~ looking at how the peak valu€™ scales withL. If «=0

a<0. In a finite system, finite-size scaling predicts that ~ ©ne expects logarithmic divergence and the simplest hypoth-
esis is to fit the data to

Co~LY"C((h—hy)L), (11) C™=a+blogL, (15)
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FIG. 6. A plot of the random field where the specific heat attains FIG. 8. Susceptibilityy as a function of the random-field
its maximum, as a function of system sizeThe solid line shows a  strengthh for system size =8,16,32,64, and 96. Only data near
fit to the functionh* (L) =h.+a,L ¥ with h,=2.28, 1b=0.73, the peaks are shown because the data away from the peaks had

anda,=2.55. The inset shows the data as a functiom of”. lower precision.

where the constant terra comes partly from the regular in which C.. comes from the regular part of the specific heat,

piece of the specific heat. However, Fig. 7 shows that thigielding

does not work. A plot ofC™® againstL (on a log scale

shows clear curvature, suggesting that the height of the spe- C.=2.84+0.05, «a/v=-0.48+0.03. (17)

cific heat will saturate to a finite value &sincreases. If one

considers only the data points for sizZes-4, .. .,16, as in This fit is shown in the inset of Fig. 7. The quality of the

Ref. 13, a negative curvature is still visible, but the result isfit, Q=0.05, is not very good. We have tried different fits

much less clear. using only the larger system sizes, which increases the qual-
A peak height which saturates for—c implies thata is ity of the fit slightly, but the resulting error bars are very

negative, in which case the specific heat has a finite cusp drge. The central estimate far actually becomesnore

the critical point, rather than a divergence. We have thereforaegativeif we only include the larger sizes. The rather poor

tried a fit of the form fit may indicate difficulty in accurately estimating the error
bars for the location and height of the specific-heat peak. Our
CM(L)=C,, +a,L " (16) analysis suggests that the specific-heat exponent is strongly

negative, in agreement with Riegéthough we cannot rule
out a leading singularity witle=0 and a sufficiently small

24 - F T ';" o ” " amplitude that it is hard to see in our data.
- F ] - To look for this possibility, we also tried more compli-
22 mh = — cated fits including corrections to scaling of the form
Sk 1y ~ C™(L)=C,,+a,L¥"(1+bL"), (18)
g 1.8 275 ' : - . . . .
R L0 O-ZWVO-“ 1 where w is the leading correction to scaling exponent. The
1.6 — / — data did not determine all the parameters cleanly, and the fit
B § program>’ which works iteratively, converged to different
1.4 - 7] results depending on the starting values, and whether any of
|2 B a the parameters were held fixed. The solutions we found were
L i of two types:(i) the fit is the same as that in the simpler fit of
1 LA €l Lol Eq. (16) (i.e., w is essentially zero and/v and the other
1 1% 102 parameters are the the same as found in the simplefiifjt

w is quite smalla, is very large, and is negative such that
FIG. 7. The maximunC™ of the specific heat as a function of 1+bL™“ is close to zero. Thus in the second type of fit, the

system size with logarithmically scaled.-axis. The dashed line is data are represented as two singularities with large ampli-
a tangent to the data and a comparison between it and the datddes which almost cancel. This does not seem physical. The
demonstrates th&™ grows slower than logarithmically with sys- fitting routine did not converge to a solution with a leading
tem size. The solid line shows a fit to the functi@?®(L)=C,, singularity which has a small amplitude amad=0, plus a
+a,L " with C,,=2.84, a/v=—0.48 anda,=—3.52. The inset correction term with a larger amplitude.

shows the data and the fit as a functionLdf”. We will discuss our specific-heat results further in Sec. V.
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To determiner and its error we have taken both the values in
Egs.(14) and(20) and used the difference between them as a
measure of the systematic error. The errors;jaandh. are
purely statistical. The error far comes both from the error

in v and the statistical error in/v.

Our results forh, are compatible with the values 2.29
+0.042° 2.26+0.01?" and 2.276:0.005% obtained from
ground-state calculations of systems of similar size. Values
of v obtained from ground-state calculations are
1.37+0.09"2 and 1.190.08%° which agree well with our
result. Reference 27 argued for a first-order transition, but
assuming scaling with respect to the field, a valuevof
ol I B =1.25+0.06 was estimated, also in agreement with our re-

5 10 50 107 sult. However, if a power law correction to scaling was taken
L into account, instead the result 1.6&ithout error barswas
found.

The scaling exponeny describing the susceptibility, has
not been obtained from exact ground-state calculations so
far. In a Monte Carlo simulatidria value of 0.56-0.05 was
found, which is compatible with our result.

The most significant result of this paper is that for the

ecific heat, namelg=—0.637). This agrees well with

e valuesa/v=—0.45+0.05, v=1.1+0.2 found by Ref.

13 anda= —0.55+0.20 found by Ref. 29, both using Monte
Carlo simulations on small systems. However, as we shall
now see, it appears inconsistent with values for other expo-
nents and expected scaling relations.

At conventional second-order phase transitions, all expo-
nents can be related two (e.g., v and %) by scaling rela-

102
50

FIG. 9. The maximumy™® of the susceptibility as a function of
system sizé in a double logarithmic plot. The solid line represents
a fit to the functiony™(L)=aL? 7, for sizesL =32 yielding 2
— n=1.50 anda;=0.095.

The susceptibilityy as a function ohf is presented in Fig.
8 for selected system sizes. It is seen that the height of th
peak grows much faster than for the specific heat. To analyz
the divergence ofy, we have again fitted parabolas to the
data points near the peak to obtain the positibhéL) and
Xx™(L) of the maximum. By fitting the data fdr=32 to a
function y™®{L)=asL2~ 7, where s describes the decay of
the “connected” correlations at criticality, we obtairQ(

=063) tions. However, because the fixed point of the RFIM is at
_ T=0 with temperature a “dangerous irrelevant variable,” a

=0.50+0.03, 19 , ) . Y

7 19 modified set of scaling relations has been propdseti;*°
see Fig. 9. which involvethreeindependent exponents. Scaling relations

Finally, we have also estimatdu, and the correlation- which do not involve the space dimension, e.g.,
length exponent from the susceptibility data using B@),
as we did for the specific heat. Using only sizes32 (Q a+2B+y=2, (22

=0.84), we find
are unchanged, but “hyperscaling” relations involving the

h,=2.29+0.01, 1p»=0.81+0.05. (200  space dimensiod, haved replaced byd— 8, where 6, the
third exponent, is the scaling exponent for the temperature at
This estimate ofh, agrees with that obtained from the the fixed point. An example of a hyperscaling relation which
specific heat, see El4), while the estimate for ¥/differs is relevant to the specific heat is
from that in Eq.(14) by slightly more than the sum of the
error bars, probably indicating some systematic corrections (d=0)v=2—«a. (23
to scaling.
Gofmanet al*° have proposed that the Schwartz-Sdffém-
V. DISCUSSION equality, which can be expressedss2— 6, is an equality,
in which case there are only two independent exponents
We have determined the “specific heat” of the random-again (though the hyperscaling relations are different from
field Ising model alf =0 using optimization algorithms. The those in conventional two-exponent scajin@ur results are
height of the peak increases less fast than logarithmicallgonsistent with this, sincgg=0 implies that9=1.5, see,
with system size, and a finite-size scaling analysis gives the.g., Ref. 12, and we have already found thas about 0.50,
exponents shown in Eq&l4) and(17). From the analysis of see Eq(19).

the susceptibility, the exponents shown in EG$) and(20) Other works have fourld?® B=0 (the most accurate
are obtained. The final results we quote are value is 0.017 0.005 in Ref. 12, and our value fory, ob-
tained fromy=(2— 7)v is about 2.0 in agreement with se-
h.=2.28-0.01, »=1.32+0.07, ries expansion work of Gofmaet al*° Hence Eq/(22) pre-
(21 dicts =0, quite different from the value of about0.63
a=—0.63+0.07, 7=0.50+0.03. that we find by direct calculation.
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As noted above, the resyi=0 implies thatd=1.5, so  satisfy scaling. We therefore do not feel that the possibility of
Eqg. (23) gives a=2—1.5v. Using our value ofr=1.32 a first-order transition explains why our value trdoes not
+0.07 this yieldsae=0.0+0.15. In other words, Eq(23)  satisfy scaling.
also predicts that is close to zero. In addition to critical exponents, it is useful to discuss

We have seen that the two scaling relations above woul@mplitude ratios, since these are also universal, see Ref. 44
be consistent if we inserted=0, which is the experimental a@nd references therein. For the specific heat amplitulles,
value* However, by direct calculation, we obtain a strongly @1d A, defined in Eq.(10), one can shofl’ that A /A_
negative resulta=—0.63, consistent with earlier wotkon ~ ~ 1 for a logarithmic divergencea(=0). Furthermore, for
much smaller sizes. Thus the problem with the value of thd"¢omponent models without random fields one e

specific-heat exponent has now been strongly reinforced b§+/A-=>1 for <0 andA,/A_<1 if «>0. This implies
our calculations on much larger lattices. at, for both signs ofy, the specific heat decreases from its

Possible explanations for this discrepancy are: pea}k fgster on the paramagnetic side than on the _ferromag-
“The specific heat diverges but slower than Iogarithmi—net'c side(we are grateful to D. Belanger for pointing this

cally. Examples of this, which are known to occur in OtherOI_Jt). By contrast, the _s_ituation is reversed in our data, see
systems, are a fractional power of a log and a log—log variaF'9: 5 where the specific heat appears to decrease faster for
tion. However, there are no calculations which predict this?<Nc- Whether this indicates that the amplitude ratio is very
type of behavior for the RFIM. Furthermore, attempts to fitdifferentin the presence of random fields, or that corrections
our data to this type of behavior were not very successful. A° Scaling are large compared with the leading singularity for

related possibility, which does not seem impossible lookingiS range of sizes remains to be seen. B
at Fig. 5, is thate=0 might be realized by gump in the Clearly more work is needed to understand the specific

specific heat, with a lower value in the ferromagnetic region,heat of the RFIM. Since several recent large-scale numerical

the opposite of what occurs in mean field theory. calculations, including ours, have used fairly sophisticated

*The regular contribution to the specific heat varies rap_f'algorithms, it is unlikely that a numerical breakthrough is

idly near the critical point. Sincg8=0 the magnetization |r_nminent. Hen_ce a better_ theo_retical understanding, espe-
increases very rapidly below, (leading to the very rapid cially of corrections to scaling, will be needed to sort out this
Cc

drop in the specific heat seen in Fig. & much of this drop ~ Problem.

comes from the regular part of the specific heat it would be the addquAf7ter this work_was §ubmitte_d we received
difficult to extract the singular part. the final versiof’ of Ref. 12 in which, motivated by our

“There are very strong singular corrections to finite-sizeVO'k: they computed the bond energy using ground-state

scaling which leads to the most singular term in the specifi(methOds' Th.e.y did not numerically differentiate the data to
heat being numerically small compared with correctiond€t the specific heat but directly analyzed data for the bond
terms, even for the quite large range of sizes that we hav&neray at the bulk crltlcal field, the dashed line in Fig. 5. The
studied here. If therare strong corrections to scaling, per- SZ& dependence involves the exponent—()/» from

haps the values of other exponents, in addition faould be ~ Which they find results compatible wita=0. That they get
affected too. a different result from ours by, in effect, considering a dif-

«Scaling does not hold. We find this possibility to be theferent region of the scaling function in E¢L1), indicates
least palatable. that there are large corrections to finite-size scaling even for
Since8=0, it is interesting to ask whether the transition SUCh 1arge sizes, or possibly that=0 corresponds to a
might be first order and whether this might be the origin Ofdlscont_lnluty in the specific heat. B(_)th these pOSS|b_|I|t|es
the surprising value ofr. The transition at lowF is first were .d|scussed above. Further work is needed to clarify the

order in mean field theory for field distributions with a mini- Situation.

mum at zero field? A first-order transition for Gaussian dis-

tribution has also been suggested for dimension less than

four based on series expansion wbtkf the transition is We thank D. P. Belanger for stimulating discussions and
first order, it must be very weakly so, since fluctuation effectsAlan Middleton for giving helpful hints, showing us an ad-
are very large. Furthermore, one would then expect a latentance copy of Ref. 12, and commenting on an earlier version
heat, which, in a finite-size system, gives a specific heat dief this paper. The simulations were performed at the Pader-
verging as the volumeY. In our results, we do not semy  born Center for Parallel Computing in Germany and on a
divergence, let alone a strong one like this. In addition, thevorkstation cluster at the Institut furheoretische Physik,
most detailed numerical stutfyclaims thatB while very  University of Gdtingen, Germany. A.K.H. acknowledges fi-
small, isgreaterthan zero. Even if the transition were ulti- nancial support from the DF@®eutsche Forschungsgemein-
mately first order, the effective exponents found should beschafj under Grant No. Ha 3169/1-1. A.P.Y. acknowledges
those of the close-by second-order transition, and so shoulslipport from the NSF through Grant No. DMR 0086287.
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