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Ground-state magnetization for interacting fermions in a disordered potential:
Kinetic energy, exchange interaction, and off-diagonal fluctuations
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We study a model ofn interacting fermions in a disordered potential, which is assumed to generate uni-
formly fluctuating interaction matrix elements. We show that the ground-state magnetization is systematically
decreased by off-diagonal fluctuations of the interaction matrix elements. This effect is neglected in the Stoner
picture of itinerant ferromagnetism in which the ground-state magnetization is simply determined by the
balance between ferromagnetic exchange and kinetic energy, and increasing the interaction strength always
favors ferromagnetism. The physical origin of the demagnetizing effect of interaction fluctuations is the larger
numberK of final states available for interaction-induced scattering in the lower-spin sectors of the Hilbert
space. We analyze the energetic role played by these fluctuations in the limits of small and large interactionsU.
In the small-U limit we use second-order perturbation theory and identify explicitly transitions which are
allowed for minimal spin and forbidden for higher spin. These transitions then on average lower the energy of
the minimal spin ground state with respect to higher spin; we analytically evaluate the size of this reduction
and find it to give a contributionDs}nU2/D to the spin gap between the two lowest-spin ground states. In
terms of an average effective Hamiltonian, these contributions induce anU2S2/D term which decreases the
strength of the ferromagnetic exchange, thereby delaying the onset of Stoner ferromagnetism, and generate a
second, largerS term }S3, which results in a saturation of the ground-state spin before full polarization is
achieved, in contrast to the Stoner scenario. For large interactionsU we amplify on our earlier work@Ph.
Jacquod and A. D. Stone, Phys. Rev. Lett.84, 3938~2000!# which showed that the broadening of the many-
body density of states is proportional toAKU and hence favors minimal spin. Numerical results are presented
in both limits. After evaluating the effect of fluctuations, we discuss the competition between fluctuations plus
kinetic energy and the exchange energy. We finally present numerical results for specific microscopic models
and relate them to our generic model of fluctuations. We discuss the different physical situations to which such
models may correspond, the importance of interaction fluctuations, and hence the relevance of our results to
these situations and recall an experimental setup which we proposed in an earlier work to measure the
importance of interaction fluctuations on the ground-state spin of lateral quantum dots in the Coulomb block-
ade regime.

DOI: 10.1103/PhysRevB.64.214416 PACS number~s!: 73.23.2b, 71.10.2w, 75.10.Lp
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I. INTRODUCTION

A. Stoner effect and disorder

More than 50 years ago Stoner proposed a simple rou
ferromagnetism in itinerant systems based on the comp
tion between one-body and interaction~exchange! energy.2

The repulsive interaction energy can be minimized when
fermionic antisymmetry requirement is satisfied by the s
tial wave function, as the overlap between different wa
functions is then minimal. This effect favors the alignment
spins and, if the interaction is sufficiently strong, results in
large ground-state spin magnetization. This mechanism is
primary origin of Hund’s first rule in atomic physics. In con
trast, when the interaction is weak minimal spin is favor
since in order to align spins electrons must be promoted f
lower doubly occupied levels to higher singly occupied le
els and the cost in one-body energy is prohibitive. Beca
the Pauli principle is essentially local, ferromagnetism
metals has been studied within models such as the Hub
model3,4 which only retain the short-range part of the ele
tronic interaction, the long-range part of the interaction be
assumed to give spin-independent contributions to
ground-state energy~the capacitance or charging energy!. In
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the case of a Hubbard interaction, only pairs of electrons
opposite spin interact. The number of such pairs is a mo
tonically decreasing function of the total magnetizati
;@(n/2)22s2# wheren is the number of electrons ands the
total spin.5 On the other hand, as just noted, flipping a sp
requires the promotion of an electron to a higher one-bo
level, and in the case of a finite system with a discrete sp
trum of average spacingD, a magnetizations requires an
energy s2D. A simple first-order perturbation treatmen
shows then that a sufficiently strong interaction results i
finite magnetization, when the corresponding reduction
interaction energy counterbalances the increase in kin
~one-body! energy,

~D2Vc!s
250. ~1.1!

This occurs when the typical exchange interactionVc be-
tween two states close to the Fermi energy is equal to
one-particle level spacing which for a Hubbard interacti
U(rW,rW8)5Ud(rW2rW8) reads

Vc5UcE drWuca~rW !u2ucb~rW !u25D. ~1.2!
©2001 The American Physical Society16-1
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The overbar indicates an average over wave function
the vicinity of the Fermi level. In a clean system this giv
Uc5D and this threshold is known as theStoner instability.
As both the kinetic energy and the interaction energy h
the same parametric dependence on the magnetizatios,
reaching this threshold results in a second-order phase
sition to a ferromagnetic phase, the divergence of the m
netic susceptibility, and a macroscopic magnetization.

Quite naturally one may wonder in what way does t
presence of a disordered potential modify this Stoner pict
and this question has recently attracted a lot of attent
both in the context of bulk metals~i.e., infinitely extended
systems with diffusive eigenstates! and in finite-sized metal-
lic systems such as quantum dots and metallic nanoparti
Two types of questions have been considered:~1! the effect
of a disordered potential on theaveragethreshold for the
Stoner instability and~2! the statistical properties of th
threshold in an ensemble of mesoscopic metallic samp
Both aspects have been recently investigated theoretic
For the bulk case, it has been known for some time6 that
within perturbation theory disorder enhances the excha
effect in the susceptibility; recently, Andreev and Kamen
constructed a mean-field theory which they argue descr
the Stoner transition7 and found a significant reduction of th
Stoner threshold in low-dimensional disordered systems
to correlations in diffusive wave functions which enhance
average exchange term. In the framework of the same m
field approach which neglects the fluctuations of the inter
tions, but takes into account those of the one-body spectr
Kurland, Aleiner, and Altshuler proposed that below, but
the immediate vicinity of, the Stoner instability, there is
broad distribution of magnetization and that each samp
free energy is characterized by a large number of local m
netization minima.13 Brouwer, Oreg, and Halperin8 consid-
ered the effect of mesoscopic wave function fluctuations
the exchange interaction and found that their effect was
increase substantially the probability of nonzero spin mag
tization in the ground state before the Stoner threshold
reached. Baranger, Ullmo, and Glazman9 suggested that the
observed ‘‘kinks’’ in the parametric variations of Coulom
blockade peak positions~e.g., as one varies an external ma
netic field! could reflect changes in the ground-state spin
the quantum dot. It was noted that the statistical occurre
of nonzero ground-state magnetizations can account for
absence of bimodality of the conductance peak spacings
tribution for tunneling experiments with quantum dots in t
Coulomb blockade regime.10–12Another aspect of large dis
ordered metallic samples is that the Stoner threshold ca
locally exceeded, while the exchange averaged over the
sample has a value well below the threshold. In this case
may expect that localized regions with nonzero magnet
tion will be formed even though the full system is nonma
netic. This scenario has been investigated by Narozh
Aleiner, and Larkin14 who also considered the effect of suc
local spin dropletson dephasing. They found that the pro
ability to form a local spin droplet, though exponential
small, does not rigorously vanish as it would in a clean s
tem, and that neither this probability nor the correspond
spin depends on the droplet’s size. In a different appro
21441
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focusing on the large interaction regime close to half-fillin
Eisenberg and Berkovits numerically found that the prese
of disorder may stabilize Nagaoka-like ferromagnetic pha
at larger number of holes (>2).15 Finally, Stopa has sug
gested that scarring of one-body wave functions in a cha
confining potential may lead to strong enhancements of
exchange interaction and to the occurrence of few-elec
polarization in finite-sized systems.16 Thus the general mes
sage of these works is that disorder tends to favor no
magnetic states over paramagnetic states.

B. Overview and outline

In a recent Letter,1 we pointed out a competing effect o
interactions in disordered systems whichreducesthe prob-
ability of ground-state magnetization and hence favors pa
magnetism. This effect had not~to our knowledge! been
treated in any of the previous works on itinerant magneti
tion of disordered systems. The works cited above neg
the effect of disorder in inducing fluctuations in theoff-
diagonal interaction matrix elements.7,13 However, it is well
known from studies of complex few-body systems like n
clei and atoms17,18that the bandwidth of the many-body de
sity of states in finite interacting Fermi systems is stron
modified by the fluctuations of these off-diagonal matrix
ements already at moderate strength of the interactions. S
studies did not directly address the effect of this broaden
on the ground-state spin of the system. However, our ex
sion of these models immediately revealed that these fluc
tions are largest for the states of minimal spin, due to
larger number of final states~nonzero interaction matrix ele
ments! for interaction-induced transitions~we will review
this argument below!. This effect then significantly increase
the probability that the extremal~low-energy! states in the
band are those of minimal spin and opposes the excha
effect. In our earlier works1,19 we focused on the regime o
large fluctuations to deduce the scaling properties of
ground-state energy as a function of spin and verified th
scaling laws with numerical tests. In the present work
will review and extend these results for large fluctuatio
but we will focus mostly on the perturbative regime of sm
U. While in this regime the correction to the ground-sta
energy due to fluctuations is small by assumption, one is a
to evaluate these corrections analytically and show that t
favor minimal spin for an arbitrary number of particles. Sp
cifically, the larger number of interaction-induced transitio
for lower spin leads to more and larger interaction contrib
tions to the~negative! second-order correction to the groun
state energy in each spin block. This illustrates explicitly t
‘‘phase-space’’ argument introduced in Refs. 1 and 19 wh
implies that fluctuations generically suppress magnetizat
We expect this effect to be significant in quantum dots wh
it will reduce the probability of high-spin ground states. W
recall that the ground-state spin of lateral quantum dots
be experimentally determined by following the motion
Coulomb blockade conductance peaks as an in-plane m
netic field is applied.1 Therefore the strength of the dema
netizing effect of fluctuations of interaction is experimenta
accessible.
6-2
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The paper is organized as follows. In Sec. II we start
an explicit derivation of our model and describe its ma
features. In Sec. III we begin for pedagogical reasons with
analytical treatment of the model for the case of only t
particles, in both the perturbative regime of weak o
diagonal fluctuations and the asymptotic regime where t
dominate. Section IV will be devoted to a second-order p
turbative treatment of the model for an arbitrary number
particles; this will be followed in Sec. V by a discussion
the magnetization properties of the system’s ground stat
the asymptotic regime. As noted above, some of the res
presented there have already been presented in Refs. 1
19 but are nevertheless included to make the article s
contained. In the next Sec. VI we consider the competit
between exchange and fluctuations in more details, b
from the point of view of average Stoner threshold and
terms of probability of finding a polarized ground state. W
will see in particular that the off-diagonal fluctuations indu
a term ;s2 in the Hamiltonian which delays the Ston
instability and a second term;s3 which strongly suppresse
the occurrence of large ground-state spins even above
Stoner instability. In Sec. VII we consider more standa
microscopic models for disordered interacting fermions a
relate their properties to our generic model of fluctuat
interactions. We determine the conditions to be satisfied
order for the results obtained from our random interact
model to be relevant in different physical situations. Fina
we summarize our findings, put them in perspective, a
discuss possible extensions of this work in the final S
VIII.

II. DERIVATION OF THE MODEL

Our starting point is a lattice model for fermions in
disordered potential coupled by a two-body, sp
independent interaction of arbitrary range. We make a u
tary transformation to the basis of single-particle eigensta
of the disordered potential and introduce the assumption
the single-particle states are random and uncorrelated. U
averaging over disorder we arrive at a completely gen
model describing both the nonvanishing average interact
~exchange, charging, and BCS! and the statistical fluctua
tions in both the one and two-body terms. Finally we intr
duce the assumption that all interaction matrix elements h
the same statistical variance. Hence our construction
cludes both one-body integrable systems and strongly lo
ized systems. We also note that with this assumption geom
ric or commensurability effects~such as spin waves o
antiferromagnetic instabilities! cannot be captured by ou
treatment, as the statistical character of the construc
erases most real-space details of the model.

We consider the following tight-binding Hamiltonian fo
n spin-1/2 particles:

H5H01U5(
i , j ;s

H 0
i , jdi ,s

† dj ,s

1(
iÞ j

U~ i 2 j !ninj1(
i

U~0!ni ,↑ni ,↓ .
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Heres5↑,↓ is a spin index, anddi ,s
† (di ,s) creates~destroys!

a fermion on thei th site of aD-dimensional lattice of linear
dimensionLa and volumeV5(La)D. This latter quantity
defines the numberm/25V/aD of spin-degenerate one-bod
eigenenergies which we will refer to asorbitals in what fol-
lows; a[1 is the lattice constant.H0 is a one-body, spin-
independent, disordered Hamiltonian with eigenvaluesea
and eigenvectorsca ; i.e., one has

H0uca&5eauca&5ea(
i

ca~ i !u i &. ~2.1!

u i & refers to the lattice site basis.
We assume thatH0 has no degeneracy besides twofo

spin degeneracy and distribute them/2 different one-body
energies aseaP@0;m/2# so as to fixD[1 without spin de-
generacy. Below we will discuss three different eigenva
distributions: constant-spacing distribution20 @ea5(a21)D;
note that due to the level degeneracy the single-particle le
spacing isD, whereasD/2 is the mean level spacing#, ran-
domly distributedea with a Poisson spacing distribution, o
with a Wigner-Dyson spacing distribution. FinallyU( i 2 j ) is
the electron-electron interaction potential andni5(sni ,s

5(sdi ,s
† di ,s . The Hamiltonian is spin rotational symmetr

~SRS! so that both the total spinuSW u and its projectionSz
commute with the Hamiltonian and the corresponding eig
valuess andsz are good quantum numbers. This results
a block structure of the HamiltonianH which will be de-
scribed in detail below. Performing the unitary transform
tion defined by

(
a

ca~ i !ca,s
† 5di ,s

† , ~2.2!

we rewrite the Hamiltonian as

H5( eaca,s
† ca,s1( Ua,b

g,d ca,s
† cb,s8

† cd,s8cg,s , ~2.3!

where the interaction matrix elements~IME’s! are given by

Ua,b
g,d 5(

i , j
U~ i 2 j !ca* ~ i !cb* ~ j !cd~ j !cg~ i !. ~2.4!

These IME’s induce transitions between many-body sta
differing by at most two one-body occupation numbers. T
distribution and properties of the IME’s depend on both t
range of the interaction potential and the one-particle dyna
ics. If there are conserved quantities other than energy in
one-particle dynamics~and hence good quantum numbe
describing the one-body states!, this will lead to selection
rules in the IME’s; the extreme case of this would be
integrable one-particle Hamiltonian for which a complete
of quantum numbers exists. Selection rules greatly red
the number of allowed interaction-induced transitions a
lead to a very singular distribution of IME’s~this is most
easily seen by considering a clean hypercubic lattice mo
with Hubbard interaction!. Perturbing a clean lattice with a
6-3
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disordered potential destroys translational symmetry
these selection rules disappear, which induces a crossov
the distribution of IME’s from a set ofd functions to a
smooth distribution. In Fig. 1 we illustrate this by plottin
the distribution of IME’s for a one-dimensional lattice mod
with on-site disorder, nearest- and next-nearest-neigh
hopping, and a Hubbard interaction as described, e.g., in
21.

The key assumption of our model is that such a smo
distribution of interaction matrix elements exists and that
fact all matrix elements which preserve SRShave the same
nonzero variance~these matrix elements may vanish on a
erage of course!. This assumption rules out both the case
integrable one-body dynamics as discussed above, and
case of strongly localized wave functions for which intera
tion matrix elements between states separated spatiall
more than a localization length will have different~and much
smaller! variance than those in the same localization volum
Our assumption is reasonable for metallic disordered st
with a randomness generated by either impurities or cha
boundary scattering.

With this motivation, we assume that the fluctuatio
of the off-diagonalUa,b

g,d are random with a zero-centere
Gaussian distribution of widthU. Only matrix elements
Ua,b

a,b , Ua,b
b,a, and Ua,a

b,b have nonzero average
^Ua,b

a,b&, ^Ua,b
b,a&, and ^Ua,a

b,b&, which lead ~respectively! to
mean-field charge-charge, spin-spin, and BCS-like inte
tion terms. Note that the average of both the exchange
BCS terms is dominated by the short-range part of the in
action and thatUBCS vanishes if time-reversal symmetry
broken. Consequently, the electronic interactions give us
contributions. The first three are the average charge-cha
ferromagnetic spin-spin, and BCS terms that we just d
cussed and which can be written as (na5(a,sca,s

† ca,s and
n5(ana)

FIG. 1. Distribution of off-diagonal interaction matrix elemen
~2.4! for a one-dimensional lattice model with nearest- and ne
nearest neighbor hopping and a Hubbard interaction~details of the
model can be found in Ref. 21! and for different strengthsW/V of
the disordered potentialW/V50 ~thin solid line!, 1 ~thick solid
line!, 2 ~dashed line!, and 3~dot-dashed line!.
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Uavg5Ucc1Uss1UBCS

5F ^Ua,b
a,b&2

1

2
^Ua,b

b,a&Gn~n11!/2

2lUSW •SW 1(
a,b

^Ua,a
b,b&ca,↑

† ca,↓
† cb,↓cb,↑ ~2.5!

where we have introduced spin operatorsSW a

[(1/2)(s,tca,s
† sW s,tca,t andSW 5(aSW a . Note that the strength

of the average ferromagnetic exchange term has been wr
in units of the rms fluctuationU; i.e., we have introduced a
parameterl which is the ratio of the average exchange to t
fluctuations,

l[2^Ua,b
b,a&/U, ~2.6!

much in the same spirit as the usual Stoner picture wh
another energy ratiôUa,b

b,a&/D, between the exchange energ
and the one-body energy spacing at the Fermi level, is
relevant parameter.

The fourth interaction contribution to our model Ham
tonian goes beyond the mean-field approximation and c
tains the off-diagonal fluctuations of the electronic intera
tions:

Uf5 (
a,b;g,d

(
s,s8

Ūa,b
g,d ca,s

† cb,s8
† cd,s8cg,s . ~2.7!

Having removed the average interactions, we now assu
that both the diagonal and off-diagonal IME’sŪa,b

g,d have

zero-centered uncorrelated Gaussian distributionsP(Ūa,b
g,d )

}e2(Ūa,b
g,d )2/2U2

of width U. We stress that, in general, not a
IME’s have the same variance, but being interested in
neric features of the interaction, we will neglect these va
ance discrepancies.Uf contains three kinds of matrix ele
ments, the variances of which depend on the number
transferred one-body occupancies between the conne
Slater determinants. Diagonal matrix elementsU f

I ,I

5^I uUf uI & (uI & denotes a Slater determinant! have a variance
;n(n21)U2/2, and one-body off-diagonal elements th
change only one occupancy have a variance;(n21)U2,
whereas generic two-body off-diagonal matrix elements
ducing transitions between Slater determinants differing
exactly two occupancies have generic varianceU2. In dia-
grammatic language, these discrepancies occur due to
presence of up to two closed loops in the diagram co
sponding to these matrix elements, each loop correspon
to a sum overO(n) uncorrelated IME’s.

Our full Hamiltonian then reads

H5H01Uavg1Uf . ~2.8!

The mean-field Hamiltonian proposed in Ref. 13 was co
structed along similar lines but neglects the fluctuations
interactionUf and is thus embedded in the above Ham
tonian ~2.8!. Consequently, all results derived there can
obtained from the treatment to be presented below after
ting the strength of fluctuationsU→0. In a condensed matte

t-
6-4
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context this is justified in the limit of large conductanceg
→`. As recent experiments in quantum dots seem to
consistent with a conductanceg'6 –8,11 it is a priori not
obvious thatUf can be neglected. We also stress that both
random matrix theory~RMT! symmetry under orthogonal~or
unitary! basis transformation in the one-body Hilbert spa
@which in metallic samples are satisfied for energy sca
smaller than the Thouless energyEc5gD ~Ref. 39!# and the
SU~2! symmetry under rotation in spin space are satisfied
each of the three terms in the above Hamiltonian.

The charge-charge mean-field contribution results in
constant-energy shift of the full spectrum and has thus
influence on the ground-state spin; we therefore neglec
henceforth. This must, however, be kept in mind, as it is
instance well known that including self-consistently t
mean-field charge-charge contribution of the interactio
~e.g., in a Hartree-Fock approach! leads to significant correc
tions to the one-particle density of states at the Fe
level.6,22,23The BCS term gives rise to superconducting flu
tuations for a negative effective interaction in the Coop
channel^Ua,a

b,b&,0. We shall only consider disordered m
tallic samples which havêUa,a

b,b&.0. In this case the renor
malization group flow brings the BCS coupling to zero.24 We
thus also neglect this term and setUavg5Uss. Note, how-
ever, that the presence of a nonzero~repulsive or attractive!
BCS coupling may stabilize a paramagnetic phase.

After these considerations we reach our model Ham
tonian.

H5(
a

eana2lUSW •SW 1 (
a,b;g,d

(
s,s8

Ūa,b
g,d ca,s

† cb,s8
† cd,s8cg,s .

~2.9!

Due to the SRS that we imposed on the original Ham
tonian~2.1!, the interaction commutes with the total magn
tization uSW u2 and its projectionSz so that the Hamiltonian
acquires a block structure where blocks are labeled b
quantum numbersz and subblocks of givens>uszu appear
within each of these blocks. Each block’s size is given
term of binomial coefficients asN(sz)5(n/22sz

m/2 )(n/21sz

m/2 ),

while the size of a subblock of givens is given byN(s)
5N(sz5s)2N(sz5s11). Due to SRS, it is sufficient to
study the block with lowest projectionsz50 (1/2) for even
~odd! number of particles, as all values ofs will be included
in this block. For simplicity, we will consider an even num
ber n of particles in the initial discussion presented belo
and will generalize the discussion later on to include oddn,
highlighting the main differences between the two cases.
important to remark that boths and sz are not only good
quantum numbers for the full Hamiltonian, but also individ
ally for H0 , Uavg , andUf . This allows us to consider eac
of these terms separately and in the next two sections we
make use of this property, first neglectingUss: as it only
generates constant energy shifts within each sector, it ca
added after the restricted problemH01Uf has been solved.

In Eq. ~2.7! the sums in both the spin and orbital indic
are not restricted, i.e., s,s85↓,↑ and a,b,g,d
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51,2, . . . ,m/2. It is both convenient and instructive to re
write it as

Uf5 (
a.b;g,d

(
sz50,61

Va,b
g,d Ta,b

† ~sz!Tg,d~sz!

1
1

2 (
a>b;g<d

Wa,b
g,d Sa,b

† Sg,dS 12
1

2
da,bD S 12

1

2
dg,dD ,

~2.10!

where we have introduced the totally symmetric and a
symmetric matrix elements

Wa,b
g,d 5Ūa,b

g,d 1Ūb,a
d,g 1Ūa,b

d,g 1Ūb,a
g,d ,

Va,b
g,d 5Ūa,b

g,d 1Ūb,a
d,g 2Ūa,b

d,g 2Ūb,a
g,d , ~2.11!

as well as two-body creation and destruction operators
either singlet-paired fermions,

Sa,b
† 5~ca,↑

† cb,↓
† 2ca,↓

† cb,↑
† !/A2, Sa,a

† 5ca,↑
† ca,↓

† ,
~2.12!

or triplet-paired fermions,

Ta,b
† ~0!5~ca,↑

† cb,↓
† 1ca,↓

† cb,↑
† !/A2,

Ta,b
† ~s!5ca,s

† cb,s
† , s5↑,↓. ~2.13!

As we consider fully uncorrelated IME’sUa,b
g,d , both the

symmetrized and antisymmetrized matrix elements have
same variance which for no doubly appearing indices rea

s2~Wa,b
g,d !5s2~Va,b

g,d !54U2. ~2.14!

In principle, the ratio of the variances strongly depends
microscopic details, in particular the range of the interacti
For instance, it can easily be seen thats2(Va,b

g,d )/s2(Wa,b
g,d )

P@0,1# and that the ratio vanishes for a Hubbard interacti
We will neglect this discrepancy, however, but note that
increased variance of the symmetrized IME’s with respec
the antisymmetrized ones favors a low-spin ground-state25

The Hamiltonian can now be regarded as acting on sin
or triplet bonds between levels. SRS is then reflected in
simple statement that the destruction of a bond between
fermions must be followed by the recreation of a bond of
same nature. We note that the triplet operators~2.13! create
either asz50, s51 or asz561, s51 two-fermion state
in a fixed spin basis. A rotation in spin space would bring t
operators in Eq.~2.13! into one another and the first thre
terms in the brackets in Eq.~2.10! are not individually SRS
but must be considered as one single spin-conserving op
tor. We illustrate this point in Appendix A, where we eval
ate the effect of this operator acting on a four-particle st
with two double occupancies. Note also that from Eqs.~2.4!
and ~2.11!, a purely on-site interaction influences only th
singlet channel as in this case the antisymmetrized IM
vanish identically.

The procedure leading to Eq.~2.10! amounts to a projec-
tion of the interaction operator onto the two irreducible re
resentations of the two-fermion symmetry group. In this w
6-5
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FIG. 2. Representation ofsz50 many-body states withs52 ~a! and 0~b!. These two states differ only by the nature of the two-partic
bonds connecting pairs of fermions on partly filled orbitals which are either singlets or triplets~the nature of the bonds is indicated by th
letters or t). As fermions on doubly occupied orbitals can only be singlet paired, they cannot provide for a nonzero spin. Together w
this forbids the scattering from a triplet bond configuration onto a double occupancy, so that the rightmost state~c! can only be coupled to
the s50 state~b!.
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the two-body singlet matrix elements are explicitly separa
from their triplet counterparts, and the rewriting leading
Eq. ~2.10! allows us to formulate the many-body problem
terms of two-particle bonds of a different nature in a simi
way as the authors of Ref. 25. Any evenn-fermion state is
represented as an/2-boson state where each boson has eit
spin s50 or 1. These bosons can be constructed by ac
on the vacuumu0& with an S or a T operator, respectively
and the spin of these composite bosonic states depend
the bond between the two fermions, i.e., whether the fer
onic antisymmetry is supported by the spin or the spa
degrees of freedom. Alternatively, this means that for
n-body state of total spins, the number of triplet bonds is
given bys.26 Also double orbital occupancies result in si
glet bonds, so that their number is restricted to@0,n/22s#.
This construction leads, however, to an overcomplete b
for n>6. We were unable to propose a systematic reduc
to an orthonormal set of states and nor are we aware of
such systematic construction in the literature. For the co
putations to be carried below it will, however, be sufficient
know that such a basis can in principle be constructed~via,
e.g., reduction and orthogonalization of the constructed o
complete basis! and how to construct it for the special ca
of four particles above the filled fermi sea, as those are
only states one encounters when doing second-order pe
bation theory for the levels of lowest energy in thes50 and
1 sectors.

Equation~2.10! helps us see the key qualitative point
our work. In second-order perturbation theoryUf will gener-
ate transitions in each spin subblock between the gro
state and excited states differing by two occupation numb
~or less!. Both the triplet and singlet terms will generate tra
sitions, but there are certain types of transitions which can
generated by the singlet term whichcannotbe generated by
the triplet term. For instance, the triplet operator cannot g
erate transitions to final states with additional double oc
pancies nor is it possible to scatter a triplet bonded pair
a double occupancy~see Fig. 2!. As the magnetization in-
creases, the number of singlet transitions decreases ac
ingly as the number of singlet two-particle bonds in a ma
body state obviously decreases with its total magnetizat
Eventually, whens is maximal, only triplet transitions sur
vive and we can readily conclude that the number of tw
21441
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body transitions is a monotonically decreasing function
the magnetization as is therefore the number of~energy-
decreasing! second-order contributions. We will see belo
that this condition on the available volume for phase-sp
scattering is crucial for the ground-state magnetization pr
erties, both in the perturbative regime (U/D!1) and in the
asymptotic limit of dominant fluctuations (U/D@1). It is
important to understand that the relevant variable here is
number of transitions and not the size of the Hilbert spa
the block sizeN(s) is in general~for a sufficient number of
particles! a nonmonotonic function ofs, as on the one hand
N(s5n/2),N(s50) @or N(s5n/2),N(s51/2) for odd
number of particles#, whereas, on the other hand and in t
limit s!n/2!m/2, it can be shown using Stirling’s formul
that ]N(s)/]s.0. Except for very few particles,N(s) has
its maximum at a finite magnetization, whereas the num
of transitions is always maximum fors50.

We close this introductory section with a brief historic
survey of random interaction models similar to Eqs.~2.9!
and ~2.10!. These models originated in nuclear physics a
are based on similar principles as those which led Wigne
propose the Gaussian ensembles of random matrices,
the additional requirement that they represent particles in
acting via ak-body interaction. Only when the rankk of the
interaction is equal to the numbern of particles does one
recover the Wigner Gaussian ensembles. Physically, inte
tions are in principle not randomper se; however, once one
postulates the invariance of the one-body Hamiltonian ma
ensemble under unitary~i.e., basis! transformation, a postu
late motivated, e.g., by a chaotic one-body dynamics, r
dom IME’s naturally appear@see Eq.~2.4!#, and this results
in a similar invariance for the many-body Hamiltonian e
semble and the associated probability distributionP(H)
}exp(2TrH 2/2). The first proposed model with random in
teractions was the fermionic two-body random interact
model~TBRIM! for spinless fermions which was introduce
independently by French and Wong27 and Bohigas and
Flores.27 This model is essentially a spinless version ofUf .
While significant deviations from the usual Gaussian e
semble of random matrices were found in the tails of
spectrum—in particular the many-body density of sta
~MBDOS! for n@2 has a Gaussian, not a semicircul
shape—these authors found no significant differences in
6-6
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spectral properties at high excitation energy.~This latter find-
ing has been, however, challenged very recently28 and may
be due to the smallness of the systems considered.! More
recently this spinless TBRIM was extended with a one-bo
part and it has been discovered that the critical interac
strengthUc at which Wigner-Dyson~WD! statistics sets in is
governed by the energy spacingsDc between directly
coupled states.29 This model and similar ones have also be
studied in the framework of quantum chaos in atom
physics;30 in particular, the thermalization of few-body iso
lated systems has attracted a significant attention31,32 and,
more recently, in solid-state physics to study quasipart
lifetime29,34–38 and fluctuations of Coulomb blockade co
ductance peak spacings and heights33 in quantum dots. In a
solid-state context, however, the invariance of the one-b
Hamiltonian under basis transformations, is satisfied only
an energy interval of the order of the Thouless energyEc
5gD around the Fermi energy, whereg is the conductance.39

Wave function correlations become stronger and stronger
yond the Thouless energy where IME’s start to decay a
braically as a function of the energy. It is thus reasonable
consider our random interaction model as an effective tr
cated Hamiltonian in an energy window given by the Tho
less energyEP@Ef2Ec ,EF1Ec#,

34 so that the number o
particles and orbitals behave asm,n;g. Nuclear shell mod-
els may also be represented by randomly interacting mod
differing from the original TBRIM in the presence of add
tional quantum numbers like spin, isospin, parity, and
forth.32 Most of those models consider the limit of domina
fluctuationsU/D@1 and, quite unexpectedly, it has be
found that even in this regime, random interactions may
sult in an orderly behavior,40 in particular, a strong statistica
bias toward a low-angular-momentum ground state. In p
ticular, for the special case of an angular momentum
stricted to j z561/2, the probability of finding a zero
angular-momentum ground state for an even number
nucleons reaches almost 100%.1,25 While the reasons for this
behavior in the asymptotic regime are still not clear,41 we
will see below that a strong bias toward a low-angul
momentum ground state results from a stronger broade
of the MBDOS in the low-spin sector, associated with
larger number of off-diagonal transitions. The same pheno
enon with qualitatively the same origin will be shown
influence the ground-state magnetization in the perturba
limit.

III. CASE OF nÄ2 FERMIONS

For n52 particles, only the sectorss50 and 1 exist
whose size is given byN(s)5m/2(m/21122s)/2. In each
sector, the interaction matrixUf is a GOE matrix~the number
of particles is equal to the rank of the interaction! and all
Hamiltonian matrix elements are nonzero and have the s
variance. For simplest case of two orbitals (m/252) one can
demonstrate the magnetization reducing effect of interac
fluctuations by an argument which isexactfor all values of
the off-diagonal fluctuationsU. The two orbitals are spin
degenerate and have energiese150 and e25D.0. In the
absence of interaction fluctuations, the three eigenvalue
21441
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thes50 sector are 0,D, and 2D. Switching on the interac-
tion, the determinant of the Hamiltonian matrix in the tim
reversal symmetric case can be written

DetH5
1

2
W1,1

1,1S D1
1

2
W1,2

1,2D S 2D1
1

2
W2,2

2,2D1
1

4
W1,2

1,1W2,2
1,2W2,2

1,1

2
1

4 F1

2
W1,1

1,1~W2,2
1,2!21~W1,2

1,1!2S 2D1
1

2
W2,2

2,2D
1~W2,2

1,1!2S D1
1

2
W1,2

1,2D G . ~3.1!

Every single term in this expression has a symmetric d
tribution, i.e., an equal probability of being positive or neg
tive, except for a term2@(W2,2

1,1)212(W1,2
1,1)2#D/4, which is

always negative. It results that the determinant has a hig
probability of being negative which in its turn means that t
lowest eigenvalue~which vanishes atU/D50) is statisti-
cally more often negative than positive whenU is switched
on—it is more likely to be reduced than increased by
off-diagonal fluctuations. Simultaneously and in absence
exchange, the energy of the onlys51 level is given byD
1V1,2

1,2/2, so that the fluctuations lower or increase it wi
equal probability. Hence fluctuations always increase the
erage spin gap in this case.

We next consider an arbitrary number of orbitals,m. First
consider the limit of dominant fluctuationsU/D@1. H'Uf
is then a GOE matrix and its MBDOS is well approximat
by a semicircle law (E2<E0

2)

rGOE5
2

pE0
2~s!

AE0
2~s!2E2, ~3.2!

where E0(s)'A2N(s)U. This expression is not exac
however, as there are corrections in the tail of t
distribution42 as one can see in Fig. 3. These correctio

FIG. 3. Density of states forn52, m512 s50 ~open circles!,
and s51 ~solid circles! computed from 5000 realizations ofUf .
The solid lines give the corresponding semicircle law~3.2!. Tails
develop due to the finiteness of the Hilbert space size@N(0)578
andN(1)566].
6-7
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behave asO(N21/6) while the level density there isO(N1/6)
~Refs. 42 and 43; i.e., the number of levels outside the se
circle is independent ofN ~and hence ofm) and for simplic-
ity we will neglect these corrections in what follows.

Henceforth we shall be focusing attention on the grou
state in each spin sector and the gaps between these gr
states, so it is useful to adopt the standard term in nuc
physics for the lowest levels, of a given spin or angular m
mentum,yrast levels. In the current model, in the asympto
regime of large fluctuationsU/D@1 ~and neglecting the ex
change interaction!, we can approximate the energy of th
yrast states byE0(s) and hence readily predict that the a
erages50 yrast energy will be lower than itss51 coun-
terpart by an amount

Ds[E0,s512E0,s50'U@Am~m/211!/22Am~m/221!/2#

5U1OS 1

mD ; ~3.3!

i.e., on average there is a spin gap forU/D@1 in the large-
m limit. Next we can calculate the average energy of the fi
excited s50 level, E1,s50, via integration of the averag
MBDOS ~3.2! as

E1,s502E0,s505O„N~s!21/6
…5O~m21/3!. ~3.4!

In the relevant limitm@1 the splitting between this firs
exciteds50 level and thes50 yrast level is negligible and
both states are below thes51 yrast level by a gap of orde
U, independent ofm. This calculation can be extended
higher s50 excited states and the result suggests that
average there is a large numberO(m1/3) of s50 levels
which have a lower energy than the first spin-excited st
Remember, however, that we have neglected correction
the tails of the density of states, and it turns out that th
corrections result in anm-independent numberp'3 of s

FIG. 4. Average numberp of levels in the spin gap between th
two yrasts forn52, divided by the total number of levels,N(0)
5m(m11)/2, in thes50 sector as a function of the numberm of
one-particle orbitals. The dashed line shows the dependencep/N
;1/N in agreement with am-independent number of levels in th
gap.
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50 levels in the spin gap as shown by the numerical d
presented in Fig. 4. In Fig. 5 we show a numerical che
which confirm the validity of Eq.~3.3! up to prefactors
which are due to additional correlations between the con
ered levels and cannot be captured by the simple argum
presented here. We will come back to this point in Sec.
Note, however, that the distance betweenE0,s50 andE1,s50
seems to remain constant asm increases which is a manifes
tation of the presence of the tail correction to the semicir
law ~3.2! and is beyond the reach of the simplified reason
we have presented.

We can next calculate perturbatively the energy of
yrast state in each sector up to the second order inU/D.
These states can be written as@the singlet and triplet creation
operatorsS1,1

† and T1,2
† (0) have been defined in Eqs.~2.12!

and ~2.13!#

uC0
(s50)&5S1,1

† u0&,

uC0
(s51)&5T1,2

† ~0!u0&. ~3.5!

Up to the first order their energies are given by

E0,052e11W1,1
1,1/2,

E0,15e11e21V1,2
1,2/222lU, ~3.6!

and the second-order corrections read~using the constan
spacing model for the one-particle levels!

DE0,0
(2)52

1

2 (
a>b.2

~Wa,b
1,1 !2~12da,b/2!

~a1b22!D

2
1

2 (
a>2

F ~W1,a
1,1!2

~a21!D
1

~W2,a
1,1!2~12da,2/2!

~a22!D
G ,

DE0,1
(2)52 (

a.b.2

~Va,b
1,2 !2

~a1b23!D

2 (
a.2

F ~V2,a
1,2!2

~a21!D
1

~V1,a
1,2!2

~a22!D
G . ~3.7!

Note that any double occupancy in either the initial or fin
state results in a 1/A2 reduction of the transition amplitude
hence the factors 1/2 appearing on the right-hand side of
first and second lines of Eq.~3.7!. These factors are, how
ever, exactly counterbalanced by the IME averages, s
one has@see Eq.~2.14!#

~Wa,a
1,1 !25~4Ua,a

1,1 !2516U2,

~Wa,b
1,1 !25~2Ua,b

1,1 12Ub,a
1,1 !258U2, ~3.8!

~Va,b
1,2 !25~Ua,b

1,2 1Ub,a
2,1 2Ub,a

1,2 2Ua,b
2,1 !254U2.

The second-order contributions for the energies of the low
levels in each spin sector are therefore given by
6-8
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DE0,0
(2)52

4U2

D (
a>b.2

1

a1b22

2
8U2

D (
a>2

F 1

a21
1

1

a22G ,
DE0,1

(2)52
4U2

D (
a.b.2

1

a1b23

2
8U2

D (
a.2

F 1

a21
1

1

a22G . ~3.9!

The expressions given in Eqs.~3.9! are in very good agree
ment with numerical data obtained from exact diagonali
tion as we show in Figs. 6 and 7. It is clearly seen from E
~3.9! that the singlet and triplet second-order corrections
fer only by a restriction in the sums which arises in the trip

FIG. 5. Average spin gap between the two lowest yrast lev
~circles! and average splitting between the first exciteds50 level
and thes51 yrast level~triangles! of Uf for n52 as a function of
the number of one-particle orbitalsm. The data show almost nom
dependence in agreement with Eq.~3.3!.

FIG. 6. Ground-state energy for the Hamiltonian~2.9! with l
50 at n52, s50, m512 ~circles!, and m516 ~squares! as a
function of the strength of off-diagonal fluctuationsU/D. The solid
lines indicate the perturbative result@e0,0(U)2e0,0(0)#/D
5A(U/D)2 with a numerical coefficient determined by Eq.~3.9!
A5221.12 and227.56, respectively.
21441
-
.
-
t

case because transitions to doubly occupied states are
allowed; it is straightforward to show that there are exac
m/2 such transitions. As each contribution in second-or
perturbation theory reduces the energy of the lowest-ene
state in each sector, thesem/2 additional transitions will
therefore favor a singlet ground state in the perturbative
gime.

All other transitions give on average the same contrib
tion to E0,0 as toE0,1 as symmetric and antisymmetric matr
elements have the same variance. As the first-order cor
tions do not survive disorder averaging, we can write
average energy difference between those two levels
second-order perturbation theory as

DS'D22lU1A
U2

D
ln~m/2!, ~3.10!

whereA.0 is a numerical prefactor that can be extract
from Eqs.~3.9! and the above expression is valid in the lar
m limit. It follows from Eq. ~3.10! that in order to align
spins, the exchange has to overcome more than just one
spacing. Equivalently, Eq.~3.10! states that off-diagona
fluctuations increase the energy spacing between the low
energy states of each sector. Equation~3.10! has been
checked numerically and the result is shown in Fig. 8.

One can also compute perturbatively the splitting induc
by the off-diagonal fluctuations between the firsts50 ex-
cited state and thes51 yrast. As a matter of fact, except fo
the exchange interaction, all corrections in the first two
ders in perturbation theory give the same average contr
tions up to second-order contributions which exist only
uC1

(0)& and correspond to scattering onto a double occupa
In second-order perturbation theory, this splitting reads

E0,12E1,0522lU1 (
a>3

~Wa,a
1,2 !2

2~2a23!D

'22lU1A8
U2

D
ln~m/2!. ~3.11!

ls FIG. 7. Ground-state energy for the Hamiltonian~2.9! with n
52, s51, m512 ~circles!, andm516 ~squares! as a function of
the strength of off-diagonal fluctuationsU/D in absence of ex-
change interaction. The solid lines indicate the perturbative re
@e0,1(U)2e0,1(0)#/D5A(U/D)2 with a numerical coefficient de-
termined by~3.9! A5217.5 and223.91, respectively.
6-9
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PHILIPPE JACQUOD AND A. DOUGLAS STONE PHYSICAL REVIEW B64 214416
In particular we see that the splitting induced by the inter
tion fluctuations favors the spatiallysymmetricsinglet state
and opposes the exchange term (A8.0). Note also that for
n52, both the splitting~3.11! and the spin gap~3.10! have a
similar magnitude. We will see below that this is no long
the case for largern. Replacing the sum by an integral on
finds A8'2 in Eq. ~3.11!.

Some remarks are in order here as the case of two
ticles is somehow special. Forn52, Uf is a GOE matrix for
which the number of transitions in each sector is equal to
size. However, as one adds particles, the matrix beco
sparser and sparser as the Hilbert space size grows expo
tially with the number of particles, whereas the number
transitions is a polynomial inn. It is, however, clear from the
perturbative treatment presented above that what matte
the number oftransitions, not the sector size. Generical

FIG. 8. Spin gap between the two lowest yrast states forn52
andm516 as a function of the strength of off-diagonal fluctuatio
U/D. The solid line gives the perturbative result from Eq.~3.10!,
giving @e0,1(U)2e0,0(U)#/D511A(U/D)2 with a numerical coef-
ficient determined by Eq.~3.10!, A53.66.
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and for a sufficient number of particles, the sector with t
largest number of states has finite~nonzero! magnetization,
whereas it is always fors50 that one has the most trans
tions and hence the largest probability to find the grou
state. Simultaneously, for an increasing number of partic
the MBDOS undergoes a crossover to a Gaussian shap
the limit n@2.17,18 It is understood that the sparsity of th
resulting matrices alone does not invalidate the semici
law; sparse matrices with uncorrelated matrix elements m
have a semicircle law.44,45 However, as noted already, th
IME’s in the TBRIM are highly correlated and this appa
ently drives the MBDOS to the Gaussian form. For a ve
recent and interesting analytical study of this crossover,
refer the reader to Ref. 28. Of importance for us is that e
for n@2 one still has a reliable expression for the MBDO
in term of n andm that one may use to extract the avera
energy difference between yrast states in the regime of la
fluctuations. We will implement this procedure forn.2 in
Sec. V.

IV. PERTURBATIVE TREATMENT FOR nÌ2

We now discuss the perturbation theory for the yrast sta
for arbitrary n. These results are of particular interest sin
numerical results for largeU are necessarily restricted t
smalln and one may worry that the largen behavior is quali-
tatively different. In this case, within the perturbative regim
we can show analytically that fluctuations reduce the pr
ability of a magnetized ground state for arbitraryn. To esti-
mate the size ofU one must consider the disorder averag
typical amplitude of fluctuations of the IME~2.4!, which has
been computed for diffusive metallic samples.46,47 In this
case the effective static electronic interaction is stron
screened and can therefore be well approximated by a H
bard interaction. Then, the variance of the IME’s Eq.~2.4!, is
given by
s2~Ua,b
g,d !5U 2(

i
(

j
ca* ~ i !cb* ~ i !cg~ i !cd~ i !ca~ j !cb~ j !cg* ~ j !cd* ~ j !. ~4.1!
with
-
s

les,
er

on
e-

in-
In diffusive systems for whichl e!L holds (l e is the elas-
tic mean free path!, the wave functions can be estimate
using classical return probabilities as extracted from the
fusion equation and one getss(Ua,b

g,d )[U;D/g.46 In metal-
lic samples the conductanceg is very large and even in sma
quantum dots it is typically of the order of 10. It is therefo
of interest to start with a perturbative treatment up to seco
order in the small parameterU/D. Each contribution in
second-order perturbation theory is always negative for e
yrast state and we will see, as for the casen52, that the
number of such contributions is larger in the lowest-spin s
tor, thereby favoring the absence of magnetization; howe
additional and more subtle interference effects in the tra
tion matrix elements also appear and favors50. Here and if
not stated otherwise in the rest of the paper, we will ma
f-

d-

ch

-
r,
i-

e

use of SRS and consider eachs sector in thesz50 block.
This means that there are as many particles with up as
down spins, and states with differents ’s but the same occu
pancies will differ only in the nature of two-particle bond
between pairs of fermions on partly occupied orbitals~see
Fig. 2 and the discussion in Sec. II!. We will also focus most
of our discussion on the case of an even number of partic
but will eventually generalize our results to an odd numb
of particles. To simplify numerical checks of the perturbati
theory we will consider only the case of equidistant on
body orbitalsea5(a21)D in this section and will discuss
generic spectra later on.

For sz50, there are an equal number of spin-up and sp
down fermions andN(0)5(n/2

m/2)2 Slater determinants. AtU
50 the ground state can be written as
6-10
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uFn&5 )
a51,n/2

ca,↑
† ca,↓

† u0&. ~4.2!

Obviously this state hass50, as doubly occupied orbit
als form a singlet two-particle state. Acting onuFn& with the
S† andT†(0) operators@see Eqs.~2.12! and~2.13!# Q andP
times, respectively,

)
a,b

P

Sa,b
† )

g,d

Q

Tg,d
† ~0!uFn&, ~4.3!

allows one to construct asz50 state which is in general
linear combination of Slater determinants of total spins
51,2, . . . ,Q21,Q. One can in principle represent a com
plete basis with good quantum numberss, sz and one-
particle occupations from the states~4.3! following the rules
following:

~i! Fermions on the same orbital are singlet paired.
~ii ! Fermions on singly occupied orbitals are arbitrar

bonded in pairs,s of the latter being triplet, the rest bein
singlet bonded.

~iii ! The triplet bonds combine to maximize the total sp
While the first rule is imposed by the Pauli principle, th

second and third rules are a matter of convention. This se
rules is similar to the one employed by Kaplan, Papenbro
and Johnson25 for the case ofn54 particles. As noted above
the generalization to more particles is not trivial: followin
the above prescription, one obtains an overcomplete b
and one should construct a proper orthogonalization pro
dure to reduce this basis. In what follows, however, we w
compute perturbative corrections up to second order for o
three different states: thes50 and s51 yrast states
(uC0

(s50)& and uC0
(s51)&) and the firsts50 excited state

(uC1
(s50)&). For comparison of these states the construct

of a basis forn54 is sufficient. We can write these thre
states as

uC0
(0)&5uFn&,

uC1
(0)&5Sn/2,n/211

† uFn22&,

uC0
(1)&5Tn/2,n/211

† ~0!uFn22&. ~4.4!

The difference between thes51 yrast state and the firs
s50 excited state lies exclusively in the bond between
last two particles: it is a triplet in the first case and a sing
in the second. Up to first order, the energies of the sta
~4.4! are given by

E 0,0
(1)[^C0

(0)uHuC0
(0)&5

n

2
S n

2
21DD,

E 1,0
(1)[^C1

(0)uHuC1
(0)&5E 0,0

(1)1D,

E 0,1
(1)[^C0

(1)uHuC0
(1)&5E 0,0

(1)1D22lU. ~4.5!

Without interactions, the latter two levels are degenerate
in first order they are on average split only by the excha
21441
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interaction favoring as usual the spatially antisymmetric tr
let state. To calculate the average second-order correct
we need to know the number of direct interaction-induc
transitions which we will call theconnectivity Kand which is
calculated in detail in Appendix B.K is a monotonously
decreasing function of the total spin and in particular t
difference between its values ats50 ands51 is always
m/2, independent of the number of particles. This decreas
K as a function ofs results in a smaller number of secon
order contributions for states in higher-s sectors and thus a
smaller reduction of the energy of the corresponding yr
state. We will identify below the transitions which give th
major contributions to the difference in second-order sh
between the two lowest yrast states. The second-order
rection to the energy of thes50 yrast reads

DE0,0
(2)

52 (
a>b>n/211

(
g<d<n/2

~Wa,b
g,d !2~12dg,d/2!~12da,b/2!

~a1b2g2d!D

2 (
a.b>n/211

(
g,d<n/2

3~Va,b
g,d !2

~a1b2g2d!D

'2A
U2

D
n2m ln~m!. ~4.6!

Note that the singlet and triplet contributions add incoh
ently and that the triplet transition acquires a factor of
reflecting the corresponding number of channels (sz50,
61). In order to estimate~4.6!, the sums can be replaced b
a fourfold integral which gives an homogeneous polynom
of order 3 inn andm, each term being multiplied by a loga
rithmic correction. In the dilute limit 1!n!m the m3 and

FIG. 9. Energy of thes50 yrast state form516, n52
~circles!, 4 ~squares!, 6 ~diamonds!, and 8~triangles!, as a function
of the strength of off-diagonal fluctuationsU/D. The solid lines
give the perturbative results extracted from Eq.~4.6!, giving
@e0,0(U)2e0,0(0)#/D5A(U/D)2 with a numerical coefficient de-
termined by~4.6!A5227.56 (n52), 2144.75 (n54), 2281.09
(n56), and2373.57 (n58). Note that the breakdown of the pe
turbative expression coincides with the emergence of the large-U/D
linear regime.
6-11
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FIG. 10. The two lowest yrast statess51/2
~a! and 3/2~b! for odd number of fermions.
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m2n terms drop out exactly and this gives the dominantn2m
dependence expressed in Eq.~4.6!. This estimate is also con
firmed by numerical evaluation of the sum in Eq.~4.6!.

The above formula is found to be in good agreement w
numerical data as shown in Fig. 9. Note that at a lar
number of particles, the dependence of the energies of
yrast states starts to have a linear dependence inU/D much
earlier, signaling an earlier breakdown of perturbation the
than for a small number of particles. We will discuss th
point below. The correctionDE0,1

(2) for the s51 yrast can be
calculated in the same way and one can show that differe
betweenDE0,0

(2) and DE0,1
(2) occur first due to denominator

differing by 6D as transitions involving the two uppermo
particles start from the orbitals (n/2,n/2) and (n/2,n/211)
for s50 and 1, respectively, and second due to transiti
either increasing or decreasing the number of double oc
pancies~which only occur fors50). As noted, the numbe
of such transitions ism/2 and they give a contribution to th
spin gap which can be written (n[n/m is the filling factor!

2A
U2

D
ln~n!, ~4.7!

whereA is a numerical factor. This is exactly analogous
the energy difference we found in Eqs.~3.10! and ~3.11!
except that ln(m/2) has been replaced by ln(n).

While the term just calculated is easiest to identify, a m
important contribution to the spin energy gap comes from
more subtle source. There is a certain class of transit
starting from thes51 ground state which have exactly th
same energy denominator as the corresponding classs
50 case~see Fig. 11! but thes51 transitions have a re
ducedamplitudein comparison to thes50 transitions. The
corresponding~negative! second-order contributions wil
therefore reduce more strongly the energy of thes50
21441
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ground state. Thes51 transitions with this property are o
the following kind. Thes51 noninteracting ground stat
has two partially occupied levels at the top of the Fermi s
which are triplet bonded. The relevant transition causes
of these partially occupied states to become doubly occup
while creating a hole in the Fermi sea and a particle ab
the Fermi sea. For this kind of scattering process the num
of double occupancies does not change and one can s
that the singlet and triplet terms in the Hamiltonian indu
transitions onto the same final state. Correspondingly,
two transition amplitudes must be added coherently, an
turns out that this results in a reduced transition probabi
from 16U2 down to 12U2 ~a detailed calculation of the am
plitude of these transitions is given in Appendix A!.
The corresponding contribution to the spin gap can
estimated as

DE0,0
(2)2DE0,1

(2)'24
U2

D E
0

n/2

dxE
n/2

m/2

dy (
z5n/2

n/211
1

y1z2x2n/2

'24
nU2

D
ln~n!. ~4.8!

This result is valid in the dilute limit 1!n!m and this con-
tribution dominates the spin gap as soon as the numbe
particles is sufficiently large, i.e., forn>4.

As for n52 it is straightforward to calculate the splittin
induced by off-diagonal fluctuations between thes51 yrast
and the first exciteds50 state: there is no difference in th
energy denominators and there is a one-to-one corres
dence between all second-order contributions for these
states, except for the transitions which do not exist fors
51. The latter correspond to scattering onto a double oc
pancy on the (n/211)th orbital or from the (n/2)th onto a
t

e
or
g

s

FIG. 11. Left: transitions that have a differen
transition amplitude fors50 and s51 and
thereby give the dominant contribution to th
spin gap between the two lowest yrast levels f
even number of fermions. Right: correspondin
transitions for odd number of fermion
giving different transition amplitudes fors51/2
ands53/2.
6-12
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double occupancy on a previously empty orbital. These t
are the only contributions to the average splitting, wh
takes the form

E 0,s51
(2) 2E 1,s50

(2) 5
1

2
(

g,n/2

~Wn/2,n/211
g,g !2

~n1122g!D

1
1

2
(

a.n/211

~Wa,a
n/2,n/211!2

~2a2n21!D

'
U2

D
@ ln~m2n!1 ln~n!# ~4.9!

and is thus positive.
We now briefly discuss the case of odd number of p

ticles. The lowest possible magnetization iss51/2, and at
U/D50, the yrast corresponds to a singly occupied (n/2
11)th orbital above a filled Fermi sea@see Fig. 10~a!#. The
next magnetization iss53/2 and the correspondingU/D
50 yrast state is represented in Fig. 10~b!. It has three single
occupancies above the Fermi sea and one of the two b
between the corresponding particles must be a triplet~the
choice of the bond is arbitrary!. We identified above the
dominant second-order contributions to the spin gap for e
n as those which have an amplitude reduction due to pa
occupancies in both the initial and final states. An example
such a transition fors53/2 is depicted in Fig. 11. From th
presented data one sees that the expression correspond
Eq. ~4.8! for the case of oddn reads

4
U2

D E
0

n/2

dxE
n/2

m/2

dy (
z.t5n/2

n/212
1

y1z2x2t
'24

3

2

nU2

D
ln~n!

~4.10!

and differs from Eq.~4.8! by the boundary values for th
sums overz and t. Correspondingly the contribution to th
spin gap picks up a factor of 3/2 and this results in an e
odd effect where the gap asymptotically behaves asDs

'24Bn ln(n)U2/D whereB51 for even andB51.5 for odd
number of particles. In particular, it is more difficult to ma
netize a system of odd number of fermions48 which is in
agreement with the experimental results presented in R
12 and 49. The above expressions~4.8! and~4.10! have been
checked numerically and the results are shown in Fig.
Both the even-odd dependence and then dependence of the
gap are confirmed for larger number of particlesn.3. Note
that the processes mentioned above and leading to the
ing expressions~4.8! and~4.10! do not exist forn52 and 3
in agreement with the data of Fig. 12.

From the second-order corrections to the yrast levels
each sector, it is possible to construct an effective Ham
tonian which takes into account the average effect of
off-diagonal fluctuations of interaction. The number a
strength of second-order contributions decrease with incr
ing magnetization and the relevant contributions are th
emphasized in this section corresponding to one partially
cupied orbital in both initial and final two-particle states. F
large magnetizations@1 the second-order contribution
21441
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corresponding to the energy differenceD (s) between the
lowest-spin yrast and the yrast level of spins can be ap-
proximated by the four-dimensional integral

D (s)[E0,s
(2)2E0,0

(2)

54
U2

D E
0

n/22s

dxE
n/21s

m/2

dyE
n/22s

n/21s dzdt

y1z2x2t

'
8U2

D H s2S n

2
2s D S 5

3
2 ln~n! D

18s3F lnS 2s

n D1
7

3
ln~2!G J . ~4.11!

We first note thatD (s) is a monotonically increasing func
tion of s. The first term on the right-hand side of Eq.~4.11!
dominates the low-s behavior. This term is a generalizatio
of the nU2/D term, giving rise to the spin gap between th
s50 ands51 yrasts. Itss2 parametric dependence resu
in a delay of the Stoner instability, equivalently in a redu
tion of the strength of the spin-spin exchange coupling

2lUSW •SW→2S lU2An

nU2

D DSW •SW , ~4.12!

whereAn is a prefactor of order 1, weakly depending on t
filling factor n.

For larger magnetization, i.e., when the polarization ra
becomes finite~roughly ats'n/8), D (s) starts to be domi-
nated by the second term in Eq.~4.11! which has a largers3

dependence and hence a stronger effect, beyond the si
shift of the Stoner instability just mentioned: it results in
saturation of the ground-state magnetization for excha
couplings not much stronger than the critical Stoner val
Its s dependence suggests an higher-order effective
coupling

H S}
nU2

D
S3, ~4.13!

which is switched on roughly at a polarization ratio 2s/n
.1/5 @for which ln(2s/n)17/3 ln(2) becomes positive#. The
higherS3 dependence of this effective coupling can also
obtained from a dimensional analysis. The number
second-order contributions to the ground-state energy in e
sector decreases ass4 for large enoughs ~see Appendix B!.
When summing over all of these contributions, we must ta
into account their energy denominator, which leads to
;s3 ln(s) parametric dependence for the second-order c
tributions, in agreement with Eq.~4.11!. Neglecting the loga-
rithmic correction we finally get Eq.~4.13!. It is important to
note that this latter effective Hamiltonian term is left inva
ant by both SU~2! rotation in spin space and rotation in th
one-body Hilbert space.

The above treatment illustrates theaveragemagnetization
decreasing effect of the interaction fluctuations which res
in a shift of the Stoner threshold to higher exchange stren
Simultaneously, contributions to thefluctuations of the
ground-state energy around this average in a finite-sized
6-13
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tem ~quantum dot! can be of the same order of magnitude
the average itself, possibly resulting in large fluctuations
the ground-state spin around its average value. We there
close this section with a calculation of the contributions
the variance of the ground-state energy arising from the fl
tuations of interaction. In first order we get a contributi
given by the variance of diagonal Hamiltonian matrix e
ments

s2~^C0
(s)uUf uC0

(s)&!5O~n2U2!, ~4.14!

while the variance of the second order is given by the squ
of the average contribution~4.6! and is therefore of orde
O(n4m2U4/D2). Consequently, these fluctuations are dom
nated by the second order forU.D/(mn). Of physical rel-
evance, however, arerelative fluctuations between groun
states in different spin sectors or at different number of p
ticles. Both these quantities influence, for instance, the
tribution of conductance peak spacings for quantum dot
the Coulomb blockade regime.10,11 In first order, the relative
fluctuations between the ground states withn andn11 par-
ticles are given by

sS ( aUa,n11
a,n11D}AnU ~4.15!

and the relative fluctuations between consecutive~i.e., s and
s11) yrasts can be written

sS ( a~Ua,n1s11
a,n1s112Ua,n2s

a,n2s! D}AnU, ~4.16!

FIG. 12. Rescaled spin gap between the two lowest yrast s
for m516 andn52 ~circles!, 3 ~squares!, 4 ~diamonds!, 5 ~tri-
angles up!, 6 ~triangles left!, 7 ~triangles down!, and 8 ~triangles
right!. Symbols corresponding to odd~even! n are solid~open!. The
scaling parameter satisfiesa51 ~1.5! for even ~odd! number of
particles~see text!. The scaling holds quite well already for a sma
number of particlesn>3 and the even-odd dependence of the g
confirms the theory presented in the text. Inset: spin gap be
rescaling for the same cases as above. Lines corresponding to
~even! n are dashed~solid! to stress the even-odd dependence of
gap. Note that for largern, the gap starts to have a linear depe
dence aboveU/D'0.1, indicating the border between perturbati
and asymptotic regimes.
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where the sums run over occupied orbitals. Both these
two expressions have the same parametric dependencen
as they both depend only on the change of one orbital oc
pancy in the immediate vicinity of the Fermi level. In seco
order, the relative fluctuations between consecutive yra
can be estimated to have the same order of magnitude a
spin gap~4.8!–~4.10!, and this also gives the contributions
the relative fluctuations between ground states of a cons
tive number of particles, i.e.,O(nU2/D). Consequently, the
relative fluctuations will be dominated by the first~second!
order for U,D/An (U.D/An). These estimates neglec
however, the spectral fluctuations and are thus valid in
case of a rigid equidistant spectrum only. The variance of
gap distribution is, however, dominated by these spec
fluctuations ~which are proportional to the average lev
spacingD) for both Wigner-Dyson and Poisson statistics
long asU,D/An.

V. ASYMPTOTIC REGIME

In the regime of dominant fluctuationsU/D@1, all en-
ergy scales~width of the MBDOS, ground-state energy, ga
and splitting between eigenvalues, etc.! become linear in the
fluctuation strengthU. Most of the properties of the Hamil
tonian can then be obtained by assumingH'Uf , and for
random interaction models of this form, the shape and wi
of the MBDOS can be extracted from a computation of
variance and higher moments. We begin this section wit
short overview of this method mostly developed in Ref. 1

When Uf dominates,H0 and Uavg may introduce a con-
stant shift of the full MBDOS due to the mean field charg
charge interaction, a shift of each sector’s MBDOS by
amount 2lUs(s11) from the mean-field spin-spin ex
change and a subdominant@O(D/U)# nonhomogeneous
modification of the MBDOS due toH0 which is negligible in
the limit considered here. We thus first consider the MBDO
corresponding toUf and will introduce later on the only rel
evant mean-field contributions: thes-dependent shifts due to
the exchange interaction. The average shape and width o
MBDOS of Uf can be extracted from its moments,

M ( j )~s!5
1

N~s! (
I

@EI~s!# j

5
1

N~s!
Tr~Uf !

j

5
1

N~s! (
I i

U f
I 1 ,I 2U f

I 2 ,I 3
•••U f

I 2 j 21 ,I 1, ~5.1!

whereU f
I ,J5^I uUf uJ& and uI & refers to a Slater determinan

Taking the average of this expression, we easily see that
the even moments of the average MBDOS do not vanish
the last sum, furthermore, only terms with pairs of indic
occurring twice give a nonzero average contribution; i.e.,
compute the moments, one needs to perform contract
over the Hamiltonian operators such that

~ I k ,I k11!5~ I l ,I l 11! ~5.2!

es

p
re
dd

e
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GROUND-STATE MAGNETIZATION FOR INTERACTING . . . PHYSICAL REVIEW B64 214416
for a pair of indices (k,l ). We can readily calculate the se
ond moment, i.e., the variance of the MBDOS,

M (2)~s!5
1

N~s!
TrH 2~s!

5S n~n21!

2
K0~s!1~n21!K1~s!1K2~s! D4U2,

~5.3!

where we have taken care of the number of matrix eleme
and different variances of the three classes of Hamilton
matrix elements mentioned in Sec. II. In the limit of a lar
number of particles, Eq.~5.3! explicitly expresses the domi
nance of generic two-body IME’s: since their number
given byK2(s);n2m2, their contribution toM (2)(s) goes
parametrically liken2m2U2, whereas the contribution from
one-body IME’s and diagonal matrix elements isn2mU2 and
n2U2, respectively. This motivates us to neglect the s
dominant contributions toM (2)(s) and to use the approxi
mation

M (2)'K~s!U2. ~5.4!

A calculation of the connectivityK(s) is given in Appen-
dix B.

Higher moments are also easily estimated in the dil
limit 1 !n!m. In this case, the contractions~5.2! can be
performed independently as the probability to create~or de-
stroy! the same fermion on the same orbital is vanishin
small. This remains the case as long as the number of
ation~destruction! operators inU j is smaller than the numbe
of particles, i.e., for 2j !n. A second conditionn!m must
also be satisfied, for which creations and destructions st
tically occur on different orbitals. In this case, higher m
ments are simply multiples of the second moment, with
combinatorial factor reflecting the number of different po
sible contractions:

M (2 j )~s!5~2 j 21!!! @M (2)~s!# j . ~5.5!

This relation defines a Gaussian MBDOS, and correcti
occur only due to higher moments (2j .n), mainly affect the
tails of the distribution, and vanish in the large-n limit. It is
remarkable that the order of the moments which fail to
have like those of a Gaussian distribution depends alm
exclusively on the number of particles, at least as long as
restricts oneself to the lowest magnetization blocks aw
from full polarization. Therefore, corrections affect each p
tial ~i.e., s-dependent or block! MBDOS in the same way
and we will assume that the relative parametric depende
of the bulk of the MBDOS at differents can be extrapolated
to the tails. This means that, as in the case of a Gaus
distribution, knowledge of its variance fully determines t
MBDOS. For more details on the shape of the MBDOS
random interaction models similar to Eq.~2.3! we refer the
reader to Ref. 17 and the more precise, very recent treatm
given in Ref. 28.

Based on these previous works17 establishing the quasi
Gaussian shape of the MBDOS, we can now derive a sim
21441
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parametric expression for the average energy difference
tween yrast states in each magnetization block. Indeed,
MBDOS satisfy a scaling law

E→Ē5
E

AK~s!
, ~5.6!

which allows one to rescale all of them approximately on t
of each other. This behavior is illustrated in Fig. 13 whi
shows both the multiple Gaussian structure of the MBD
and the scaling withAK(s) obtained from numerical calcu
lations forl50.

The yrast states are distributed in the low-energy tail
the partial MBDOS, where the corrections due to higher m
ments are the largest. We have nevertheless seen above
these corrections affect each block’s MBDOS in the sa
way ~this is true only for not too large magnetizations!. Thus
the tails undergo the same modification, say, fors50 and
s51. If we then make the~a priori not justified! assumption
that the yrast levels are uncorrelated, i.e., that for a gi
realization ofUf their positions around their respective ave
age value are not correlated, then we can conclude tha
average distance between two yrast states is parametri
given by the difference of the width of the correspondi
MBDOS. Assuming, as just discussed, that the tails of
distribution scale with the variance with a factorb and ne-
glecting contributions arising fromH0, the typical spin gap
can be estimated~for l50) as

Ds
U'bU@AK~smin!2AK~smin11!#. ~5.7!

In Fig. 14 we show the computed spin gapDs
U between

the minimally magnetized ground state and the first sp
excited level forl50 in the limit of dominant interaction,
i.e., for Uf . One of the main features emerging from th
presented numerical data is a strong even-odd effect whic
reminiscent of a similar behavior in the limit of vanishin
interactions. However, the origin here is the fluctuating int
action and the energy differences scale asU instead ofD. As

FIG. 13. Density of states for the HamiltonianUf with n56
particles andm516 orbitals, corresponding to the magnetizati
blockss523 ~solid line!, 22 ~dotted line!, 21 ~dashed line!, and
0 ~dot-dashed line!. Inset: rescaled density of states showing t
approximate scaling inE/K1/2U.
6-15
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in the perturbative regime discussed in the previous sect
the occurrence of this even-odd effect is due to the conn
tivity K and from Fig. 14 we see that the probability for
magnetic ground state is more strongly reduced for an
than for an even number of particles also in the asympt
regime. We next note that the gap first increases with incre
ing number of particles before it seems to stabilize abovn
56. We have checked~dashed and dot-dashed lined in Fi
14! that this behavior, which is not captured by the dilu
estimate~5.7!, is partly due to the neglect in Eq.~5.3! of
nongeneric matrix elements with enhanced variance m
tioned above. However, even though the exact variance g
a much better estimate, it still underestimates the gap
largern and we have numerically determined that this is d
to a strong positive correlation of the ground-state energ
in adjoining spin blocks which is larger at largen. Qualita-
tively, these correlations are due to the fact that the differ
block Hamiltonians are not statistically independent, but
constructed out of the same set of two-body matrix eleme
More precisely, for a given realization ofUf , all blocks have
K(s)N(s)5O„exp(n),exp(m)… nonzero matrix element
which are constructed out of the same set of onlyO(m4)
different two-body interaction matrix elements. Yrast leve
are then due to special realizations of the latter inside
blocks. These realizations are presumably not very differ
in blocks with consecutive magnetization which results
strong eigenvalues correlations. The above estimate~5.7!
which relies only on distribution averages completely n
glects these correlations. This is the reason why it unde
timates the gap at largern where they are largest.

The arguments presented in this section are based o
timates for the average yrast energy in each sector extra
from the shape and width of the corresponding MBDOS.
have seen in particular that the MBDOS in low-spin sect
and for a sufficient number of particles are almost Gauss
with a width given by the square root of the correspond
connectivity, Eq.~B4!, AK;nm. It follows that the ground-

FIG. 14. Dependence of the finite-size spin gap in the numbn
of particles in the regime of dominating fluctuationsU/D@1 and
l50. Points correspond to numerical results form510 ~solid
circles!, 12 ~open squares!, 14 ~solid diamonds!, and 16~open tri-
angles!. For the casem516 and 1000 Hamiltonian realizations, th
error bars indicate the rms of the gap distribution while the das
and dot-dashed lines show the numerically computed varian
@left-hand side of Eq.~5.4!# for the full Hamiltonian and after set
ting to zero nongeneric interaction matrix elements, respective
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state energy in each sector roughly satisfiesE0,s;nmU in
the asymptotic regime, whereas in the perturbative reg
we foundE0,s;n2mU2 ln(m)/D @see Eq.~4.6!#. Neglecting
logarithmic corrections~which arise due to the denominato
in the second order of perturbation theory! we arrive at the
critical border between the perturbative and asymptotic
gimes~radius of convergence of the perturbation theory!:

Uc;D/n. ~5.8!

Equation ~5.8! indicates the breakdown of perturbatio
theory at a much smaller strength of the fluctuations of
teraction than previously expected. This is due to the coh
ent addition of many small second-order contributions
the perturbation expansion in the immediate vicinity of t
ground state. A more detailed study of this breakdown
been presented in Ref. 50.

VI. SPIN POLARIZATION THRESHOLD: DISCREPANCIES
FROM STONER’S SCENARIO

Having established the demagnetizing effect of the o
diagonal fluctuations both in the perturbative and asympt
regimes atl50, we now switch on the mean-field spin-sp
interactionl.0. The competition between one-body energ
exchange interaction, and off-diagonal fluctuations will d
termine both the average threshold at which the ground s
starts to be polarized and the probability of finding a mag
tized ground state at a given set of parameters (lU/D,U/D).
The theory presented in the previous sections focused es
tially on the first aspect and we already know that the av
age threshold for magnetization is increased by nonzero
teraction fluctuations. The exchange induces energy shift
2lUs(s11) of each sector’s MBDOS but has no effe
whatsoever on the width of the MBDOS. Considering fi
the asymptotic regime, the average spin gap becomesDs

5Ds
U2l̄U, where l̄5@52(21)n#l/2. In particular, the

relative shift between the two lowest magnetized blocks
larger for odd number of particles, as is the spin gap~see Fig.
14!. From Eq. ~5.7! the average threshold becomes pa
metrically

lc;AK~smin!2AK~smin11!. ~6.1!

From Fig. 14lc'2.5 ~3.5! for even~odd! n. Note that as
both the spin gap and the exchange are linear inU in the
asymptotic regime, this average threshold isU independent.
This is no longer the case in the perturbative regime.
shown in Sec. IV, the perturbative spin gap can be appro
mated byDs(U)2D;BnU2/D, where we recall thatB51
~1.5! for even~odd! n. We then get

lc~U !2^Ua,b
b,a&0;BnU/D, ~6.2!

where we used the critical~Stoner! exchange strength
^Ua,b

b,a&0[D/2. Once this threshold is reached, the spins s
to align, but in contrast to the Stoner scenario, full polariz
tion is not achieved at once, because of a parametric decr
of the second-order contributions from off-diagonal fluctu
tions ass is increased. From the perturbative treatment p

d
es
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sented in Sec. IV aS3 term takes over at large spin whic
induces saturation of the ground-state spin. The mechan
for the appearance of that term is a reduction of the proba
ity for transitions from or onto partially occupied orbita
with respect to transitions from doubly occupied orbita
onto empty orbitals. Off-diagonal fluctuations result in tw
effective Hamiltonian terms;SW •SW and;S3 and the second
term influences the system’s magnetization properties
large spin, but before full polarization. Neglecting logarit
mic corrections inn, m, and s and for a givenl5lc(U)
1dl ~i.e., l measures the distance to the Stoner thresho!,
D, andU, the magnetization will saturate at a value

smax'dl
D

U
. ~6.3!

This is a major modification of the Stoner scenario
which once the magnetization threshold is reached, full
larization of the electrons is achieved at once. The prese
of off-diagonal fluctuations, no matter how weak, induc
this saturation, as their relative weakness will eventually
counterbalanced by the larger parametric dependence ins of
the number of second-order contributions at larges. We
stress that this saturation is entirely induced by the o
diagonal fluctuations and does not depend on any modifi
tion of the one-body density of states at larger spin.

We next show in Fig. 15 the behavior of the spin g
between the two lowest yrasts as a function ofU/D and for
different values ofl. The variance of the gap distribution
of course unaffected by the exchange and we already k
that the probabilityP(s.0) ~Ref. 51! of finding a magne-
tized ground state is reduced by the off-diagonal matrix e
ments. This probability will eventually saturate above a fin
value ofU/D, since the width of the gap distribution is pro
portional to its average;U/D.52 This is shown on Fig. 15
where the error bars reflect the width of the gap distributi
Their linear increase withU means that the fraction of nega
tive ‘‘gaps’’ ~contributing to the probability of being magne

FIG. 15. Evolution of the energetic distance between the
lowest yrast forn55 andm512 as a function of the strength o
interaction fluctuationsU/D. Shown are curves corresponding to
exchangelU/D50 ~circles!, 2 ~squares!, 4 ~diamonds!, and 6~tri-
angles!. The error bar indicates the rms of the distribution ofDs/D.
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tized! is constant withU. The same behavior is characterist
of gaps between higher consecutive yrast, which results
U-independent behavior ofP(s.0) at largeU.

Finally, P(s.0) is shown in Fig. 16 as a function of th
exchange strengthlU/D for different values ofU/D and
different distributions of one-particle orbitals. This figu
shows a clear demagnetizing effect of the fluctuations of
teraction except below the Stoner threshold in the case o
equidistant spectrum. We recall that the demagnetizing ef
is in fact only an average effect and that, for an equidist
spectrum,U may for particular realizations reduce the lev
density at the Fermi level, thereby favoring the appeara

o

FIG. 16. Probability for a magnetized ground state as a func
of the exchangelU/D for 5000 realizations of Hamiltonian~2.9!
with n56, m512. Three cases with equidistant~a!, GOE ~b!, and
random ~c! one-body spectra are shown. Different curves cor
spond to different fluctuations of IME’s:U/D50 ~solid line!,
0.1,0.2,0.3, . . . ,0.8 ~symbols, from left to right!.
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of a higher-spin ground state as can be seen in Fig. 16
small interaction fluctuationsU/D50.1 and small exchang
strengthlU/D,0.5. In the two other cases of a random
distributed and Wigner-Dyson one-body spectrum, fluct
tions of interaction always reduceP(s.0). At largerU, the
dependence on the orbital distribution is rather weak,
shown in Fig. 17. Note in Fig. 16 the bending ofP(s.0)
above the onset of magnetization which is a clear differe
from the Stoner behavior: even at quite large exchan
P(s.0) remains smaller than 1. From these data, we de
an average magnetization thresholdlc(U) for which P(s
.0)50.01 and extract from Fig. 16 the additional exchan
strengthdl necessary to achieveP(s.0)50.5. The results
are shown in Fig. 18 and indicate a linear increase ofdl
with U which illustrate the demagnetizing effect of the o
diagonal fluctuations: a stronger exchange than predicte
a simple Stoner picture is necessary to have even a w
nonzero ground-state magnetizationprobability ~see Fig. 16!;
moreover, an even stronger one is necessary to achie
significant probability. All this is in qualitative agreeme
with Eq. ~6.3!. A direct numerical check of this equatio
would, however, require a much larger number of particl
beyond today’s numerical capabilities.

VII. REAL-SPACE MODELS

It is now evident from the results presented above t
fluctuations of IME’s introduce a new energy scale. In ad
tion to the Stoner parameterlU/D, the ratiol between the
exchange and the interaction fluctuations gives a second
evant parameter for the emergence of a ferromagnetic ph
We therefore turn our attention to the microscopic compu
tion of the magnetization parameterl for standard solid-state
models. This will allow us to estimate the strength of t
demagnetizing effect of off-diagonal fluctuations in more
alistic situations. We consider Anderson lattices whose o
body Hamiltonian is given by

H5V(
^ i ; j &

ci ,s
† cj ,s1(

i
Wici ,s

† ci ,s . ~7.1!

Here ^ i ; j & restricts the sum to nearest neighbors, andWi
P@2W/2;W/2# whereW is the disorder strength. We stud
interaction potentials of the form

U~ i 2 j !5U0d~ i 2 j !1U1 /urW i2rW j u; ~7.2!

i.e., for U150 we have a pure Hubbard interaction where
U1Þ0 gives a long-range interaction. Microscopically,l is
given by the ratio of the average exchange term

^Ua,b
b,a&5(

i , j
U~ i 2 j !ca* ~ i !cb* ~ j !ca~ j !cb~ i ! ~7.3!

and the rms of the distribution of IME’s Eq.~2.4!. By defi-
nition the average in Eq.~7.3! is performed over wave func
tions close to the Fermi level. Figures 19 and 20 show
disorder dependence ofl, for a pure Hubbard interaction
U150, on two- and three-dimensional lattices, respective
and for different linear system sizes. The data have b
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obtained from averages over 30 wave functions in the mid
of the Anderson bandE50 and for 10@L580 in two dimen-
sions ~2D! and L515 in 3D# to 200 (L510 in 2D andL
56 in 3D! disorder realizations. In both dimensionalities w
can distinguish three regimes:~I! At low disorder, the one-
electron dynamics undergoes a crossover from ballistic
diffusive regime as the linear system size is increased
yond the elastic mean free pathl e;(V/W)2. In the ballistic
regimel e@L, wave functions are plane waves. In this case
Hubbard interaction givesl;L2, since the rms@Ua,b

g,d #
;L24 and ^Ua,b

b,a&;L22,53 whereas once the diffusive re
gime is reached, one expectsl;D/(D/g);g.46 In the cross-
over between these two regimes, contributions from Gau
ian modes@those corresponding tou i 2 j u, l e in Eq. ~4.1!#
may dominate the fluctuations of the IME’s but eventua
vanish as one increasesL as they are weighted by a facto
( l e /L)D.46 Presumably these contributions still affect o
data in region~I!. ~II ! In the regime of intermediate disorde
both off-diagonal fluctuations and exchange are increase
disorder, and apparently they compensate each other, re
ing in a L-independentl'4, in 2D. We expect that this
behavior will hold as one further increases the system s
We indeed numerically estimated the elastic mean free p
at W/V55 from the distribution of inverse participatio
ratio54 and found a valuel e'4. The Gaussian modes are th
weighted by a prefactor 1/400 forL580 and have therefore
only a marginal influence on the fluctuations of the IME’s,
that one may reasonably assume that finite-size effects h
only a marginal influence on the data presented in Fig. 19
region~II !. In the three-dimensional case, it even seems
l decreases as the system size increases in the interme
regimeW/VP@8,17#; however, this is due to the quite sma
linear system sizes considered here, and once one rea
L@ l e , l should saturate at a finite, but quite small value
is interesting to note that the upper border of this interme
ate regime is quite close to the critical disorder value for
Anderson localization transition.~III ! In the regime of strong
disorder, one-particle wave functions are strongly localiz
on fewer and fewer sites, the off-diagonal fluctuations

FIG. 17. Comparison of the ground-state magnetization pr
ability for n56 andm512 atU/D50 ~lines! and 0.5~symbols! for
equidistant~solid line and circles!, Poissonian~dashed line and
squares!, and Wigner-Dyson~dot-dashed line and diamonds! orbital
distributions.
6-18
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GROUND-STATE MAGNETIZATION FOR INTERACTING . . . PHYSICAL REVIEW B64 214416
sharply reduced~due to quasiselection rules discussed in S
II !, and again exchange dominates. Note that, eventually
latter disappears also, but at a lower rate than the fluc
tions. These results indicate that at an intermediate diso
strength, off-diagonal fluctuations may be strong enough
play an important role for the magnetization properties of
ground state.

We next evaluate the influence of the long-range par
the interaction. The average exchange interaction~7.3! term
is given by an average taken over one-particle wave fu
tions close to the Fermi level. Due to their orthogonali
taking this average over the full set of wave functions giv
a d function and only on-site contributions. This averagi
procedure is, however, only justified if the one-body dyna
ics is described by random matrix theory for which the str
ture of the eigenstates is homogeneous all through the s
trum. RMT, however, describes systems which are of inte
here only inside an energy window given by the Thoule
energy around the Fermi level39 so that the average ove
wave functions close to the Fermi level leads only to a m
or less sharply peaked function of (rW i2rW j ). There are also
contributions to the exchange from the long-range terms,
still we expect that the average damps them with respec
their contribution to off-diagonal fluctuations~this damping
of course depends on the disorder strength! which are of the
same order of magnitude as the short-range contribution
to distances of the order ofl e .47 This means that we expect
decrease ofl upon increase of the interaction range. T
validity of this reasoning is illustrated for the two
dimensional case in Fig. 21 where we plot the evolution ol
for different disorders as the long-range part of the inter
tion becomes more and more important. Clearly,l decreases
as the range of the electron-electron interaction increa
and therefore the Hubbard results presented in Figs. 19
20 give an upper bound forl. One thus expects the dema
netizing effect described in this paper to be more efficien
low filling when the screening length exceeds the ela
mean free path.

FIG. 18. Dependence of the average distancedl from the mag-
netization thresholdlc(U) for Poissonian~squares! and Wigner-
Dyson ~diamonds! orbital distributions.lc(U) is extracted from
Fig. 16 as the value at whichP(s.0)50.01 andlc(U)1dl cor-
responds toP(s.0)50.5. The linear fits do not extrapolate to ze
sinceP(s.0)50.5 requires a finitedl at U/D50 ~see Figs. 16!.
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In finite-sized systems like quantum dots where impur
scattering is weak but wave function fluctuations are indu
by chaotic scattering at an irregular confining potential, st
dard estimates givel'g for a short-range interaction
whereas in the~unphysical! limit of an infinite range inter-
actionU(rW2rW8)5U one getsl51.55 Therefore and asg is
not too large in such systems, it isa priori not justified to
neglect the effect of off-diagonal fluctuations, as they sho
at least strongly suppress the probability of finding grou
states of larger spin beyond few ('2,3) polarized electrons
It has even been proposed by Blanter, Mirlin, a
Muzykantskii56 that in confined systems the accumulation
charge at the surface of confinement leads to stronger fl
tuations of screened Coulomb interaction matrix eleme
;D/Ag which would givel;Ag. As in quantum dotsg is
typically of the order of a few tens, this would bringl down
to values where the demagnetizing effect of off-diago
fluctuations plays an important role. All this illustrates th
relevance of off-diagonal fluctuations for the magnetizat
properties of the ground state in regimes of intermediate
order and for poor screening of the electronic interaction
presumably, for low electronic densitiesr for which the dis-
tance between electron is smaller than the elastic mean
pathr1/D, l e .

Assuming stillU;D/g, the shift of the Stoner threshol
is quite small, of the orderO(D/g). This is so, as the mode
we consider is valid only in an energy window of the ord
of the Thouless energyEc5gD around the Fermi level, so
that it is quite natural to setn,m'g. At larger magnetization
however, the second term in Eq.~4.11! takes over and in-
duces a significant reduction of the ground-state spin w
the latter becomes comparable tog with a prefactor depend
ing on the strength of the average exchange. This te

FIG. 19. Magnetization parameterl vs disorder strengthW/V,
for a Hubbard interaction and a two-dimensional 10310 ~solid
circles!, 20320 ~open squares!, 50350 ~solid diamonds!, and 80
380 ~open triangles! Anderson lattice. One clearly differentiate
three regimes:~I! At small disorder,l increases due to a crossov
from ballistic to diffusive behavior~see text!. ~II ! At intermediate
disorder, exchange and fluctuations compensate each other so tl
is size independent.~III ! At large disorder one-body states a
strongly localized over very few sites, which destroys the o
diagonal fluctuations faster than the exchange and the latter d
nates again.
6-19



e
fu

ni

t
o
d

sis
at
o
i

or
e

de

ta
en
n
t

ve

wo
ct
a

nc

e

rons
e
tic
s
en,

ip,
nd

lute
lar-

d.

tes,
tes

n the
the

ns

ote
eak

o
t in

the
a

und
rec-

-

ly
uc
in

ion

f the

PHILIPPE JACQUOD AND A. DOUGLAS STONE PHYSICAL REVIEW B64 214416
strongly modifies the Stoner scenario as it induces magn
zation saturation above the magnetization threshold and
polarization can be achieved only once a second, sig
cantly larger, threshold is reached.

We finally describe an experimental setup that allows
gain important information on the ground-state spin of tw
dimensional lateral quantum dots in the Coulomb blocka
regime. The experiment was proposed in Ref. 1 and con
in applying an external magnetic field in the plane of a l
eral, two-dimensional quantum dot. Because of the tw
dimensional nature of the dynamics, we assume that an
plane field has no orbital effect so that it introduces only
Zeemann coupling.57 The difference in ground-state spins f
consecutive number of electrons can then be determined
perimentally by studying the motion of Coulomb blocka
conductance peaks at very low temperatureT!D as the in-
plane magnetic field is increased. The resonant gate vol
is given by a difference of two many-body ground-state
ergieseVg

n5E n11
0 2E n

0 , and it is always the difference of a
even-odd pair~i.e. of ground-state energies corresponding
one even and one odd number of electrons on the dot!. Upon
application of an in-plane field, the peak position beha
like

eVg
n~B!5E n11

0 2E n
01gmBBdsz~n!. ~7.4!

Heredsz(n) is the magnetization difference between the t
consecutive ground states which can therefore be extra
experimentally from the motion of conductance peaks in
in-plane field. At minimal magnetization one has a seque
of ground-state spinssz50, 1/2, 0, 1/2, 0, 1/2, . . . ~for odd
n and due to SRS, thesz51/2 andsz521/2 ground states
are degenerate so that an arbitrarily weak in-plane fi
aligns the spins and one always hassz51/2); therefore,
dsz(n)5(21)n/2 and one hasu]Vg /]Bu5gmB/2. As B is

FIG. 20. Magnetization parameterl vs disorder strengthW/V,
for a Hubbard interaction and a three-dimensional 63636 ~solid
circles!, 83838 ~open squares!, 12312312 ~solid diamonds!,
and 15315315 ~open triangles! Anderson lattice. One clearly dif
ferentiates three regimes:~I! At small disorder,l increases due to a
crossover from ballistic to diffusive behavior~see text!. ~II ! At in-
termediate disorder, fluctuations seem to take over andl decreases
with system size.~III ! At large disorder one-body states are strong
localized over very few sites, which destroys the off-diagonal fl
tuations faster than the exchange and the latter dominates aga
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increased the ground state with an even number of elect
is most likely to magnetize first~this is because of both th
even-odd effect mentioned in Sec. IV and the larger kine
energy cost to flip one spin for an odd number of electron!,
exactly reversing the slope of two consecutive peaks; th
as the field increases further the odd state will likely fl
restoring the original slope. As long as consecutive grou
states never differ by more than one unit of spin the abso
value of the slope will remain constant as the system po
izes. Correspondingly, if all slopes are constant,u]Vg /]Bu
5gmB/2, it is very likely that no ground state is magnetize
~This would, for instance, require a sequencesz51, 1/2, 1,
1/2, 1, 1/2 . . . . We do not see anyobvious reason whyall
evenn ground states should havesz51 while at the same
time none of the oddn ground states are magnetized.!

However, if there exist many magnetized ground sta
then the probability to find pairs of consecutive ground sta
with a larger difference in magnetization,udsz(n)u.1, in-
creases and one expects a range of slopes to occur. The
corresponding peak heights may be strongly reduced by
spin-blockade mechanism,58 which should be easily visible
experimentally. This argument neglects changes in theg fac-
tor of the electron with changingn, which presumably are
slow. This is illustrated in Fig. 22 where the peak positio
are drawn as a function of the Zeemann coupling forl51
and 5. It is clearly seen that at weakl, u]Vg /]Bu is constant
and corresponds to a minimaldsz , while a largerl gives
different slopes, in agreement with the above reasoning. N
also in this latter case that peaks evolve in parallel at w
magnetic field, indicating the successive addition of tw
spins oriented in the same direction. This feature is absen
the weak-exchange~right-hand! side of the graph for which
the ground states are obtained by piling up electrons on
orbitals according to the Pauli prescription. This results in
minimal ground-state spin, a sequencedsz(n)5(21)n/2 of
magnetization differences between consecutive gro
states, and a motion of neighboring peaks in opposite di
tion at low field.

-
.

FIG. 21. Effect of the interaction range on the magnetizat
parameterl for a two-dimensional 15315 Anderson lattice and
ratioU0 /U151 ~solid circles!, 4 ~open squares!, 9 ~solid diamonds!,
and` ~Hubbard interaction, open triangles!. Increasing the interac-
tion range leads to a stronger increase of the fluctuations than o
exchange, resulting in a lowering ofl.
6-20
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Recently, experiments in this direction have indeed b
performed, which have given serious evidence for the oc
rence of partially~but weakly! magnetized ground state
with few polarized electrons.49,59 This means that the off
diagonal fluctuations are not dominant, in agreement with
above considerations giving a large ratiol'g between the
strength of the average exchange and the off-diagonal fl
tuations. Therefore the perturbative treatment presente
Sec. IV is expected to correctly describe semiconduc
quantum dots either in the diffusive regime~large dots! or in
the ballistic regime with chaotic boundary scattering~smaller
dots!. We note in this respect that from recent experiments
the distribution of conductance peak spacings, the par
etersl and U have been tentatively extracted and seem
indicate a conductanceg'6 for which off-diagonal fluctua-
tions should give a non-negligible contribution.11 Finally, we
note another interesting experimental result which is the
parent absence of suppression of the conductance peak f
in some cases for larger spin difference between consecu
ground states.59 This is in major disagreement with the spi
blockade mechanism proposed by Weinmann, Hau¨sler, and
Kramer58 and is yet to be understood.

VIII. CONCLUSIONS

In this article we have illustrated how fluctuations of t
interaction matrix elements tend to reduce the ground-s
magnetization, both when they can be treated perturbati
~the regime which is relevant for condensed matter phys!

FIG. 22. Schematic of the conductance peaks in a 2D lat
quantum dot as a function of an in-plane magnetic fieldgmBB/D
for m514, lU/D52 ~left! and 0.4~right! and U/D50.4 corre-
sponding to the addition of then53,4, . . . ,9electrons~from bot-
tom to top!. The dashed lines indicate slopes of6gmB/2 and serve
as a guide to the eye. At weak exchange~right!, electrons are piled
up on the orbitals according to the Pauli prescription, so that
spin is always minimized and the peaks move in parallel to
dashed lines. The sequence of magnetization difference betw
consecutive peaksdsz(n)5(21)n/2 results in peaks moving in
opposite directions at low field. Larger slopes appear at larger
change strength~left! and the successive addition of electrons of t
same spin results in conductance peaks evolving in parallel at
field. Note that due to the subtraction of the average charge-ch
interaction, the model does not reproduce the charging energ
that the vertical distance between consecutive peaks is arbitra
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and in the asymptotic regime where they give the domin
terms in the Hamiltonian~which is relevant for nuclear phys
ics!. The mechanism behind this effect is in a way similar
the Stoner picture where itinerant ferromagnetism occurs
to a larger number of diagonal interactions at low magn
zation. As in a mean-field or self-consistent approach, e
of these terms gives a positive contribution~for a repulsive
interaction!; this directly favors spin polarization. Similarly
we have shown that interactions induce more transitions
the low-spin sectors. Each of these transitions gives one c
tribution in second-order perturbation theory which this tim
is, however, negative~both for attractive and repulsive inter
actions! if one considers the lowest level in each sector, a
this therefore favors a low-spin ground state. In the per
bative regime, we have seen that these fluctuations ind
two terms in an effective Hamiltonian formalism: aSW •SW term
which simply induces a small shift of the Stoner thresho
and a seconduSW u3 term which is switched on at larger mag
netization where it results in a saturation ofs. This is a
major qualitative modification of the Stoner scenario: ev
neglecting discrepancies in the one-body density of sta
full polarization is not achieved once ground-state magn
zation has been triggered by the exchange interaction.
latter must indeed also overcome the;uSW u3 term, which re-
quires an even larger exchange. The strongest effect of
diagonal fluctuations occurs in the large-spin regimes
5O(g) where the mean-field picture overestimates the va
of the ground-state spin.

From the point of view of nuclear physics, our analysis
the regime of large fluctuations, based on a study of
many-body density of states, clearly indicated a strong b
toward a low-angular-momentum ground state. We have
explained, however, why numerical results indicate an
most 100% predominance of thes50 ground state for mod-
els similar to the one we have studied,1,40 and this question is
still open.

Our findings should finally be put in perspective with th
renormalization group~RG! treatment for disordered inter
acting electronic systems of Finkelstein.60 In his approach,
one indeed finds that the RG flow renormalizes the ferrom
netic spin-spin coupling to larger and larger values, poss
indicating the occurrence of a ferromagnetic phase due to
combined effect of disorder and interaction. The perturbat
treatment we presented in Sec. IV did not allow us to fi
any contribution favoring a higher spin and this appar
disagreement between the RG approaches and ours
present not understood. We note, however, that it has b
suggested that the divergence of the exchange coupling
duced by the RG flow could indicate a crossover to
singlet-only universality class.60,61 In this respect it is worth
noticing that the scattering processes in the singlet and tri
channels as defined in the present work have coupling c
stants corresponding to the sum and the difference of
couplingsG andG2 as defined in Ref. 60, respectively. It ca
be checked that the ratios(W)/s(V)5(G1G2)/(G2G2)
satisfies the same RG equation as the exchange cou
(g2[G2 /z in Ref. 61! so that the triplet channel vanishes
the same rate as the~ferromagnetic! exchange flows to strong
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coupling, which may indicate a cancellation of the ferroma
netic instability by the effect studied in the present paper
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APPENDIX A

Under a rotation in spin space, the triplet operators in
~2.13! are brought into one another, whereas the singlet
erators~2.12! are left invariant. SRS, on the other hand, im
plies a number of interaction-induced two-body transitio
which is invariant under such a rotation. SRS can be ea
checked for initial states without double occupancy, and i
equally easy to convince oneself that the singlet opera
~2.12! are spin conserving. For initial states with double o
cupancies, however, the triplet operators@first three terms
between brackets in Eq.~2.10!# are not individually SRS bu
must be considered as one single spin conserving triplet
erator. To check this one acts on a four-particle state w
two double occupancies~which has thuss5sz50) with the
full triplet operator of Eq.~2.10!:

Fca,↑
† cb,↑

† cg,↑cd,↑1ca,↓
† cb,↓

† cg,↓cd,↓

1
1

2
~ca,↑

† cb,↓
† 1ca,↓

† cb,↑
† !~cg,↓cd,↑1cg,↑cd,↓!G

3cg,↓
† cg,↑

† cd,↓
† cd,↑

† u0&

5F ~ca,↑
† cd,↓

† 2ca,↓
† cd,↑

† !~cb,↑
† cg,↓

† 2cb,↓
† cg,↑

† !

1
1

2
~ca,↑

† cb,↓
† 2ca,↓

† cb,↑
† !~cd,↑

† cg,↓
† 2cd,↓

† cg,↑
† !G u0&

[2uC&1uC8&. ~A1!

This is the sum of two products of two singlets, and it
obviously spin conserving. Moreover, acting on the sa
initial state with a singlet interaction operator gives

1

2
~ca,↑

† cb,↓
† 2ca,↓

† cb,↑
† !~cg,↓cd,↑

2cg,↑cd,↓!cg,↓
† cg,↑

† cd,↓
† cd,↑

† u0&

5
1

2
~ca,↑

† cb,↓
† 2ca,↓

† cb,↑
† !~cd,↑

† cg,↓
† 2cd,↓

† cg,↑
† !u0&.

~A2!

The two final states in Eq.~A1!,
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uC&5
1

2
~ca,↑

† cd,↓
† 2ca,↓

† cd,↑
† !~cb,↑

† cg,↓
† 2cb,↓

† cg,↑
† !u0&,

uC8&5
1

2
~ca,↑

† cb,↓
† 2ca,↓

† cb,↑
† !~cd,↑

† cg,↓
† 2cd,↓

† cg,↑
† !u0&,

~A3!

are not orthogonal to each other and it can easily be chec
that the sum 2uC&1uC8&5A3uF& is a singlet.uF& is nor-
malized and the factorA3 appears in the case of an initia
state with double occupancies for which the number of trip
transitions is reduced by a factor of 3@without double occu-
pancies, the three triplet operators in Eq.~2.10! are individu-
ally SRS#. Thus the total transitionprobability is kept con-
stant. Finally,uF& is orthogonal touC8&; i.e., singlet and
triplet channels give transitions into orthogonal states. Th
contribution to second-order perturbation theory will the
fore add incoherently and give a transition probability

3~Va,b
g,d !21~Wa,b

g,d !2516U2. ~A4!

A calculation going along similar lines shows that if one
the final orbitals~e.g., a or b) is partially occupied, the
transition probability is reduced by a factor of 1/2.

We also calculate the transition probability for one sing
and one doubly occupied initial orbital. The initial state
consider is

uC6&5
1

A2
~ca,↑

† cb,↓
† 6ca,↓

† cb,↑
† !cd,↓

† cd,↑
† u0&. ~A5!

The label6 refers to either a triplet or a singletsz50 two-
particle state on the orbitalsa andb. The transition ampli-
tudes can be calculated in the same way for both cases,
we restrict ourselves below to the triplet case withuC1&.
Note that this latter state can be brought via a rotation in s
space into the followingsz51 state:

uCz&5ca,↑
† cb,↑

† cd,↓
† cd,↑

† u0& ~A6!

and that the calculations to be presented below give the s
transition amplitude for bothuC1& and uCz& and are thus
fully SRS. Acting onuC1& with a singlet interaction operato
gives

1

2
~cg,↑

† cm,↓
† 2cg,↓

† cm,↑
† !~cb,↓cd,↑2cb,↑cd,↓!uC1&

5
1

2A2
~cg,↑

† cm,↓
† 2cg,↓

† cm,↑
† !~ca,↑

† cd,↓
† 1ca,↓

† cd,↑
† !u0&,

~A7!

which once again is SRS. Two remarks are in order he
First, the above transition amplitude has picked up a facto
1/A2 with respect to the case where the initial state has
double occupancies. This is due to the vanishing of one tr
sition ‘‘channel,’’ as theb orbital is only singly occupied and
will result in a factor of 1/2 for the transition amplitude. No
that this factor is counterbalanced by a twice larger num
of transitions for the case considered here, as one has
6-22
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freedom to destroy~or create! a particle on theath or bth
orbital. Second, doing the same calculation with a trip
operator acting on the singlet initial stateuC1& is not SRS
per se, but once again requires one to consider thesz561
triplet operators, as we did above for the case of two dou
occupancies.

Only in the situation where both initial and final stat
correspond to partially occupied orbitals does one get
uncompensated reduction of the transition amplitude w
respect to the above case of doubly occupied initial a
empty final orbitals. As we are now going to show, this
sults from the coherent addition of the triplet and sing
transitions which lead to the same final state. The initial s
is, e.g.,

uC in&5
1

A2
~cm,↑

† cb,↓
† 1cm,↓

† cb,↑
† !cd,↑

† cd,↓
† u0& ~A8!

and one acts on it with the operator

O65
1

2
~cg,↑

† cm,↓
† 6cg,↓

† cm,↑
† !~cb,↓cd,↑6cb,↑cd,↓!.

~A9!

A straightforward calculation gives the same resultfor both
singlet and triplet operators:

O6uC in&5
1

2A2
~cg,↑

† cd,↓
† 1cg,↓

† cd,↑
† !cm,↑

† cm,↓
† u0&.

~A10!

The result is SRS, i.e., gives a four-particle final state w
s51, sz50. The key point here is that both singlet an
triplet channels go to the same final state. Thus one gets
corresponding second-order transition probability by add
their amplitude coherently. The average transition probab
reads then

1

4
~Vg,m

b,d 1Wg,m
b,d !25~Ug,m

b,d 1Um,g
d,b !252U2. ~A11!

The same contribution arises from the interchangeb↔m
in the operator~A9!. The above transition probability come
therefore with a factor of 2. This is because once the parti
are triplet~or singlet! paired on different orbitals, transition
become distinguishable. In addition, one has to consider
four s51 transitions induced by (s5↑,↓)

Os5cg,s
† cm,s

† cb,scd,s or cg,s
† cb,s

† cm,scd,s , ~A12!

which together give a transition probability 2V258U2. The
total transition probability is then 12U2 instead of 16U2 in
the case of doubly occupied initial and empty final orbit
~A4!. The same result is obtained in the case of a sin
initial state,

uC in&5
1

A2
~cm,↑

† cb,↓
† 2cm,↓

† cb,↑
† !cd,↑

† cd,↓
† u0&, ~A13!
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for which singlet and triplet transitions~A9! and ~A10! also
add coherently, resulting in the same reduction of the tra
tion amplitude~A11!. Consequently and forn.3, the split-
ting between thes51 yrast and the firsts50 excited state
is much smaller than the spin gap between the two low
yrasts.

Note that these calculations must be modified in realis
systems for whichV25W2 does not necessary hold. Fo
a purely local ~Hubbard! interaction with time-reversa
symmetry, for instance, one hasV250ÞW2 as the anti-
symetrized matrix elements vanish exactly. Then,
reduction in transition probability occurs due to the vanis
ing of singlet transitions as one goes to larger magnet
tions.

APPENDIX B

We first calculate each sector’s connectivityK which
is the number of basis states directly connected to
arbitrary initial many-body state of a given sector, altern
tively the number of nonzero matrix elements per row~or
column! of the Hamiltonian matrix. We saw in Appendix A
that some transitions have increased weights; in particu
triplet transitions involving two doubly occupied orbita
pick up a factor ofA3 that is absent in all other transition
In the absence of double occupancies, however, these tr
tions are replaced by 3 times as many triplet transitions
that the total transition probability is conserved. The lat
quantity is in fact the physically relevant one as it appears
second-order perturbation theory and determines the sca
of the MBDOS in the regime of dominant fluctuations. W
therefore calculate the weighted connectivity, where
number of transitions is multiplied by the square of th
relative amplitude. With this definition and for the case w
are considering of spin-1/2 particles, the connectivity is co
stant within one sector. From~2.10!, K is the sum of a singlet
and a triplet channel contribution which differ only in th
the former allows a transition from and to double occupa
cies. Fors50 we may consider theU50 ground state as
our initial state. It is easily seen then that the number
directly connected states can be expressed as a sum ove
contributions K5K01K11Ks1Kt which for s50 are
given by

FIG. 23. Representation of thesz50 many-body yrast state
with good total spins at U/D50. The state consists of a filled
Fermi sea with ann/22s doubly occupied orbital and a layer of 2s
orbitals where particles are paired tripletwise.
6-23
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FIG. 24. Transitions that do not exist for th
sÞ0 yrast state.
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ns
K0~s50!51,

K1~s50!5n/2~m/22n/2!,

Ks~s50!5n/2~n/211!~m/22n/2!~m/22n/211!/4,

Kt~s50!53n/2~n/221!~m/22n/2!~m/22n/221!/4.
~B1!

The first term corresponds to trivial diagonal transitions a
the second one to partially off-diagonal transitions chang
a single one-body occupation, while the third and fourth o
correspond to generic two-body transitions induced, resp
tively, by the singlet and triplet interaction operators
~2.10!. Note the discrepancy in the prefactor of 3 betweenKs
and Kt due to the enhancement of the triplet transition a
plitude discussed in Appendix A. Ass increases, some sin
glet transitions are replaced by additional triplet transitio
but some other disappear which we are going to identify. T
connectivity at full polarization is also easily calculated
there are no long singlet transitions and particles may
considered spinless. One hasK5K01K11Kt:

K0~s5n/2!51,

K1~s5n/2!5n~m/22n!, ~B2!

Kt~s5n/2!5n~n21!~m/22n!~m/22n21!/4.
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The connectivity difference between minimal and maxim
polarization is therefore given by

K~s50!2K~s5n/2!5
n3m

8
2

3n4

16
1O~n3,m3,n2m,nm2!.

~B3!

For a finite magnetization, we may represent the lowest le
in the sector as a sea ofn/22s double occupancies sepa
rated fromm/22n/22s empty levels by a layer of 2s sin-
gly occupied levels as depicted in Fig. 23. The transitio
included in Eqs.~B1! and that are now forbidden correspon
to singlet transitions involving either initial or final state
with at least one scattering particle in the 2s layer. These
transitions can be classified follows as:

~1! Transitions from a double occupancy in the Fermi s
onto the 2s layer @Fig. 24~a!#.

~2! Transitions from the 2s layer into a double occupanc
in one of them/22n/22s empty levels@Fig. 24~b!#.

~3! One- and two-body transitions within the 2s layer
@Fig. 24~c!#.

~4! Two-body transitions from the 2s layer, one of
the particles being transferred to a new orbital in thes
layer, the other one into one of them/22n/22s empty
levels @Fig. 24~d!#.

A simple counting of the number of these transitio
finally gives
6-24
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K~s!5K~0!2@s~2s21!~n/22s!1s~2s21!~m/22n/2

2s!1~2s~2s21!1s~s21!2~2s23!/2!

1s~2s21!~s21!~m/22n/22s!#, ~B4!
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which in particular correctly reproduces the difference~B3!.
It is easily checked@e.g., from Eq.~B3!# that the ratioK(s
5n/2)/K(0)512An1Bn2 is a function of the filling factor
n5n/m only. Also it is remarkable that the connectivity di
ference betweens50 ands51 is m/2 for any number of
particles.
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