PHYSICAL REVIEW B, VOLUME 64, 214416

Ground-state magnetization for interacting fermions in a disordered potential:
Kinetic energy, exchange interaction, and off-diagonal fluctuations
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We study a model of interacting fermions in a disordered potential, which is assumed to generate uni-
formly fluctuating interaction matrix elements. We show that the ground-state magnetization is systematically
decreased by off-diagonal fluctuations of the interaction matrix elements. This effect is neglected in the Stoner
picture of itinerant ferromagnetism in which the ground-state magnetization is simply determined by the
balance between ferromagnetic exchange and kinetic energy, and increasing the interaction strength always
favors ferromagnetism. The physical origin of the demagnetizing effect of interaction fluctuations is the larger
numberK of final states available for interaction-induced scattering in the lower-spin sectors of the Hilbert
space. We analyze the energetic role played by these fluctuations in the limits of small and large intddactions
In the smallJ limit we use second-order perturbation theory and identify explicitly transitions which are
allowed for minimal spin and forbidden for higher spin. These transitions then on average lower the energy of
the minimal spin ground state with respect to higher spin; we analytically evaluate the size of this reduction
and find it to give a contributiohScnU?/A to the spin gap between the two lowest-spin ground states. In
terms of an average effective Hamiltonian, these contributions indudg?8%/A term which decreases the
strength of the ferromagnetic exchange, thereby delaying the onset of Stoner ferromagnetism, and generate a
second, large term «S°, which results in a saturation of the ground-state spin before full polarization is
achieved, in contrast to the Stoner scenario. For large interadtdows amplify on our earlier workPh.
Jacquod and A. D. Stone, Phys. Rev. L8#, 3938(2000] which showed that the broadening of the many-
body density of states is proportional 4U and hence favors minimal spin. Numerical results are presented
in both limits. After evaluating the effect of fluctuations, we discuss the competition between fluctuations plus
kinetic energy and the exchange energy. We finally present numerical results for specific microscopic models
and relate them to our generic model of fluctuations. We discuss the different physical situations to which such
models may correspond, the importance of interaction fluctuations, and hence the relevance of our results to
these situations and recall an experimental setup which we proposed in an earlier work to measure the
importance of interaction fluctuations on the ground-state spin of lateral quantum dots in the Coulomb block-

ade regime.
DOI: 10.1103/PhysRevB.64.214416 PACS nuniger73.23~b, 71.10-w, 75.10.Lp
[. INTRODUCTION the case of a Hubbard interaction, only pairs of electrons of

opposite spin interact. The number of such pairs is a mono-

tonically decreasing function of the total magnetization
More than 50 years ago Stoner proposed a simple route te-[ (n/2)2— o] wheren is the number of electrons amdthe

ferromagnetism in itinerant systems based on the compettotal spin® On the other hand, as just noted, flipping a spin

tion between one-body and interactiexchangg energy?  requires the promotion of an electron to a higher one-body

The repulsive interaction energy can be minimized when théevel, and in the case of a finite system with a discrete spec-

fermionic antisymmetry requirement is satisfied by the spatrum of average spacing, a magnetizationr requires an

tial wave function, as the overlap between different waveenergy o?A. A simple first-order perturbation treatment

functions is then minimal. This effect favors the alignment ofshows then that a sufficiently strong interaction results in a

spins and, if the interaction is sufficiently strong, results in &finite magnetization, when the corresponding reduction in

large ground-state spin magnetization. This mechanism is thiateraction energy counterbalances the increase in kinetic

primary origin of Hund’s first rule in atomic physics. In con- (one-body energy,

trast, when the interaction is weak minimal spin is favored,

since in order to align spins electrons must be promoted from (A=V,)o?=0. (1.9

lower doubly occupied levels to higher singly occupied lev- . ) ] )

els and the cost in one-body energy is prohibitive. Because This occurs when the typical exchange interactirbe-

the Pauli principle is essentially local, ferromagnetism intween two states close to the Fermi energy is equal to the

metals has been studied within models such as the Hubbaff1€-particle level spacing which for a Hubbard interaction

modef* which only retain the short-range part of the elec-U(r,r')=Ud&(r—r’) reads

tronic interaction, the long-range part of the interaction being

assumed to give spin-independent contributions to the _ IR

ground-state energfthe capacitance or charging energiy Ve= Ucf dr| g (D] we(r)|*=A. 1.2

A. Stoner effect and disorder
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The overbar indicates an average over wave functions ifocusing on the large interaction regime close to half-filling,
the vicinity of the Fermi level. In a clean system this givesEisenberg and Berkovits numerically found that the presence
U.=A and this threshold is known as tiS¢oner instability ~ of disorder may stabilize Nagaoka-like ferromagnetic phases
As both the kinetic energy and the interaction energy haveét larger number of holesx(2).*® Finally, Stopa has sug-
the same parametric dependence on the magnetizatjon gested that scarring of one-body wave functions in a chaotic
reaching this threshold results in a second-order phase tragonfining potential may lead to strong enhancements of the
sition to a ferromagnetic phase, the divergence of the mage*change interaction and to the occurrence of few-electron
netic susceptibility, and a macroscopic magnetization. polarization in finite-sized syste_n’l@.‘l’hus the general mes-

Quite naturally one may wonder in what way does theSa9€ of these works is that disorder tends to favor novel

presence of a disordered potential modify this Stoner picturd@gnetic states over paramagnetic states.
and this question has recently attracted a lot of attention,
both in the context of bulk metal.e., infinitely extended
systems with diffusive eigenstajesnd in finite-sized metal-

lic systems such as quantum dots and metallic nanoparticles. In a recent Lettet,we pointed out a competing effect of
Two types of questions have been considefégithe effect interactions in disordered systems whiaducesthe prob-

of a disordered potential on theveragethreshold for the ability of ground-state magnetization and hence favors para-
Stoner instability and(2) the statistical properties of the magnetism. This effect had ndto our knowledgg been
threshold in an ensemble of mesoscopic metallic samplesreated in any of the previous works on itinerant magnetiza-
Both aspects have been recently investigated theoreticallyion of disordered systems. The works cited above neglect
For the bulk case, it has been known for some fifmat  the effect of disorder in inducing fluctuations in thodf-
within perturbation theory disorder enhances the exchangeiagonalinteraction matrix elementst® However, it is well
effect in the susceptibility; recently, Andreev and Kamenevknown from studies of complex few-body systems like nu-
constructed a mean-field theory which they argue describeslei and atom¥ *8that the bandwidth of the many-body den-
the Stoner transitidhand found a significant reduction of the sity of states in finite interacting Fermi systems is strongly
Stoner threshold in low-dimensional disordered systems dumodified by the fluctuations of these off-diagonal matrix el-
to correlations in diffusive wave functions which enhance theements already at moderate strength of the interactions. Such
average exchange term. In the framework of the same meastudies did not directly address the effect of this broadening
field approach which neglects the fluctuations of the interacen the ground-state spin of the system. However, our exten-
tions, but takes into account those of the one-body spectrunsjon of these models immediately revealed that these fluctua-
Kurland, Aleiner, and Altshuler proposed that below, but intions are largest for the states of minimal spin, due to the
the immediate vicinity of, the Stoner instability, there is alarger number of final statg€sonzero interaction matrix ele-
broad distribution of magnetization and that each sample’snentg for interaction-induced transitioneve will review

free energy is characterized by a large number of local maghis argument beloy This effect then significantly increases
netization minima> Brouwer, Oreg, and Halpefirconsid-  the probability that the extremalow-energy states in the
ered the effect of mesoscopic wave function fluctuations orband are those of minimal spin and opposes the exchange
the exchange interaction and found that their effect was teffect. In our earlier works'® we focused on the regime of
increase substantially the probability of nonzero spin magnelarge fluctuations to deduce the scaling properties of the
tization in the ground state before the Stoner threshold iground-state energy as a function of spin and verified these
reached. Baranger, Ullmo, and Glazmauggested that the scaling laws with numerical tests. In the present work we
observed “kinks” in the parametric variations of Coulomb will review and extend these results for large fluctuations,
blockade peak position®.g., as one varies an external mag-but we will focus mostly on the perturbative regime of small
netic field could reflect changes in the ground-state spin ofd. While in this regime the correction to the ground-state
the quantum dot. It was noted that the statistical occurrencenergy due to fluctuations is small by assumption, one is able
of nonzero ground-state magnetizations can account for thi evaluate these corrections analytically and show that they
absence of bimodality of the conductance peak spacings diséavor minimal spin for an arbitrary number of particles. Spe-
tribution for tunneling experiments with quantum dots in thecifically, the larger number of interaction-induced transitions
Coulomb blockade regim®-2 Another aspect of large dis- for lower spin leads to more and larger interaction contribu-
ordered metallic samples is that the Stoner threshold can kens to the(negative second-order correction to the ground-
locally exceeded, while the exchange averaged over the fulitate energy in each spin block. This illustrates explicitly the
sample has a value well below the threshold. In this case onghase-space” argument introduced in Refs. 1 and 19 which
may expect that localized regions with nonzero magnetizaimplies that fluctuations generically suppress magnetization.
tion will be formed even though the full system is nonmag-We expect this effect to be significant in quantum dots where
netic. This scenario has been investigated by Narozhnyt will reduce the probability of high-spin ground states. We
Aleiner, and Larkif* who also considered the effect of such recall that the ground-state spin of lateral quantum dots can
local spin dropletson dephasing. They found that the prob- be experimentally determined by following the motion of
ability to form a local spin droplet, though exponentially Coulomb blockade conductance peaks as an in-plane mag-
small, does not rigorously vanish as it would in a clean sysnetic field is applied. Therefore the strength of the demag-
tem, and that neither this probability nor the correspondingietizing effect of fluctuations of interaction is experimentally
spin depends on the droplet’s size. In a different approachccessible.

B. Overview and outline
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The paper is organized as follows. In Sec. Il we start byHeres=1,| is a spin index, andfr’S (d; o) creategdestroy$
an explicit derivation of our model and describe its maina fermion on theth site of aD-dimensional lattice of linear
features. In Sec. lll we begin for pedagogical reasons with agimensionLa and volumeQ=(La)P. This latter quantity
analytical treatment of the model for the case of only twodefines the numben/2=)/aP of spin-degenerate one-body
particles, in both the perturbative regime of weak off-ejgenenergies which we will refer to asbitals in what fol-
diagonal fluctuations and the asymptotic regime where theyows: a=1 is the lattice constant, is a one-body, spin-
dominate. Section IV will be devoted to a second-order perindependent, disordered Hamiltonian with eigenvalegs
turbative treatment of the model for an arbitrary number ofgng eigenvectorg,, ; i.e., one has
particles; this will be followed in Sec. V by a discussion of
the magnetization properties of the system’s ground state in
the asymptotic regime. As noted above, some of the results Holtha) = €l ) = €22 Wa(D]i). 2.1
presented there have already been presented in Refs. 1 and '

19 but are nevertheless included to make the article selfy) refers to the lattice site basis.

contained. In the next Sec. VI we consider the competition " e assume thatt, has no degeneracy besides twofold
between exchange and fluctuations in more details, both,in gegeneracy and distribute the2 different one-body
from the point of view of average Stoner threshold and Nenergies ag, e[0;m/2] so as to fixA=1 without spin de-
terms of probability of finding a polarized ground state. Wegeneracy. Below we will discuss three different eigenvalue
will see in particular that the off-diagonal fluctuations induce jistriputions: constant-spacing distributf8fie, = (a«— 1)A;

2 . . . . . o H
a term ~¢° in the Hamllton|a3n which delays the Stoner oo that due to the level degeneracy the single-particle level
instability and a second term o> which strqngly suppresses ¢ acing isA, whereasA/2 is the mean level spacihgran-
the occurrence of large ground-state spins even above thgy )y distributede,, with a Poisson spacing distribution, or
Stoner instability. In Sec. VII we consider more standard, ;. a Wigner-Dyson spacing distribution. Finallii — j) is
microscopic models for disordered interacting fermions ang o gjectron-electron interaction potential ang=3 .

s''l,s

relate their properties to our generic model of fluctuating t G . . .
. . : . o 9=>d .di .. The Hamiltonian is spin rotational symmetric
interactions. We determine the conditions to be satisfied in ~5 s P y

order for the results obtained from our random interactiod SRS so that both the total spif§| and its projectionS,
model to be relevant in different physical situations. Finallycommute with the Hamiltonian and the corresponding eigen-

we summarize our findings, put them in perspective, and@/uéso anda, are good quantum numbers. This results in

discuss possible extensions of this work in the final Sec@ Plock structure of the Hamiltoniat which will be de-

VIIL. scribed in detail below. Performing the unitary transforma-
tion defined by

II. DERIVATION OF THE MODEL

Our starting point is a lattice model for fermions in a ; Vall)Cos=dis, 22

disordered potential coupled by a two-body, spin-
independent interaction of arbitrary range. We make a uniwe rewrite the Hamiltonian as
tary transformation to the basis of single-particle eigenstates
of the disordered potential and introduce the assumption that _ N vt ot
the single-particle states are random and uncorrelated. Upon H=2 faca,sca,SJ“E U .5Ca,sCp,51C5,5'Crs: 2.3
averaging over disorder we arrive at a completely generic
model describing both the nonvanishing average interactionghere the interaction matrix elemert§IE’s) are given by
(exchange, charging, and BC&nd the statistical fluctua-
tions in both the one and two-body terms. Finally we intro- 1. e , ,
duce the assumption that all interaction matrix elements have Uep= .2;' UG =D (DD ds(D ). (2.4
the same statistical variance. Hence our construction ex- '
cludes both one-body integrable systems and strongly local-
ized systems. We also note that with this assumption geomef;
ric or commensurability effectgsuch as spin waves or di
antiferromagnetic instabilitigscannot be captured by our
treatment, as the statistical character of the constructio
erases most real-space details of the model.

We consider the following tight-binding Hamiltonian for
n spin-1/2 particles:

These IME's induce transitions between many-body states
ffering by at most two one-body occupation numbers. The
stribution and properties of the IME’s depend on both the
range of the interaction potential and the one-particle dynam-
fs. If there are conserved quantities other than energy in the
one-particle dynamicgand hence good quantum numbers
describing the one-body stajeshis will lead to selection
rules in the IME’s; the extreme case of this would be an
integrable one-particle Hamiltonian for which a complete set

H=Ho+ U= Hiigt d of quantum numbers ex_ists. Se_lect.ion rules greqt_ly reduce
0 i,jE;s 0 "i.s7.s the number of allowed interaction-induced transitions and
lead to a very singular distribution of IME’&his is most
+> wi=inn+S wom .n . egsny seen by_ con5|d_er|ng a clean hypercubic I_attlce_ model
izij (=J)mn, Z Oy with Hubbard interaction Perturbing a clean lattice with a
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200 ' uavg:ucc+uss+uBCS
a,3 1 B,a
150 | ] =[(Uap) — 5(Uap) |n(n+1)712
i | & & By~ T
<300 | —\US S+EB (URE)Ch, Ch Cp Car (25
= .
R ol / \ where we have introduced spin operators,
; E(llz)zs,tcl,s&s,tca,t and §=Ea§a. Note that the strength
5 of the average ferromagnetic exchange term has been written
0 == in units of the rms fluctuatiotJ; i.e., we have introduced a
0.00 750-08 0.10 parameteh which is the ratio of the average exchange to the
op fluctuations,
FIG. 1. Distribution of off-diagonal interaction matrix elements )\EZ(UQ;)/U, (2.6)

(2.4) for a one-dimensional lattice model with nearest- and next-
nearest neighbor hopping and a Hubbard interadtitetails of the ~much in the same spirit as the usual Stoner picture where
model can be found in Ref. 2&nd for different strengthé//V of  another energy rati(iJ’f;%}/A, between the exchange energy
the disordered potentidlv/V=0 (thin solid line, 1 (thick solid and the one-body energy spacing at the Fermi level, is the
line), 2 (dashed ling and 3(dot-dashed ling relevant parameter.
The fourth interaction contribution to our model Hamil-
tonian goes beyond the mean-field approximation and con-

disordered potential destroys translational symmetry andins the off-diagonal fluctuations of the electronic interac-
these selection rules disappear, which induces a crossover dens:

the distribution of IME’s from a set ofs functions to a

smooth distribution. In Fig. 1 we illustrate this by plotting U= > > _Zy’ZCZ sC; < Co.5Cys- 2.7
the distribution of IME’s for a one-dimensional lattice model aBivoss T T T

with on-site disorder, nearest- and next-nearest-neighbor Having removed the average interactions, we now assume
hopping, and a Hubbard interaction as described, e.g., in Ref.

21 that both the diagonal and off-diagonal IME@QZ have

The key assumption of our model is that such a smoott#ero-centered uncorrelated Gaussian distributiBgs 2/ 3)
distribution of interaction matrix elements exists and that ince~ (V227297 of width U. We stress that, in general, not all
fact all matrix elements which preserve SR&ve the same IME’s have the same variance, but being interested in ge-
nonzero variancéthese matrix elements may vanish on av-neric features of the interaction, we will neglect these vari-
erage of course This assumption rules out both the case ofance discrepancie$/; contains three kinds of matrix ele-
integrable one-body dynamics as discussed above, and theents, the variances of which depend on the number of
case of strongly localized wave functions for which interac-transferred one-body occupancies between the connected
tion matrix elements between states separated spatially bylater determinants. Diagonal matrix ~elements}"
more than a localization length will have differgand much ~ =(1|U[l) (|I) denotes a Slater determinahtwve a variance
smallej variance than those in the same localization volume~N(n—1)U?/2, and one-body off-diagonal elements that
Our assumption is reasonable for metallic disordered stategange only one occupancy have a variancgn—1)U?,
with a randomness generated by either impurities or chaotihereas generic two-body off-diagonal matrix elements in-
boundary scattering. ducing transitions between Slater determinants differing by

With this motivation, we assume that the fluctuationsexactly two occupancies have generic variahte In dia-
of the off-diagonalU? 5 are random with a zero-centered grammatic language, these discrepancies occur due to the

Gaussian distribution” of widtiU. Only matrix elements Presence of up to two closed loops in the diagram corre-
Ua,g UAe  and UPP have nonzero averages sponding to these matrix elements, each loop corresponding
o ’ a,p? a,a

(Ush, <Ufjﬁg>, and (U##), which lead (respectively to ~ 1© @ Sum oveO(n) uncorrelated IME's.
mean-field charge-charge, spin-spin, and BCS-like interac- Our full Hamiltonian then reads
tion terms. Note that the average of both the exchange and _
BCS terms is dominated by the short-range part of the inter- H=Hot Uapg T U - 28
action and thalfgcg vanishes if time-reversal symmetry is  The mean-field Hamiltonian proposed in Ref. 13 was con-
broken. Consequently, the electronic interactions give us foustructed along similar lines but neglects the fluctuations of
contributions. The first three are the average charge-chargiteraction4; and is thus embedded in the above Hamil-
ferromagnetic spin-spin, and BCS terms that we just distonian (2.8). Consequently, all results derived there can be
cussed and which can be written as, € Ea,sCZ,sCa,s and  obtained from the treatment to be presented below after set-
n=x,n,) ting the strength of fluctuatiold— 0. In a condensed matter
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context this is justified in the limit of large conductange =1,2,...m/2. It is both convenient and instructive to re-
—. As recent experiments in quantum dots seem to bevrite it as
consistent with a conductanece=6-82! it is a priori not
obvious that{; can be neglected. We also stress that both the, , _ y. o1t
random matrix theoryRMT) symmetry under orthogonébr Ui a>By<5 5,201 VasTap(52) Ty.olS2)
unitary) basis transformation in the one-body Hilbert space
[which in metallic samples are satisfied for energy scales +} E wrist g (1_55 )(1_55 )
smaller than the Thouless enerfy=gA (Ref. 39] and the 2 u=fy<s  WPT@PTvO\ T T 2770
SU(2) symmetry under rotation in spin space are satisfied by (2.10
each of the three terms in the above Hamiltonian. :

The charge-charge mean-field contribution results in avhere we have introduced the totally symmetric and anti-
constant-energy shift of the full spectrum and has thus neymmetric matrix elements
influence on the ground-state spin; we therefore neglect it

henceforth. This must, however, be kept in mind, as it is for W2o=U025+U57+U02%+U%0,
instance well known that including self-consistently the - - - -
mean-field charge-charge contribution of the interactions VZ’,ZZUZZZ* UZ’,ZFUg',%_UEi: (2.11)

(e.g., in a Hartree-Fock approadkads to significant correc- ) )
tions to the one-particle density of states at the FermfS Well as two-body creation and destruction operators for
level #2223The BCS term gives rise to superconducting fluc-€ither singlet-paired fermions,
tuations for a negative effective interaction in the Cooper o+t tot o+t
channel(U##)<0. We shall only consider disordered me- Shp=(Cl1Ch L Ch /N2, Sa,a_ca.TCa,l('Z 12
tallic samples which havéU%#)>0. In this case the renor- '
malization group flow brings the BCS coupling to z&fa\Ve  or triplet-paired fermions,
thus also neglect this term and 3éf,;=Uss. Note, how-
; : ot T

ever, that the presence of a nonzérepulsive or attractive TL,B(O)_(Ca,TC};,l_I_CIv,iCﬁ,T)/\/E-
BCS coupling may stabilize a paramagnetic phase. : -

After these considerations we reach our model Hamil- Top(S)=CoCps: S=T1,1. (213

tonian. As we consider fully uncorrelated IME'SJZ',Z, both the

symmetrized and antisymmetrized matrix elements have the

H=Z eana—)\ué-§+ E 2 3’,2‘3;50;,5@55'%,5- same variance which for no doubly appearing indices reads
m a By 5o oA (W29 =a?(V]5) =402 (2.14

In principle, the ratio of the variances strongly depends on
microscopic details, in particular the range of the interaction.
For instance, it can easily be seen thd(V} 5)/c?(W}'3)
€[0,1] and that the ratio vanishes for a Hubbard interaction.
We will neglect this discrepancy, however, but note that an

creased variance of the symmetrized IME’s with resg{[i;ct to
o e R . the antisymmetrized ones favors a low-spin ground-state.
within eac_h of _these bl_og:ks. Each blockn§/25|ze [lnslzglven " The Hamiltonian can now be regarded as acting on singlet
term of binomial coefficients af(o) = (nz-4)(n2+0):  or triplet bonds between levels. SRS is then reflected in the
while the size of a subblock of givea is given byN(o)  simple statement that the destruction of a bond between two
=N(o,=0)—N(o,=0+1). Due to SRS, it is sufficient to fermions must be followed by the recreation of a bond of the
study the block with lowest projectiom,=0 (1/2) for even  same nature. We note that the triplet operat@43 create
(odd) number of particles, as all values @fwill be included  either ac,=0, o=1 or ac,=*1, =1 two-fermion state
in this block. For simplicity, we will consider an even num- in a fixed spin basis. A rotation in spin space would bring the
ber n of particles in the initial discussion presented belowoperators in Eq(2.13 into one another and the first three
and will generalize the discussion later on to include add terms in the brackets in Eq2.10 are not individually SRS
highlighting the main differences between the two cases. It i®ut must be considered as one single spin-conserving opera-
important to remark that botr and o, are not only good tor. We illustrate this point in Appendix A, where we evalu-
quantum numbers for the full Hamiltonian, but also individu- ate the effect of this operator acting on a four-particle state
ally for Hy, Uy,g, andl;. This allows us to consider each with two double occupancies. Note also that from E@s4)
of these terms separately and in the next two sections we wilind (2.11), a purely on-site interaction influences only the
make use of this property, first neglectidgs: as it only  singlet channel as in this case the antisymmetrized IME’s
generates constant energy shifts within each sector, it can hanish identically.
added after the restricted problely+U; has been solved. The procedure leading to E(R.10 amounts to a projec-

In Eq. (2.7) the sums in both the spin and orbital indices tion of the interaction operator onto the two irreducible rep-

are not restricted, ie. ss'=],] and «,B,y,6 resentations of the two-fermion symmetry group. In this way

Due to the SRS that we imposed on the original Hamil-
tonian(2.1), the interaction commutes with the total magne-
tization |S|2 and its projectionS, so that the Hamiltonian
acquires a block structure where blocks are labeled by
guantum numbew, and subblocks of giveer=|o,| appear
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(a) ] (b) l I (©

——=—_1 —o\—§\s\ _ S
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—e— —e— —e— —— —e— —e—
—— —— —— —e— —— ——

FIG. 2. Representation @f,= 0 many-body states withh=2 (a) and 0(b). These two states differ only by the nature of the two-particles
bonds connecting pairs of fermions on partly filled orbitals which are either singlets or tiifietaature of the bonds is indicated by the
lettersort). As fermions on doubly occupied orbitals can only be singlet paired, they cannot provide for a nonzero spin. Together with SRS,
this forbids the scattering from a triplet bond configuration onto a double occupancy, so that the rightmds} stateonly be coupled to
the o=0 state(b).

the two-body singlet matrix elements are explicitly separatedody transitions is a monotonically decreasing function of
from their triplet counterparts, and the rewriting leading tothe magnetization as is therefore the number(asiergy-
Eqg. (2.10 allows us to formulate the many-body problem in decreasing second-order contributions. We will see below
terms of two-particle bonds of a different nature in a similarthat this condition on the available volume for phase-space
way as the authors of Ref. 25. Any evarffermion state is  scattering is crucial for the ground-state magnetization prop-
represented asr@2-boson state where each boson has eitheerties, both in the perturbative regimg/fA<1) and in the
spin =0 or 1. These bosons can be constructed by actingsymptotic limit of dominant fluctuationsUfA>1). It is
on the vacuun{0) with an S or a T operator, respectively, important to understand that the relevant variable here is the
and the spin of these composite bosonic states depends anmber of transitions and not the size of the Hilbert space;
the bond between the two fermions, i.e., whether the fermithe block sizeN(o) is in generalfor a sufficient number of
onic antisymmetry is supported by the spin or the spatiaparticles a nonmonotonic function of, as on the one hand
degrees of freedom. Alternatively, this means that for amN(o=n/2)<N(o=0) [or N(c=n/2)<N(o=1/2) for odd
n-body state of total spiwr, the number of triplet bonds is number of particles whereas, on the other hand and in the
given by 0.2% Also double orbital occupancies result in sin- limit o<n/2<m/2, it can be shown using Stirling's formula
glet bonds, so that their number is restricted ®n/2— o ]. thatdN(o)/do>0. Except for very few particledN(o) has
This construction leads, however, to an overcomplete basigs maximum at a finite magnetization, whereas the number
for n=6. We were unable to propose a systematic reductioof transitions is always maximum far=0.
to an orthonormal set of states and nor are we aware of any We close this introductory section with a brief historical
such systematic construction in the literature. For the comsurvey of random interaction models similar to E¢2.9)
putations to be carried below it will, however, be sufficient toand (2.10. These models originated in nuclear physics and
know that such a basis can in principle be constru¢téal  are based on similar principles as those which led Wigner to
e.g., reduction and orthogonalization of the constructed overpropose the Gaussian ensembles of random matrices, with
complete basjsand how to construct it for the special case the additional requirement that they represent particles inter-
of four particles above the filled fermi sea, as those are thacting via ak-body interaction. Only when the rarkof the
only states one encounters when doing second-order pertunteraction is equal to the number of particles does one
bation theory for the levels of lowest energy in hhe0 and  recover the Wigner Gaussian ensembles. Physically, interac-
1 sectors. tions are in principle not randomper se however, once one
Equation(2.10 helps us see the key qualitative point of postulates the invariance of the one-body Hamiltonian matrix
our work. In second-order perturbation thedfywill gener-  ensemble under unitary.e., basi$ transformation, a postu-
ate transitions in each spin subblock between the grounthte motivated, e.g., by a chaotic one-body dynamics, ran-
state and excited states differing by two occupation numberdom IME’s naturally appearsee Eq.(2.4)], and this results
(or less. Both the triplet and singlet terms will generate tran-in a similar invariance for the many-body Hamiltonian en-
sitions, but there are certain types of transitions which can beemble and the associated probability distributiB(i+)
generated by the singlet term whicannotbe generated by «exp(—TrH 2/2). The first proposed model with random in-
the triplet term. For instance, the triplet operator cannot genteractions was the fermionic two-body random interaction
erate transitions to final states with additional double occumodel(TBRIM) for spinless fermions which was introduced
pancies nor is it possible to scatter a triplet bonded pair intondependently by French and Wdfgand Bohigas and
a double occupancysee Fig. 2 As the magnetization in- Flores?’ This model is essentially a spinless versioripf
creases, the number of singlet transitions decreases accomMthile significant deviations from the usual Gaussian en-
ingly as the number of singlet two-particle bonds in a many-semble of random matrices were found in the tails of the
body state obviously decreases with its total magnetizatiorspectrum—in particular the many-body density of states
Eventually, wheno is maximal, only triplet transitions sur- (MBDOS) for n>2 has a Gaussian, not a semicircular
vive and we can readily conclude that the number of twoshape—these authors found no significant differences in the
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spectral properties at high excitation ener@his latter find- 0.05
ing has been, however, challenged very recéféynd may

be due to the smallness of the systems consideiddre
recently this spinless TBRIM was extended with a one-body
part and it has been discovered that the critical interaction
strengthU . at which Wigner-DysorfWD) statistics sets in is 0.03 ¢
governed by the energy spacings, between directly p(E)
coupled state$’ This model and similar ones have also been 002
studied in the framework of quantum chaos in atomic '
physics®® in particular, the thermalization of few-body iso-
lated systems has attracted a significant attefitithand, 0.01 ¢
more recently, in solid-state physics to study quasiparticle
lifetime?®34=28 and fluctuations of Coulomb blockade con- o lesas? , , ,
ductance peak spacings and heighis quantum dots. In a -20 -10 0 10 20
solid-state context, however, the invariance of the one-body E

Hamiltonian under basis transformations, is satisfied only in

an energy interval of the order of the Thouless en
gy gy and o=1 (solid circle3 computed from 5000 realizations of; .

=gA aroun'd the Ferm! energy, wheges the conductance’ The solid lines give the corresponding semicircle 1&82). Tails
Wave function correlations become stronger and stronger be: - . B
) develop due to the finiteness of the Hilbert space Ei€0)=78
yond the Thouless energy where IME’s start to decay algeéndN(1)=66]
braically as a function of the energy. It is thus reasonable to '
co?s(;dﬁr Ol.JI: random interaction ”.‘Odde' as an Eﬁiﬁt'vigrunfhe o=0 sector are 0A, and 2A. Switching on the interac-
lca ed Hami omaEnlnEanEenfré]y \ﬁ'n O\t’;/] gt“{[ﬁn y s ?u'tion, the determinant of the Hamiltonian matrix in the time-
ess energyEe f o —e =k cl” S0 that the number o reversal symmetric case can be written
particles and orbitals behave msn~g. Nuclear shell mod-
els may also be represented by randomly interacting models, 1
differing from the original TBRIM in the presence of addi- DetH{= =W}
tional quantum numbers like spin, isospin, parity, and so 2"
forth.3 Most of those models consider the limit of dominant 1[1

; ; ; 1 1,2\2 1,12 1 2,2
fluctuationsU/A>1 and, quite unexpectedly, it has been 2 Ewl;}(wz;z) +(Wrp“| 2A+ Eszz

0.04 -

FIG. 3. Density of states fan=2, m=12 o=0 (open circle,

1
1 p L AN
+ Z\Nl,%\NZ,g\NZZ

1
2A+ Ewg;g

1

found that even in this regime, random interactions may re-
sult in an orderly behavidf in particular, a strong statistical
bias toward a low-angular-momentum ground state. In par- +(W§j%)2
ticular, for the special case of an angular momentum re-
stricted to j,==*1/2, the probability of finding a zero-
angular-momentum ground state for an even number Olfri
nucleons reaches almost 108%.While the reasons for this
behavior in the asymptotic regime are still not cl&awe
will see below that a strong bias toward a low-angular-
momentum ground state results from a stronger broadenin
of the MBDOS in the low-spin sector, associated with a

larger number of off-diagonal transitions. The same phenom o . )
enon with qualitatively the same origin will be shown to on—it is more likely to be reduced than increased by the

influence the ground-state magnetization in the perturbativ:g?ﬁ'(j""Igonal fluctuations. Simultaneously a_nd n absence of
limit. exchange, the energy of the onky=1 level is given byA

+V7152, so that the fluctuations lower or increase it with
equal probability. Hence fluctuations always increase the av-
Ill. CASE OF n=2 FERMIONS erage spin gap in this case.
We next consider an arbitrary number of orbitais,First
consider the limit of dominant fluctuation$/A>1. H~U;
is then a GOE matrix and its MBDOS is well approximated
by a semicircle law E><E32)

(3.9

1

Every single term in this expression has a symmetric dis-
bution, i.e., an equal probability of being positive or nega-
tive, except for a term-[(W33)2+2(Wy3)2]A/4, which is
always negative. It results that the determinant has a higher

robability of being negative which in its turn means that the
lowest eigenvalugwhich vanishes atJ/A=0) is statisti-
cally more often negative than positive whenis switched

For n=2 particles, only the sectors=0 and 1 exist
whose size is given b¥(o) =m/2(m/2+ 1—20)/2. In each
sector, the interaction matrd¥ is a GOE matriXthe number
of particles is equal to the rank of the interacliand all
Hamiltonian matrix elements are nonzero and have the same )
variance. For simplest case of two orbitais/2=2) one can _ =
demonstrate the magnetization reducing effect of interaction PGoE™ wEé(a_) VEo(o) —E7%, (3.2
fluctuations by an argument which éxactfor all values of
the off-diagonal fluctuationd). The two orbitals are spin where Eg(o)~2N(o)U. This expression is not exact,
degenerate and have energigs=0 ande,=A>0. In the however, as there are corrections in the tail of the
absence of interaction fluctuations, the three eigenvalues idistributiorf? as one can see in Fig. 3. These corrections
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0.05
i

0.04

0.00 ! ! !

FIG. 4. Average numbep of levels in the spin gap between the
two yrasts forn=2, divided by the total number of leveldl(0)
=m(m+1)/2, in thec=0 sector as a function of the humbrarof
one-particle orbitals. The dashed line shows the dependetide
~1/N in agreement with an-independent number of levels in the

gap.

behave a®©(N~®) while the level density there i©(N)

(Refs. 42 and 43; i.e., the number of levels outside the semi-

circle is independent dfl (and hence ofm) and for simplic-
ity we will neglect these corrections in what follows.

Henceforth we shall be focusing attention on the ground
. ) an
state in each spin sector and the gaps between these grour;gd
states, so it is useful to adopt the standard term in nuclea
physics for the lowest levels, of a given spin or angular mo-

mentum.yrastlevels. In the current model, in the asymptotic
regime of large fluctuations/A>1 (and neglecting the ex-
change interaction we can approximate the energy of the
yrast states b¥q(o) and hence readily predict that the av-
eragec =0 yrast energy will be lower than its=1 coun-
terpart by an amount

AS=Ey 1~ Ep o~ U[VM(M/2+ 1)/2— m(m/2—1)/2]

}

i.e., on average there is a spin gap tfA>1 in the large-

=U+0

(3.3

PHYSICAL REVIEW B4 214416

=0 levels in the spin gap as shown by the numerical data
presented in Fig. 4. In Fig. 5 we show a numerical check
which confirm the validity of Eq.(3.3) up to prefactors
which are due to additional correlations between the consid-
ered levels and cannot be captured by the simple arguments
presented here. We will come back to this point in Sec. V.
Note, however, that the distance betwefn_, and&; ,—g
seems to remain constant msncreases which is a manifes-
tation of the presence of the tail correction to the semicircle
law (3.2) and is beyond the reach of the simplified reasoning
we have presented.

We can next calculate perturbatively the energy of the
yrast state in each sector up to the second orddd/ia.
These states can be written[#ise singlet and triplet creation
operatorsS] ; and T] (0) have been defined in Eq.12)
and(2.13]

[wE™) =51 40),

(W6 )=T140)[0). (39
Up to the first order their energies are given by
Eo0=2€1+ W2,
Eo1= €1+ €2+ V1F2—2\U, (3.6

the second-order corrections re@asing the constant

spacing model for the one-particle levels

1 (WHL)2(1—5, 4/2)
_ T a.pB B
A&Gy= 2552 (a+tB—2)A
1 (WhHZ (wit 2<1—5a,2/2>}
25| (a—1)A (a—2)A ’
2)_ a,B
Agg'l_ a>B>2(a+ﬂ_3)A
(V322 (Vi2)?
2 a=DA (a2 ©7

m limit. Next we can calculate the average energy of the firsiyote that any double occupancy in either the initial or final

excited =0 level, & ,_o, via integration of the average
MBDOS (3.2) as
E1g—0—E0p—0=O0(N(0) " ¥)=0(m 13). (3.9
In the relevant limitm>1 the splitting between this first
excitedo=0 level and ther=0 yrast level is negligible and

both states are below the=1 yrast level by a gap of order
U, independent ofn. This calculation can be extended to

higher 0=0 excited states and the result suggests that on

average there is a large numb&(m'®) of o=0 levels

state results in a 32 reduction of the transition amplitude,
hence the factors 1/2 appearing on the right-hand side of the
first and second lines of E@3.7). These factors are, how-
ever, exactly counterbalanced by the IME averages, since
one hadsee Eq.(2.14]

(W) ?=(4U55) %= 1602,

(W5h)?=(2U3+2U 5" )?=8U2 (3.9

which have a lower energy than the first spin-excited state.
Remember, however, that we have neglected corrections to
the tails of the density of states, and it turns out that thes@he second-order contributions for the energies of the lowest
corrections result in am-independent numbep~3 of o levels in each spin sector are therefore given by

(Vi) ?=(Ugh+ U, —Ugl— Ul =4u?
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4.0 T T 0.0
[ ]
3-0‘.00'00000'00}0& < 057
=
® (g,,—€,0)/U 3; ol
20 r A (g,,—€, U 5"
5
A
10+ A A }AA ~ =15t
. a A N A A A A A ;
A 8
0.0 : : 2.0 - : : :
10 20 30 40 0.00 0.05 0.10 0.15 0.20 0.25
m U/A
FIG. 5. Average spin gap between the two lowest yrast levels FIG. 7. Ground-state energy for the Hamiltonigh9) with n
(circles and average splitting between the first excited 0 level =2, o=1, m=12 (circles, andm=16 (squaresas a function of

and theo=1 yrast level(triangles of &4; for n=2 as a function of  the strength of off-diagonal fluctuatiorid/A in absence of ex-

the number of One_partide orbitats. The data show almost no Change interaction. The solid lines indicate the perturbative result

dependence in agreement with £§.3). [€0,1(U) — €0,1(0))/A=A(U/A)? with a numerical coefficient de-
termined by(3.9) A=—17.5 and—23.91, respectively.

AED = ﬁ 1 case because transitions to doubly occupied states are not
0.0 A B2 atB-2 allowed; it is straightforward to show that there are exactly
m/2 such transitions. As each contribution in second-order
8U? 1 1 perturbation theory reduces the energy of the lowest-energy
A & a_1+ a—21 state in each sector, thesa/2 additional transitions will
therefore favor a singlet ground state in the perturbative re-
402 1 gime. N _ '
Agézl): _ E - All other transitions give on average the same contribu-

A SFs2atp-3 tion to & o as t0&, ; as symmetric and antisymmetric matrix

elements have the same variance. As the first-order correc-
(3.9 tions do not survive disorder averaging, we can write the
average energy difference between those two levels in
second-order perturbation theory as

1 1

8u? .
a—1 a—-2|

A a>2

The expressions given in Eq8.9) are in very good agree- U2
ment with numerical data obtained from exact diagonaliza-
tion as we show in Figs. 6 and 7. It is clearly seen fgrjom Egs. AS~A-2\U +AXIn(m/2), (3.10
(3.9 that the singlet and triplet second-order corrections dif- . .
fer only by a restgr]iction in thpe sums which arises in the triplet\’\’herep‘>O IS a numerical prefactor .tha.t can b(_e extracted
from Eqgs.(3.9) and the above expression is valid in the large

m limit. It follows from Eq. (3.10 that in order to align
spins, the exchange has to overcome more than just one level
spacing. Equivalently, Eq(3.10 states that off-diagonal
fluctuations increase the energy spacing between the lowest-
energy states of each sector. Equatit®10 has been
checked numerically and the result is shown in Fig. 8.

One can also compute perturbatively the splitting induced
by the off-diagonal fluctuations between the fiecst0 ex-
cited state and the=1 yrast. As a matter of fact, except for
the exchange interaction, all corrections in the first two or-
ders in perturbation theory give the same average contribu-
tions up to second-order contributions which exist only for
0.00 005 040 015 020 025 |w{”) and correspond to scattering onto a double occupancy.

U/A In second-order perturbation theory, this splitting reads

0.0 iz

|
I
n

|
-
=]

|
-
4

(eo,o(U)_go’o(O))/A

|
g
o

FIG. 6. Ground-state energy for the Hamiltonigh9) with \ (Wl—z)z
=0 atn=2, ¢=0, m=12 (circles, and m=16 (squares as a Eo1— 1= —2NU+ 2 - @a
function of the strength of off-diagonal fluctuationgA. The solid ’ ’ a=3 2(2a—3)A
lines indicate the perturbative resulfego(U)—¢€q0(0)]/A U2
=A(U/A)? with a numerical coefficient determined by E®.9) __ =
A=—21.12 and—27.56, respectively. 2NU+A A In(m/2). (319
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and for a sufficient number of particles, the sector with the
largest number of states has finiteonzerg magnetization,
whereas it is always foor=0 that one has the most transi-
tions and hence the largest probability to find the ground
state. Simultaneously, for an increasing number of particles,
the MBDOS undergoes a crossover to a Gaussian shape in
the limit n>2 178t is understood that the sparsity of the
resulting matrices alone does not invalidate the semicircle
law; sparse matrices with uncorrelated matrix elements may
have a semicircle la#**®> However, as noted already, the
IME’s in the TBRIM are highly correlated and this appar-
R s . ently drives the MBDOS to the Gaussian form. For a very
0.00 0.10 0.20 recent and interesting analytical study of this crossover, we
U/A refer the reader to Ref. 28. Of importance for us is that even
FIG. 8. Spin gap between the two lowest yrast statesifop for n>2 one still has a reliable expression for the MBDOS

andm=16 as a function of the strength of off-diagonal fluctuations N t€rmM of n andm that one may use to extract the average
U/A. The solid line gives the perturbative result from E8.10,  €nergy difference between yrast states in the regime of large
giving [ €9.1(U) — €0 o(U) /A =1+ A(U/A)? with a numerical coef- fluctuations. We will implement this procedure for-2 in
ficient determined by Eq3.10, A=3.66. Sec. V.

1.20

In particular we see that the splitting induced by the interac-
tion fluctuations favors the spatialgymmetricsinglet state
and opposes the exchange terAf £0). Note also that for We now discuss the perturbation theory for the yrast states
n=2, both the splitting3.11) and the spin gaf3.10 have a  for arbitraryn. These results are of particular interest since
similar magnitude. We will see below that this is no longernumerical results for largé) are necessarily restricted to
the case for largen. Replacing the sum by an integral one smalln and one may worry that the largebehavior is quali-
findsA’~2 in Eq.(3.11). tatively different. In this case, within the perturbative regime,
Some remarks are in order here as the case of two pawe can show analytically that fluctuations reduce the prob-
ticles is somehow special. Far=2, U/; is a GOE matrix for  ability of a magnetized ground state for arbitraryTo esti-
which the number of transitions in each sector is equal to itsnate the size oJ one must consider the disorder averaged
size. However, as one adds particles, the matrix becomegpical amplitude of fluctuations of the IMR.4), which has
sparser and sparser as the Hilbert space size grows expondreen computed for diffusive metallic sampf&4’ In this
tially with the number of particles, whereas the number ofcase the effective static electronic interaction is strongly
transitions is a polynomial in. It is, however, clear from the screened and can therefore be well approximated by a Hub-
perturbative treatment presented above that what matters fward interaction. Then, the variance of the IME’s Eg}4), is
the number oftransitions not the sector size. Generically given by

IV. PERTURBATIVE TREATMENT FOR n>2

AL =UZ S GOV D090 DY) (4.0

In diffusive systems for which.<L holds (. is the elas- use of SRS and consider eaahsector in thes,=0 block.
tic mean free path the wave functions can be estimated This means that there are as many particles with up as with
using classical return probabilities as extracted from the difdown spins, and states with differemts but the same occu-
fusion equation and one gah{UZ”Z)EU~A/g.46 In metal-  pancies will differ only in the nature of two-particle bonds
lic samples the conductangds very large and even in small between pairs of fermions on partly occupied orbitedse
quantum dots it is typically of the order of 10. It is therefore Fig. 2 and the discussion in Sec).IWe will also focus most
of interest to start with a perturbative treatment up to secondef our discussion on the case of an even number of particles,
order in the small parametdd/A. Each contribution in  but will eventually generalize our results to an odd number
second-order perturbation theory is always negative for eachf particles. To simplify numerical checks of the perturbation
yrast state and we will see, as for the case2, that the theory we will consider only the case of equidistant one-
number of such contributions is larger in the lowest-spin secbody orbitalse,=(a—1)A in this section and will discuss
tor, thereby favoring the absence of magnetization; howevegeneric spectra later on.
additional and more subtle interference effects in the transi- Foro,=0, there are an equal number of spin-up and spin-
tion matrix elements also appear and fawer 0. Here and if  down fermions and\I(O)z(nm/z2 2 Slater determinants. At
not stated otherwise in the rest of the paper, we will make=0 the ground state can be written as
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- interaction favoring as usual the spatially antisymmetric trip-
|Fn)= —1_1[n/2 Ca,TCa,L|O>' (4.2 let state. To calculate the average second-order corrections,
o we need to know the number of direct interaction-induced
Obviously this state has=0, as doubly occupied orbit- transitions which we will call theonnectivity Kand which is
als form a singlet two-particle state. Acting ) with the calculated in detail in Appendix BK is a monotonously

St andT'(0) operatordsee Eas(2.12 and (2.1 andP d_ecreasing function.of the total spin and in particular the
times, res(pgcti[\)/ely, $ qs(2.12 (2.131Q difference between its values at=0 ando=1 is always

m/2, independent of the number of particles. This decrease of
P Q K as a function ofs results in a smaller number of second-
[T st AL ™0 s0)|F,, (4.3)  order contributions for states in highersectors and thus a
a.p 7.4 smaller reduction of the energy of the corresponding yrast
allows one to construct &,=0 state which is in general a State. We will identify below the transitions which give the
linear combination of Slater determinants of total spin Maior contributions to the difference in second-order shift
=1,2,...0Q-10Q. One can in principle represent a com- between the two lowest yrast states. The second-order cor-

plete basis with good quantum numbers o, and one- '€ction to the energy of the=0 yrast reads
particle occupations from the statgs3) following the rules

following: A&

(i) Fermions on the same orbital are singlet paired. -

(i) Fermions on singly occupied orbitals are arbitrarily (W2DH(1= 5, 42)(1- 8, 4/2)
bonded in pairsg of the latter being triplet, the rest being B _azﬁzn/2+l y<o=n/2 (a+B—y—96)A
singlet bonded.

(iii) The triplet bonds combine to maximize the total spin. 3(VZY"Z)2

While the first rule is imposed by the Pauli principle, the -
second and third rules are a matter of convention. This set of
rules is similar to the one employed by Kaplan, Papenbrock, 2
and Johnsaf for the case ofi=4 particles. As noted above, ~ —Afnzm In(m). (4.9
the generalization to more particles is not trivial: following

the above prescription, one obtains an overcomplete basi§ote that the singlet and triplet contributions add incoher-
and one should construct a proper orthogonalization procesptly and that the triplet transition acquires a factor of 3,
dure to reduce this basis. In what follows, however, we W'"reflecting the corresponding number of channeis=0,
compute perturbative corrections up to second order for only. 1). In order to estimaté4.6), the sums can be replaced by
three _gllfferent sta’Eels: the=0 and o=1 yrast states 4 fourfold integral which gives an homogeneous polynomial
(|P{=%) and [¥{~Y)) and the firsto=0 excited state  of order 3 inn andm, each term being multiplied by a loga-
(|w{7=9)). For comparison of these states the constructioltithmic correction. In the dilute limit &n<m the m® and

of a basis forn=4 is sufficient. We can write these three

a>pEn+1 y<o=n2 (a+ B—y—6)A

states as 0 mn
0
|\P(() )> =| Fo)s
o)\ _ of !
|\P§L )>:Sn/2,n/2+1||:n—2>' §
1y 1t S
|‘P(() )>=Tn/2,n/2+ 1(0)|Fn—2>- (4-4) o.)g -10 1
|
The difference between the=1 yrast state and the first =)
o=0 excited state lies exclusively in the bond between the w% -15 1
last two particles: it is a triplet in the first case and a singlet ~
in the second. Up to first order, the energies of the states
. _20 1 1 1 1
(4.4) are given by 000 005 010 0145 020 025
(1) = (xp(0) Oy —_ | —
E50=(¥o [H|Wo >_2(2 1)A' FIG. 9. Energy of thec=0 yrast state form=16, n=2

(circles, 4 (squarey 6 (diamondg, and 8(triangles, as a function
of the strength of off-diagonal fluctuationd/A. The solid lines
give the perturbative results extracted from Eg.6), giving
- o [eOVO(U)f50'0(0)]/A=A(U/A)2 with a numerical coefficient de-

EH=(wMHTOy=c"+A-2)\U. (4.5  termined by(4.6A=—27.56 1=2), —144.75 h=4), —281.09

' ' (n=6), and—373.57 =8). Note that the breakdown of the per-

Without interactions, the latter two levels are degenerate andlirbative expression coincides with the emergence of the ldide-
in first order they are on average split only by the exchangdinear regime.

L=V PIHI W) =£63+ A,
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@ | (b | ]

—— t
— == FIG. 10. The two lowest yrast states=1/2
—r— — — (@) and 3/2(b) for odd number of fermions.
—— —— —— —e—
—— —— —— —e—
—— —— —— —e—
—e— —— —— ——

m?n terms drop out exactly and this gives the dominaith  ground state. The=1 transitions with this property are of
dependence expressed in E4.6). This estimate is also con- the following kind. Theo=1 noninteracting ground state
firmed by numerical evaluation of the sum in E4.6). has two partially occupied levels at the top of the Fermi sea
The above formula is found to be in good agreement withwhich are triplet bonded. The relevant transition causes one
numerical data as shown in Fig. 9. Note that at a largeof these partially occupied states to become doubly occupied
number of particles, the dependence of the energies of thehile creating a hole in the Fermi sea and a particle above
yrast states starts to have a linear dependent#/ in much  the Fermi sea. For this kind of scattering process the number
earlier, signaling an earlier breakdown of perturbation theornof double occupancies does not change and one can show
than for a small number of particles. We will discuss thisthat the singlet and triplet terms in the Hamiltonian induce
point below. The Correcuo?o_; for the =1 yrast can be transitions onto the same final state. Correspondingly, the
calculated in the same way and one can show that differencd®© transition amplitudes must be added coherently, and it
betweenAé(oo and Aé’g oceur first due to denominators tUrns outzthat this resulzts in a reduced transition probability
differing by = A as tran'smons involving the two uppermost [TomM 18J° down to 12 (a detailed calculation of the am-
particles start from the orbitalsn(2,n/2) and (/2,n/2+1) plitude of these transitions is given in Appendix).A
for o=0 and 1, respectively, and second due to transitiond "€ corresponding contribution to the spin gap can be
either increasing or decreasing the number of double OCClFSt'mated as
pancies(which only occur fore=0). As noted, the number

of such transitions isn/2 and they give a contribution to the mz M2l
spin gap which can be writterven/m is the filling factoy ~ AE53— “‘4—J dxf dyzEnlz Ve ————
U2
2A—In(v), 4.7 ~ —4Tln(v) (4.8

whereA is a numerical factor. This is exactly analogous to
the energy difference we found in Eq&8.10 and (3.1) This result is valid in the dilute limit £n<m and this con-
except that Infy2) has been replaced by k)( tribution dominates the spin gap as soon as the number of
While the term just calculated is easiest to identify, a moreparticles is sufficiently large, i.e., far=4.
important contribution to the spin energy gap comes from a As for n=2 it is straightforward to calculate the splitting
more subtle source. There is a certain class of transitionsiduced by off-diagonal fluctuations between the 1 yrast
starting from theo=1 ground state which have exactly the and the first excited-=0 state: there is no difference in the
same energy denominator as the corresponding class in energy denominators and there is a one-to-one correspon-
=0 case(see Fig. 11 but theo=1 transitions have a re- dence between all second-order contributions for these two
ducedamplitudein comparison to ther=0 transitions. The states, except for the transitions which do not exist dor
corresponding(negative second-order contributions will =1. The latter correspond to scattering onto a double occu-
therefore reduce more strongly the energy of ihe0 pancy on the 1f/2+1)th orbital or from the §/2)th onto a

—_— —— Y FIG. 11. Left: transitions that have a different
{. @— s/t \l transition amplitude foro=0 and =1 and

~ T . . . .

S . — thereby give the dominant contribution to the
— — ® / .

"""" 8 /\t_\_ L i spin gap between the two lowest yrast levels for
- ——— / AW o even number of fermions. Right: corresponding
e e .
(—eo— —— ‘\ *— @ transitions for odd number of fermions
~ ~. / o . . oy .

S~ . I \’l ) giving different transition amplitudes far=1/2
¢ ando=3/2.

—— —— L L

—— —— L L
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double occupancy on a previously empty orbital. These therorresponding to the energy differendé® between the
are the only contributions to the average splitting, whichlowest-spin yrast and the yrast level of spincan be ap-

takes the form proximated by the four-dimensional integral
, ()= £(2) _ 2)
@ 0 (Whidn2s 1) A —gg,a 58,0
Ebg=1"ETg=0=7 T A A 2
2 y<nz (N+1-2vy)A U? (n2-o m/2 n2+o  dzdt
:4Tf dxf dy P———
1 (Wn/Z,n/2+l)2 0 ni2+o n2—o Yy TZ7X
t3 e 8u? n 5
2 a>ni2+1 (2a—n—1)A %T[UZ(E_U <§—|n(v))
U2
~_ _ 20 7
L Ln(m=n)-+ In(n)] 4.9 gy m(7 i) ] 410

and is thus positive. , (o) . . .
We now briefly discuss the case of odd number of par-. We first note that\'“’ is a monotonically increasing func-

ticles. The lowest possible magnetizationois- 1/2, and at gon .Of ‘{ T?ﬁ f||rst tebrmhon' theTrrllghtt—hanq side of E(ﬁlzljil N
U/A=0, the yrast corresponds to a singly occupied2( @omMinates the love benhavior. 1his term Is a generaiizatio

+1)™ orbital above a filled Fermi sd@ee Fig. 108)]. The of thenU?/A term, giving Eise to the .spin gap between the
next magnetization isr=3/2 and the corresponding/A o=0 ando=1 yrasts. Itso“ parametric dependence results

- P : i delay of the Stoner instability, equivalently in a reduc-
=0 yrast state is represented in Fig(H)0 It has three single In a ; 4 )
occupancies above the Fermi sea and one of the two bondS" of the strength of the spin-spin exchange coupling
between the corresponding particles must be a trifitet . nu?\ _
choice of the bond is arbitrary We identified above the —AUSS—»—()\U—AvT)S-S, (4.12
dominant second-order contributions to the spin gap for even
n as those which have an amplitude reduction due to partighhereA , is a prefactor of order 1, weakly depending on the
occupancies in both the initial and final states. An example ofjjjing factor ».
such a transition forr=3/2 is depicted in Fig. 11. From the  For |arger magnetization, i.e., when the polarization ratio
presented data one sees that the expression corresponding;l&:omes finitgroughly ato~n/8), A(®) starts to be domi-

Eq. (4.8) for the case of odah reads nated by the second term in E@.11) which has a larges
5 242 5 dependence and hence a stronger effect, beyond the simple
4U—Jn/2dxfm/2d 1 _4§ Eln(v) shift of the Stoner instability just mentioned: it results in a
A Jo ni2 yz>t:n/2 y+z—x—t 2 A saturation of the ground-state magnetization for exchange

(4.10 couplings not much stronger than the critical Stoner value.

) Its o dependence suggests an higher-order effective spin
and differs from Eq.(4.8 by the boundary values for the coupling

sums overz andt. Correspondingly the contribution to the

spin gap picks up a factor of 3/2 and this results in an even nu2

odd effect where the gap asymptotically behavesA&s HS“ng, (4.13

~—4BnIn(»)U%A whereB=1 for even and3=1.5 for odd

number of particles. In particular, it is more difficult to mag- which is switched on roughly at a polarization ratio/2

netize a system of odd number of fermidhsvhich is in  >1/5 [for which In(20/n)+7/3In(2) becomes positijeThe

agreement with the experimental results presented in ReffigherS® dependence of this effective coupling can also be

12 and 49. The above expressidds8) and(4.10 have been obtained from a dimensional analysis. The number of

checked numerically and the results are shown in Fig. 12second-order contributions to the ground-state energy in each

Both the even-odd dependence and nhgependence of the sector decreases a$ for large enoughr (see Appendix B

gap are confirmed for larger number of partictes3. Note ~ When summing over all of these contributions, we must take

that the processes mentioned above and leading to the scéitto account their energy denominator, which leads to a

ing expression$4.8) and (4.10 do not exist fom=2 and 3  ~ o> In(o) parametric dependence for the second-order con-

in agreement with the data of Fig. 12. tributions, in agreement with E¢4.11). Neglecting the loga-
From the second-order corrections to the yrast levels imithmic correction we finally get Eq4.13. It is important to

each sector, it is possible to construct an effective Hamilnote that this latter effective Hamiltonian term is left invari-

tonian which takes into account the average effect of thent by both SW2) rotation in spin space and rotation in the

off-diagonal fluctuations of interaction. The number andone-body Hilbert space.

strength of second-order contributions decrease with increas- The above treatment illustrates theeragemagnetization

ing magnetization and the relevant contributions are thoseecreasing effect of the interaction fluctuations which results

emphasized in this section corresponding to one partially ocin a shift of the Stoner threshold to higher exchange strength.

cupied orbital in both initial and final two-particle states. For Simultaneously, contributions to th#luctuations of the

large magnetizationo>1 the second-order contributions ground-state energy around this average in a finite-sized sys-
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0.10 : — where the sums run over occupied orbitals. Both these last
i ] two expressions have the same parametric dependenne on
as they both depend only on the change of one orbital occu-
® pancy in the immediate vicinity of the Fermi level. In second
m@ order, the relative fluctuations between consecutive yrasts
005 | ] €« 4 can be estimated to have the same order of magnitude as the
‘ 0 ﬁﬁ a” spin gap(4.8)—(4.10), and this also gives the contributions to
% . the relative fluctuations between ground states of a consecu-
gf. . bo? tive number of particles, i.eQ(nU?% A). Consequently, the
ﬁ@?- 0000 o relative fluctuations will be dominated by the filsiecond
mg@@? 6000° order for U<A/\n (U>A/n). These estimates neglect,
0.00 8¢ 0.05 010 however, the spectral fluctuations and are thus valid in the
?A case of a rigid equidistant spectrum only. The variance of the

(A—A)/(BnA)

, gap distribution is, however, dominated by these spectral
FIG. 12. Rescaled spin gap between the two lowest yrast statefcyyations (which are proportional to the average level

for m=16 andn=2 (circles, 3 (squarey 4 (diamonds$, 5 (tri- . . _ . o
angles up 6 (triangles leff, 7 (triangles dowp, and 8(triangles IS;)pﬂ«’ZCI;lSSLIZ);\k/)ﬁOth Wigner-Dyson and Poisson statistics as

right). Symbols corresponding to odédven n are solid(open. The
scaling parameter satisfies=1 (1.5 for even (odd) number of
particles(see text The scaling holds quite well already for a small V. ASYMPTOTIC REGIME
number of particlesi=3 and the even-odd dependence of the gap

confirms the theory presented in the text. Inset: spin gap before .
y P pin gep y scalegwidth of the MBDOS, ground-state energy, gaps

rescaling for the same cases as above. Lines corresponding to o o . ) 4
(even n are dashedsolid) to stress the even-odd dependence of the@Nd splitting between eigenvalues, gtoecome linear in the

gap. Note that for largen, the gap starts to have a linear depen- fluctuation strengtiJ. Most of the properties of the Hamil-

dence abové)/A~0.1, indicating the border between perturbative tonian can then be obtained by assumikig-U/;, and for
and asymptotic regimes. random interaction models of this form, the shape and width

of the MBDOS can be extracted from a computation of its

tem (quantum dotcan be of the same order of magnitude agvariance aqd higher. moments. We begin this segtion with a
the average itself, possibly resulting in large fluctuations offhOrt overview of this method mostly developed in Ref. 17.
the ground-state spin around its average value. We therefore Whenu/; dominates,H, andif,,q may introduce a con-
close this section with a calculation of the contributions toStant shift of the full MBDOS due to the mean field charge-
the variance of the ground-state energy arising from the fluccharge interaction, a shift of each sector's MBDOS by an
tuations of interaction. In first order we get a contribution@mount —AUo(o+1) from the mean-field spin-spin ex-

given by the variance of diagonal Hamiltonian matrix ele-change and a subdominafiD(A/U)] nonhomogeneous
ments modification of the MBDOS due t®{, which is negligible in

the limit considered here. We thus first consider the MBDOS
corresponding té4; and will introduce later on the only rel-
evant mean-field contributions: thedependent shifts due to
e exchange interaction. The average shape and width of the
BDOS of U; can be extracted from its moments,

In the regime of dominant fluctuatiorid/A>1, all en-

(T |U| ¥ E))=0(n?U?), (4.14

while the variance of the second order is given by the squar
of the average contributiofd.6) and is therefore of order
O(n*m?U%/A?). Consequently, these fluctuations are domi- 1

nated by the second order for>A/(mn). Of physical rel- MO (g)= —— E [E/(0)]
evance, however, arelative fluctuations between ground N(o) 4

states in different spin sectors or at different number of par- 1

ticles. Both these quantities influence, for instance, the dis- =——Tr(Uy)]
tribution of conductance peak spacings for quantum dots in N(o)

the Coulomb blockade regint®! In first order, the relative
fluctuations between the ground states witandn+1 par-

2 ulfl,|2u|f21|3...ulfzji:blly (51)
ticles are given by

“N(o) 7

wherel/}?=(1|u]J) and|1) refers to a Slater determinant.
U( > aUgjﬂH) «nU (4.15  Taking the average of this expression, we easily see that only
the even moments of the average MBDOS do not vanish. In
] ] ) the last sum, furthermore, only terms with pairs of indices
and the relative fluctuations between consecutiee, o and  occurring twice give a nonzero average contribution; i.e., to

o+1) yrasts can be written compute the moments, one needs to perform contractions
over the Hamiltonian operators such that
a, o+1 a,n—o
0-(2 a(Ua,rqioil_Ua,g—a' )OC\/HU, (416) (Ikv|k+1):(||1||+l) (52)

214416-14



GROUND-STATE MAGNETIZATION FOR INTERACTING . .. PHYSICAL REVIEW B34 214416

for a pair of indices k,1). We can readily calculate the sec-
ond moment, i.e., the variance of the MBDOS, 002 1
M ()= LTrHZ(a) =~

N(o) \)

n(n—1) »%\

=| =5 Kolo) +(n=1)Ky(0) +Ky(0) [4U2, g o
(5.3

where we have taken care of the number of matrix elements
and different variances of the three classes of Hamiltonian 0.00 .
matrix elements mentioned in Sec. Il. In the limit of a large 100 50 0 50 100

number of particles, Eq5.3) explicitly expresses the domi-
nance of generic two-body IME's: since their number is G, 13. Density of states for the Hamiltonid with n=6
given byK (o) ~n’m?, their contribution taM (?)(0) goes  particles andm=16 orbitals, corresponding to the magnetization
parametrically liken?m?U?2, whereas the contribution from blockso= — 3 (solid line), —2 (dotted lind, — 1 (dashed ling and
one-body IME’s and diagonal matrix elementsisnU? and 0 (dot-dashed ling Inset: rescaled density of states showing the
nU?, respectively. This motivates us to neglect the sub-approximate scaling ife/KY2U.

dominant contributions toV (?)(o) and to use the approxi-

mation parametric expression for the average energy difference be-
tween yrast states in each magnetization block. Indeed, the
M@P=K(o)U?, (5.4  MBDOS satisfy a scaling law
A calculation of the connectivitiK (o) is given in Appen- o E
dix B. E—E= , (5.6
Higher moments are also easily estimated in the dilute VK(o)

limit 1<n<m. In this case, the contraction5.2) can be . .
; ' . which allows one to rescale all of them approximately on top
performed independently as the probability to createde- of each other. This behavior is illustrated in Fig. 13 which

stroy the'same fermlon on the same orbital is VamShmglyshows both the multiple Gaussian structure of the MBDOS
small. This remains the case as long as the number of cre-

ation (destruction operators iri/} is smaller than the number E{:S)rt]zefosffl_mg with/K() obtained from numerical calcu-
of particles, i.e., for 2<n. A second conditiom<<m must L

also be satisfied, for which creations and destructions stati%eThgrt?';?a;é%%S \?vrr?egésgr:f%fr?egig:\i ?ﬁ’fgizg%;?%gf
tically occur on different orbitals. In this case, higher mo- P ' 9

merts re sy mulipies o he second momen,wih %1 2% 12 0%t e hve neyeries seen sbove
combinatorial factor reflecting the number of different pos- . .
sible contractions: way (th|s is true only for not too Iqrge magnetlzatlc))n'ﬁhus
the tails undergo the same modification, say, éo+0 and
M@ (g)=(2j— )N [MD(o)]. (5.5  o=1.If we then make theéa priori not justified assumption
that the yrast levels are uncorrelated, i.e., that for a given
This relation defines a Gaussian MBDOS, and correctionsealization oflf; their positions around their respective aver-
occur only due to higher momentsj(2n), mainly affect the age value are not correlated, then we can conclude that the
tails of the distribution, and vanish in the largdimit. It is average distance between two yrast states is parametrically
remarkable that the order of the moments which fail to begiven by the difference of the width of the corresponding
have like those of a Gaussian distribution depends almog¥iBDOS. Assuming, as just discussed, that the tails of the
exclusively on the number of particles, at least as long as ondistribution scale with the variance with a factgrand ne-
restricts oneself to the lowest magnetization blocks awawlecting contributions arising frorily, the typical spin gap
from full polarization. Therefore, corrections affect each par-can be estimatetfor A=0) as
tial (i.e., o-dependent or blogkMBDOS in the same way,
and we will assume that the relative parametric dependence A;J%,BU[\/K(omm)— VK (omint 1)]. (5.7
of the bulk of the MBDOS at different can be extrapolated
to the tails. This means that, as in the case of a Gaussian In Fig. 14 we show the computed spin gAQ between
distribution, knowledge of its variance fully determines thethe minimally magnetized ground state and the first spin-
MBDOS. For more details on the shape of the MBDOS forexcited level forh =0 in the limit of dominant interaction,
random interaction models similar to E®.3) we refer the i.e., for ¢;. One of the main features emerging from the
reader to Ref. 17 and the more precise, very recent treatmeptesented numerical data is a strong even-odd effect which is
given in Ref. 28. reminiscent of a similar behavior in the limit of vanishing
Based on these previous wotk®stablishing the quasi- interactions. However, the origin here is the fluctuating inter-
Gaussian shape of the MBDOS, we can now derive a simplaction and the energy differences scaldJasstead ofA. As
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pl ' ' ' ' ' -] state energy in each sector roughly satistigs~nmuU in
the asymptotic regime, whereas in the perturbative regime
4{& we found & ,~n?mU? In(m)/A [see Eq.(4.6)]. Neglecting
sl T logarithmic correctiongwhich arise due to the denominators
Q * A AN in the second order of perturbation thepuye arrive at the
= / \\ / \\ AR critical border between the perturbative and asymptotic re-
< | %\ %/ \é/ \// \;- gimes(radius of convergence of the perturbation theory
i/’ RN N NP U~Aln. (5.8
0
2 theory at a much smaller strength of the fluctuations of in-
teraction than previously expected. This is due to the coher-
FIG. 14. Dependence of the finite-size spin gap in the number ent addition of many small second-order contributions for
of particles in the regime of dominating fluctuatiod$A>1 and  the perturbation expansion in the immediate vicinity of the
A=0. Points correspond to numerical results for=10 (solid  ground state. A more detailed study of this breakdown has
circles, 12 (open squargs 14 (solid diamonds and 16(open tri-  peen presented in Ref. 50.
angles$. For the casen= 16 and 1000 Hamiltonian realizations, the
error bars indicate the rms of the gap distribution while the dasheq/I SPIN POLARIZATION THRESHOLD: DISCREPANCIES
and dot-dashed lines show the numerically computed variances’ FROM STONER'S SCEl\iARIO
[left-hand side of Eq(5.4)] for the full Hamiltonian and after set-
ting to zero nongeneric interaction matrix elements, respectively. Having established the demagnetizing effect of the off-
diagonal fluctuations both in the perturbative and asymptotic
in the perturbative regime discussed in the previous sectior;,egimeS ath =0, we now switch on the mean-field spin-spin
the occurrence of this even-odd effect is due to the connegpteraction\ >0. The competition between one-body energy,
tivity K and from Fig. 14 we see that the probability for a exchange interaction, and off-diagonal fluctuations will de-
magnetic ground state is more strongly reduced for an odgsymine both the average threshold at which the ground state
than for an even number of part|cl_es ?'SO in the asymptoliGiarts to be polarized and the probability of finding a magne-
regime. We next note that the gap first increases with increasj,eg ground state at a given set of parametits/(A,U/A).
ing number of particles before it seems to stabilize aiove The theory presented in the previous sections focused essen-
=6. We have checkettlashed and dot-dashed lined in Fig. tja|ly on the first aspect and we already know that the aver-
14) that this behavior, which is not captured by the dilute age threshold for magnetization is increased by nonzero in-
estimate(5.7), is partly due to the neglect in E¢5.3) of  tgraction fluctuations. The exchange induces energy shifts of
nongeneric matrix elements with enhanced variance men= \ Ug(o+1) of each sector's MBDOS but has no effect

tioned above. However, even though the exact variance givegnatsoever on the width of the MBDOS. Considering first

a much better estimate, it still underestimates the gap ahe asymptotic regime, the average spin gap becomes
largern and we have numerically determined that this is due_ U_\U, where x\=[5—(—1)"]\/2. In particular, the

to a strong positive correlation of the ground-state energies ,_S. . . .
in adjoining spin blocks which is larger at large Qualita- relatlv? shlgtdbetwien tpe t\f{\.lol Iowes’; ntwr?gnefuzed bllg_cks IS
tively, these correlations are due to the fact that the dif“fererﬁirger or odd num eLO particies, ‘?}S 'Sh Tzdsrk;m G Fig.
block Hamiltonians are not statistically independent, but ar 4. _From Eq.(5.7) the average thresho ecomes para-
constructed out of the same set of two-body matrix elementéq.qtatrlcally
More precisely, for a given realization 0f , all blocks have B —~_ .
K(o)N(o)=0(exph),expfm)) nonzero matrix elements Mo~ VK (0min) = VK(0mint 1), ©.3
which are constructed out of the same set of odlgm®) From Fig. 14\ .~2.5(3.5) for even(odd) n. Note that as
different two-body interaction matrix elements. Yrast levelspain the spin gap and the exchange are lineadiin the

are then due to special realizations of the latter inside th‘?asymptotic regime, this average thresholdJisndependent.
blocks. These realizations are presumably not very dlﬁergnﬁ-his is no longer the case in the perturbative regime. As

in blocks with consecutive magnetization which results ingnown in Sec. IV the perturbative spin gap can be approxi-
strong eigenvalues correlations. The above estiniat@ mated byAS(U)—,A~BnU2/A where we recall thaB= 1
which relies only on distribution averages completely Ne-(1.5) for even(odd) n. We then, get

glects these correlations. This is the reason why it underes-
timates the gap at largerwhere they are largest. Ne(U)—(UE % ~BnUIA, (6.2

The arguments presented in this section are based on es-
timates for the average yrast energy in each sector extractedhere we used the critica(Stonej exchange strength
from the shape and width of the corresponding MBDOS. We(Uf;;‘;)OEAIZ. Once this threshold is reached, the spins start
have seen in particular that the MBDOS in low-spin sectorgo align, but in contrast to the Stoner scenario, full polariza-
and for a sufficient number of particles are almost Gaussiation is not achieved at once, because of a parametric decrease
with a width given by the square root of the correspondingof the second-order contributions from off-diagonal fluctua-
connectivity, Eq.(B4), VK~nm. It follows that the ground- tions aso is increased. From the perturbative treatment pre-

. . : s . s : Equation (5.8 indicates the breakdown of perturbation
3 4 5 6 7 8 9 10
n
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FIG. 15. Evolution of the energetic distance between the two
lowest yrast fom=5 andm=12 as a function of the strength of
interaction fluctuation&)/A. Shown are curves corresponding to an
exchange\U/A =0 (circles, 2 (squarey 4 (diamond$, and 6(tri-
angle$. The error bar indicates the rms of the distributiomA\GfA.

sented in Sec. IV &° term takes over at large spin which
induces saturation of the ground-state spin. The mechanism
for the appearance of that term is a reduction of the probabil-
ity for transitions from or onto partially occupied orbitals
with respect to transitions from doubly occupied orbitals
onto empty orbitals. Off-diagonal fluctuations result in two

effective Hamiltonian terms-S- S and~S® and the second . I

term influences the system’s magnetization properties at
large spin, but before full polarization. Neglecting logarith-
mic corrections inn, m, and o and for a given\=\.(U)

+ O\ (i.e., N measures the distance to the Stoner threshold
A, andU, the magnetization will saturate at a value

(6.3

Omax™> 5)\6

This is a major modification of the Stoner scenario for . ‘
which once the magnetization threshold is reached, full po- 2.0 4.
larization of the electrons is achieved at once. The presence AU/A
of off-diagonal fluctuations, no matter how weak, induces FIG. 16. Probability f tized d stat funci
this saturation, as their relative weakness will eventually be - +0- Frobability for a magnetized ground stale as a function
counterbalanced by the larger parametric dependeneeoin of the exchange.U/A for 5000 realizations of Hamiltonia(®.9)

oo with n=6, m=12. Three cases with equidistaia, GOE (b), and
the number of second-order contributions at laigeWe

. . . . . random (c) one-body spectra are shown. Different curves corre-
stress that this saturation is entirely induced by the off- © y SP

- . ~spond to different fluctuations of IME'sU/A=0 (solid line),
d_lagonal fluctuations and QOes not depend on any modlflcqjll,o_zo_g. ..,0.8(symbols, from left to right
tion of the one-body density of states at larger spin.

We next show in Fig. 15 the behavior of the spin gaptized) is constant witHJ. The same behavior is characteristic
between the two lowest yrasts as a functiolJdA and for  of gaps between higher consecutive yrast, which results in a
different values of\. The variance of the gap distribution is U-independent behavior &#(c>0) at largeU.
of course unaffected by the exchange and we already know Finally, P(o>0) is shown in Fig. 16 as a function of the
that the probabilityP(o>0) (Ref. 5] of finding a magne- exchange strengthU/A for different values ofU/A and
tized ground state is reduced by the off-diagonal matrix eledifferent distributions of one-particle orbitals. This figure
ments. This probability will eventually saturate above a finiteshows a clear demagnetizing effect of the fluctuations of in-
value of U/A, since the width of the gap distribution is pro- teraction except below the Stoner threshold in the case of an
portional to its average-U/A .52 This is shown on Fig. 15 equidistant spectrum. We recall that the demagnetizing effect
where the error bars reflect the width of the gap distributionis in fact only an average effect and that, for an equidistant
Their linear increase witkd means that the fraction of nega- spectrumU may for particular realizations reduce the level
tive “gaps” (contributing to the probability of being magne- density at the Fermi level, thereby favoring the appearance

0 6.0
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of a higher-spin ground state as can be seen in Fig. 16 for
small interaction fluctuationsd/A=0.1 and small exchange
strengthAU/A<0.5. In the two other cases of a randomly
distributed and Wigner-Dyson one-body spectrum, fluctua-
tions of interaction always redud® o>0). At largerU, the
dependence on the orbital distribution is rather weak, as
shown in Fig. 17. Note in Fig. 16 the bending B{o>0)
above the onset of magnetization which is a clear difference
from the Stoner behavior: even at quite large exchange,
P(o>0) remains smaller than 1. From these data, we define
an average magnetization threshalg(U) for which P(o
>0)=0.01 and extract from Fig. 16 the additional exchange
strengthd\ necessary to achieve(o>0)=0.5. The results
are shown in Fig. 18 and indicate a linear increases»f
with U which illustrate the demagnetizing effect of the off- a
diagonal fluctuations: a stronger exchange than predicted b
a simple Stoner picture is necessary t(_)_ have even a Weagarek and Wigner-Dysorfdot-dashed line and diamondsrbital
nonzero ground-state magnetizatfmobability (see Fig. 15 distributions.

moreover, an even stronger one is necessary to achieve a

significant probability. All this is in qualitative agreement ) _ _ )
with Eq. (6.3). A direct numerical check of this equation obtained from averages over 30 wave functions in the middle

would, however, require a much larger number of particlesOf the Anderson ban&=0 and for 1J L =80 in two dimen-

FIG. 17. Comparison of the ground-state magnetization prob-
bility for n=6 andm=12 atU/A =0 (lines) and 0.5(symbols for
quidistant(solid line and circles Poissonian(dashed line and

beyond today’s numerical capabilities. sions (2D) and L=15 in 3D] to 200 =10 in 2D andL
=6 in 3D) disorder realizations. In both dimensionalities we
VIl. REAL-SPACE MODELS can distinguish three regimed) At low disorder, the one-

_ _ electron dynamics undergoes a crossover from ballistic to

It is now evident from the results presented above thatiiffusive regime as the linear system size is increased be-
fluctuations of IME’s introduce a new energy scale. In addi-yond the elastic mean free patl~ (V/W)?2. In the ballistic
tion to the Stoner parametatU/A, the ration between the regimel >L, wave functions are plane waves. In this case, a
exchange and the interaction fluctuations gives a second relubbard interaction gives\~L?, since the rmdJ Z’Z]
evant parameter for the emergence of a ferromagnetic phase.| -4 gnd <Uﬁ'g>~L’2,53 whereas once the diffusive re-
We therefore turn our attention to the microscopic computagime s reached. one expedts- A/(A/g)~g.*® In the cross-
tion of the magnetization parameterfor standard solid-state gyer petween these two regimes, contributions from Gauss-
models. This will allow us to estimate the strength of thejan modes[those corresponding th—j|<l, in Eq. (4.1)]
demagnetizing effect of off-diagonal fluctuations in more re-m 5y dominate the fluctuations of the IME’s but eventually
alistic situations. We consider Anderson lattices whose oneyanish as one increastsas they are weighted by a factor

body Hamiltonian is given by (1s/L)P.% Presumably these contributions still affect our
data in region(). (I) In the regime of intermediate disorder,
H=V>, CiTst D Wic! ¢ . (7.1  both off-diagonal fluctuations and exchange are increased by
@G o disorder, and apparently they compensate each other, result-

ing in a L-independeni\~4, in 2D. We expect that this
behavior will hold as one further increases the system size.
We indeed numerically estimated the elastic mean free path
at V\éﬁVzS from the distribution of inverse participation
o o - ratio™* and found a valué,~4. The Gaussian modes are thus
Ui =) =Updli =)+t llri=rjl; (7.2 weighted by a prefactor 1/400 far=80 and have therefore
i.e., forulzo we have a pure Hubbard interaction whereasonly a marginal influence on the fluctuations of the IME’s, so
U, #0 gives a long-range interaction. Microscopicallyjs  that one may reasonably assume that finite-size effects have

given by the ratio of the average exchange term only a marginal influence on the data presented in Fig. 19 in
region(ll). In the three-dimensional case, it even seems that

B B TR - - \ decreases as the system size increases in the intermediate
<Ua:B>:i2j UG =D b (DD da(D () (73 regimew/V e [8,17]; however, this is due to the quite small

' linear system sizes considered here, and once one reaches
and the rms of the distribution of IME's E@2.4). By defi- L>I|,, A should saturate at a finite, but quite small value. It
nition the average in Ed7.3) is performed over wave func- is interesting to note that the upper border of this intermedi-
tions close to the Fermi level. Figures 19 and 20 show thete regime is quite close to the critical disorder value for the
disorder dependence of, for a pure Hubbard interaction Anderson localization transitioiflll ) In the regime of strong
U,;=0, on two- and three-dimensional lattices, respectivelydisorder, one-particle wave functions are strongly localized
and for different linear system sizes. The data have beean fewer and fewer sites, the off-diagonal fluctuations are

Here (i;j) restricts the sum to nearest neighbors, &td
e[ —WI2;W/2] whereW is the disorder strength. We study
interaction potentials of the form
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FIG. 18. Dependence of the average distaficdrom the mag-
netization threshold\.(U) for Poissonian(squares and Wigner-
Dyson (diamondg orbital distributions.\;(U) is extracted from
Fig. 16 as the value at whidA(o>0)=0.01 and\.(U)+ S\ cor-
responds td’(o>0)=0.5. The linear fits do not extrapolate to zero
sinceP(o>0)=0.5 requires a finite’A at U/A=0 (see Figs. 16

FIG. 19. Magnetization parametgrvs disorder strengthv/V,
for a Hubbard interaction and a two-dimensionalx11®D (solid
circles, 20X 20 (open squargs 50X 50 (solid diamondg and 80
X 80 (open triangles Anderson lattice. One clearly differentiates
three regimesfl) At small disorder)\ increases due to a crossover
from ballistic to diffusive behaviofsee text (Il) At intermediate
disorder, exchange and fluctuations compensate each other o that
sharply reduceddue to quasiselection rules discussed in Secis size independentlil) At large disorder one-body states are
I1), and again exchange dominates. Note that, eventually, tr@_rongly Iocallzeq over very few sites, which destroys the off-_
latter disappears also, but at a lower rate than the fluctuliagonal f!uctuatlons faster than the exchange and the latter domi-
tions. These results indicate that at an intermediate disord&@tes again.
strength, off-diagonal fluctuations may be strong enough to
play an important role for the magnetization properties of the In finite-sized systems like quantum dots where impurity
ground state. scattering is weak but wave function fluctuations are induced
We next evaluate the influence of the long-range part oby chaotic scattering at an irregular confining potential, stan-
the interaction. The average exchange interacfib® term  dard estimates give\~g for a short-range interaction,
is given by an average taken over one-particle wave funcwhereas in thgunphysical limit of an infinite range inter-
tions close to the Fermi level. Due to their orthogonality, action/(r —r') =/ one gets\ =15 Therefore and ag is
taking this average over the full set of wave functions givesnot too large in such systems, it @spriori not justified to
a ¢ function and only on-site contributions. This averagingneglect the effect of off-diagonal fluctuations, as they should
procedure is, however, only justified if the one-body dynam-at least strongly suppress the probability of finding ground
ics is described by random matrix theory for which the struc-states of Iarger spin beyond fewzQ,3) polarized electrons.
ture of the eigenstates is homogeneous all through the speg- has even been proposed by Blanter, Mirlin, and
trum. RMT, however, describes systems which are of interestluzykantskir® that in confined systems the accumulation of
here only inside an energy window given by the Thoulessharge at the surface of confinement leads to stronger fluc-
energy around the Fermi lev&Iso that the average over tuations of screened Coulomb interaction matrix elements
wave functions close to the Fermi level leads only to a more-A/./g which would givex ~+/g. As in quantum dotg is
or less sharply peaked function afiefj). There are also typically of the order of a few tens, this would bringdown
contributions to the exchange from the long-range terms, bub values where the demagnetizing effect of off-diagonal
still we expect that the average damps them with respect tuctuations plays an important role. All this illustrates the
their contribution to off-diagonal fluctuatior(¢his damping relevance of off-diagonal fluctuations for the magnetization
of course depends on the disorder strepgthich are of the properties of the ground state in regimes of intermediate dis-
same order of magnitude as the short-range contribution uprder and for poor screening of the electronic interactions—
to distances of the order bf.%’ This means that we expect a presumably, for low electronic densitipsfor which the dis-
decrease of\ upon increase of the interaction range. Thetance between electron is smaller than the elastic mean free
validity of this reasoning is illustrated for the two- pathpP<I,.
dimensional case in Fig. 21 where we plot the evolution of Assuming stillU~A/g, the shift of the Stoner threshold
for different disorders as the long-range part of the interacis quite small, of the orde®(A/g). This is so, as the model
tion becomes more and more important. Cleatlylecreases we consider is valid only in an energy window of the order
as the range of the electron-electron interaction increasesf the Thouless energl(,=gA around the Fermi level, so
and therefore the Hubbard results presented in Figs. 19 arttiat it is quite natural to set,m~g. At larger magnetization
20 give an upper bound fox. One thus expects the demag- however, the second term in E@Gt.11) takes over and in-
netizing effect described in this paper to be more efficient atluces a significant reduction of the ground-state spin when
low filling when the screening length exceeds the elastidhe latter becomes comparablegavith a prefactor depend-
mean free path. ing on the strength of the average exchange. This term
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FIG. 20. Magnetization paramet&rvs disorder strengthV/V,
for a Hubbard interaction and a three-dimensional6x< 6 (solid
circles, 8xX8x8 (open squargs 12xX12x12 (solid diamonds
and 15<15x 15 (open trianglesAnderson lattice. One clearly dif-
ferentiates three regime@) At small disorder) increases due to a
crossover from ballistic to diffusive behavitsee text (II) At in-
termediate disorder, fluctuations seem to take over\addcreases
with system size(lll ) At large disorder one-body states are strongly .

localized over very few sites, which destroys the off-diagonal fluc-!ncre‘%ed the ground state with an even number of electrons

. . .~ is most likely to magnetize firdthis is because of both the
tuations faster than the exchange and the latter dominates agam'even—odd effect mentioned in Sec. IV and the larger kinetic

gnergy cost to flip one spin for an odd number of electrons
ﬁ\xactly reversing the slope of two consecutive peaks; then,
as the field increases further the odd state will likely flip,

FIG. 21. Effect of the interaction range on the magnetization
parameter\ for a two-dimensional 1% 15 Anderson lattice and
ratioUy /U, =1 (solid circles, 4 (open squargs9 (solid diamondy
and« (Hubbard interaction, open triang)esncreasing the interac-
tion range leads to a stronger increase of the fluctuations than of the
exchange, resulting in a lowering &f

strongly modifies the Stoner scenario as it induces magnet
zation saturation above the magnetization threshold and fu

polarization can be achieved only once a second, signifi ; L .

cantly larger, threshold is reached restoring the original slope. As long as consecutive ground
We finaIIy’ describe an experimental setup that allows toorates never differ by_ more t_han one unit of spin the absolute

gain important information on the ground-state spin of two_yaluegf the SIOp(f WII” rimﬁmlconstant as thi séyst(j(TBpolar-

dimensional lateral quantum dots in the Coulomb blockadéZ€s- ~orrespondingly, it all SIopes are cons 4eitq .|

regime. The experiment was proposed in Ref. 1 and consists g{“B/Z’ Itis very likely that nolground state is magnetized.

in applying an external magnetic field in the plane of a lat-{ | NS would, for instance, require a sequence-1, 1/2, 1,

eral, two-dimensional quantum dot. Because of the twol/2: 1, 12... . We do not see angbvious reason whyll

dimensional nature of the dynamics, we assume that an ifgV€nn ground states should have,=1 while at the same
plane field has no orbital effect so that it introduces only aiMe none of the oda ground states are magnetized.
Zeemann coupling’ The difference in ground-state spins for However, if t_h_ere exist many magnetlze_d ground states,
consecutive number of electrons can then be determined ef1€n the probability to find pairs of consecutive ground states
perimentally by studying the motion of Coulomb blockade With & larger difference in magnetizatiopor,(n)|>1, in-
conductance peaks at very low temperafiireA as the in- creases and one expects a range of slopes to occur. Then the

plane magnetic field is increased. The resonant gate voltadi®"esPonding peak heights may be strongly reduced by the

is given by a difference of two many-body ground-state en_spm-b_lockade meghanis?ﬁ,which should be easily visible
0 experimentally. This argument neglects changes irgtfae-

ergiese\/3=6n+1—82, and it is always the difference of an . . .
even-odd paifi.e. of ground-state energies corresponding totor of the electron with changing, which presumably are

one even and one odd number of electrons on the tpon slow. This is illustrated in Fig. 22 where the peak positions

o . - o re drawn as a function of the Zeemann couplingNer1
lication of an in-plane field, th k ition behav . :
ﬁfg cation of-a plane field, the peak position beha e%nd 5. Itis clearly seen that at weak |#V4/3B| is constant

and corresponds to a minimalr,, while a larger\ gives
e\G(B):52+1_52+ 9ueBdo,(n). (7.4 differ_ent s_lopes, in agreement with the aboye reasoning. Note

also in this latter case that peaks evolve in parallel at weak
Heredo,(n) is the magnetization difference between the twomagnetic field, indicating the successive addition of two
consecutive ground states which can therefore be extractespins oriented in the same direction. This feature is absent in
experimentally from the motion of conductance peaks in arthe weak-exchang&ight-hand side of the graph for which
in-plane field. At minimal magnetization one has a sequencénhe ground states are obtained by piling up electrons on the
of ground-state sping,=0, 1/2, 0, 1/2, 0, 1/2. .. (for odd  orbitals according to the Pauli prescription. This results in a
n and due to SRS, the,=1/2 ando,= —1/2 ground states minimal ground-state spin, a sequenge,(n)=(—1)"/2 of
are degenerate so that an arbitrarily weak in-plane fieldnagnetization differences between consecutive ground
aligns the spins and one always has=1/2); therefore, states, and a motion of neighboring peaks in opposite direc-
do,(n)=(—1)"2 and one ha$iVy/dB|=gug/2. AsBis tion at low field.
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and in the asymptotic regime where they give the dominant
terms in the Hamiltoniawhich is relevant for nuclear phys-
ics). The mechanism behind this effect is in a way similar to
the Stoner picture where itinerant ferromagnetism occurs due
to a larger number of diagonal interactions at low magneti-
zation. As in a mean-field or self-consistent approach, each
of these terms gives a positive contributifor a repulsive
interaction; this directly favors spin polarization. Similarly,
_ we have shown that interactions induce more transitions in
0.0 20 10 00 20 a0 the low-spin sectors. Each of these transitions gives one con-
g Uy B/A tribution in second-order perturbation theory which this time
is, however, negativéboth for attractive and repulsive inter-
FIG. 22. Schematic of the conductance peaks in a 2D laterajctiong if one considers the lowest level in each sector, and
quantum dot as a function of an in-plane magnetic fglcsB/A  thjs therefore favors a low-spin ground state. In the pertur-

for m=14, \U/A=2 (left) and 0.4(right) and U/A=0.4 corre-  paiive regime, we have seen that these fluctuations induce
sponding to the addition of the=3,4, ... ,9electrons(from bot-

tom to top. The dashed lines indicate slopeso§ug/2 and serve th terms Inan effective Hamllton_lan formalism3aS term

as a guide to the eye. At weak excharigght), electrons are piled which simply Lnduces a small shift of the Stoner threshold
up on the orbitals according to the Pauli prescription, so that thénd a secondiS|® term which is switched on at larger mag-
spin is always minimized and the peaks move in parallel to thenetization where it results in a saturation @f This is a
dashed lines. The sequence of magnetization difference betweenajor qualitative modification of the Stoner scenario: even
consecutive peak$o,(n)=(—1)"/2 results in peaks moving in neglecting discrepancies in the one-body density of states,
opposite directions at low field. Larger slopes appear at larger exfull polarization is not achieved once ground-state magneti-
change strengttieft) and the successive addition of electrons of the zation has been triggered by the exchange interaction. The

:alrge’jpln rﬁsugs n Corr]‘d”Ctsnce _peakfs E"O'V'ng n p";‘]ra”el a; o4 tter must indeed also overcome thé$)® term, which re-
field. Note that due to the subtraction of the average charge-chargg ;i o an even larger exchange. The strongest effect of off-
interaction, the model does not reproduce the charging energy s iagonal fluctuations occurs in the large-spin regime
that the vertical distance between consecutive peaks is arbitrary. ) . .
=0(g) where the mean-field picture overestimates the value
of the ground-state spin.

Recently, experiments in this direction have indeed been From the point of view of nuclear physics, our analysis of
performed, which have given serious evidence for the occurthe regime of large fluctuations, based on a study of the
rence of partially(but weakly magnetized ground states many-body density of states, clearly indicated a strong bias
with few polarized electron®°° This means that the off- toward a low-angular-momentum ground state. We have not
diagonal fluctuations are not dominant, in agreement with thexplained, however, why numerical results indicate an al-
above considerations giving a large rakie-g between the most 100% predominance of the=0 ground state for mod-
strength of the average exchange and the off-diagonal flueels similar to the one we have studibﬂ),and this question is
tuations. Therefore the perturbative treatment presented iffill open.

Sec. IV is expected to correctly describe semiconductor Our findings should finally be put in perspective with the
quantum dots either in the diffusive regirﬁarge dot$ orin renormalization grOUF‘RG) treatment for disordered inter-
the ballistic regime with chaotic boundary scatteriamaller ~ acting electronic systems of Finkelstéhin his approach,
dots. We note in this respect that from recent experiments oPn€ indeed finds that the RG flow renormalizes the ferromag-
the distribution of conductance peak spacings, the paranfl€tic spin-spin coupling to larger and larger values, possibly
eters\ and U have been tentatively extracted and seem tdndicating the occurrence of a ferromagnetic phase due to the
indicate a conductanag~6 for which off-diagonal fluctua- combined effect of disorder and interaction. The perturbative
tions should give a non-negligible contributibhFinally, we ~ treatment we presented in Sec. IV did not allow us to find
note another interesting experimental result which is the apany contribution favoring a higher spin and this apparent
parent absence of suppression of the conductance peak foufltfagreement between the RG approaches and ours is at
in some cases for larger spin difference between consecutié€sent not understood. We note, however, that it has been
ground state&? This is in major disagreement with the spin- Suggested that the divergence of the exchange coupling in-
blockade mechanism proposed by Weinmann; shayuand duced by the RG flow could indicate a crossover to the
KrameP® and is yet to be understood. singlet-only universality clas®:®! In this respect it is worth
noticing that the scattering processes in the singlet and triplet
channels as defined in the present work have coupling con-
VIIl. CONCLUSIONS stants corresponding to the sum and the difference of the
couplingsI” andI’, as defined in Ref. 60, respectively. It can

In this article we have illustrated how fluctuations of the be checked that the ratio(W)/a(V)=(I"+T,)/(I'=T,)
interaction matrix elements tend to reduce the ground-statsatisfies the same RG equation as the exchange coupling
magnetization, both when they can be treated perturbativelyy,=I",/z in Ref. 6]) so that the triplet channel vanishes at
(the regime which is relevant for condensed matter physicsthe same rate as tliferromagnetig exchange flows to strong

eV g(B) (arb. units)
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coupling, which may indicate a cancellation of the ferromag- 1, - R -
netic instability by the effect studied in the present paper. |W)= E(CQ,TC(S,l_Ca,lcb‘j)(cﬁjcy,l_C’B,Lcy,T)|0>'
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Svizzero di Calcolo Scientifico in Manno, Switzerland. state with double occupancies for which the number of triplet
transitions is reduced by a factor off @ithout double occu-
pancies, the three triplet operators in E2,10 are individu-
ally SRS. Thus the total transitioprobability is kept con-

Under a rotation in spin space, the triplet operators in Egstant. Finally,|®) is orthogonal to|¥’); i.e., singlet and
(2.13 are brought into one another, whereas the singlet optriplet channels give transitions into orthogonal states. Their
erators(2.12 are left invariant. SRS, on the other hand, im- contribution to second-order perturbation theory will there-
plies a number of interaction-induced two-body transitionsfore add incoherently and give a transition probability
which is invariant under such a rotation. SRS can be easily
checked for initial states without double occupancy, and it is 3(VZ9)2+ (W2 9)2=16U2 (A4)
equally easy to convince oneself that the singlet operato
(2.12 are spin conserving. For initial states with double oc
cupancies, however, the triplet operatgfisst three terms transition probability is reduced by a factor of 1/2.
%e:gegg gﬁg:ijeéfe'g aEsc%rfgL%relggt |.nd|V|duaIIy SRtS tl)utt _ We also calculate the transition probability for one singly

; gié Spin conserving rplet oy 4 ¢ doubly occupied initial orbital. The initial state to

erator. To check this one acts on a four-particle state Wm!:onsider is
two double occupancidgsvhich has thusr= o,=0) with the
full triplet operator of Eq.(2.10:

APPENDIX A

"& calculation going along similar lines shows that if one of
“the final orbitals(e.g., @ or B) is partially occupied, the

1

|qfi>=E(c;ﬁc;,lic;lch)c;lch|o>. (A5)
The label* refers to either a triplet or a singlet,=0 two-
particle state on the orbitals and 8. The transition ampli-
tudes can be calculated in the same way for both cases, and
we restrict ourselves below to the triplet case wjith, ).
Note that this latter state can be brought via a rotation in spin
space into the followingr,=1 state:

T At T AT
CDATCB,TC%TC&T + Ca,lcﬁ,lc%lcdl

+E(CT ch +c! ¢l (e, csi+cC,Cs )

5(Ca1Cp, T Cq,  Cp,1)(Cy, 1Cs 1T Cy1Co )
ottt

XCy,1C4,1C5,C5110)

ot ot At ot
(chich —ch ch e el —ch el |W2)=Ca,1Cp,1C5,C5110) (A6)
and that the calculations to be presented below give the same

1 transition amplitude for both¥ ) and |¥,) and are thus
Tiet of ot ot et of ot of + z
+5(Ca,1Cp,Ca,1Cp1)(C51Cy ~C5Ch1) |10 fully SRS. Acting on| W, ) with a singlet interaction operator
gives
=2|W)+|P). (A1) )

oAt At ot _
This is the sum of two products of two singlets, and it is 5 (C51Cu1 ~C5.1Cu1)(Cp,1Co1~Cp1Cs )W)
obviously spin conserving. Moreover, acting on the same
initial state with a singlet interaction operator gives 1
- Tt toAt Tt Tt
= 2ﬁ(cwcw_Cy,icm)(camcaﬁCa,ica,¢)|o>'

1
5 (Cl1Ch, 1 ~Ca1Cp1)(Cy, Cog (A7)
f ottt which once again is SRS. Two remarks are in order here.
—C,,1C5,1)Cy,/C4,1C5,€5110) First, the above transition amplitude has picked up a factor of
1 1/\/2 with respect to the case where the initial state has two
= E(CL,TCTBJ_CLJCI@,T)(C;,TC;J_C;,lC;,T)|O>' double occupancies. This is due to the vanishing of one tran-
sition “channel,” as theB orbital is only singly occupied and
(A2) will result in a factor of 1/2 for the transition amplitude. Note
that this factor is counterbalanced by a twice larger number
The two final states in EqAL), of transitions for the case considered here, as one has the
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freedom to destroyor creat¢ a particle on thexth or gth  for which singlet and triplet transition@9) and(A10) also
orbital. Second, doing the same calculation with a tripletddd coherently, resulting in the same reduction of the transi-
operator acting on the singlet initial st4t ) is not SRS  tion amplitude(A11). Consequently and fan>3, the split-
per se but once again requires one to considerdhe-+1  ting between ther=1 yrast and the firstr=0 excited state
triplet operators, as we did above for the case of two doublés much smaller than the spin gap between the two lowest
occupancies. yrasts. . o o
Only in the situation where both initial and final states Note that these calculations must be modified in realistic
correspond to partially occupied orbitals does one get agystems for whichv?=W?* does not necessary hold. For
uncompensated reduction of the transition amplitude witt purely local (Hubbard interaction with time-reversal
respect to the above case of doubly occupied initial andymmetry, for instance, one hag=0+#W-* as the anti-
empty final orbitals. As we are now going to show, this re-symetrized matrix elements vanish exactly. Then, the
sults from the coherent addition of the triplet and singletreduction in transition probability occurs due to the vanish-
transitions which lead to the same final state. The initial statéing of singlet transitions as one goes to larger magnetiza-

is, e.g.,

1
|‘I’in>:E(CL,TCTE,l+CL,¢CE,T)C:§,TCE,¢|O> (A8)
and one acts on it with the operator
0 1oy 4ot of "
+=5(Cy1Cp 1T Cy,1Cu,1)(Cp, o1 Cp1Co1)-

(A9)

A straightforward calculation gives the same redaitboth
singlet and triplet operators:

tions.

APPENDIX B

We first calculate each sector’s connectiviy which
is the number of basis states directly connected to an
arbitrary initial many-body state of a given sector, alterna-
tively the number of nonzero matrix elements per raw
column of the Hamiltonian matrix. We saw in Appendix A
that some transitions have increased weights; in particular,
triplet transitions involving two doubly occupied orbitals
pick up a factor of\/3 that is absent in all other transitions.
In the absence of double occupancies, however, these transi-
tions are replaced by 3 times as many triplet transitions so
that the total transition probability is conserved. The latter
quantity is in fact the physically relevant one as it appears in

1
0. |¥,,)= ﬁ(c%cg’ﬁc;lc}ﬁ)cL]TcL]JO).
(A10) second-order perturbation theory and determines the scaling
of the MBDOS in the regime of dominant fluctuations. We
The result is SRS, i.e., gives a four-particle final state withtherefore calculate the weighted connectivity, where the
o=1, 0,=0. The key point here is that both singlet and humber of transitions is multiplied by the square of their
triplet channels go to the same final state. Thus one gets th€lative amplitude. With this definition and for the case we
corresponding second-order transition probability by addingire considering of spin-1/2 particles, the connectivity is con-
their amplitude coherently. The average transition probabilitystant within one sector. Fro2.10), K is the sum of a singlet
reads then and a triplet channel contribution which differ only in that
the former allows a transition from and to double occupan-
cies. Fore=0 we may consider th&) =0 ground state as
our initial state. It is easily seen then that the number of
directly connected states can be expressed as a sum over four

The same contribution arises from the interchapgge, ~ contributions K=Kq+K,+K+K; which for o=0 are
in the operatofA9). The above transition probability comes 91Ven by
therefore with a factor of 2. This is because once the particles
are triplet(or singlej paired on different orbitals, transitions l I

1
ZVaa WA= (U Uph)?=20% (ALD)

become distinguishable. In addition, one has to consider the
four o=1 transitions induced bys& 7, |) m/2-n/2-G
____________ —__3
~ A4
Os=cl ] CpCss OF €l ChCusCss,  (AL2) 8 — 20
. = >
which together give a transition probability/2=8U2. The & &
total transition probability is then 12 instead of 16)2 in d Q n/2-c
the case of doubly occupied initial and empty final orbitals 2 &
(A4). The same result is obtained in the case of a singlet = S
initial state,
FIG. 23. Representation of the,=0 many-body yrast state
1 with good total spino at U/A=0. The state consists of a filled
|W)=—=(c .cl —c ¢l )cl.cl |0), (A13)  Fermiseawith am/2—o doubly occupied orbital and a layer 052
) \/5 wl=Bd - Sl EB1 0T ) orbitals where particles are paired tripletwise.
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Ko(o=0)=1, The connectivity difference between minimal and maximal

polarization is therefore given by
Ki(o=0)=n/2(m/2—n/2),

n®m 3n*
Ks(o=0)=n/2(n/2+1)(m/2—n/2)(m/2—n/2+1)/4, K(o=0)-K(o=n/2)= —=~ 1—6+O(n3,m3,n2m,nrr12).
(B3
Ki(o=0)=3n/2(n/2—1)(m/2—n/2)(m/2—n/2—1)/4.
(B1)
] o » For a finite magnetization, we may represent the lowest level
The first term corresponds to trivial diagonal transitions anq, the sector as a sea of2— o double occupancies sepa-
the second one to partially off-diagonal transitions changinqated fromm/2— n/2— o empty levels by a layer of @ sin-

a single one-body occupation, while the third and fourth one ly occupied levels as depicted in Fig. 23. The transitions
correspond to generic two-body transitions induced, respec: Lo

tively, by the singlet and triplet interaction operators inmdu.ded n Eqs(Bl) and tha.t are now fpr_pldden (;orrespond
(2.10. Note the discrepancy in the prefactor of 3 betwisgn to_ singlet transitions mvplvmg e_|ther_ initial or final states
andK; due to the enhancement of the triplet transition am:With at least one scattering particle |n.the dayer. These
plitude discussed in Appendix A. As increases, some sin- transitions can be classified follows as: ) _
glet transitions are replaced by additional triplet transitions (1) Transitions from a double occupancy in the Fermi sea
but some other disappear which we are going to identify. Th@nto the 2r layer[Fig. 24a)]. _

connectivity at full polarization is also easily calculated as (2) Transitions from the @ layer into a double occupancy
there are no long singlet transitions and particles may bé one of them/2—n/2— o empty levelgFig. 24b)].

considered spinless. One hids-K,+K;+K;: (3) One- and two-body transitions within thes2layer
[Fig. 24(c)].
Ko(o=n/2)=1 (4) Two-body transitions from the @ layer, one of

the particles being transferred to a new orbital in the 2
layer, the other one into one of th@/2—n/2— o empty

Ki(o=n/2)=n(m/2—n), B2 |evels[Fig. 24d)].
A simple counting of the number of these transitions
Ki(e=n/2)=n(n—1)(m/2—n)(m/2—n—1)/4. finally gives
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K(o)=K(0)—[o(20—1)(n/2— o)+ o(20—1)(m/2—n/2 which in particular correctly reproduces the differerig8).

It is easily checkede.g., from Eq.(B3)] that the ratioK (o
=n/2)/K(0)=1—Av+B»? is a function of the filling factor
v=n/m only. Also it is remarkable that the connectivity dif-
ference betweewr=0 ando=1 is m/2 for any number of
+o(20—1)(oc—1)(M/2—n/2— )], (B4)  particles.
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