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Magnetism of a tetrahedral cluster spin chain
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We discuss the magnetic properties of a dimerized and completely frustrated tetrahedral spin-1/2 chain.
Using a combination of exact diagonalization and bond-operator theory the quantum phase diagram is shown
to incorporate a singlet product, a dimer, and a Haldane phase. In addition we consider one- and two-triplet
excitations in the dimer phase and evaluate the magnetic Raman cross section which is found to be strongly
renormalized by the presence of a two-triplet bound state. The link to a novel tellurate materials is clarified.
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[. INTRODUCTION This model displays infinitely many local conservation laws:
[H,T<12]=0; Vl,i=1,2. Therefore, the Hilbert space de-
Low-dimensional quantum magnetism has received coneomposes into sectors of fixed distributions of edge-spin ei-
siderable interest recently due to the discovery of numerougenvaluesr;; =1 or 0, each corresponding to a sequences of
novel materials with spid- moments arranged in chain, lad- spin-1 chain segments intermitted by chain segments-of
der, and depleted planar structures. Many of these materia@lized singlets. If J;#J3, the spin-1 chain segments are
exhibit unconventional magnetic phases due to dimerizatiofimerized. In the infinite-length, dimerize®=1 chain sec-
and frustration of antiferromagnetic exchange. Particulafor; i.e., forT; =1Vi,l, the model simplifies to
effort! has been devoted to systems like Sf@O0;),,2 ’ .
which display a complete frustration of the magnetic ex- o <
change as in the two-dimensional Shastry-Sutherland Ji Z [SuSa 052 Sua ]+ 2 D, @

model? In one dimension complete frustration can occur inwhere refer to spin-1 operators arl is the number of
two-leg spin ladders if an additional crosswise exchange i Si . “p P
?etrahedra( dimers”).

mdcludes as dte|c;|ctﬁdd|n F';g._lehlchhr;as;er?]blgs Ial cdhdam " The Hilbert space of a single tetrahedron consists of 16
edge sharing tetrahedra. Féy=J; such tetrahedral ladders states, i.e., two singlets; ,, three triplets7; , 3, and one

have been investigat(_ed inihe pastvery recen_tly, tgl_lurates quintet Q, the energies and; quantum numbers of which
of type CyTe,05X, with X=CI,Br have been identified as a ¢ |isted in Table I. Johnsson and collabordtpainted out

new class of spin-1/2 tetrahedral-cluster compodhBsIk ot this level scheme implies a singlet to reside within the

thermodynamic data have been analyzed in the limit of iso'singlet—triplet gap of the tetrahedron for ¥2<2. More-

lated tetrahedr&.Raman spectroscopy, however, indicates ver. the ground state switches frafp to S, ata=1, sug-

substantial intertetrahedral coupling along thexis direc- esting a line of quantum phase transitions in th lane
tion of Cu,Te,05X,.° In this direction the exchange topology ?or theglattice mgdel. P o) p

is likely to be analogous to that of Fig. 1 with # J;. From
a materials perspective it is an open question if the magne-
tism of the tellurates can be understood in terms of a dimer-
ized tetrahedral spin ladder. From a theoretical point of view, |n this section we discuss the ground state of the tetrahe-
however, the magnetic properties of this model are an interdral chain. To begin, we note that by a shift of one-half of the
esting issue which forms the motivation for this work. unit cell, i.e., T+ 1y— T2y, Model(1) is symmetric un-
The paper is Organized as follows. In the remainder of thl%er the Operation ‘.‘(1 ,a,b)H(Jlb,a/bll/b) . Therefore, in
section we discuss the basic properties of the tetrahedrgder to cover theompleteparameter space far,b>0 it is

chain Hamiltonian. In Sec. Il the quantum phase diagram igyfficient to consider the phase diagram in the ranga of
analyzed. In Sec. Ill a bond-operator method is applied to the_ [0 ] andb [0, 1].

tetrahedral chain and in Sec. IV the magnetic Raman cross

II. QUANTUM PHASE DIAGRAM

section is evaluated. 1 4 7
The Hamiltonian of the tetrahedral chain can be written in ~o L7 ' 3','1_33“'\: T
terms of the total edge-spin operatorg ;) =Sy + S3(2) ees ]y ~ > N eee
and the dimensionless couplings=J;/J; anda=J,/J;: AR P A
3 2
—_—
H a 2 3a FIG. 1. The tetrahedral cluster chainabels the unit cell con-
— =2 | TyTy+bTyTy s+ 5(TH+T3)— | (D e e
N 2 2 taining spin-1/2 moments, at the vertices =1, . . . ,4.
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TABLE |. Eigenstates and energies of the tetrahedron. Columns I——

T, , refer to corresponding edge-spin quantum number; site ihdex - .
suppressed. 08

| Haldane |

Ty T, E/J; - 0.6 —

S 1 1 -2+al2 ?M 04l Singlet product__
S, 0 0 -3/2 7 Dimer |
T, 1 1 1+al2 o2l LHP i
Tos 0,1 1,0 al2 “l |
Q 1 1 1+a/2 ob— 4

0 0.5 1 1.5 00

a=1,/J,

Next we note that the ground state of E). will be either
in the dimerizedS=1 chain sector or in a homogeneous
product ofS, states only. Inhomogeneous phases consisting
of both, T; =0 and Ty=1 sites are not allowed for as al='%(b=1)=1.402 92. Solid line with diamond markers: second-
grqund states. To see this We. fxand assume—c, in order Haldane-dimer transition &t=3/5, extrapolated from ED
which case the gjound state is a pure productSptype (see Fig. 3 and Refs. 14 and)1®ashed(solid) line with starred
singlets:| o) =1I)[s;). Next we check for the ground-state (circled) markers refers to the bond-boson mean-field, i.e., MFT
energy chang@&E(a,b,N) upon forming a single connected (Holstein-Primakoff, i.e., LHP approach. LHP terminates &t
chain segment of lengtiN composed out ofl;;=1 sites =3/8.
within the homogeneous stalé). To be specific we first
assume the chain segment to consisDof=N/2 tetrahedra, dimerized S=1 chain sector are shown as function knf

in which case which signals the dimer-Haldane transition and directly re-
N 1y / produces identical data which have been obtained earlier by
AE(a,b,D")=DT2(a~1)~e(b.D)]. @ Kato and Tanak&? Figure 3 contains additional results for
Here —e(b,D") <0 is the ground-state energy gger two  the spin gap from the bond-boson approach which we turn to
sitesdue to the intertetrahedral coupling. The main point isnow.
thate(b,D") is a monotonouslyncreasingfunction'® of D'.
Therefore the largest critical valwg=maxay(D’)} at which
the formation of tetrahedra in the=1 sector is favorable,
i.e., at whichAE(a,(D"),b,D") turns negative, results for  |n this section we detail a mapping of the tetrahedral
D’ —c. This implies a single first-order quantum phase tranchain in the dimerized®=1 chain sector onto a system of
sition into the infinite-length, dimerize8@=1 chain sector as interacting bosons. To this end we adapt the well-developed
a function of decreasing. Similar arguments can be pursued bond-operator methd@??which has proved to be useful in

FIG. 2. Quantum phase diagram of the tetrahedral chain. Bare
olid line: first-order transition from ED fd¥ =16 sites and PBC at
1 values ofbe[0,1]. The critical valuea, at b=1 from ED is

IIl. BOND-BOSON ANALYSIS

for odd N. dimerized quantum-spin systems to the present situation. We
In Fig. 2 we show the quantum phase diagram. From Eq.

(3) the first-order critical linea,(b) between the infinite- 2 ————————

length, dimerized spin-1 chain far<a.(b) and theS,-type e

singlet-product state fom>a.(b) is fixed by a,(b)=1 A (N=16)=0.4427..

+e(b)/2, where e(b)=limp: ...e(b,D’). To determine — 15[ A"N=c0)=04105.. , T

e(b) we have calculated the ground-state energy of dimer- E Wi

ized spin-1 chains using exact diagonalizati&®) with pe- ;-‘E 1k MFT// i

riodic boundary condition€PBC’s) on up toN =16 sites and 5 | A

a bond-boson theory the results of which will be detailed in * N=8§ = //LHP

Sec. lll. Regarding the ED the critical value af(b=0) 0.5 / i

=1 agrees with Ref. 8, whila}~'%(b=1)=1.403 agrees N=16 5 - 0.2d

with Ref. 11 and is consistent with an extrapolated value of ol—— T

a2'=°°(b=1):1.401 from density-matrix renormalization- 0 02 04 06 08 |

group (DMRG) calculation$®” and ED on 22 site¥’ 8= (1-b)/(1+b)

Within the dimerizedS=1 chain sector an additional FIG. 3. Solid lines: spin gap from ED for N=8, 10, 12, 14,

sgcond-order quantum phase transition exists between ﬂ?ﬁld 16 sites and PBC in the dimerized spin-1 chain sector at 41
dimer phase fob<b. and the Haldane phase for-b..  yajues of the intertetrahedral couplifig=[0,1]. Axes have been
This transition has been studied extensivedge, e.g., Ref.  scajed to allow for a comparison with Ref. 14" refers to the spin

15 and references thergjmesulting inb,=3/5 from DMRG  gap ath=1, i.e., the Haldane gag\"(N=16) as from this work
calculations* and finite-size scaling analysis.However, and AH(N=x) as from Ref. 12. Uppetlower) dashed line: spin
this transition is not at the focus of our study. In Fig. 3 ourgap from bond-boson mean-field, i.e., MRMolstein-Primakoff,

ED results on the finite-size behavior of the spin gap in the.e., LHP approach.
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TABLE Il. Bond-boson(BB) representation of the singlesy),
triplet (71), and quintet Q) states in the edge-spB=1 sector)
represents the vacuun. refers to an equivalent running index for
each state used to label elementsMf;; and N,z in Eq. (5).
Entries in the ket column refer t8° eigenstates of5; , of type
|S7S5) with +,0,— denotingS?=—1,0,+1.

a
HBB:§D+HO+H1+H2+H3+H4

+E| )\l(SITS|+t|Tat|a+qlTaq|a_ 1)1 (6)

BB & ket HO:Z (—ZSFS|_trat|a+q|TaC]|a),
1
4 1 —(—+)+|+-)—]00
O ') =)+ =)=loo wo
Hi=— =% Zl (tiati+ 1481418 T ot 141418 HH.C),
th) 2 3(lo+)=|+0)+[-0)=[0-)) )
i Ho=— > (igagtli1atisti,Si+1+H.C),
T t;|> 3 §(|+0>_|0+>+|_0>_|0_>) 2 \/62 ( Eapyli+1atipliy2+1 )
t;r|> 4 i(|+_>_|_+>) b t .t t .t
V2 Hy=— 1 Z (tatis1ali+1atip=tiativ 16t 1 1atip)s
asl) 5 |++) Hs=0(qM),
0 6 i(|+o>+|o+>) where\, is a local Lagrange multiplier to enforce the con-
G J2 straint(4). HereH, refers to quartic terms involving at least
" . 1 V4200004 ]— + one quintet and at most one singlet boson. Note that the local
Q ol) \/5(| )+2/00)+[=+)) HamiltonianH, and the first ternDa/2 simply reflects the
‘ 1 spectrum of the single tetrahedron.
a-4l) 8 ﬁ(|*0>+|0*>) To treat the interacting Bose systei®) approximations
qt,)) 9 |——) have to be made. To this end we first realize that in the limit

of weak intertetrahedral coupling, i.eh<<1, the singlet
bosons will condeng&*8with s{"’—se 9. Focusing on this
limit and keeping only terms up to quadratic order in the

quintet bosons c(,Ta) for each tetrahedron at sitle These bosqn .operators and, moreover, rep'a!c'”g the local Lag_range
multiplier A, by a global one we arrive at the mean-field

bosons create all states within the multipléts 7;, and Q.
The bosons and their corresponding states are listed in Tab}Qeory(MFT)
II. Note that we have chosen a&ny,z (z) representation for
the triplet (quinted states. Moreover, the site index is not
displayed in the table.

To suppress unphysical states the bosons have to fulfill the

start by introducing a set of singlesf(), triplet (tfa), and

a
HMFT:D< — 28?4+ NP\ + > +|E (\+1)a/,ia

usual hardcore constraint of no double occupancy, —% 2 (N—1)
S|1-S|+t|1-at|a+qraq|a:11 (4) +EE \];I'r |:}\_1+326k S €k :|
2% ke SZEk )\_1+526k ka»
where d_oubly appearing Greek indices are _to be summed )
over their respective ranges. After some straightforward al-
gebra we may express tle=X,y,z components of the edge 4
spinsS; , by €=~ zbcodk), 8

5 . where D is the number of dimers ankl is a momentum
- I (N i ith wi —r¢f t
a 2 + + + RV A vector. ¥/ is a spinor with ¥, =[t, t ,,] and t
=\ (£S5t 1,8) — 5&uptigli, =M 33t i Ker ka L ka—Ka la
Sz \[3( e tiaS) ~ 3 Eaptighy=Mapst o5 =3 ™t! /\D. The mean-field Hamiltonian can be diago-
VI R nalized by a Bogoliubov transformation, yielding
M 59501 Nagyd 205 - 6)

SEPCTINCEL.
2 STAS TS

Hyupr=D
MFT 2

+|E ()\+ 1)q|Taq|a

SinceM ,3; andN,z;, will remain unused in the remainder

of this work, we defer an explicit display of these quantities
to the Appendix. Inserting E(5) into Eq. (2) we arrive at +2 E,
the Hamiltonian ka

: (©)

L1
a‘kaaka + E
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where the threefold-degenerate triplet enegyis given by

SZ
— _ 2
E = \/(x 12 1+ A_12.5.() (10)
and the Bogoliubona{! result from
gk hg
= Dy, (11
“ [hk Ok “

where®{) is a spinor with®} =[a},a_,,] andh2=[(1
+e)/Ex—11/2, and h,gy=— € /(2E,) with hi—gZ=1
Note that on the quadratic level the quintetlispersionless
Substitutingd=s%(x — 1) the ground-state energy’is

2

3 5 a

3
+ E()\—l)ik‘, J1+2dey,

where we have used thd],a.,)=(q/},0w)=0 in the
gapped case dt=0. The mean-field order parametsfsand
)\ follow from the saddle-point condition8EY-+/ds?=0
and JES, -/d\ =0 which can be combined to result in

(12

E_d_iE ;—0 (13)
2 © 2D % [1t2de,
3
> (14)

2Dk

01
\/1+ dek

with Eq. (13) independent of\. Therefore, only the single
self-consistency equatiafi3) has to be solved fod with \
following from direct insertion ofd into Eq. (14).

In the limit of vanishing intertetrahedral coupling, i.e.,
=0, Eqgs.(13) and(14) reduce to
A=2-8%=

d=1, (15

This case relates the MFT to the linearized Holstein-
Primakoff (LHP) method*®?° which has found frequent use
in bond-boson approaches to dimerized spin-1/2 systems.
Within the LHP the constraint is used to eliminate the sin-

glets on the tetrahedra |e withH,, by sI s=1— tmtm

.....

terms beyond quadratic order |n the boson operators we a

rive at a Hamiltonian which is exactly identical to E()
with, however\=2 ands?=1. Therefore the LHP iglen-
tical to the MFT constrained to Eq15). A priori it is not

obvious whether the MFT or the LHP is a more reliable
approximation and we will present results obtained from

both methods.
In Fig. 2 results fora;(b) as obtained from Eq.12) are

PHYSICAL REVIEW B64 214413
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— LHP
TP T I

k [4r/N]

FIG. 4. Dashedsolid) line: Ey as from Eq(10) for MFT (LHP).
Stars: first two tota5,=0 excitation of the dimerized spin-1 chain
from ED with PBC.

b=0.2

product state, i.e.E30=—3Da/2, which again leads to

a.(b)=1+e(b)/2. From Eq.(12) one may read off that the
ground-state energy gain per dimer due to intertetrahedral
coupling is —e(b)=7/2—5\/2+s*(A—2)+3(\
—1)2J1+2d¢/(2D) within MFT, which reduces to
—e(b)=3(Z¢v1+2de/D—1)/2 in the LHP approxima-
tion. At the dimer to singlet-product phase boundary the
agreement with ED is very good for both LHP and MFT. In
principle, the singlet condensate restricts the bond-boson ap-
proaches to the dimer phase. In fact, the LHP spin gap closes
at b= 23/8, confining the LHP tdd<<3/8<b.. The MFT can

be continued from the dimer into the Haldane regime, even
though the ground-state symmetries are different, yielding a
transition line qualitatively still comparable to ED.

Next we consider elementary excitations of the dimer
state. These mayi) remain in the dimerized spin-1 chain
sector orii) involve transitions into sectors containifagal-
ized edge singlets, i.e., sites with; =0. In this paper we
confine ourselves to the former type. As has been pointed out
in Ref. 8, for a single tetrahedron, the energy of a tyipesS,
excitation resides within the spin gap of the ty{peexcita-
tions for 1/2<a<2. Analogousdispersionlesssinglet gap
states occur in the spin gap of the dimer phase of the lattice
model and will be discussed elsewhété&igure 4 compares
the dispersion obtained from E@LO), for both the MFT and
LHP for various values ob<b,, with the first twoS,=0
eigenstates obtained from ED on a finite dimerized spin-1
chain with PBC’s. Regarding the first triplet excitations the
greement is very good. A comparison of the spin gap, i.e.,
k=0 as obtained from the MFT and LHP approaches in
the dimerized spin-1 chain sector with ED is contained in
Fig. 3. Apart from the fact that the agreement is satisfactory
for b=<0.2 this figure demonstrates the main difference be-
tween the MFT and LHP approximations. In contrast to the
[HP spin gap which closes fdo>3/8 the MFT overesti-
mates the binding energy due to dimer formation and keeps
the spin gap opened for all values lof

IV. TWO-TRIPLET EXCITATIONS
AND RAMAN SCATTERING

included for the MFT and LHP approaches. As in our ED Raman scattering can be used to probe the total spin-zero
analysis of Sec. Il, the transition occurs at the level crossingxcitations of a spin system at zero momentum. In this sec-

of the ground-state energyEMFT(LHP) D[—2+al2
—e(b)] of the spin-1 chain with that of th&,-type singlet-

tion we consider the magnetic Raman scattering in the
dimerized S=1 sector of the tetrahedral chain. Following

214413-4
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Fleury and Loudof? the Raman scattering operator is given

by X«

R:% am(Ei-mm)(Eo-Mim)S - Sy

— » =
=AEE,S (TuTio#BTiaTi 1), (16) “le |9

Ei(o) are the incomingoutgoing electric-field vectors and =
N, are unit vectors connecting exchange-coupled ségs. ®= Riup
are matrix elements which are identical among each of those . , .
FIG. 5. Raman susceptibility. Thick solid lines label the dressed,

exchange paths corresponding to onel pf J,, or J;. From %2 one-riplet. i.e tM-particle matrix Green's functions includ
this and the geometry of the tetrahedral chain the second ling< 2 one-triplet, i.e.f *-particle matrix Green's functions includ-
ing diagonal and anomalous contributions. The solid dot refers to

results for polarizations of the light along the chain—which . : ;
. . - . . the R tqd 8). I' is the two-triplet reducibl tex.
we will focus on. Whileg in Eq. (16) will be of orderb, it is e Raman operatdd8). I is the two-triplet reducible vertex

very unlikely thatg=Db. In the latter case the Raman opera-  the Raman susceptibility corresponds to the diagram de-
tor commutes with the Hamiltonian, implying a vanishing picted in Fig. 5. To simplify matters we focus on the limit

Raman intensity at nonzero Raman shifts. In the former CasE <1 In that limit the ground state is nearly a pure product

we use an equivalent Raman operator of S; singlets and the triplet density induced by quantum
fluctuationsn,=(t/ t, ) =33 hZ is a small parameter. As a
R= R—R|B=b=CE ToT 1411, a7 consequence only the two-triplgair-creatiorfdestruction
! vertices contained in Eq18) are relevant. Moreover, contri-
whereC=AEE,(8—b). Thus the Raman intensity will be _bution; to the reducible two—partiple propagator in Fig_. 5
of second order ifg andb, i.e., the intertetrahedral coupling. involving anomalous Greens functions, as well as one-triplet

L~ ) self-energy insertions, are suppressed by factors of the triplet
To proceed, we approximate on the level of the LHP: density and will be neglected. Physically speaking, the

2C Stokes-Raman process creates two triplets within an approxi-
- — E cogk-+q/2) mate singlet-product state. These propagate along the tetra-
3 K hedral chain and form an interacting two-particle problem
with no additional triplets generatddiestroyed by quantum
7 19 fluctuations’®
The two-triplet problem allows for an exact solutiam

where, for later convenience, we have introduced an auxils:Iuding Hy by the T-matrix approach of Fig. 6. This figure
' ' depicts the “particle diagrams,” which correspond to the

lary momentum dependence. The R.a”.‘a” Intensity can b§tokes process. For the anti-Stokes process an identical set
obtained from the zero-momentum limit of the dynamical

susceptibility of “hole diagrams” exists with all lines reversgd. In the sin-
glet channel onlyH; of Eg. (6) and Hy contribute to the
_ ~ ~ irreducible two-particle vertexy (see Ref. 3D Due to the
X(@7)=(TARup(A, 7)RLkp(A.0)])- 19 momentum space symmetry of it is convenient to formu-
Since x(q,7) is a two-particle propagator, it is important to late theT-matrix equation using a>22 matrix notation. The
assess the relevance of two-particle scattering. In particulabare one-triplet Greens function including normal and
it has been realized in the context of other dimerized spin-1/2nomalous components is given by
systems that magnetic bound states can severely renormalize

Ripp:=lmRyp(q) = lim
q—0 q—0

X (thy gat tokeqa) (1 ko Ftie)

the bare two-triplet spectrufi=2° Gl (K i) = 1 o+ 1+ € — €
We chose to implement the two-particle scattering within o(Kilwn)= (iwg)>—E2 — € —iw,+1+e]
the LHP approach. Apart from the interactidds  4in Eq. (21)

(6) the constrain{4) implies a hard-core repulsion between
two bosons on a site. In the LHP this pertains only to theVhere € and E, are as ?jf Egs(8), (10, and (19), «
triplets, as the singlets are condensed and the quintets haveX..Z, ?{‘d f_vn=2r‘772'£- Ga(kiiwy) saUsﬂeszzhe.symme-
been discarded. The hard core is incorporated directly byries G, (K,iw,) =G (k,—iw,) and [G(Kiwy)]*
introducing an additional contribution to the Hamiltorfidin ~ =G2Y(k,iw,). From Fig. 6 we get
-1

VJ
with the summation convention on the Greek indiog&, 7)
is evaluated withH; at finite U and the limit ofU—oo is where)(gcvclvlc’11 are bare two-particle propagators, the ex-
taken at the end. plicit display of whose momentum and frequency depen-

0
Xce

X (:ic
(22

0 0
Xce  Xci
0

1- 0
Xic X111

HU=UZ thtlstiatis, 20 xP(q,2)=2x3+2[x2x %IV
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T 1T T T 3

k+q, o :
4 15'_— T—matrix P
p | [--+ T—matrix, b<<1[: } L]
a) X = P bare Lo .
-k, 10k 1 i
i K’ +q.0 e b :
o q = = I ]
3 b=0.2 i ]
— | -
2 levld it T
[ Mgy 3
-k’,0 : \ :
R 0 [ P A SRR TR 1
kg, K+qf H; 0 05 I 15 2 25
) 3@ = cos(k+q/2);$§cos(k’+q/2) !
k. o ey FIG. 7. Raman intensity in the dimer phasebat0.2 as ob-
’ ’ -b/3 tained from Eq.(26) (solid), from Eq. (27) dash-dotted, and from
Hy Eg. (22) for V=0 (dotted line. 2A 47 refers to twice the singlet-
+ 1 ;L%@ 1 triplet gap.
9 3(z—2)
2U/3
= = = Z = —
_ o _ _ _ 9=9(D=gpcogar)’ “~ 92" ghcogqi2)”
FIG. 6. T-matrix approximation to Fig. 5: thin, doubly directed
lines label 11 elements of the bare one-triplet Green’s fun¢gdn
The solid dot is the two-triplet part of the Raman ver(&8). Sum- A=A(q,2) = sgnRe(v)] (25)
’ JP—1

mation onk’ and « is implied in all bare triplet bubblesy (solid

square refers to the two-triplefir)reducible vertex. Analytic ex- ) o
pressions for the two irreducible vertices dueHg andH, are ~ From Egs.(22)—(25) we obtain the Stokes susceptibility
displayedincorporatingall possible leg exchanges. from xP(q,z) by performing the limitU — cc:

6Lx3xec— (X10)’]
5.0 0.0 027" (26)
3X11+b[X11ch_(X1c) ]

dence has been suppressed for brewtyincorporates the P(0,2)
momentum-independent coupling-constant factors of the twoX &

vertices iny of Fig. 6:

—b/3 b=t 6{sgriRe(v)]\Vr°—1—-v} 27
V= { 2U/3} : (23) b{sgriRe(»)]/»>—1—v—8 cogq/2)/3}
As in Eq.(22) we refrain from explicitly displaying the mo-
1 bl mentum and frequency dependence on the right-hand side
0 :32 _C  _gA (RHS of Eq. (26). From Egs.(26) and(27) one obtains the
X11(q,z) _ _ g d . . LA
k Z— By Ex Raman intensityl (w) from |(w)=—Im xP(0,z—w+i0")

wherew refers to the Raman shift.
Figure 7 shows the Raman intensity contrasting the bare

cos( k+ g) bl two-triplet spectrum with the interacting one. As is obvious
thac(q,z):32 — = g(1-vA), the bare intensity is strongly renormalized by the two-triplet
k Z—Eyiq—Ex
—
25F 7=~ ~w_  |— Ex@,S=0|7
q \\\\
i cog| k+ E) bl | s b=02 |
7)= —— = —gu(l-vA), (24 Py >~
ch(qv ) SEK: Z_Ek+q_Ek gv( vA), (29 m \\\\
2F 2—triplet continuum >
where we have analytically continued, into the upper =
complex pland w,—z and have restricted ourselves to the I e
zero-temperature limit. The prefactors of 3 are due to the o
sum over the triplet indexx and x3.(q,2)=x%(q.,z). The =77 2 acos(3/8)
h . - . 1.5 =" 1
two-hole propagatox” is obtained by reversing the signs of . ! ) L !
all Eqyk+q in the denominators of Eq¢24). In the limit b 0 1 q 2 3

<1 one may expand the square root in Ed)) which allows
for analytic expressions for all of thg”s in terms of the

guantitiesg, v, andA:

FIG. 8. Two-triplet continuum and dispersion of t8e 0 bound
state from Eq(27). Note they-axis offset.
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TABLE IIl. Nonzero transition-operator matrix elemeritsee TABLE IV. Nonzero transition-operator matrix elemerftsee
Eq. (5)] connectingZ; and Q as in Table II. Eq. (5)] within Q as in Table II.
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interactions. In particular, both of the van Hove singularities

present in the bare two-triplet spectrum disappear with the

almost symmetric shape of the bare spectrum being dehe case that such excitations are Raman active we expect
formed by a downward shift of the intensity. These findingsthem to lead to a dispersionless distribution of intensities
allow for a clear physical interpretation which follows from which can reside in the spin gap of Fig. 7 for certain ranges
an inspection of the denominators of E(®6) and(27). For  of the parametersa(b). Below a temperature 6f <50 K
g>(q. these denominators acquire a zero for enerBig(¥]) the Raman intensity on Glie,OsBr, gradually builds up a
below the continuum of the two-triplet scattering states. l.e.continuuni centered at 60 cm" which, belowT=8 K, is

a total spin-zerdound stateexists in the dimerized spin-1 accompanied by an additional sharp mode developing at
chain at finite momenturft: Figure 8 shows the dispersion of 20 cmi . One might speculate the continuum to correspond
this bound state as obtained from E(R7) where g, to that of Fig. 7 and the sharp mode to consist of transitions
=2a cos(3/8). Fog< g, the bound state turns into a reso- involving edge singlets. Yet the measured continuum is
nance shortly above the lower edge of the continuum whichather more symmetric than the solid line in Fig. 7. This
leads to the asymmetric Raman intensity of Fig. §a&t0.  might be related to the effects of three-dimensional couplings
This resonance feature has to be contrasted with the impabetween the tetrahedra in the tellurates, leaving their magne-
of bound states on the Raman spectra of other dimerized anigm an open issue which deserves further studies. Finally the
frustrated low-dimensional quantum-spin systems wtre role of perturbations breaking the complete frustration may
=0 collective modes have been observed rather as shatge of relevance in the vicinity of the first-order transition
excitationswithin the spin gap>—3° The actual location of leading to additional quantum phases.

the bound state with respect to the two-triplet continuum is
significantly affected by the hard-core repulsion Setting
U=0 in Eqg.(22) the short-range attraction due lth; would )
be overestimated with Eg(q) resulting from 1 The authors are very much indebted to E. M
+bx2.(q,Es())/3=0 which would yield a bound statee-  Hartmann for numerous occasions on which he generously
low the lower edge of the continuum for ajl While Eg(q) ~ Shared his many insights into the physics of electron corre-
in Fig. 8 has been plotted in units 8f for b=0.2 all bound- lations. It is a pleasure to thank P. Lemmens, R. Valenti, C.
state dispersions can bescaledonto a single one in terms Cros, F. Mila, E. Kaul, and Ch. Geibel for stimulating dis-

of the frequency variable. This is certainly an artifact of cussions and comments. This research was supported in part
the limit b<1. Finally we note that the relative agreementby the Deutsche Forschungsgemeinschaft under Grant No.
between Eqs(26) and(27) improves continuously as— 0. BR 1084/1-1 and BR 1084/1-2 and through SFB 463.
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V. CONCLUSION APPENDIX: T;eQ AND Q« Q TRANSITION MATRIX

, . ELEMENTS
In summary we have investigated the ground state and

several aspects of the one- and two-triplet excitations of a In Tables Il and IV of this appendix we list the nonzero
tetrahedral cluster spin chain. A number of open questionghatrix elements oM, z; andN,3;, from Eg.(5). One should
remain. In particular excitations involving localized edge note that there are no transitions mediatedy, between
singlets of the tetrahedra are an issue yet to be resolved. I8, and Q.
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