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Magnetism of a tetrahedral cluster spin chain
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We discuss the magnetic properties of a dimerized and completely frustrated tetrahedral spin-1/2 chain.
Using a combination of exact diagonalization and bond-operator theory the quantum phase diagram is shown
to incorporate a singlet product, a dimer, and a Haldane phase. In addition we consider one- and two-triplet
excitations in the dimer phase and evaluate the magnetic Raman cross section which is found to be strongly
renormalized by the presence of a two-triplet bound state. The link to a novel tellurate materials is clarified.
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I. INTRODUCTION

Low-dimensional quantum magnetism has received c
siderable interest recently due to the discovery of numer
novel materials with spin-1

2 moments arranged in chain, lad
der, and depleted planar structures. Many of these mate
exhibit unconventional magnetic phases due to dimeriza
and frustration of antiferromagnetic exchange. Particu
effort1 has been devoted to systems like SrCu2(BO3)2,2,3

which display a complete frustration of the magnetic e
change as in the two-dimensional Shastry-Sutherl
model.4 In one dimension complete frustration can occur
two-leg spin ladders if an additional crosswise exchang
included as depicted in Fig. 1 which resembles a chain
edge sharing tetrahedra. ForJ15J3 such tetrahedral ladder
have been investigated in the past.5–7 Very recently, tellurates
of type Cu2Te2O5X2 with X5Cl,Br have been identified as
new class of spin-1/2 tetrahedral-cluster compounds.8 Bulk
thermodynamic data have been analyzed in the limit of i
lated tetrahedra.8 Raman spectroscopy, however, indicate
substantial intertetrahedral coupling along thec-axis direc-
tion of Cu2Te2O5X2.9 In this direction the exchange topolog
is likely to be analogous to that of Fig. 1 withJ1ÞJ3. From
a materials perspective it is an open question if the mag
tism of the tellurates can be understood in terms of a dim
ized tetrahedral spin ladder. From a theoretical point of vi
however, the magnetic properties of this model are an in
esting issue which forms the motivation for this work.

The paper is organized as follows. In the remainder of t
section we discuss the basic properties of the tetrahe
chain Hamiltonian. In Sec. II the quantum phase diagram
analyzed. In Sec. III a bond-operator method is applied to
tetrahedral chain and in Sec. IV the magnetic Raman c
section is evaluated.

The Hamiltonian of the tetrahedral chain can be written
terms of the total edge-spin operatorsT1(2)l5s1(4)l1s3(2)l
and the dimensionless couplingsb5J3 /J1 anda5J2 /J1:

H

J1
5(

l
FT1lT2l1bT2lT1l 111

a

2
~T1l

2 1T2l
2 !2

3a

2 G . ~1!
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This model displays infinitely many local conservation law
@H,T i (51,2)l

2 #50; ; l ,i 51,2. Therefore, the Hilbert space de
composes into sectors of fixed distributions of edge-spin
genvaluesTil 51 or 0, each corresponding to a sequences
spin-1 chain segments intermitted by chain segments oflo-
calized singlets. If J1ÞJ3 , the spin-1 chain segments a
dimerized. In the infinite-length, dimerizedS51 chain sec-
tor; i.e., forTil 51; i ,l , the model simplifies to

H

J1
5(

l
@S1lS2l1bS2lS1l 11#1

a

2
D, ~2!

whereSi l refer to spin-1 operators andD is the number of
tetrahedra~‘‘dimers’’ !.

The Hilbert space of a single tetrahedron consists of
states, i.e., two singletsS1,2, three tripletsT1,2,3, and one
quintet Q, the energies andTi quantum numbers of which
are listed in Table I. Johnsson and collaborators8 pointed out
that this level scheme implies a singlet to reside within
singlet-triplet gap of the tetrahedron for 1/2,a,2. More-
over, the ground state switches fromS1 to S2 at a51, sug-
gesting a line of quantum phase transitions in the (a,b) plane
for the lattice model.

II. QUANTUM PHASE DIAGRAM

In this section we discuss the ground state of the tetra
dral chain. To begin, we note that by a shift of one-half of t
unit cell, i.e.,T2l (1l 11)→T1l (2l ) , model~1! is symmetric un-
der the operation (J1 ,a,b)→(J1b,a/b,1/b). Therefore, in
order to cover thecompleteparameter space fora,b.0 it is
sufficient to consider the phase diagram in the range oa
P@0,̀ # andbP@0,1#.

FIG. 1. The tetrahedral cluster chain.l labels the unit cell con-
taining spin-1/2 momentssi l at the verticesi 51, . . . ,4.
©2001 The American Physical Society13-1
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Next we note that the ground state of Eq.~1! will be either
in the dimerizedS51 chain sector or in a homogeneo
product ofS2 states only. Inhomogeneous phases consis
of both, Til 50 and Til 51 sites are not allowed for a
ground states. To see this we fixb and assumea→`, in
which case the ground state is a pure product ofS2-type
singlets: uc0&5) l us̃l&. Next we check for the ground-stat
energy changeDE(a,b,N) upon forming a single connecte
chain segment of lengthN composed out ofTil 51 sites
within the homogeneous stateuc0&. To be specific we first
assume the chain segment to consist ofD85N/2 tetrahedra,
in which case

DE~a,b,D8!5D8@2~a21!2e~b,D8!#. ~3!

Here2e(b,D8),0 is the ground-state energy gainper two
sitesdue to the intertetrahedral coupling. The main point
thate(b,D8) is a monotonouslyincreasingfunction10 of D8.
Therefore the largest critical valueac5max$ac(D8)% at which
the formation of tetrahedra in theS51 sector is favorable
i.e., at whichDE„ac(D8),b,D8… turns negative, results fo
D8→`. This implies a single first-order quantum phase tra
sition into the infinite-length, dimerizedS51 chain sector as
a function of decreasinga. Similar arguments can be pursue
for odd N.

In Fig. 2 we show the quantum phase diagram. From
~3! the first-order critical lineac(b) between the infinite-
length, dimerized spin-1 chain fora,ac(b) and theS2-type
singlet-product state fora.ac(b) is fixed by ac(b)51
1e(b)/2, where e(b)5 limD8→`e(b,D8). To determine
e(b) we have calculated the ground-state energy of dim
ized spin-1 chains using exact diagonalization~ED! with pe-
riodic boundary conditions~PBC’s! on up toN516 sites and
a bond-boson theory the results of which will be detailed
Sec. III. Regarding the ED the critical value ofac(b50)
51 agrees with Ref. 8, whileac

N516(b51).1.403 agrees
with Ref. 11 and is consistent with an extrapolated value
ac

N5`(b51).1.401 from density-matrix renormalization
group ~DMRG! calculations12,7 and ED on 22 sites.13

Within the dimerizedS51 chain sector an additiona
second-order quantum phase transition exists between
dimer phase forb,bc and the Haldane phase forb.bc .
This transition has been studied extensively~see, e.g., Ref.
15 and references therein!, resulting inbc.3/5 from DMRG
calculations14 and finite-size scaling analysis.15 However,
this transition is not at the focus of our study. In Fig. 3 o
ED results on the finite-size behavior of the spin gap in

TABLE I. Eigenstates and energies of the tetrahedron. Colum
T1,2 refer to corresponding edge-spin quantum number; site indl
suppressed.

T1 T2 E/J1

S1 1 1 -21a/2
S2 0 0 -3a/2
T1 1 1 -11a/2
T2,3 0,1 1,0 -a/2
Q 1 1 11a/2
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dimerized S51 chain sector are shown as function ofb,
which signals the dimer-Haldane transition and directly
produces identical data which have been obtained earlie
Kato and Tanaka.14 Figure 3 contains additional results fo
the spin gap from the bond-boson approach which we tur
now.

III. BOND-BOSON ANALYSIS

In this section we detail a mapping of the tetrahed
chain in the dimerizedS51 chain sector onto a system o
interacting bosons. To this end we adapt the well-develo
bond-operator method16–22 which has proved to be useful i
dimerized quantum-spin systems to the present situation.

s

FIG. 2. Quantum phase diagram of the tetrahedral chain. B
solid line: first-order transition from ED forN516 sites and PBC a
41 values ofbP@0,1#. The critical valueac at b51 from ED is
ac

N516(b51).1.402 92. Solid line with diamond markers: secon
order Haldane-dimer transition atb.3/5, extrapolated from ED
~see Fig. 3 and Refs. 14 and 15!. Dashed~solid! line with starred
~circled! markers refers to the bond-boson mean-field, i.e., M
~Holstein-Primakoff, i.e., LHP! approach. LHP terminates atb
53/8.

FIG. 3. Solid lines: spin gapD from ED for N58, 10, 12, 14,
and 16 sites and PBC in the dimerized spin-1 chain sector a
values of the intertetrahedral couplingbP@0,1#. Axes have been
scaled to allow for a comparison with Ref. 14.DH refers to the spin
gap atb51, i.e., the Haldane gap.DH(N516) as from this work
and DH(N5`) as from Ref. 12. Upper~lower! dashed line: spin
gap from bond-boson mean-field, i.e., MFT~Holstein-Primakoff,
i.e., LHP! approach.
3-2
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MAGNETISM OF A TETRAHEDRAL CLUSTER SPIN CHAIN PHYSICAL REVIEW B64 214413
start by introducing a set of singlet (sl
†), triplet (t la

† ), and
quintet bosons (qla

† ) for each tetrahedron at sitel. These
bosons create all states within the multipletsS1 , T1, andQ.
The bosons and their corresponding states are listed in T
II. Note that we have chosen anx,y,z (z) representation for
the triplet ~quintet! states. Moreover, the site index is n
displayed in the table.

To suppress unphysical states the bosons have to fulfil
usual hardcore constraint of no double occupancy,

sl
†sl1t la

† t la1qla
† qla51, ~4!

where doubly appearing Greek indices are to be summ
over their respective ranges. After some straightforward
gebra we may express thea5x,y,z components of the edg
spinsSl1,2

a by

Sl1,2
a 5̂A2

3
~6sl

†t la6t la
† sl !2

i

2
«abgt lb

† t lg6Mab̂ĝt l b̂
†

ql ĝ

6Mab̂ĝ
* ql ĝ

†
t l b̂1Nab̂ĝql b̂

†
ql ĝ . ~5!

SinceMab̂ĝ andNab̂ĝ will remain unused in the remainde
of this work, we defer an explicit display of these quantiti
to the Appendix. Inserting Eq.~5! into Eq. ~2! we arrive at
the Hamiltonian

TABLE II. Bond-boson~BB! representation of the singlet (S1),
triplet (T1), and quintet (Q) states in the edge-spinS51 sector.u&
represents the vacuum.â refers to an equivalent running index fo
each state used to label elements ofMab̂ĝ and Nab̂ĝ in Eq. ~5!.
Entries in the ket column refer toSz eigenstates ofS1,2 of type
uS1

zS2
z& with 1,0,2 denotingSz521,0,11.

BB â ket

S1 s†u& 1
1

A3
(u21&1u12&2u00&)

tx
†u& 2 1

2 (u01&2u10&1u20&2u02&)

T1 ty
†u& 3

i

2
(u10&2u01&1u20&2u02&)

tz
†u& 4

1

A2
(u12&2u21&)

q2
†u& 5 u11&

q1
†u& 6

1

A2
(u10&1u01&)

Q q0
†u& 7

1

A6
(u12&12u00&1u21&)

q21
† u& 8

1

A2
(u20&1u02&)

q22
† u& 9 u22&
21441
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D1H01H11H21H31H4

1(
l

l l~sl
†sl1t la

† t la1qla
† qla21!, ~6!

H05(
l

~22sl
†sl2t la

† t la1qla
† qla!,

H152
2b

3 (
l

~ t la
† t l 11asl 11

† sl1t la
† t l 11a

† sl 11sl1H.c.!,

H25
b

A6
(

l
~ i«abgt l 11a

† t lb
† t lgsl 111H.c.!,

H352
b

4 (
l

~ t la
† t l 11a

† t l 11bt lb2t la
† t l 11b

† t l 11at lb!,

H45O~q(†)!,

wherel l is a local Lagrange multiplier to enforce the co
straint~4!. HereH4 refers to quartic terms involving at leas
one quintet and at most one singlet boson. Note that the l
HamiltonianH0 and the first termDa/2 simply reflects the
spectrum of the single tetrahedron.

To treat the interacting Bose system~6! approximations
have to be made. To this end we first realize that in the li
of weak intertetrahedral coupling, i.e.,b!1, the singlet
bosons will condense16,18 with sl

(†)→sPR. Focusing on this
limit and keeping only terms up to quadratic order in t
boson operators and, moreover, replacing the local Lagra
multiplier l l by a global one we arrive at the mean-fie
theory ~MFT!

HMFT5DS 22s21ls22l1
a

2D1(
la

~l11!qla
† qla

2
1

2 (
ka

~l21!

1
1

2 (
ka

Cka
† Fl211s2ek s2ek

s2ek l211s2ek
GCka ,

~7!

ek52
4

3
b cos~k!, ~8!

where D is the number of dimers andk is a momentum
vector. Cka

(†) is a spinor with Cka
† 5@ tka

† t2ka# and t la
†

5(ke
2 ikl tka

† /AD. The mean-field Hamiltonian can be diag
nalized by a Bogoliubov transformation, yielding

HMFT5DS 3

2
22s21ls22

5

2
l1

a

2D1(
la

~l11!qla
† qla

1(
ka

EkS aka
† aka1

1

2D , ~9!
3-3
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where the threefold-degenerate triplet energyEk is given by

Ek5A~l21!2S 11
s2

l21
2ekD ~10!

and the Bogoliubonsaka
(†) result from

Cka5Fgk hk

hk gk
GFka , ~11!

whereFka
(†) is a spinor withFka

† 5@aka
† a2ka# and hk

25@(1
1ek)/Ek21#/2, and hkgk52ek /(2Ek) with hk

22gk
251.

Note that on the quadratic level the quintet isdispersionless.
Substitutingd5s2/(l21) the ground-state energy is23

EMFT
0 5DS 3

2
22s21ls22

5

2
l1

a

2D
1

3

2
~l21!(

k
A112dek, ~12!

where we have used that^aka
† aka&5^qka

† qka&50 in the
gapped case atT50. The mean-field order parameterss2 and
l follow from the saddle-point conditions]EMFT

0 /]s250
and]EMFT

0 /]l50 which can be combined to result in

5

2
2d2

3

2D (
k

1

A112dek

50, ~13!

l221
3

2D (
k

ek

A112dek

50, ~14!

with Eq. ~13! independent ofl. Therefore, only the single
self-consistency equation~13! has to be solved ford with l
following from direct insertion ofd into Eq. ~14!.

In the limit of vanishing intertetrahedral coupling, i.e.,b
50, Eqs.~13! and ~14! reduce to

d51, l52→s251. ~15!

This case relates the MFT to the linearized Holste
Primakoff ~LHP! method,19,20 which has found frequent us
in bond-boson approaches to dimerized spin-1/2 syste
Within the LHP the constraint is used to eliminate the s
glets on the tetrahedra, i.e., withinH0, by sl

†sl512t la
† t la

2qla
† qla . Moreover, withinH1, . . . ,4 the singlet condensatio

is implemented withunit strength, i.e.,sl
(†)51. Dropping all

terms beyond quadratic order in the boson operators we
rive at a Hamiltonian which is exactly identical to Eq.~7!
with, however,l[2 ands2[1. Therefore the LHP isiden-
tical to the MFT constrained to Eq.~15!. A priori it is not
obvious whether the MFT or the LHP is a more reliab
approximation and we will present results obtained fro
both methods.

In Fig. 2 results forac(b) as obtained from Eq.~12! are
included for the MFT and LHP approaches. As in our E
analysis of Sec. II, the transition occurs at the level cross
of the ground-state energyEMFT(LHP)

0 [D@221a/2
2e(b)# of the spin-1 chain with that of theS2-type singlet-
21441
-
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-
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g

product state, i.e.,Ec0

0 523Da/2, which again leads to

ac(b)511e(b)/2. From Eq.~12! one may read off that the
ground-state energy gain per dimer due to intertetrahe
coupling is 2e(b)57/225l/21s2(l22)13(l
21)(kA112dek/(2D) within MFT, which reduces to
2e(b)53((kA112dek/D21)/2 in the LHP approxima-
tion. At the dimer to singlet-product phase boundary t
agreement with ED is very good for both LHP and MFT.
principle, the singlet condensate restricts the bond-boson
proaches to the dimer phase. In fact, the LHP spin gap clo
at b53/8, confining the LHP tob,3/8,bc . The MFT can
be continued from the dimer into the Haldane regime, ev
though the ground-state symmetries are different, yieldin
transition line qualitatively still comparable to ED.

Next we consider elementary excitations of the dim
state. These may~i! remain in the dimerized spin-1 chai
sector or~ii ! involve transitions into sectors containinglocal-
ized edge singlets, i.e., sites withTil 50. In this paper we
confine ourselves to the former type. As has been pointed
in Ref. 8, for a single tetrahedron, the energy of a type-~ii ! S2
excitation resides within the spin gap of the type-~i! excita-
tions for 1/2<a<2. Analogousdispersionlesssinglet gap
states occur in the spin gap of the dimer phase of the lat
model and will be discussed elsewhere.24 Figure 4 compares
the dispersion obtained from Eq.~10!, for both the MFT and
LHP for various values ofb,bc , with the first twoSz50
eigenstates obtained from ED on a finite dimerized spi
chain with PBC’s. Regarding the first triplet excitations t
agreement is very good. A comparison of the spin gap,
Ek50,p , as obtained from the MFT and LHP approaches
the dimerized spin-1 chain sector with ED is contained
Fig. 3. Apart from the fact that the agreement is satisfact
for b&0.2 this figure demonstrates the main difference
tween the MFT and LHP approximations. In contrast to t
LHP spin gap which closes forb.3/8 the MFT overesti-
mates the binding energy due to dimer formation and ke
the spin gap opened for all values ofb.

IV. TWO-TRIPLET EXCITATIONS
AND RAMAN SCATTERING

Raman scattering can be used to probe the total spin-
excitations of a spin system at zero momentum. In this s
tion we consider the magnetic Raman scattering in
dimerizedS51 sector of the tetrahedral chain. Followin

FIG. 4. Dashed~solid! line: Ek as from Eq.~10! for MFT ~LHP!.
Stars: first two totalSz50 excitation of the dimerized spin-1 chai
from ED with PBC.
3-4
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MAGNETISM OF A TETRAHEDRAL CLUSTER SPIN CHAIN PHYSICAL REVIEW B64 214413
Fleury and Loudon25 the Raman scattering operator is giv
by

R5(
lm

alm~Ei•nlm!~Eo•nlm!sl•sm

5AEiEo(
l

~T l1T l21bT l2T l 111!. ~16!

Ei (o) are the incoming~outgoing! electric-field vectors and
nlm are unit vectors connecting exchange-coupled sites.alm
are matrix elements which are identical among each of th
exchange paths corresponding to one ofJ1 , J2, or J3. From
this and the geometry of the tetrahedral chain the second
results for polarizations of the light along the chain—whi
we will focus on. Whileb in Eq. ~16! will be of orderb, it is
very unlikely thatb5b. In the latter case the Raman oper
tor commutes with the Hamiltonian, implying a vanishin
Raman intensity at nonzero Raman shifts. In the former c
we use an equivalent Raman operator

R̃5R2Rub5b5C(
l

T l2T l 111 , ~17!

whereC5AEiEo(b2b). Thus the Raman intensity will be
of second order inb andb, i.e., the intertetrahedral coupling
To proceed, we approximateR̃ on the level of the LHP:

R̃LHPª lim
q→0

R̃LHP~q!5 lim
q→0

F2
2C

3 (
k

cos~k1q/2!

3~ tk1qa
† 1t2k2qa!~ t2ka

† 1tka!G , ~18!

where, for later convenience, we have introduced an au
iary momentum dependence. The Raman intensity can
obtained from the zero-momentum limit of the dynamic
susceptibility

x~q,t!5^Tt@R̃LHP~q,t!R̃LHP~q,0!#&. ~19!

Sincex(q,t) is a two-particle propagator, it is important t
assess the relevance of two-particle scattering. In partic
it has been realized in the context of other dimerized spin-
systems that magnetic bound states can severely renorm
the bare two-triplet spectrum.26–29

We chose to implement the two-particle scattering with
the LHP approach. Apart from the interactionsH2, . . . ,4 in Eq.
~6! the constraint~4! implies a hard-core repulsion betwee
two bosons on a site. In the LHP this pertains only to
triplets, as the singlets are condensed and the quintets
been discarded. The hard core is incorporated directly
introducing an additional contribution to the Hamiltonian26

HU5U(
l

t la
† t lb

† t lat lb , ~20!

with the summation convention on the Greek indices.x(q,t)
is evaluated withHU at finite U and the limit ofU→` is
taken at the end.
21441
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The Raman susceptibility corresponds to the diagram
picted in Fig. 5. To simplify matters we focus on the lim
b!1. In that limit the ground state is nearly a pure produ
of S1 singlets and the triplet density induced by quantu
fluctuationsnt5^t la

† t la&53(khk
2 is a small parameter. As a

consequence only the two-tripletpair-creation~destruction!
vertices contained in Eq.~18! are relevant. Moreover, contri
butions to the reducible two-particle propagator in Fig.
involving anomalous Greens functions, as well as one-trip
self-energy insertions, are suppressed by factors of the tr
density and will be neglected.26 Physically speaking, the
Stokes-Raman process creates two triplets within an appr
mate singlet-product state. These propagate along the t
hedral chain and form an interacting two-particle proble
with no additional triplets generated~destroyed! by quantum
fluctuations.28

The two-triplet problem allows for an exact solutionin-
cluding HU by theT-matrix approach of Fig. 6. This figure
depicts the ‘‘particle diagrams,’’ which correspond to th
Stokes process. For the anti-Stokes process an identica
of ‘‘hole diagrams’’ exists with all lines reversed. In the sin
glet channel onlyH3 of Eq. ~6! and HU contribute to the
irreducible two-particle vertexg ~see Ref. 30!. Due to the
momentum space symmetry ofg, it is convenient to formu-
late theT-matrix equation using a 232 matrix notation. The
bare one-triplet Greens function including normal a
anomalous components is given by

Ga
i j ~k,ivn!5

1

~ ivn!22Ek
2 F ivn111ek 2ek

2ek 2 ivn111ek
G ,
~21!

where ek and Ek are as of Eqs.~8!, ~10!, and ~15!, a
5x,y,z, and vn52npT. Ga

i j (k,ivn) satisfies the symme
tries Ga

11(k,ivn)5Ga
22(k,2 ivn) and @Ga

21(k,ivn)#*
5Ga

21(k,ivn). From Fig. 6 we get

xp~q,z!52xcc
0 12@xcc

0 xc1
0 #VH 12Fxcc

0 xc1
0

x1c
0 x11

0 GVJ 21Fxcc
0

x1c
0 G ,

~22!

wherexcc,c1,1c,11
0 are bare two-particle propagators, the e

plicit display of whose momentum and frequency depe

FIG. 5. Raman susceptibility. Thick solid lines label the dress
232 one-triplet, i.e.,t (†)-particle matrix Green’s functions includ
ing diagonal and anomalous contributions. The solid dot refers
the Raman operator~18!. G is the two-triplet reducible vertex.
3-5
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dence has been suppressed for brevity.V incorporates the
momentum-independent coupling-constant factors of the
vertices ing of Fig. 6:

V5F2b/3

2U/3G , ~23!

x11
0 ~q,z!53(

k

1

z2Ek1q2Ek
.

b!1

gA,

x1c
0 ~q,z!53(

k

cosS k1
q

2D
z2Ek1q2Ek

.
b!1

g~12nA!,

xcc
0 ~q,z!53(

k

cos2S k1
q

2D
z2Ek1q2Ek

.
b!1

2gn~12nA!, ~24!

where we have analytically continuedivn into the upper
complex planeivn→z and have restricted ourselves to t
zero-temperature limit. The prefactors of 3 are due to
sum over the triplet indexa and x1c

0 (q,z)5xc1
0 (q,z). The

two-hole propagatorxh is obtained by reversing the signs
all E(k)k1q in the denominators of Eq.~24!. In the limit b
!1 one may expand the square root in Eq.~10! which allows
for analytic expressions for all of thex0’s in terms of the
quantitiesg, n, andA:

FIG. 6. T-matrix approximation to Fig. 5: thin, doubly directe
lines label 11 elements of the bare one-triplet Green’s function~21!.
The solid dot is the two-triplet part of the Raman vertex~18!. Sum-
mation onk8 anda is implied in all bare triplet bubbles.g ~solid
square! refers to the two-triplet~ir!reducible vertex. Analytic ex-
pressions for the two irreducible vertices due toH3 and HU are
displayedincorporatingall possible leg exchanges.
21441
o

e

g5g~q!5
9

8b cos~q/2!
, n5n~q,z!5

3~z22!

8b cos~q/2!
,

A5A~q,z!5
sgn@Re~n!#

An221
. ~25!

From Eqs. ~22!–~25! we obtain the Stokes susceptibilit
from xp(q,z) by performing the limitU→`:

xp~q,z!5
6@x11

0 xcc
0 2~x1c

0 !2#

3x11
0 1b@x11

0 xcc
0 2~x1c

0 !2#
, ~26!

.
b!1 6$sgn@Re~n!#An2212n%

b$sgn@Re~n!#An2212n28 cos~q/2!/3%
. ~27!

As in Eq. ~22! we refrain from explicitly displaying the mo
mentum and frequency dependence on the right-hand
~RHS! of Eq. ~26!. From Eqs.~26! and ~27! one obtains the
Raman intensityI (v) from I (v)52Im xp(0,z→v1 i01)
wherev refers to the Raman shift.

Figure 7 shows the Raman intensity contrasting the b
two-triplet spectrum with the interacting one. As is obvio
the bare intensity is strongly renormalized by the two-trip

FIG. 7. Raman intensity in the dimer phase atb50.2 as ob-
tained from Eq.~26! ~solid!, from Eq. ~27! dash-dotted, and from
Eq. ~22! for V50 ~dotted! line. 2DST refers to twice the singlet-
triplet gap.

FIG. 8. Two-triplet continuum and dispersion of theS50 bound
state from Eq.~27!. Note they-axis offset.
3-6
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interactions. In particular, both of the van Hove singularit
present in the bare two-triplet spectrum disappear with
almost symmetric shape of the bare spectrum being
formed by a downward shift of the intensity. These findin
allow for a clear physical interpretation which follows fro
an inspection of the denominators of Eqs.~26! and~27!. For
q.qc these denominators acquire a zero for energiesEB(q)
below the continuum of the two-triplet scattering states. I
a total spin-zerobound stateexists in the dimerized spin-1
chain at finite momentum.31 Figure 8 shows the dispersion o
this bound state as obtained from Eq.~27! where qc
52a cos(3/8). Forq,qc the bound state turns into a res
nance shortly above the lower edge of the continuum wh
leads to the asymmetric Raman intensity of Fig. 7 atq50.
This resonance feature has to be contrasted with the im
of bound states on the Raman spectra of other dimerized
frustrated low-dimensional quantum-spin systems wherS
50 collective modes have been observed rather as s
excitationswithin the spin gap.33–35 The actual location of
the bound state with respect to the two-triplet continuum
significantly affected by the hard-core repulsionU. Setting
U50 in Eq. ~22! the short-range attraction due toH3 would
be overestimated with EB(q) resulting from 1
1bxcc

0
„q,EB(q)…/350 which would yield a bound statebe-

low the lower edge of the continuum for allq. While EB(q)
in Fig. 8 has been plotted in units ofJ1 for b50.2 all bound-
state dispersions can berescaledonto a single one in term
of the frequency variablen. This is certainly an artifact of
the limit b!1. Finally we note that the relative agreeme
between Eqs.~26! and~27! improves continuously asb→0.

V. CONCLUSION

In summary we have investigated the ground state
several aspects of the one- and two-triplet excitations o
tetrahedral cluster spin chain. A number of open questi
remain. In particular excitations involving localized ed
singlets of the tetrahedra are an issue yet to be resolve

TABLE III. Nonzero transition-operator matrix elements@see
Eq. ~5!# connectingT1 andQ as in Table II.

b̂ ĝ 23/2Mxb̂ĝ b̂ ĝ 23/2M yb̂ĝ b̂ ĝ 23/2Mzb̂ĝ

2 5 1 2 5 i

2 7 2A2

3
2 9 2 i 2 6 21

2 9 1 3 5 21 2 8 1

3 5 i 3 7 2A2

3
3 6 2 i

3 9 2 i 3 9 21 3 8 2 i

4 6 21 4 6 2 i 4 7 2A2

3

4 8 1 4 8 2 i
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the case that such excitations are Raman active we ex
them to lead to a dispersionless distribution of intensit
which can reside in the spin gap of Fig. 7 for certain rang
of the parameters (a,b). Below a temperature ofT&50 K
the Raman intensity on Cu2Te2O5Br2 gradually builds up a
continuum9 centered at 60 cm21 which, belowT&8 K, is
accompanied by an additional sharp mode developing
20 cm21. One might speculate the continuum to correspo
to that of Fig. 7 and the sharp mode to consist of transitio
involving edge singlets. Yet the measured continuum
rather more symmetric than the solid line in Fig. 7. Th
might be related to the effects of three-dimensional coupli
between the tetrahedra in the tellurates, leaving their mag
tism an open issue which deserves further studies. Finally
role of perturbations breaking the complete frustration m
be of relevance in the vicinity of the first-order transitio
leading to additional quantum phases.

ACKNOWLEDGMENTS

The authors are very much indebted to E. Mu¨ller-
Hartmann for numerous occasions on which he genero
shared his many insights into the physics of electron co
lations. It is a pleasure to thank P. Lemmens, R. Valenti,
Gros, F. Mila, E. Kaul, and Ch. Geibel for stimulating di
cussions and comments. This research was supported in
by the Deutsche Forschungsgemeinschaft under Grant
BR 1084/1-1 and BR 1084/1-2 and through SFB 463.

APPENDIX: T1^Q AND Q^Q TRANSITION MATRIX
ELEMENTS

In Tables III and IV of this appendix we list the nonze
matrix elements ofMab̂ĝ andNab̂ĝ from Eq.~5!. One should
note that there are no transitions mediated bySl1,2

a between
S1 andQ.

TABLE IV. Nonzero transition-operator matrix elements@see
Eq. ~5!# within Q as in Table II.

b̂ ĝ 2Nxb̂ĝ b̂ ĝ 2Nyb̂ĝ b̂ ĝ 2Nzb̂ĝ

5 6 1 5 6 2 i

6 5 1 6 5 i

6 7 A3

2
6 7 2 iA3

2
5 5 2

7 6 A3

2
7 6 iA3

2
6 6 1

7 8 A3

2
7 8 2 iA3

2
8 8 21

8 7 A3

2
8 7 iA3

2
9 9 22

8 9 1 8 9 2 i

9 8 1 9 8 i
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