
PHYSICAL REVIEW B, VOLUME 64, 212103
Ideal strength of diamond, Si, and Ge
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We have calculated the ideal shear strength and ideal tensile strength of C, Si, and Ge in the diamond
structure. We find ideal shear strengths of 95 GPa, 6.5 GPa, and 4.5 GPa, and ideal tensile strengths of 95 GPa,
23 GPa, and 14 GPa for C, Si and Ge respectively. The shear calculation is performed on the$111% slip plane
sheared in â 112& direction, and the tensile load is applied in the^111& direction. We allowed for a full
relaxation of the strains orthogonal to the applied strain as well as the atomic basis vectors.
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The mechanical properties of group-IV materials are
particular interest, as diamond is the hardest material kno
while silicon and germanium are among the best underst
materials, both experimentally and theoretically, due to th
technological importance. One fundamental measure of
mechanical strength of a material is its ideal strength. T
ideal strength is the stress required to deform a perfect c
tal, and forms an upper limit to the strength of a real crys
Stresses approaching the ideal tensile strength may o
near crack tips, and stresses approaching the ideal s
strength can be observed in nanoindentation studies. Nan
dentation experiments on diamond have shown that diam
can be converted into a graphitic structure by a shear stre1

while nanoindentation of silicon causes phase transfor
tions underneath the indenter tip.2–7 Recently, calculations o
the ideal tensile strength of diamond with the stress app
in the ^111&, ^110&, and^001& directions have been used
explain its preference for cleavage on the^111& plane.8 Cal-
culations of the ideal shear strength of diamond have b
used to explain the formation of graphitic structures dur
nanoindentation.9

In this paper we present the result of a comparative st
of both the ideal tensile and shear strengths of diamo
silicon, and germanium~see Table I!. The tensile strengths
are calculated for a stress oriented in the^111& direction,
which is expected to be the weak direction. The sh
strengths are calculated for shear on the$111% plane in a
^112& direction.

The ideal strength is found by straining the crystal in
series of incremental strains, and simultaneously relax
both the strain components orthogonal to the applied st
and the atomic basis vectors at each point. Because the
culation involves a strain applied to a perfect crystal,
calculation can be performed using a two-atom unit cell. T
starting position for each strain step is taken from the rela
coordinates of the previous strain step. This is necessar
ensure that the strain path is continuous.

The maximum in the stress, which occurs at the instabi
point, is the ideal strength. The stress is calculated both
rectly, from the Hellmann-Feynman theorem,10 and by taking
a derivative of the energy with respect to the true strain
described in Ref. 11. The total energy is computed as a fu
tion of strain using the pseudopotential total-energy sche
with a plane-wave basis set12–15 and density functiona
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theory in the local-density approximation. The pseudopot
tial is generated including semirelativistic corrections in t
case of germanium,16 while the silicon and carbon pseudo
potentials were generated without such corrections. A cu
energy of 60 Ry was necessary for C, while a cutoff of
was sufficient for Si and Ge.

Figure 1 displays the stress as a function of shear st
for C, Si, and Ge, respectively. The filled circles correspo
to the stresses calculated from the Hellmann-Feynman th
rem, while the curve corresponds to the stress calcula
from a derivative of a fit to the energy. In the case of d
mond, the energy was only fit to the points before the ins
bility because the energy changes abruptly after the insta
ity point. Figure 2 displays the same data for the case o
tensile stress.

The properties of diamond under strain are dominated
the stability of its graphitic structure. Under either shear
tensile loads, shortly after instability, the structure was fou
to relax into a graphitic structure. This can be seen m
clearly in Fig. 3, which shows the change in volume as
function of shear strain for the three systems. For the cas
diamond, there is a jump in volume of 50% immediate
after the instability point at 30% shear strain, correspond
to the difference in density between graphite and diamond
similar transformation occurs under tension, which results
a positive pressure, because in this case the tensile stra
held fixed, which keeps the graphitic layers from separat
freely.

In reality, broken diamond will not turn into graphite
However, this observation does correspond to the phys
property of diamond which is its ability to formp bonds,
and this effect will dominate the plastic and cleavage pr
erties of this material. Specifically, carbon can exist in a
vorable threefold coordinated structure, which forms whe

TABLE I. Ideal shear and tensile strengths.

Shear load Tensile load
Ideal strength

~GPa! Critical strain
Ideal strength

~GPa! Critical strain

C 93 0.3 95 0.13
Si 6.8 0.3 22 0.17
Ge 4.3 0.25 14 0.2
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FIG. 2. Stress vs strain under tensile load.

FIG. 1. Stress vs strain under shear load.
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ever bonds are broken in diamond. This affects vacanc
dislocation properties, and cleavage properties. T
p-bonded chain surface reconstruction of the diamond~111!
surface18 is an example of this.

Silicon and germanium display qualitatively similar b
havior to one another, which is markedly different from th
of diamond. These elements are unable to form strongp
bonds because they havep electrons in their core. For thi
reason they do not prefer the graphite structure, which ma
their instability much less dramatic than in the case of d
mond.

Silicon and germanium both display a much lower tens
strength relative to shear strength that is seen in diamo
This can be explained to a certain extent by differences in
elasic constants of these materials. The Young’s modulu
diamond in thê 111& direction is 2.3 times its shear modu
lus, while the Young’s moduli of silicon and germanium a
both 4.2 times greater than their shear moduli. One surp
ing result of these calculations is that the ideal shear stre
of silicon and germanium are both well below half of the
ideal tensile strengths. A simple model of ductility wou
suggest that a material is ductile when its shear strengt
less than half its tensile strength, since in that case dislo
tions would be expected to form and blunt a crack tip.
reality the picture is not nearly so simple. The stress field
a crack tip is actually closer to biaxial tension than uniax
tension, and it is also highly inhomogeneous. Both of th
effects can be expected to lower the stress required to op
crack, which could explain why these materials are brittle

Another unusual feature of the low ideal shear streng
of silicon and germanium is that they are actually lower th
the estimated Peierls stress. Using a simple Peierls-Nab
model,17 one can obtain an estimated Peierls stress of 7 G
21210
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for silicon and 6 GPa for germanium, in each case hig
than the calculated ideal shear strength. This suggests th
low temperatures dislocations in these materials may no
mobile, meaning that the entire lattice will become unsta
before a dislocation can be induced to move. This co
explain the observation of phase transformations undern
the indenter tip in nanoindentation studies of silicon,2–7 be-
cause the a lattice instability may actually precede dislo
tion mobility at low temperatures.

In conclusion, we have calculated the ideal shear and
sile strengths of diamond, silicon, and germanium. In d

FIG. 3. Volumes vs shear strain for the three systems.
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mond our calculations suggest a sudden transformation
occur at the critical stress to a graphitic structure under b
shear and tensile stress. In silicon and germanium we se
surprising result that the ideal shear strength is significa
lower than the ideal tensile strength.
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