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Ideal strength of diamond, Si, and Ge
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We have calculated the ideal shear strength and ideal tensile strength of C, Si, and Ge in the diamond
structure. We find ideal shear strengths of 95 GPa, 6.5 GPa, and 4.5 GPa, and ideal tensile strengths of 95 GPa,
23 GPa, and 14 GPa for C, Si and Ge respectively. The shear calculation is performed bhljheip plane
sheared in 112 direction, and the tensile load is applied in Ll direction. We allowed for a full
relaxation of the strains orthogonal to the applied strain as well as the atomic basis vectors.
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The mechanical properties of group-IV materials are oftheory in the local-density approximation. The pseudopoten-
particular interest, as diamond is the hardest material knowrijal is generated including semirelativistic corrections in the
while silicon and germanium are among the best understoogase of germaniurtf, while the silicon and carbon pseudo-
materials, both experimentally and theoretically, due to theipotentials were generated without such corrections. A cutoff
technological importance. One fundamental measure of thenergy of 60 Ry was necessary for C, while a cutoff of 40
mechanical strength of a material is its ideal strength. Thavas sufficient for Si and Ge.
ideal strength is the stress required to deform a perfect crys- Figure 1 displays the stress as a function of shear strain
tal, and forms an upper limit to the strength of a real crystalfor C, Si, and Ge, respectively. The filled circles correspond
Stresses approaching the ideal tensile strength may occt® the stresses calculated from the Hellmann-Feynman theo-
near crack tips, and stresses approaching the ideal she®m, while the curve corresponds to the stress calculated
strength can be observed in nanoindentation studies. Nanoiffom a derivative of a fit to the energy. In the case of dia-
dentation experiments on diamond have shown that diamon@hond, the energy was only fit to the points before the insta-
can be converted into a graphitic structure by a shear stresdjility because the energy changes abruptly after the instabil-
while nanoindentation of silicon causes phase transformaty point. Figure 2 displays the same data for the case of a
tions underneath the indenter &p’ Recently, calculations of tensile stress.
the ideal tensile strength of diamond with the stress applied The properties of diamond under strain are dominated by
in the (111), (110, and(001) directions have been used to the stability of its graphitic structure. Under either shear or
explain its preference for cleavage on (e 1) plane® Cal-  tensile loads, shortly after instability, the structure was found
culations of the ideal shear strength of diamond have beel® relax into a graphitic structure. This can be seen most
used to explain the formation of graphitic structures duringclearly in Fig. 3, which shows the change in volume as a
nanoindentatiof. function of shear strain for the three systems. For the case of

In this paper we present the result of a comparative studgliamond, there is a jump in volume of 50% immediately
of both the ideal tensile and shear strengths of diamondgfter the instability point at 30% shear strain, corresponding
silicon, and germaniunisee Table L The tensile strengths to the difference in density between graphite and diamond. A
are calculated for a stress oriented in tigl1) direction, similar transformation occurs under tension, which results in
which is expected to be the weak direction. The shea® positive pressure, because in this case the tensile strain is
strengths are calculated for shear on {41} plane in a held fixed, which keeps the graphitic layers from separating
(112 direction. freely.

The ideal strength is found by straining the crystal in a In reality, broken diamond will not turn into graphite.
series of incremental strains, and simultaneously relaxingiowever, this observation does correspond to the physical
both the strain components orthogonal to the applied straifiroperty of diamond which is its ability to fornr bonds,
and the atomic basis vectors at each point. Because the c@nd this effect will dominate the plastic and cleavage prop-
culation involves a strain applied to a perfect crystal, theerties of this material. Specifically, carbon can exist in a fa-
calculation can be performed using a two-atom unit cell. Thevorable threefold coordinated structure, which forms when-
starting position for each strain step is taken from the relaxed
coordinates of the previous strain step. This is necessary to
ensure that the strain path is continuous.

The maximum in the stress, which occurs at the instability
point, is the ideal strength. The stress is calculated both di-
rectly, from the Hellmann-Feynman theoréfrgnd by taking

TABLE I. Ideal shear and tensile strengths.

Shear load Tensile load

Ideal strength Ideal strength
(GPa Critical strain (GPa Critical strain

a derivative of the energy with respect to the true strain, ag 93 0.3 95 0.13
described in Ref. 11. The total energy is computed as a funcs; 6.8 0.3 22 0.17
tion of strain using the pseudopotential total-energy schemee 4.3 0.25 14 0.2

with a plane-wave basis 28t and density functional
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FIG. 1. Stress vs strain under shear load.
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FIG. 2. Stress vs strain under tensile load.

ever bonds are broken in diamond. This affects vacanciesor silicon and 6 GPa for germanium, in each case higher
dislocation properties, and cleavage properties. Thehan the calculated ideal shear strength. This suggests that at
m-bonded chain surface reconstruction of the diamdrid) low temperatures dislocations in these materials may not be
surface® is an example of this. mobile, meaning that the entire lattice will become unstable
Silicon and germanium display qualitatively similar be- before a dislocation can be induced to move. This could
havior to one another, which is markedly different from thatexplain the observation of phase transformations underneath
of diamond. These elements are unable to form streng the indenter tip in nanoindentation studies of siliéohpe-
bonds because they haypeelectrons in their core. For this cause the a lattice instability may actually precede disloca-
reason they do not prefer the graphite structure, which maketgoon mobility at low temperatures.
their instability much less dramatic than in the case of dia- In conclusion, we have calculated the ideal shear and ten-

mond. sile strengths of diamond, silicon, and germanium. In dia-
Silicon and germanium both display a much lower tensile
strength relative to shear strength that is seen in diamond Volume Changes Under Shear

This can be explained to a certain extent by differences in the
elasic constants of these materials. The Young’s modulus o
diamond in the(111) direction is 2.3 times its shear modu-

lus, while the Young’s moduli of silicon and germanium are 15 — -
both 4.2 times greater than their shear moduli. One surpris: /

ing result of these calculations is that the ideal shear strengtl /

of silicon and germanium are both well below half of their /

ideal tensile strengths. A simple model of ductility would ; E— |

suggest that a material is ductile when its shear strength i¢ T e
less than half its tensile strength, since in that case dislocag

tions would be expected to form and blunt a crack tip. In —— Diamond
reality the picture is not nearly so simple. The stress field at o g‘gf;gmum

a crack tip is actually closer to biaxial tension than uniaxial 05
tension, and it is also highly inhomogeneous. Both of these
effects can be expected to lower the stress required to open
crack, which could explain why these materials are brittle.
Another unusual feature of the low ideal shear strengths . . ‘ ‘ ‘ ‘
of silicon and germanium is that they are actually lower than 0 01 02 03 04 05 08 07
the estimated Peierls stress. Using a simple Peierls-Nabarro stain
modell” one can obtain an estimated Peierls stress of 7 GPa FIG. 3. Volumes vs shear strain for the three systems.

212103-2



BRIEF REPORTS PHYSICAL REVIEW B 64 212103

mond our calculations suggest a sudden transformation wiknces, Materials Sciences Division of the U.S. Department of
occur at the critical stress to a graphitic structure under botfEnergy, and by the Laboratory Directed Research and Devel-
shear and tensile stress. In silicon and germanium we see tig@@ment Program of Lawrence Berkeley National Laboratory

surprising result that the ideal shear strength is significantiynder the U.S. Department of Energy. Computational re-
P g . . 9 g }gources have been provided by the National Science Foun-
lower than the ideal tensile strength.

dation at the National Center for Supercomputing Applica-
. . tions and by the National Energy Research Scientific
, We WOU!d like -to thank. Professor J. W. Morris for Many computing Center, which is supported by the Office of En-
|ns.|ghtful d|scuss.|ons. This work was supported by Natl_onalergy Research of the U.S. Department of Energy. All Depart-
Science Foundation Grant No. DMR-9520554, by the Direcment of Energy support was under Contract No. DE-ACO03-
tor, Office of Energy Research, Office of Basic Energy Sci-76SF00098.

1Y.G. Gogotsi, A. Kailer, and K.G. Nickel, Natur¢.ondon 401, 9H. Chacham and L. Kleinman, Phys. Rev. L&®, 4904 (2000.

664 (1999. 190 H. Nielsen and R.M. Martin Phys. Rev.3, 3780(1985; 35,
2G.M. Pharr, W.C. Oliver, and D.S. Harding, J. Mater. R&<d129 9308(1987.

(1991). 1D, Roundy, C.R. Krenn, M.L. Cohen, and J.W. Morris, Phys. Rev.
3G.M. Pharr, W.C. Oliver, R.F. Cook, P.D. Kirchner, M.C. Kroll, Lett., 82, 2713(1999.

T.R. Dinger, and D.R. Clarke, J. Mater. R§5.961(1992. 123, 1hm, A. Zunger, and M.L. Cohen, J. Phys1@, 4409(1979.
4D.L. Callahan and J.C. Morris, J. Mater. R&s.1614(1992. 13D M. Ceperley and B.J. Alder, Phys. Rev. Letf, 566 (1980).
5 . .

E.R. Weppelmann, J.S. Field, and M.V. Swain, J. Mater. Res. 143 p pPerdew and A. Zunger, Phys. Rev2® 5048 (1981).
. 830(1993. _ 15\1.L. Cohen, Phys. Scr., T1, 5 (1982.

T. Suzuki and T. Ohmura, Philos. Mag. 7, 1073(1996. 18N. Troullier and J.L. Martins, Phys. Rev. £3, 1993(1991).

7J.S. Williams, Y. Chen, J. Wong-Leung, A. Kerr, and M.V. Swain,
J. Mater. Res14, 2338(1999.

8R.H. Telling, C.J. Pickard, M.C. Payne, and J.E. Field, Phys. Rev,g
Lett. 84, 5160(2000.

7A. M. Kosevich, in Dislocations in Solidsedited by F. R. N.
Nabarro(North-Holland Amsterdam, 1979pp. 37-141.
D. Vanderbilt and S.G. Louie, Phys. Rev.23, 7099(1984).

212103-3



