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Quasiclassical magnetotransport in a random array of antidots
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We study theoretically the magnetoresistangg(B) of a two-dimensional electron gas scattered by a
random ensemble of impenetrable discs in the presence of a long-range correlated random potential. We
believe that this model describes a high-mobility semiconductor heterostructure with a random array of anti-
dots. We show that the interplay of scattering by the two types of disorder generates new behayjoBpf
which is absent for only one kind of disorder. We demonstrate that even a weak long-range disorder becomes
important with increasin®. In particular, although,,(B) vanishes in the limit of larg& when only one type
of disorder is present, we show that it keeps growing with increaBiirgthe antidot array in the presence of
smooth disorder. The reversal of the behaviopgf(B) is due to a mutual destruction of the quasiclassical
localization induced by a strong magnetic field: specifically, the adiabatic localization in the long-range Gauss-
ian disorder is washed out by the scattering on hard discs, whereas the adiabatic drift and related percolation
of cyclotron orbits destroys the localization in the dilute system of hard discs. For intermediate magnetic fields
in a dilute antidot array, we show the existence of a strong negative magnetoresistance, which leads to a
nonmonotonic dependence @f,(B).
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[. INTRODUCTION the lowest Landau level in the fractional quantum Hall re-

In recent years, there has been a revival of interest igime. The strength of the above anomalies depends on the
quasiclassical transport properties of a two-dimensional ratio d/I, whered is the correlation radius of disorddrthe
electron gag2DEG). This has been largely motivated by the mean free path, and grows with increasitigj as a power of
experimental progress in controlled preparation of nanostruaghis parameter. Since quantum corrections are governed by a
tured semiconductor systemand, in particular, by the ex- different small parameter i¢l <1, wherekg is the Fermi
perimental and practical importance of high-mobility hetero-wave vector, it is the long-range correlations of disorder with
structures, in which impurities are separated from the 2DEd>1 that reveal the quasiclassical anomalies. The condi-
by a wide spacer. On the theoretical side, much of the recenion ked> 1 is typically well satisfied in high-mobility semi-
interest in quasiclassics on the nanometer scale has been mnductor heterostructures.
lated to the realization that the classical dynamics in a disor- In this paper, we consider the quasiclassical magne-
dered system is in fact much richer than the idealized Drudéotransport properties of a 2DEG in a random array of anti-
picture suggests. Indeed, as far as ballistic mesoscopic sydets (AD). The transporfdc and far-infraregd properties of
tems are concerned, electron transport has been studied AD arrays, both periodic and random, have been the subject
terms of quasiclassical dynamics in great detalowever,  of many recent experiments, see, e.g., Refs. 6—12 and refer-
in diffusive systems with smooth disorder, a quasiclassicaénces therein. In periodic arraylr a review see Refs. 13
treatment of electron kinetics is also appropriate and haand 14, interest has been focused on geometric resonances
been shown to lead to different transport regimes. To dewhich are associated with the periodicity and result, in par-
scribe the transport properties of such system, one sometimésular, in commensurability peaks in the M&*8 On the
has to completely abandon theories based on the Boltzmaruther hand, random arraysee, e.g., Refs. 19,20,12,9,7 and
equation. In Boltzmann transport theory, formulated in terms) constitute a remarkable disordered system where the AD’s
of a set of relaxation times, quasiclassics leads to the Drudplay the role of hard-wall scatterers. We aim to study the MR
results: analytical behavior of the ac conductivitfyw) at  in random AD arrays and therefore assume that there exist
w—0, zero magnetoresistan¢®lR), etc. It has been dem- two types of disorder: AD’s, which we model as impen-
onstrated, however, that quasiclassioamory effectsne-  etrable hard discs that scatter electrons, and a smooth random
glected in the conventional Boltzmann approach, yield gootential, created in the heterostructures by charged impuri-
wealth of anomalous transport properties of a 2DEG subjedies behind a spacer. The quasiclassical MR in each of the
to long-rangedisorder. In particular, non-Markovian kinetics limits, where only one type of disorder is present, is well
gives rise to a quasiclassical zero-frequency anonisée understood by nowisee Sec. )l The purpose of the paper is
Ref. 3 and references thergim the ac response of a disor- to demonstrate that the interplay of the two types of disorder
dered 2DEG, associated with return processes in the pregields interesting physics that is absent in the limiting cases.
ence of smooth inhomogeneities. Specifically, the returnWe will show that, although in the extreme of a strong mag-
induced correction to Re(w) exhibits a kinkx|w|. Another  netic field B— the dissipative resistivity,,(B) tends to
manifestation of non-Markovian kinetics is a strong positivezeroin either of the limiting cases, divergesin the presence
MR in low magnetic field$, which is able to explaihthe  of both types of disorder. In particular, in the experimentally
otherwise puzzling positive MR observed near half filling of relevant situation of relatively weak long-range disorder, i.e.,
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when the mean free path at zeBds determined by scatter- P (B)
ing on AD’s, the presence of the weak long-range fluctua- 5 (0]
tions will nonetheless become of crucial importance with
increasingB. It is worth noting that our model can also be
applicable to the description of the MR in an unstructured
2DEG with residual interface impurities playing the role of
antidots (large-angle scattering on residual impurities is
known to become important in unstructured samples with a
wide spacer?t~23

The paper is organized as follows. We give a brief review
of past work on the quasiclassical MR in Sec. Il. In the body
of the paper, we first consider in Sec. Il the MR at a mod- 1 (na’y " Is/TR,
erately strongB, when the collision time for scattering on
AD’s is not affected by the magnetic field. Then, in Sec. IV, FIG. 1. Schematic behavior of the magnetoresistigify(B) as
we turn to the limit of strondd, where the collision time is a function ofls/7R. in the Lorentz model. Inset: Rosette orbit of
renormalized as compared to the Drude value and, in than electron bound to a hard diéshown by the shaded cirglen a
extreme of very largd, a single act of scattering involves magnetic field.
“skipping” of cyclotron orbits along the surface of AD’s.
The whole picture turns out to be rather complex and wegrows with increasingd. The conductivity is then due to
choose the following logic of presentation. We fix the zBro- electrons that experience multiple collisions with a scatterer
mean free paths for scattering on AD’s and on the long-rangey moving in “rosette” orbits around itFig. 1) until they hit
disorder and for different values of the densityof AD’s  another scatterer, which results in a diffusive hopping of the
sweep the magnetic field. In Sec. Il we start with the “hy- “rosette states.” At finite concentratiom the Lorentz model
drodynamic limit” of infinite n and then gradually decrease has a metal-insulator transitithf>at R,.~n~ 2 for largerB
n. In Sec. IV we first consider a single act of scattering on arthe dissipative conductivity is strictly zero, as shown in Fig.
AD for large B, then proceed to analyze the stroBgrans- 1.
port in an AD array. We present results of numerical simula-
tions in Sec. V and summarize in Sec. Mhere the quali-

tative behavior ofp,,(B) is illustrated in Fig. 13} B. Long-range disorder
Now let us recall what is known about MR in the case of
II. OUTLINE OF KNOWN RESULTS: LIMITING CASES a smooth(allowing for a quasiclassical treatmgiaussian

(in the sense of statistics of fluctuatiomrendom scalar po-
tential. There are two sources of quasiclassical (M@ con-

We start by briefly recalling the known results for the sider elastic scattering on an isotropic Fermi surface
classical Lorentz model in two dimensiofikard discs of First, note that the MR is strictly zero in Boltzmann
radiusa, randomly placed with a concentrationwe assume theory only in the limit of white-noise disorder, whereas if
that na?<1 and kea>1, so that the mean free patly  disorder is correlated on a finite spatial scal¢he collision-
—3/8na). This is a good model for an AD array in a hetero- integral approximation allows for a finite M&;?° due to a
structure. As was pointed out in Refs. 24 and 25, Drudecyclotron bending of trajectories within this correlation ra-
theory fails completely to describe magnetotransport in thiglius. This simple effect is governed by the parameliR,
system. In the limitn—c, a—0, with |5 held fixed, the [at smallB it yields Ap,,/po~—(d/R)?].

A. Lorentz model

resistivity depends on a single variablg/R., whereR; is Second, there f8VR associated with memory effects and,
the Larmor radius, and readjn units of the zerd resis- to calculate this, one has to go beyond the collision-integral
tivity po, approximation. The memory effects are brought about by
correlations of scattering acts at the points where quasiclas-
Pxx(B) Is sical trajectories self-intersect. These effects give the main
o = (R_c) @ contribution toAp,,/p, at large enougtB, where the gov-

erning parameter id/ 6 with & being a characteristic shift of
with F(0)=1 and F(x>1)=9#/8x<1. In Drude theory, the center of a cyclotron orbit after one revolution. For
the dissipative resistivity is not affected by a magnetic fieldR./d=1 the shift is(see Ref. 30 and references thejein
andF(x)=1 for all x. The nontrivial kinetic problentl) is
in fact fully solvable and the exact expression for the con-
ductivity tensor at arbitrarys/R. can be found in Refs. 25
and 26(see also Refs. 26 and 27 for numerical simulations of
the problen. wherel, is the mean free path in the smooth random poten-
The falloff of p,,=B ™! is related to the peculiarity of the tial (experimentally, |, /d~10°~10* in high-mobility
Lorentz model: at finiteB, there are electrons that move samples According to Ref. 4,Ap,./po~(d/5)3<1. The
freely in steady cyclotron orbits and never hit a scattererreturn-induced contribution becomes much larger than that
those electrons do not contribute fQ, and their density related to the effect ofB on the collision integral at

5~Re(R/)Y% Re=d, @
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p..(B) tron radius, and the characteristic shift, due to scattering on
XX . .
P (0) thg long-range disorder, of the cyclotron orbit after one revo-
lution. Throughout the paper we assudi@>1.
We are interested in strong effects in the behavior of
pxx(B): for 15/l <1, these can only occur iR./Is=<1.
Moreover, for the most part of the pap@ramely, with the
exception of Sec. IV A we consider magnetic fields which
are sufficiently strong in the sense th#td=<1. In this case,
the motion of electrons is characterized by rapid cyclotron
rotation around the guiding center and slow drift of the latter
along equipotential lines of a smooth random potential. Most
: of these lines are closed, which leads to localization of par-
(di )" dIR ticles trapped on them. The effect of scattering by AD’s is to
induce transitions between equipotential contours and, in this

FIG. 2. Schematic behavior of the magnetoresistipity(B) as  ay, allow the localized particles to escape.
a function ofd/R; for a Gaussian smooth random potential.

(8/R.)?<d/é, i.e., atR.<I (d/1)?° The exact expression B. Hydrodynamic fimit

for the MR in the limit (5/R.)?><d/8<1 in a heterostructure ~ Let us first consider the “hydrodynamic limit"r(—o,
with a spaced is* a—0, lg=const). Clearly, in this limit, the effects yielding
the falloff of p,, =B~ [Eq. (1)] are washed out by infinitesi-
Apx(B) _2{(3/2)( d 3 I 9”2 5  mally weak long-range disorder. One might think that then
po  =m \I )R/ ®) the Drude formula works ang,,(B)/py=1 for all B. In fact,

Thi tion i lid with i . tic field i however, this is not true and even a smajJ/(, <1) amount
IS équation IS valld with increasing magnetic Neld up 10 ¢ maoth disorder becomes a relevant perturbation with in-
d/6~1, where Ap,,(B)/pg becomes of order unity. At

. . o . reasingB. In , in the limit of lar namely, ford
higher fields, whens/d<1, Fhe strong posmv_e MR IS fol- ;i?s tﬁqe proc:)eleei cart1 Ee mta;c))pe?j gcﬁt(() <rtjlhate zf gdv{:cl:tion—
E).\%ed by a shargexponential falloff of py with growing  igqsjon transport! i.e., of a Brownian motion with a dif-
: fusion coefficientD, in a spatially random velocity field
D d\23 v(r) (“steady flow”) with V-v=0 (“incompressible fluid”.
In(—) ~ —(— , (4) In this mapping, the field(r) describes the adiabatic drift of
Po J guiding centers of cyclotron orbits due to long-range inho-
which is due to the increasing adiabaticity of the electronmogeneities an®,~ Rglfs, whererg is the momentum re-
dynamics and the related quasiclassical localizafiGiiThe  laxation time for scattering on AD’s. The result for the effec-
self-intersection induced MR, given by E@), may be con- tive (macroscopit diffusion coefficientD in the advection-
sidered as a precursor of the adiabatic localization. In theliffusion probleni® is
limit of large B, whenR./d becomes small§ is given by

D~Dy(vad/Dg)** (6)

2 1/2
O=R/(AI)T Re=d. ®) if vgd=Dy andD =D, otherwise. Here 4 is a characteristic
The nonmonotonic behavidB) and (4) of the MR in the amplitude of the fluctuations of(r) [see Eqs(11) and(12)
case of a purely Gaussian long-range random potential ibelow]. Hence the conductivity will be strongly enhanced by
illustrated in Fig. 2. even a weak long-range disorder provided/Dy>1. Since
To conclude the brief overview, it is worth noting that in this parameter is a growing function @&, the effect of
the limit of weak inhomogeneities the return-induced MR smooth disorder is amplified by the magnetic field. The rea-
depends in an essential way on the behavior of the disordeson is percolation of cyclotron orbits through long-range in-
under time reversal. In particular, it is strongly enhanced irhomogeneities: the percolation-dominatedcan be written

the case of a random magnetic fiéld. as a producb 4w, wherew<d is a characteristic width of
links of the percolation network. The equatiomw

IIl. EFFECT OF CYCLOTRON DRIFT ON TRANSPORT IN ~d(Dg/v4d)**? in the advection-diffusion problem comes

ANTIDOT ARRAYS from the condition of connectivity of the network

w2y 4/L(w)~Dg, where
A. Parameters of the problem

/
We now turn to the MR in the presence of both a random L(w)~d(d/w)"? @)
array of hard discs and long-range Gaussian disorder, whicl a typical length of the network link Note that the size
we characterize by the mean free paths at zero magnetic fielf\) of the elementary cell of the percolation netwdile.,

Isandl,, respectively. We assume thafl <1, which de- 3 characteristic end-to-end distance for the link of length
scribes a typical experimental situation. As in Secnlill L(w)] scales a¥

denote the concentration of AD’a,their radiusd the corre-
lation length of the smooth random potentiRl, the cyclo- E(w)~d(d/w)*3, 8
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Although the advection-diffusion model has become
popular for the description of transport in the higHimit (in
particular, in the quantum Hall regirffe® we should be
careful to check if the scattering on AD’s can actually be
described in this model in terms of the diffusion coefficient
Dy. Clearly, this requires thatv be larger than a hopping
length for the diffusion process, which meams-R.. While
this condition is satisfied in the extreme of larBea non-
trivial transport regime may occur with increasiig) in
which D>D, but w<R, (as we will see below, this is the
case if the long-range disorder is not too wedk this re-
gime, the main contribution t® comes from electrons that ' ' '
move freely along the critical links: the “ballistic” motion p'“3 1 p3”0 d/R,
along the percolating path is contrasted with the transverse
(across the drift trajectojy diffusion in the advection- P (B)
diffusion regime. In other words, the number of collisions m
with AD’s during the drift along a critical link of the perco-
lation network is now of order unity. As in the advection-
diffusion regime, the number of passages of the network link b)

between two consecutive changes of critical cells is also of 10113
order unity. It follows thatw obeys the simple scaling
L(w)~vqy7g, SO that the result fob ~v 4w is ;

D~vqd(d/vgrse)®”, 9 p diR.

which should be compared, as in the advection-diffusion F|G. 3. Schematic behavior of the magnetoresistipity(B) as
problem, withD: Eq. (9) is valid whenD=Dy. Note thatin  a function ofd/R; in the hydrodynamic limitn—o, a—0, Ig
this new regimeD does not contain the hopping length, =const for(a) p=Is/\dl >1 and(b) p<1. The numbers denote
which may be even larger thah the exponent of the power-law dependenceg{B).

We are now prepared to calculate the MR. The chaotic
scattering on the long-range potential crosses over into thAs a result, the behavior of the MR as a functionBotle-

adiabatic drift with increasin@ at R, of order pends, ata—0, on the single parametg; so that we can
write

Re=d(I_/d)*? 10
C ( L ) ( ) pXX(B) _f i
where 5/d becomes of order unitjcf. Egs.(3) and (4)]. At po RC’p '

this field, the MR is still weak and transport is completel . .
P P y Notice that even though we consider the chse <1, the

determined by scattering on AD’s, whereas at larBewe . : .
can already use the high-field formuld@ and(9) and write para;neterz/:’nay be large since the long-range disorder is
weak, i.e.,d/l <1.

pxx(B)/po=D/Dg. The characteristic drift velocity that . .
should be substituted into Eq&) and (9) reads(see, e.g., At p>1, the MR remains small, i.ef(x,p)=1, for all

(14

Ref. 30: x<p~ Y3 On the upper boundary of this interval, the perco-
I lation starts to renormaliz® in accordance with Eq(9),
R d which yields a power-law growth gi,,(B) with further in-
c )
V=V~ S| 5|+ 11 creasingB:
U (A1) (Rc) 1
f(x,p)~(px®)*¥,  p~PB<x<1; (15)
wherev ¢ is the Fermi velocity and the functi®s{x) is given
by ( pX5/2)4/7, 1<x<< p3/10' (16)
X2 y<1 The scaling behavior changes between EfS) and (16) at
s(x)~[ ' (120  x~1 because of the change in the dependenag;@in B at
1, x>1. R./d~1. At still larger B, D obeys Eq.(6), which gives
Which of Egs.(6) and (9) should be used depends on the f(x,p)~(px)013  p3lo<cy. (17)

ratiow/R., as explained above. Remarkably, the r&id

for both Eqgs.(6) and (9) depends only on two variables, Equations(15)—(17) are illustrated in Fig. @).
=d/R, andv47rs/d=px~1s(x), where At p<1, the range ofk where the enhancement of the

conductivity is described by Eq9) shrinks away, so that

f(x,p)=1 for all x<p~ ! and behaves according to H47)
(13 at largerx [see Fig. 8)]. This establishes the meaning of the

parametep: if p<<1, the Drude regime does not match with

s

p:

g
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increasingB the advection-diffusion regiméb) directly, but
through the intermediate “one-hop” regini@), whereas ifp

is large, this intermediate phase is absent. Equdfi@htells
us thatp,,(B)* B3 at B—. The divergence takes place
whatever the ratidg/l, , even if the long-range disorder is
weak and does not play a roleBt0. This behavior differs
drastically from that given by either of Eg€l) and (4).

C. Finite density of antidots

So far, in Eqs(14)—(17), the scattering on AD’s has been
characterized bys only, through the single parametefEq.
(23], which implies the hydrodynamic limit—«, a—0.
Now we take into account finite-effects. We begin as be-
fore with the case of largp. Additional relevant dimension- FIG. 4. A cartoon picture of scattering of a cyclotron orbit on an
less parameters appear, in particufeR.d. Also, since for a  antidot ata<o<d< R.<(nd) 1. The position of the antidot is
fixed | s decreasingy means increasing, the parametes/a ~ Shown by a cross at the intersection of the rifigaliusR., char-
may become relevant, in which case the scattering on ADasacterlstlc Wldthd).WhICh represent the area “F:overed" by t.hfe drift-
will be affected by the magnetic field in an essential way and"d cyclotron orbit. The arrows denote hopping of the guiding cen-
the collision time will not be given by. We will consider ter qf the ogblt between erﬁ tr.ajectc.)rles shown by small loops.
cfcts govered by the parametd n Sec. V. Unil hen, PSS, e vl v el ek sy o e
let us assume thai/a is sufﬂqently large, so that_th|s P& 1o latter.
rameter plays no role for typical electron trajectories.

Clearly, if 5/a>1, stable rosette staté<® are still de- _ o .
stroyed by the scattering on the long-range potential. Na-_ Rc: one can wsyahze th|s.process asa random hopping of
ively, one could think that scattering on AD’s is then chaoticthe center of the ring on f‘ Q'rdf of radifg arounq the AD
(no trace of the rosette-state dynamiesid Eqs.(14)—(17) (see Fig. 4.~The electron “sticks” to the AD for a time much
apply. In actual fact, providedR.d<1, multiple collisions longer thanrs. This somewhat intricate dynamics of “hop-
with the same AD do occur even féfa>1, as we will see PiNg rings” reminds one of the evolution of the rosette
below. At largep, the former condition is satisfied with in- States:**in effect it is the adiabatic localization in the long-
creasingB before 5/a gets small. Multiple returns in a dense range potential that preserves the character of the rosette-
AD array become possible because of the adiabatic localiz&tate dynamics. A breakup will eventually happen when the
tion, which develops ad/d=<1. electron picks up a very rare ring containing two Alltke

Let us start by considering the drift regime under the con£xistence of such rings in the arBax R, implies thatnRZ
dition nR.d<1, R./d>1. Typical trajectories of guiding >1, which we assume in this derivatiorit is straightfor-
centers are closed loops of sized, which means that tra- Ward to check that the number of scatterings on a given AD
jectories of electrons circling along cyclotron orbits arebefore getting to another one is1/nR.d>1. Multiplying
bound to within thin rings of width~d and radiusR.. The  the latter byrs, we find that the time it takes the electron to
area of a strip between the inner and outer radii of the ringghange AD’s(separated by a distaneeR;) is ~ 75, which
is ~R.d and, ifnR.d<1, in most rings there are no AD’s. vyields the diffusion coefficient of electrons participating in
Electrons in these rings are adiabatically localized and dehis type of transport~D,, the same as in Drude theory.
not, in the adiabatic approximation, contributestg(B) (we  These electrons, however, represent a small fraction of the
will consider the possibility of nonadiabatic decay of thesetotal number of electrons, nametynR.d. Hence the contri-
states in Sec. lll E There are, however, rare rings with a bution to the macroscopic diffusion coefficient from drift or-
single AD. For electrons in these rings, a typical timg  bits of a characteristic sizetis ~DonR.d<D,,.
between collisions with AD’s is much shorter thag. In- Having obtained the contribution of typical trajectories of
deed, the number of cyclotron revolutions before returning tésize d, we should take into account that upon hitting an AD
the region of sizeS around the AD is typically/ 8, while the  the particle may hop onto a drift trajectory of siZdarger
probability of hitting the AD during one such sweep is thand. To put it another way, although most trajectories with
~alé. It follows that the number of cyclotron revolutions £ in the intervald<¢<(nR;) ! are adiabatically localized,

before the electron hits the AD isd/a, i.e., some of them hit AD’s and mix with the short-scale trajec-
tories of sized considered above. This mixing increases the
- total fraction of delocalized trajectories. To calculate the lat-
s~ Rd/vea, (18 - : X
ter, note that the probability densiB(&) for a point to be-
which givesrg/rs~nR.d<1. long to a drift trajectory of siz&€=d (we defineé as a

NOW, a Sing'e collision with an AD does not lead to a characteristic radius of the area to within which the trajectory

breakaway from the AD. In fact, the electron experienceds bounded scales as
multiple collisions with a single AD and each time the center
of the ring in which the electron is circling hops a distance P(&)~d/ €. (19
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No critical exponents are involved here. One way to get a p..(B)
quick proof of this is to realize that, according to percolation pxx(o)
theory, for zero altitude on a relief map of a random land- >
scape, the number of contours of radius the areaé X ¢ is a)
of order unity. It follows that theintegrated over the alti-
tude fraction of space occupied by contours of siz€ is

~Lw/&2~d/ &, where we used Eq$7) and(8), which yields 1217
Eqg. (19). Thus the fraction of trajectories that are delocalized | 5B
due to collisions with AD’s is evaluated by integration

de°0|§ P(&)min{nR.£, 1 ~nR.d In(1nR.d),  (20)

] ) » ) ] nd’ dR ¢y P_m d/IR .
which gives merely an additional logarithmic factor. One

sees that the characterisies(nR,) ~* are within the limits p..(B)

of applicability of the derivationé<R. (trajectories with pxx(o)

larger ¢ give rise to a percolative contribution g, consid- e
ered in Sec. Il B. Notice that drift trajectories that do not
hit AD’s may be infinitely extended only with zero measure
and thus do not contribute ©. Accordingly,D is evaluated

as a diffusion coefficient of electrons delocalized by the scat-
tering on AD’s. Since the releva@i<R., the characteristic
hopping length associated with the change of AD’s by these
electrons isR.. The characteristic rate of hopping between
two different AD’s is given byn(dS/dt), where (9S/dt)
~[dEP(O[A(E)74(£)] is the average rate at which the
area explored by the particle stuck to an AD grows in time.
Here

nd2 (ndZ)I/Z p—]/j’ d/RC

FIG. 5. Schematic behavior @f,(B) as a function ofi/R, for
~ intermediate magnetic fields at largeand @/1,)**<nd?<p~?3
7s(§)~75(d)¢/d @D o (@ d/R.y<(nd?)¥2 and (b) d/R.,>(nd?)¥2. The position of

T } : ; ; : th ini f B) i i i by d/R
[with 7<(d) defined in Eq.(18)] is the time the particle re- N';, 421%??2‘:;?1 /n?:lzpfl)/)%(ngg. Dlre]cre(:)sin; leagé‘;et'; theynonmgr:o_
sides on a trajectory of Slzg.before being Scattered. out l:_)y tonic dependence gf,(B) (cf. Fig. 3, wheren—). The dashed
the same AD, antA(§)~RC~§ is the area probed during this line in (b) shows thexlgehavior quX(B’) given by Eq.(23).
time. These expressions fag(¢) and A(§) are valid foré
<d(s/a)*?, whereas at largef the particle is scattered out | . ) "
before it comes full circle around the closed trajectory and”;]‘_)“ﬁ'ttlg assumle?_ that ttmbret' exists a Irlan%ﬁ B)f‘t"r’]'”t"”_
both quantities do not depend @nWe see that\(£)/7(£) which the percolative contribution is smaller than that given

: h by Eqg. (22). Indeed, since the percolative MR grows with
does not depend oé and thus(dS/dt)~vea is determined . ) .
by é~d. It f?)llowso?hat the ﬁopping rat(Fe does not ChangemcreasmgB (see Fig. 3 n should be small enough for the

with the inclusion of long trajectories and is given by . B~ *In B falloff not to be masked by the percolation. Let us

Accordingly, the diffusion coefficient of delocalized particles fﬁrmdulate :jhe condition f(;r the existence of tr:e minimum in
is ~Dg. We finally get for the macroscopic diffusion coeffi- the dependence gf,,(B) for p>1. If one neglectsas ev-

cientD~DonR.d In(1/nR.d), or, for the MR: erywhere in this sectigrthe nonadiabatic decay of drift tra-
o jectories, the condition isd?><p~ %2, as can be seen from

pxx(B) 1 Fig. 5@. By matching Eqs(22) and (15) we find that the

P ~nRcd |nm- (22 minimum  occurs at R.~R.,, Where d/Ry,

~p Y nd?In(1ind?p*3)]17*°. We will show in Sec. Il E,
We thus see that, despit#a>1, the resistivity is strongly by taking the nonadiabatic decay into account, that the con-
suppressed as compared to the Drude resulRatl<1. We  dition for the existence of the minimum actually reads
will return to this regime in Sec. IV E, where we will show maxnd?,(d/l,)¥3<p~*3 which means that Fig. (8 cor-
that the actual condition for Eq22) to be valid isé/a  rectly describes the MR ifd/l,)¥3<nd?.

>(nR.d) %4 whereas at smaller §/a, 1<é/a To conclude this section, note that the interval of validity
<(nR.d) %4 a slight modification, namely in the logarith- of Eq. (22) shrinks to zero ifR,/d<1 and therefore the
mic factor in Eq.(22), is necessary. above considerations describe the behavior of the MR only

The falloff of the MR described by Eq22) is illustrated  for nd?><1. According to Fig. 5, for largg the nonmono-
in Fig. 5@). Shown here is also the percolative growth of tonic behavior ofp,.(B) develops fomd?<1. In the case of
pxx(B) into which the falloff crosses over at sufficiently smallp the picture is similar but the parame#®ma becomes
largeB. As is clear from Fig. &), in the above derivation we relevant, which will be considered in Sec. IV.
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D. Metal-insulator transition

As noted above, the validity of the derivation of Eg2)
requires than Rﬁ»l. This condition appears already in the

Lorentz model: if the opposite inequality is satisfied, the sys
tem without long-range inhomogeneities would be insulatind
(pxx=0). In the presence of long-range disorder, the perco-

lation mechanism of transport preventg, from vanishing
even at smalhR?. However, the parameterR? determines
the interval ofB where the nontrivial mechanism of diffusion
that leads to Eq(22) is operative, namely €nR2<R./d.

At nR2<1, this mechanism is switched off in a manner in-

PHYSICAL REVIEW B34 205306

diabatic transitions depends exponentially on the parameter
d/ 6 and is therefore locally a wildly fluctuating quantity, we
should be more specific here: we defidg, through a typi-

cal timed?/D,,, that it takes to change two typical drift tra-
ectories of size~d separated by a distanced (for thus
defined diffusion coefficient I, scales ag/ s, see, e.g.,
Refs. 30 and 5 If nR.d<1, a particle which initially resides

on a ring with no AD will reach a ring containing one in a
time

Tha~ (d?/Dpa)/NR.M. (24)

herent in a continuous phase transition by formation of disThen there are two possibilities. #;<d?/D ,, [with 75 de-

connected clusters of trajectories, very much similar to th
metal-insulator transition in the Lorentz modéf® Hence
the “short scale”(as opposed to the percolatjivBIR [Eq.
(22)] behaves near the transition according to

’
where G(x)~x' vanishes as a power law at-0 on the
conducting side. The critical poifd= B, corresponds to the
critical concentration n=n,~R_ 2. This behavior of
pxx(B) is shown in Fig. B). Comparing Figs. & and §b),
we see that the critical falloff23) is not masked by the
percolation provided (d?)Y?<d/R.,. If this condition is
satisfied, the minimum in the dependencepgf(B) occurs
atnRe~1.

We conjecture that the exponenin the functionG(x)
can be found by mapping the problem of percolation of skip

c

Bc

pxx(B) _

(nd?)2 In%G( (23

dined by Eqg.(18)], the particle will hit this AD, so that col-
lisions with different AD’s will occur at a rate- 7, which
yields a contribution to the macroscopic diffusion coefficient

D~R%/7,,~DoDpnats/d?, ie.,

DnaRc
0 v,:da ’

~ (25)
Note thatD in this regime is proportional to a product of two
diffusion coefficients,D, and D,,. If, by contrast, 75
>d?/D,,, the particle will miss this AD and will go on
exploring phase space in a chaotic way, which gies
=D,. Sinced?/D,,, at R,~R. is of the order of the cyclo-
tron frequency /R, , the crossover between these two re-
gimes takes place with increasiBgvhenR.<R., (logarith-
mically) deep in the drift regime. Hence, if~Rcd<1, the
_honadiabatic decay of drift trajectories stretches the region of

ping cyclotron orbits onto that of percolation of the electrica chaotic diffusion to the point at WhiCﬁ)na~Ts/d2~1,
current through an ensemble of conducting circles of radiugvhich occurs atd/R; only logarithmically larger than

R. scattered randomly with the density(note that two ro-
sette orbits of radius R, do not mix with each other if the
distance between the centers of the rosettes excelgds 2

(d/1)*3. At largerB, the resistivity starts to fall off sharply,

according to Eq.(25), until D,.7s/d?> becomes of order
nR.d In(1/nR.d), where this exponential behavior crosses

The latter problem belongs to the universality class of a two-over into the power-law falloff described by E2). The

dimensional percolation with a finite threshold, for which
many critical exponents are knowgee, e.g., Ref. 35; it is

worth noting that the percolation of drift trajectories consid-

ered above does not belong to this cjass particular, the

fraction of space occupied by the infinite cluster of con-

nected circles vanishes near the thresholdresr(.)? with

B=0.14, whereas the conductivity through the infinite clus-

characteristic features in the behaviormf(B) at p>1 as-
sociated with the nonadiabatic decay of drift trajectories are
illustrated in Fig. 6 for the range d which corresponds to
the falloff of p,(B) in Figs. §a) and (b). At the point
d/R.~(d/1 )Y shown in Fig. 6, the adiabatic localization
starts to develop.

Comparing Figs. &), (b), and 6 one can formulate the

ter exhibits a power-law behavior with the critical exponentcondition for the existence of the dip in the dependence of

t~1.2.

E. Nonadiabatic decay
In Sec. lll C, we inferred thé~1In B falloff of p,,(B)
[Eq. (22)] by assuming that the drift picture is applicable in
the whole rangenR.d<1. This is legitimate ifnR.d>1,

whereR, is defined in Eq(10). Otherwise the Drude value
of pyx=po holds with increasind® up to the field where the

the MR onB for p>1. If nd®>(d/I)*®, the dip exists in the
case ofnd?p3<1, as in Figs. &) and (b). If, by contrast,
nd?<(d/1. )Y the nonmonotonic behavior jn,(B) shows

up fordp/l <1. Figure 6 illustrates the behavior pf,(B)

in the case when the adiabaticity of motion in the long-range
potential starts with increasirgwell before the crossover to
the percolative growth ofp,,(B). This is the case at
(d/1)YP<min{d/R;m,(ndP)Y2. It is clear, however, that the
above considerations of the nonadiabatic decay are equally

adiabatic dynamics starts and there is an exponentially fastalid for the case when the opposite inequality is satisfied.

crossover betweep,,= po andp,, given by Eq.(22), which
is governed by the nonadiabatic scattering.
Let D,, be the diffusion coefficient across drift trajecto-

The only difference is that, ifd/l, ) Y*>min{d/Ry,,(nd?)*/2,
the exponential falloff op,,(B) crosses over into the perco-
lative growth directly, without passing through the interme-

ries due to their nonadiabatic mixing. Since the rate of nonadiate B~ !In B regime.

205306-7



D. G. POLYAKOV, F. EVERS, A. D. MIRLIN, AND P. WQFLE

P (B)
Py (0)
\\‘ exp (— const. x Bm)
\\ k .
BB
nd®  (di)"” diR

FIG. 6. Schematic representation of the behaviopg{B) at
nd?<(d/1)¥3<p~Y3<1 for moderately strong® which corre-
spond to the falloff op,,(B) in Figs. 5a) and(b). The thick dashed
line showsp,,(B) without taking the nonadiabatic decay of drift
trajectories into account. Provided?<(d/I, )3, the nonadiabatic
transitions stretch the range 8fwhere p,,(B)=po. Beyond this
range, p,(B) falls off exponentially with increasin® until this
falloff crosses over into th&~In B behavior.

IV. STRONG MAGNETIC FIELD: RENORMALIZATION
OF THE COLLISION TIME

Now let us turn to the extreme of strorig) where the
parameters/a becomes relevant. As will be shown below,
the effect of smalls/a is twofold. First, the timerg between
collisions with two different AD’s for particles drifting along
percolative trajectorieswhich is 75 at large enoughd/a,
how large—see belowgets longer. Second, a typical hop-

ping lengthRy, across the drift trajectory due to the scattering

on an AD (which is R. at 6/a>1) gets smaller. Therefore
before calculating the MR at smadfa we have to consider
how the elementary scattering acts are modified. Below, Se
IV A deals with the scattering timeg, Secs. IV B and IV C
with the hopping lengtiR,,. Section IV D studies the MR for
small é/a.

A. Effective scattering time

Let us start by considering the cadta<1. To find 7g,
notice that até/a<1 the length of the drift trajectory be-
tween collisionds~v 475 cannot depend oa, i.e., only the
concentrationn matters. In the simplest cade.<d, the
lengthL s clearly obeys the equation

nLsR.~1, (26)

which is rewritten as
(27)

At R.>d, however, there are different regimes fat.
Namely, Eq.(27) is valid for g at R.:>d only as long as

75~ 75l 8.

PHYSICAL REVIEW B 64 205306

lating trajectoryLg and the distance&g from the starting
point are related to each other By~ d(Ls/d)*’ [see Egs.
(7) and(8)], i.e.,

§s~d(0d7é/d)4/7-

It follows that the cyclotron orbit passes many times through
the same spatial regions, which increases the tifpeLet
first Ls>d but é5<R; [i.e., d<Lg<d(R./d)". In this re-
gime, &g [in contrast toL g in Eq. (26)] is of order (R,) ~*:

(28)

nésR.~1, (29
which gives
, a 1
TSN 7'53 W . (30)

Now let £s>R.. To find 75 in this limit, one should solve
the following auxiliary problem. Collect all closed equipo-
tential contours of size of ordefs>d within the areaég

X &s. They form a “bundle” of width

ws~d(d/v 5% ~d(d/£g) %4 (31

The characteristic area covered by this bundleS{svs)
~Lgwg< gé. Now enlarge the area by adding all points that
are within a distancé =wg of the initial bundle. Doing so
we get a new bundle that occupies an a&4). The ques-
tion is what is S(A) at A~R, for (>R >d. Clearly,
S(A)~LgA as long asA=<d. However, atA>d, the area
should exhibit a scaling behavi®(A)~Lsd(A/d)* with a
nontrivial exponentx. To find x, notice that atA~ &5 we
should haveS(ég)~ £3. Using the equatioh. s~ d(£g/d) "
we thus getx=1/4. It follows that the are&(R;) scales at
gzc>d as Lgd(R./d)¥* [which can be represented as
#4(R./£9)Y* to see that most of space within the arga

X &g is left emptyl. Sinced<a, it is clear that if there is an
AD in this area, it will be inevitably hit by the cyclotron
orbit. Therefore the lengthg obeys the equation

which yieldsLs~(nR;) “*(R./d)** and
a RC 3/4
555 g (33

We see that Eqs(30) and (33) match each other aR,
~n~Y2>d. On the other hand, Eq&27) and (33) match at
R.~d.

The above derivation of§ at §/a<1 shows that the in-
crease of the scattering time as compared to the “Drude
time” 75 is due to multiple passages of the cyclotron orbit
through the areaXa. Clearly, atR./d<1 no renormaliza-
tion of the scattering time occurs as long &@s>1. How-
ever, forR./d>1 the scattering time is renormalized with

Ls<<d, i.e., when the drift trajectory between two collisions increasingB already at somé/a>1. Indeed, lets/a>1 and
can be approximated as a straight lineL¢&>d, which is the  consider the caseg>d, és<R.. The drifting cyclotron or-
case anR.d<1, the trajectory exhibits fractal dimensional- bit experienced s/¢s>1 returns to the aredxd and each
ity on the scale oL 5. Specifically, the length of the perco- time it probes the fractioa/d<1 of space within this area.
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One sees that if the product of the two factoitsg{és)

X(al8)>1, then the collision time is much larger than the T/
Drude time rg and obeys Eq(29), which yields Eq.(30). (iv)
Therefore it is only whens/a>(nR.d) %1 that 7 a) i
=r71g. Similarly, if (£s>R., Eq. (33 is valid for all é/a )

=(R./d)%4

Inspection of Eqgs.(27), (30), and (33) shows that the
dependence ofg/ 75 on B is parametrized by two param-
eters. In addition t@ [Eq. (13)], it is convenient to introduce
the parameter

(i)

M

n=nd?p, (34)

which can be rewritten ag,d/era, whereV, is a character-
istic amplitude of fluctuations of the long-range potentéigl,

the Fermi energy. The meaning of this parameter is that it
describes the position of the crossowa~1 in terms of T3/ Ts

the ratiod/R;. Specifically, if p<<1, the crossover occurs at (iii)
d/R.~ 7?"® whereas ify>1, atd/R,~ 2 Note that the b) 2
crossover point atp>1 corresponds toR.>a [namely
R./a~(dl_/a?)*4, however largey is. We thus have

diR,

(i)
’ 3/4
TS d M
—=h<R—,p,n). (35 ®
Ts C 9/4
; ; 3/4
By changing» with p held constant, we change the concen- !
trationn at a fixed mean free patl. In Sec. lll B, we have
already studied the limity—oo: in that case the scattering 1 diR.
time is not renormalized, so thaf/7s=1 for all B indepen-
dently pfp. However_, Eqs(27), (30).’ a.nd(33) tell us t_hat at log-log scale for(a) p<1 and(b) p>1. The numbers denote the
any finite 77 there exists a magnetic field above whiedi 7 exponent of the power-law dependencemgf 5 on B. Different

starts to grow with increasin@. The functionh(x,p,7)  curves in(a) illustrate how the dependence /7 on B for a fixed

FIG. 7. Schematic behavior ef/ 75 as a function ofi/R; on a

which describes this growth reads p is modified in different ranges of: (i) >1; (i) p<n<1; (iii)
H pi<p<p; (iv) <p° Similarly in (b): () 7>1; (i) p~¥<y
(x,p,7) <1; (i) p<p %5 The dashed line i@ shows the behavior of

74/ 75 for 1 so small that the renormalization ef/rg starts with
increasingB already in the diffusive regimésee the texjt

( X277_1, x>max{ 771/2’1};
X251, pR<x<min{pp~tL, pi<p<l;: regim_es[smaller and Iarged/RC respec@ively, see Eq10)].
034 — 714 1 o1 o1/ Equations(35) and (36) describe the drift regime. However,
xMp¥y =T ma{ pp~t n™p P <x< V17, i in Fi i
_ as illustrated in Fig. (@) by the uppermostdashed curve, if
n<min{p,p~%%}; the concentratiom is sufficiently low, the collision time is
34 -1 43 12 —1/ renormalized already in the diffusive regime. Indeed, for
X ma <x<1 e .
K X7 _'77 P~ ’ smalln, ¢/ 7 calculated for drifting electrons will be large
| n<min{p,1}. at the crossover point to the diffusive regime. A similar effect

(36)  takes place for largp as well[not shown in Fig. ®)]. In the
diffusive regime,rg/ 75 is still given by Eq.(29), the only
The behavior ofrg/ s given by Egs.(35 and (36) is  difference is that now in place of ER8) one should take
illustrated in Fig. 7. One sees that in the limit of laBehe
collision time grows a8?, whatever the parametepsand 7.
If »>1, which corresponds to a sufficiently large concentra- és~ S(veTgR)Y?, (37)
tion of AD’s, this B?> growth matches the Drude result di-
rectly [curves labeled byi) in Figs. 1a) and(b)]. In a more
dilute array of AD’s, there appear intermediate regimes
which proliferate asy is decreasedicurves(ii)—(iv)]. Note
that the smallem for a givenp, the sooner the renormaliza-
tion of g starts with increasing. |
In Fig. 7(a), we marked the point/R.~ (d/I ) which i~ T ——5—,
corresponds to the crossover between the diffusion and drift Is (NRY)?

which describes the diffusive motion of the cyclotron orbit.
Substituting this expression fdx in Eq. (29) yields

1
(38)
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i.e., the collision time starts to grow &8¢ before entering the P, (B)
drift regime, as shown in Fig.(@ by the dashed line. In the P..(0)
diffusive regime, p,(B) is related torg by p,(B)/po @

~ 75/ 75, which gives

B) |
PolB) s poyz (39 B
Po I (i)
As follows from Eq.(38), the crossover to thB* behavior Is (i)
with increasingB occurs at I
1/3
d/RC~(nd2)l’2(I 5/' L)l/4- (40) (d/lL) d/RC

. . 13 FIG. 8. Schematic behavior @f,(B) as a function od/R. in
Comparing Eq.(40) with (d/l,) ™ we conclude that the the diffusive regimed/R.<(d/I )Y3. Different curves illustrate the

crossover to the drift regime takes place at larBaf nd? dependence op,(B) on B in different ranges ofn: (i) nd?
<(d/||_)2/3(||_/|5)1/2. |f, however, the concentratiamis hlgh >(d/| )2/3(| /1 )i/XZ (“) (d/l )2’3<nd2<(dll )2/3(| /|s')112. (III)
enough, so that the opposite inequality is met, the region otf]d2<(Ld,|L)zL/3_ s t - t '
validity of Egs.(38) and(39) shrinks away and no renormal-

ization of 75 occurs in the diffusive regime. will strongly affect also the short-scale dynamics of electrons

Note a sharp change in the behaviorrgfs at the cross-  residing on typical trajectories of sizk which will be con-
over between the drift and diffusion regimdsg. 7@]. The  sjdered in Sec. IV E.

mismatch is due to the difference in the fractal dimensional- Now let us return to the diffusive regime. Clearly, Eq.
ity of extended trajectories in the two regimes: self—avoiding(38) is only valid as long asr4<l, , which is rewritten as
drift trajectories percolate in a superdiffusive way and there—n R§>1. If the opposite limit nR§<1 is realized with in-
fore explore the area faster. The sharp crossover has the for&]easingB still in the diffusive’ regime[’vvhich is the case for
of an exponential falloff ofrg/ 75, governed by rapidly de- a very dilute array of AD's, namely fond?<(d/I)23, in
veloping adiabaticity of electron motion. If one compares they,is |imit the scattering on AD’s stops playing any role for

times 75 obtained for the twc(diffusionlgnd drifi regimes  giffusive electrons. The collision time is then given by ¢
close to the crossover poidfR.~ (d/l| ), one can see that gng

for small n, namely fornd?<(d/1)®(1_/1g9)*", the ratio
7-’5/7-S>_1 on b_oth sides. The das_hed line in Figa)7illus- P B) po=1s/l, (41)
trates just this case. It is possible, however, thatalls
into the intermediate range df{l )%"(I /Ig)*"<nd? does not depend oB, whereasrg/ 75 keeps growing with
<(d/|L)2/3(|L/IS)l/21 in which Case;—'s changes with increas- increasingB. Yet, the scattering on AD’s will become rel-
ing B in the following way: it first starts to grow in the €vant again with further increasing, once the system
diffusive regime, then, after the crossover into the drift re-Crosses over into the drift regimevhere the scattering on
gime, returns to the unrenormalized Vah:@ and on|y with AD’s will prevent the adiabatic localization from Completely
further increasingd begins to grow again. suppressing the MR, as explained abovéis behavior cor-

At this point it is worth emphasizing once more that, responds to the case when the crossover to the diffusive re-
while in the diffusion regime all electrons behave in a similargime with decreasin@ occurs not in the region (39/4 be-
way and 74 given by Eq.(38) is characteristic to all elec- havior, as shown in Fig. (@, but in theB%* region. The
trons, upon crossover into the drift regime the electrons fin@verall behavior of the MR in the diffusive regime is illus-
themselves divided into different groups, characterized byrated in F!g. 8.. We con3|der.the effgct of the renormalization
different collision timesthe groups are mixed up only due to Of 7s for diffusive electrons in detail elsewhefe.
slow nonadiabatic dynamigsSpecifically, 75 in Eq. (30) is As mentioned above, another effect of sméll is a
the collision time for electrons that move along extended®normalization of the hopping length for the diffusive dy-
(percolative drift trajectories. This time is renormalized Namics across the drift trajectory due to the scattering on
even fors>a. On the other hand, electrons that upon cross2AP’S: which we will consider in more detail below. Since
over to the drift regime find themselves on typical drift tra- P0th the effective scattering time and the hopping length are
jectories of size~d either do not collide with AD's at all, Now modified, the shape of the MR is no longer parametrized
and for them the collision time is infinit@ctually, provided by a single parameter. Specifically, we can replade Eq.
they experience nonadiabatic transitions, the collision time i§14) by @ new functiorg which is given by
finite but exponentially large, as shown in Sec. I)| Br are
characterized by the unrenormalized collision timge(at
>a), as explained in Sec. Ill C. Hence the renormalization
of the collision time that we have analyzed in this section
will affect the percolative contribution to the MR, which we in the “one-hop” regime[cf. Egs.(15) and (16)], while in
will study in Sec. IV D. Foré<a, the renormalization ofs  the advection-diffusion regimief. Eq. (17)] we now have

wxm~§{xp5» (42
TS TS
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FIG. 9. Geometry of scattering of a skipping cyclotron orbit on
an antidot: 6 is the angle of incidencep the polar angle of the
point at which the collision occurs} the incremental increase of
the angle¢ between two consecutive collisions.

R 6/13 ,7.’
Re 7s

A crossover between the two regimes occurs vgtsg
~L(Ry), whereL (w) is defined in Eq(7). The ratiory/ 75 is
given by Eqgs(35) and(36). The ratioR,,/R. will be calcu-
lated in Secs. IV B and IV C.

g(x,p)~ T—,S( (43

Ts

B. Skipping orbits

In Sec. IV A, we derived general expressions for the per-

colative MR for smallé/a in terms of rg andR;, and calcu-
lated the effective scattering tims. Let us now evaluate

Ry, . The scattering problem for a cyclotron orbit that collides

with a hard disc is nontrivial ab/a<<1. To begin with, no-
tice that até/a<<1 the drifting cyclotron orbit first hits the
disc boundary at a small anglg<1 (see Fig. 9. A simple
geometric consideration yields a characterigticfor a par-
ticle incident on the disc with a drift-shift vectdi (i.e., with
a drift velocity dve/27R.):

12 12

: (44)

o-e

a

R.+a
R

01"’
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Since §/a<1, we can treat the drift during the rollover
perturbatively. The system of equations that describe the
skipping in the absence of drift is given by

Dni1=Pnt (), (45)

(46)

where ¢,, is the polar angldalong the surface of the disc
defining the point of thath collision, 6,, the collision angle,
see Fig. 9. The function/(6) obeys the equatioiR.sin(¢
—l2)=asin(¥/2), which reduces to the linear relation

On+1=6h,

Rc

R.+a

()= 0 (47)

in the limit of small§. Equation(46) says# is the integral of
motion for the skipping process without drift. In the presence
of drift, 6, acquires am-dependent correctiod 6,= 6, ;

— 6, . To first order iné the correction reads

Rt ae(dn)

R.a

Af,=~ T

(48)

where 8, is the drift shift between theith and (i+1)st
collisions,&( ¢,,) the unit vector perpendicular to the surface
of the disc at the point of thath collision. Transforming to
the continuous limit we get the differential equation

960> 2 Rcta
o #(6) Rea

whose solution, after substituting(#) from Eq.(47), yields

AP)e( ), (49

R.+ta
Re

63 _03 _ 3 2f¢d ’ ’ ’
(9)=0"(di)— 57 . P AP (D).

(50

The functiond(¢) in Egs.(49) and(50) gives the drift shift
for the cyclotron orbit whose guiding center is a distance
R.+a from the center of the disc in the direction specified
by the angles. In fact, the integration in Eq50) runs along
the guiding-center trajectory during the rollover, which is the
contourp=R.+a, wherep is the radius vector counted from
the center of the disc. Note that the integral term in &)

is bounded from above by é/a at R;>a and by 5a/R§

wheree s the unit vector normal to the surface of the disc at~a/(dl, )2 otherwise. In both limits the maximum value of
the point of the collision. One sees that the angle of inci-g<1, which justifies the linearizatiofd7) and our using of

dence vanishes when we 168t-0, so that the skipping cy-
clotron orbit in effect starts to “roll over” the disc. Clearly, if

the term “rollover.”
If we take ¢; in Eq. (50) equal to the polar angle at which

it were not for the drift during the rollover, the collision the cyclotron orbit hits the disc for the first time, théfy;)
angle ¢ would be conserved, being the same each time thehould be put to zero in the continuous approximation. With

particle returns to the disc after one cyclotron revolution.

the same accuracy the angle at which the breakaway oc-

Therefore, although the drift is slow, in the sense that theyyrs satisfies the conditiof( ¢;) = 0. According to Eq(50),

typical hopping length for the guiding center after one colli-
sion ~R 0> 4, it is because of the drift during the skipping

process that the particle eventually breaks away from the

AD. The lengthRy, is then understood as a shift of the guid-

ing center at the point of the breakaway with respect to the

we can recast the latter condition as

¢
f¢‘d¢ & b)e($)=0. (51)

equipotential contour along which it was drifting right before This equation yields¢; as a function of¢; and, conse-

the first hit.

quently, enables us to determine the sHift. Let us intro-
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duce an effective random potentid(p) as the average of finite Ry is also exponentially suppressed. The answer is no,
the real potential over the cyclotron orbit with the guiding Since there is an important difference between the two cases.
center at the poinp [at R,<d the two potentials almost Namely, the approximation within which the skipping of the
coincide, but aR.>d a typical amplitude of fluctuations of Cyclotron orbit can be considered as a continuous adiabatic
the effective potentiaV/(p) with the same correlation radius Proces$Eqg. (49)] fails completely near the points= ¢; and

d is obviously ~ (R./d)*? times smalle}. The drift occurs ~¢= ¢¢. Indeed, near these points dynamics of the collision
along equipotential lines oW¥/(p). Since the shift&p) angle 6(¢) is nonadiabatic sincé is close to zero, so that
«VV(p)Xe,, wheree, is the unit vector along the magnetic A 6, is of order ¢, itself and the expansio@#8) is not valid
field, Eq.(51) is rewritten as any more. A finite shifRj, is therefore due to the discreteness
and incommensurability of the skipping along the sharp
boundary of the hard disc. It is given by the elementary
(associated with a single collisiprhopping length of the

. ) . . guiding center neap= ¢; ¢, which isRp;~(R.+a) ¢(6,).
which, for the integration along the agg=R.+a, finally  gsypstitutings, from Eq. (44) we finally get for a character-

&
L_qus(vvxez)-ew) 0, (52

gives istic amplitude of the shift
V(p,¢f)—V(p,¢i):0. (53)
. . . 5 R.+a\|l?
We thus see that in the limit of smaila the cyclotron orbit, Rpi~Re| = (55)
having skipped along the surface of the hard disc, breaks a Re
away on the equipotential contour with the savhas it had
before hitting the disc, i.e., We see that, in contrast to the case of a smooth inhomoge-
neity, R,; scales as a power af, namelyR,;= 62 Note
Rh=0 (54 also that the characteristic scaleon which the smooth(p)

in the continuous approximation. Note that for the drift in achangesz appears in 5@5) °”'Y through th? drift shiﬁﬁ.
homogeneous electric field, whed{(p)=const, this result E.quat|on(55) describes a smglg scattering in Wh'Ch thg
follows straightforwardly from symmetry of the scattering pgrncle breaks away from the disc along an equoter_ltlal
problem. What Eq(53) tells us is that, remarkablf,, van- with V almost equal to that of the equipotential along which
ishes in the case of varyind(p) as well it is incident on the disc. Using E@55), dynamics of skip-

Let us compare the above picture with a familiar exampleoing. ﬁrfbits indlthes'limit .Rc<r<].d I‘Faf‘ t;]e gqggrstcalod qurite
of adiabaticity of scattering on a smooth inhomogeneityStralg tiorwardly. Since in this limit the drift is almost ho-

V(p): in that case, the vanishing &, simply means that the mogeneous in the course of_ski_pping, for a gikéthere _is_
guiding center drifts along a locally perturbed equipotentialtyIOICaIIy only one equipotential line that crosses the guiding-

line of V(p). Naively, one might think that a collision with center trajectory during the rollover. Accordingly, if it were

the disc destroys the adiabaticity since the impenetrable hal?lm fotr tr&e_ffmf?ll iﬂlft(%l?’ the plartlclteh would S|mplly cton-t. |
disc makes a part of the equipotential line\&fp) inacces- inue to drift after the roflover along the same equipotentia

sible. However, as follows from E@53), the skipping of the I>|>nde The P'Ctﬁre beconples far more compllcated_ alltI.IzRge ith
cyclotron orbit around the disc goes on adiabatically, pro- since In that case there are many equipotential lines wit

vided d/a is infinitesimally small, and the resuR,=0 still e Same/ that intersect the guiding-center trajectory corre-
holds ’ sponding to the rollover.

Let R.>d. In this limit, one should distinguish two re-
gimes according to whether the typical hopping length after
one collisionR,;~R.(8/a)? [Eq. (55)] is larger or smaller

The zero result foR,, was obtained in Sec. IV B by treat- than d. Consider first the cas®k,;<d, i.e., let d<R.
ing the drift during the rollover perturbatively, to first order <d(a/8)*2 The characteristic number of equipotential lines
in 8/a, and by taking the continuous limit. To fing,, we  with the sameV that cross the circle of radius=R.+a
should now relax this approximation. Before doing so, it isaround the dis€which is the guiding center trajectory in the
worthwhile to recall howRy, behaves for scattering on a course of skippingis of orderR./d>1. Clearly, the direc-
smooth inhomogeneity. In that problem, it is known that tak-tion of drift (to or away from the surface of the djsalter-
ing higher gradient terms into account does not lead to aates during the skipping. It follows that the particle which
finite R,, and, in fact, the problem of findin&;, does not started skipping will break away along the equipotential line
allow for any perturbative solution that could be expanded irthat is the first to cross the guiding-center trajectory corre-
powers of the paramete¥d<1, whered is a characteristic sponding to the skipping. Yet, since the equipotential lines
size of the inhomogeneity. Specifically, for a smooth inho-are closed loopétypically of sized), the particle will come
mogeneity,R;, is exponentially small atf/d<1 (see, e.g., full circle and return to the distsee Fig. 1@ Then the pro-
Ref. 34 for a solution of the scattering problem and refercess will repeat itself with other equipotential lines along the
ences therein As we have shown above, the case of a hardsurface of the disc. We have assumed, however, that the par-
disc placed in a smoothly varying environment is similar inticle is incident on the disc along a percolating extended
that the scattering is also almost adiabatié/@<1. A ques- trajectory. Therefore the multiple returns will stop when the
tion then arises if the nonadiabatic scattering that leads to particle picks up this trajectory.

C. Nonadiabatic skipping
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FIG. 11. Schematic picture of scattering of a cyclotron orbit on
antidots atd<a, R.<d andR;;>wsg. The line with arrows shows
the guiding-center trajectory. The thicker line is the trajectory that
takes the particle from one antidot to anotliwo of which are
shown by shaded circlgsUntil the guiding center picks up this
trajectory the particle is stuck to an antidot and keeps colliding with
it, by making long drift excursions between the collisions. Rpr
>d, the scattering process can be visualized as a “combination” of

FIG. 10. Schematic picture of scattering of a cyclotron orbit onFigs. 10 and 11.
an antidot at<a, R;>d andRys<<wg. The thick solid line with
arrows is the guiding-center trajectory. The dashed lines are equiciearly, the necessary condition for the above derivation of
potential contours which cannot be accessed by the guiding centqu s to be valid is Rys<d<R., which meansd<R

The small shaded circle in the center of the figure shows the antidot, n 1/3)-1/3 - . - .
The thin circle of radiugk.+a around it is the boundary of the area =d(a/2)n "(a/d). It is worlhwhile to mention that if

< 1/3 . ; i
impenetrable for the guiding center. The parts of the guiding-centeﬁ°<d(a/ 9)"" the characteristic hopping length for the skip

; < . 13 ;
trajectory that coincide with this boundary correspond to skippingplng cyclotron OrbitR¢imax<d. Here ymax~(5/a)~" is the

of the cyclotron orbit, which alternate with parts corresponding tomaximum scattering angle for a single-run skippingRat

drift. The drift occurs between each breakaway from the antidot and” @ [Se€ Eqs(47) and (50)]. _
consecutive return to it. Now let Ry, be still smaller thard but let R,s>d, i.e.,

consider the intervald(a/8)YAn3(a/8)<R.<d(a/8)*2
Let us evaluate the total shiR,s with which the particle An essential difference appears in this regime: the shift ac-
will finally break away. Elementary shifts for the repeating cumulated through multiple breakaways and returns exceeds

collisions are uncorrelated with each other, so that d before the rollover is finished. At this point it is worth
recalling that the elementary shifts for each breakaway are

Re -1 accompanied by changes fcorresponding to drift trajec-
J’ dA AW(A)} , (56) tories. Accordingly, when the accumulated shift gets larger
d thand, the initial and current values &f become uncorre-

. . . . . lated with each other. It is evident that we should treat this
whereW(A) is the probability density for the drift trajectory case separately, since now one cannot ideiRify given by

that broke away from the disc to hit it again, i.e., to cross theEq. (57) with a shift with which the particle has finally bro-

arc p=R.+a, for the first time after the breakaway at a yon away never to return. This conclusion becomes even
distanceA from the starting point. It is instructive to map the jaarer when not onlfRs but alsoRy; [Eq. (55)] is larger

problem of findingW(A) onto a more conventional one by than d, i.e., whenR;>d(a/8)*2 In the latter case, the
’ ey C . )

noting that the power-law scaling ®¥/(A) describes how @ ey about the initial value of is lost already after one
deposition rate for particles emitted by a point source andision.

moving in two dimensions in the presence of an absorbing

line falls off with increasing distanc& along this line. Ifthe  ¢,51d also fine tune the derivation of Eq55) and (57).
particles would experience an uncorrelated diffusion with thq\lamely these equations should be supplemented with the
elementary step-d, then it is straightforward to see, by cqngition under which the problem of findirRy, can in fact
solving the diffusion equation with the absorbing boundary,,e tormulated as the scattering problem fosiagle disc.

2 . -
that W(A)~d/A®. In fact, one can show, by introducing a |nqeed, for a single disc, one actually cannot specify with
scale-dependent diffusion coefficient which describes thg ich accuracy the particle should hit the vicinity of the

Qrift, that this result holds for the drifting particI(_es as well, percolating trajectory so as to be able to break away from the
e, W(A) andP(¢) [Eq. (19)] have the same scaling behav- gisc To answer this question, we need to consider a scatter-
ior. Hence the integral in E¢S6) logarithmically diverges jng proplem fortwo discs. Specifically, consider two discs
and the typical number of collisions before the final break'separated by a typical distante~ v, measured along the
away isR./dIn(R¢/d). It follows that percolating trajectoryFig. 11). The two discs are connected
2 by a bundle of drift trajectories of widtlvg [Eq. (31)]. One
f R (57) sees that the particle will break away from one disc and get
a dIn(R./d) through to the other after a single rollover only if

RﬁE - Rﬁch

The picture emerging in the limR,s>d signals that one

RhE ~R;
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maxRy;,Rys} is within this width. If this condition is not scale of a single rollover. However,; does not renormalize
satisfied, the cyclotron orbit will keep going around the discthe characteristic time between collisions with different
until it happens that its guiding center hits the strip of widthdiscs, which is given by-g, similarly to the cas&k <d.

wg at the same time whe#l vanishes. It follows that &R, We are now in a position to calculate the AD-induced
<d the shift is given by Eq(55) only if R,;<ws. If, how-  contribution to the MR in the limit of smalh. According to
ever, R, >wsg, it takes typicallyN,~R;;/wg revolutions  the picture above, the scattering on a given AD is over when

around the disc before the particle breaks away and the particle hits another AD separated by a distagge
~d(vyrs/d)*7, and the characteristic time between two scat-
Rh~Ws (58  terings is7g. As long as we neglect the nonadiabatic correc-

S ) o tions to the drift in the long-range potential, there is a clear
in this limit. Similarly, atR.>d the shiftR;, is given by Eq.  separation between localized and extended drift trajectories.
(57) only if R,y <ws; otherwiseR,~Wws (the picture can be  only a small fraction of trajectories get delocalized by means
visualized as a “combination” of Figs. 10,L1For R:>d,  of collisions with AD’s, namely~wgLg/£2<1. The diffu-
the number of revolutions around the diNg, necessary for - sjon coefficient of particles residing on these trajectories is
the simultaneous tuning o and ¢ corresponding to the _,, .2/ - \we thus see that the macroscopic diffusion co-
breakaway, is different in thre_e different regimes. Namew’efficient is given by Eq(9) with a rescaled scattering time
N, ~Rns /wS: for. We<< ha<d, |n.dependently of the ratio 76— 7L, which yields the MR obeying Eq42).
Rn1/Ws. With increasingRys, if Rnz>d, we haveN; It is worth noting that the dynamics of particles is essen-
~d/ws as long asky,<d, and N, ~Rp; /Ws otherwise. In tially different ath—o (Sec. Ill B) andn— 0, despite being
partlcu!ar, one sees that Rys>d, it always takes many  gescribed by similar equations. In the former case, there is a
revolutions befpre the breakaway occurs and the Syfis strong exchange, caused by collisions with AD’s and gov-
always determined bys. erned by a detailed balance of scattering processes, between
the stream of fast particles which follow the links of the
D. Percolation in a dilute antidot array percolation network and the reservoir of “quasilocalized”
In Sec. IV C, we discussed scattering of a drifting cyclo-particles which stick for a long time to within the critical
tron orbit on a single AD ab/a<1. Consider now the MR at cells of the network. By contrast, at—0 there is no such
sla<1. Let us start with the limit of a small concentration of €xchange and the drift trajectories within the cells of the
AD’s n—0. As outlined in Sec. Il B, in the absence of AD’s Percolation network are strictly localized. However, in both
the conductivity at largd is only due to the exponentially cases the MR is determined by the fast particles moving
weak nonadiabatic scattering on long-range disorder. Let uglong the links of the percolation network, which is why it
neglect this additional contribution ta,(B) and calculate does not mat_ter if the particles moving inside the critical
the contribution that is due to the scattering on very rare har@ells are localized or not. Put another way, although the total
discs. We thus seek a term i, (B) which is proportional to  number of delocalized particles decreases-a0, this effect
a power ofn at smalln. Let R.<d. Since an—0 the bundle |s_compensated by more_frequ_ent crossings, due to collisions
of drift trajectories that connect two discs becomes infinitesiWith AD's, of the percolative drift trajectory by particles that
mally narrow[ws=n®7 at n—0 according to Eqs(27) and ~ 'emain delocalized.

(31)], the particle sticks to a disc for a long time, until it Substituting Eqs(27) and(33) into Eq. (42) we get
picks up a trajectory that is extended enough to take it to
another disc. The number of the unsuccessful attempts to Pyx(B) . d 3928
break away from the disc is given by,~R,;/ws>1. To _— (R_) (60)
evaluater;, notice that the sticking time is determined by a Po ¢
slow drift along the closed loops that repeatedly return theor R.>d and
particle back to the disc, not by the fast skipping in between.
However, most of the attempts end up in quick returns to the p(B) d\ 47
vicinity of the point of the first collision and so give only a i 3/7( _) (61)
small contribution torg;. We estimaterg; as Po Re
in the opposite limit. According to Eqg60) and (61), pyx
Rnidw L(w) «n®” atn—0.
Tst™ st Ws vg (59 One sees from Eq61) that p,, taken in the limitn—0

behaves at largB asB*’. As compared to Eq17), which
whereL(w) is given by Eq.(7). The integral is determined describes the asymptotic behavior in the hydrodynamic re-
by w~wsg, which yieldsrs~ 75. We thus see that the effec- gimen— and givesp,,»B'%3 the divergence o, with

tive scattering time between collisions with different discs isincreasingB is weakened, but is still present. However, nei-
given by the drift time between the discs. Accordingly, thether of the two limiting case$17) and (61) describes the
total distance passed by the particle in the multiple rolloversasymptotics of the MR foB— at a given finiten, which

is typically of orderLs. In fact, this conclusion holds for the we discuss below.

caseR.>d as well. The only difference is that at largg the Let us turn to the percolative MR in a denser array of
particle experiences multiple breakaways and returns on thaD's. Increasingn yields wider links of the percolation net-
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work, so that eventuallywg becomes larger than the elemen- words, almost the whole phase space is filled with bound
tary shift maxR,;,Rys} (Sec. IV Q. This transport regime is  states. According to Eq50), the critical angle

described by the advection-diffusion E(.7) modified ac-
cording to Eq.(43). Using Egs.(55) and (57) for Ry; and

" 1/ 2/3
Rys , and Eqs(27) and(33) for 75 in Eq. (43) gives Omax=(812) ™ (Re+@)/Re]*™ (65

Indeed, a drifting cyclotron orbit that is incident on the disc
d\"? /R both hits it for the first time and finally breaks away @t
3( ) In 3<_> (62 <, [Eq. (44)], while reaching a maximun®, which de-
pends on the incident parameter but does not exeged
for R;>d and given by Eq.(65), during a rollover in between.
Let us show that a particle which starts with sorfie
Px(B) s end Rel Y Reta > 6,,ax Will NOt be able to break away. What is important to
TMp 7T\ g R, (63 ys is that in order to break away the particle has to decrease
6 down to 6~ 6,. Suppose this might happen and the particle
for Re<d. has escaped. Then we could consider a complementary scat-
The condition at which the “one-hop” percolatidfeqs.  tering problem by reversing time and sending the particle
(60) and (61)] crosses over with increasing into the that has broken away back to the disc. However, we know
advection-diffusion regimgEqs. (62) and (63)] is given by  from Sec. IV B that for this scattering probleghwill never
somewhat cumbersome formulas: the crossover occurs gkceed 6,,,,. Hence we come to a contradiction which

d/R.~ (p®7)3#n~ 21 pby) for pPp<1, at d/R;  shows that the initial assumption about the possibility of a
~(p®n)¥?* for 1<(p®n)t?’<d/a, and at d/R.  breakaway cannot be realized. We thus see that trajectories
~(p®n)*¥a/d) "> for (p®y)Y*=>d/a. that started to skip along the disc with> 6,,,,, can never
Equation(63) tells us that the asymptotics of the MR at cross the boundarg= 6,,,, and so will remain bound to the
B— o0 is p,,BY13 i.e., the MR diverges as a power law in disc. The fact that there exist bound states for magnetized
the limit of largeB. However, this divergence is so weak that electrons interacting with a single hard disc in the case of a
from a practical point of view it is indistinguishable from a homogeneous in-plane electric field was observed in the nu-
saturation ofp,,(B). Nonetheless, it is a remarkable fact that merical simulatior’’
in the extremeB— the MR in the presence of both AD’s The existence of the separatrik,,, means that the con-
and a long-range potential does not go to zero, in contrast t@ibution to p,,(B) of rosette states with> 6, is given by
Egs. (1) and (4), which predict vanishing op, when only
one type of disorder is present.

PxB) — plos, 61
Po

Re

3/13

pxx(B) po~Rc/lg (66)
E. Rosette orbits in the presence of weak drift for all s/la<1 [cf. Eq.(1)]

In Sec. IV D, we considered the percolative contribution Let us now compare two terms p,,(B) that are associ-
to the MR at smallé/a. Now we proceed to the “short- ated with the short-scale diffusion at fini®a. One, de-
scale” contribution associated with rosette stdt®scs. Il A scribed by Eq(22), is due to the hopping of “rings” intro-
and Il C). Let us analyze how the Lorentz gas behavior isduced in Sec. Ill C. The other, given by E@6), is due to
restored with decreasing strength of the smooth disordethe hopping of rosette states. Note a similarity between the
Since we deal with the caséd<1, the Lorentz model limit two mechanisms of transport: in both cases a particle inter-
is achieved for a very weak long-range potential, such that adcts with a disc many times before changing to another disc.
R./ls~1, when the falloff(1) starts, the scattering on the The comparison shows that the concentration of particles
long-range potential is already strongly adiabatic. The conparticipating in the hopping-ring transport is much larger
dition of adiabaticity aR./ts~1 andls/d>1 translates into than that of rosette states. It is clear, however, that if we send
I /d>(ls/d)3. As we will see below, the condition of the §—0, the hopping rings should not contribute #9,(B),
Lorentz gas falloffp,(B)<B~* not being dominated by the which will be given by Eq.(1). It follows that there should
contribution of “hopping rings”(Sec. 1l O is much stron-  exist yet another, intermediate regime of hopping, associated
ger, namely with the evolution of the hopping-ring transport with de-
creasingd/a. To describe the latter, notice first of all that Eq.
I 1d>(1s/d)3(d/a)™. (64) (22) stops to be valid already at son#a>1. Indeed, the
logarithmic factor in Eq.(22) is associated with the drift
The solution of the scattering problem for a single disc inalong closed loops of sizé<(nR;)~*. Therefore the deri-
Sec. IV B shows that af/a<1 there is a well-defined sepa- vation of Eq.(22) in fact implies that the time it takes to
ratrix 6pma<1 for the angle of incidence in the phase come full circle along the longest loop of sige-(NR;) "' is
space (,¢), which divides skipping cyclotron orbits into smaller thanrg(¢) [Eq. (21)] for this &, which yields the
two groups, delocalized and localized. Namely, trajectoriesondition §/a=(nR.d) **>1. Note that this is the same
that will finally break away from the disc belong to the part condition at which the effective scattering time forég
of the phase space with< 6,,,x, Whereas the regio®  <R.in Sec. IV Ais not renormalized by the parame&a
> 6Omax IS filled with those that will never escape. In other and is given byrg [cf. Eg. (30)]. At smaller §/a, in the
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interval 1<é/a<(nR.d) ¥ only ¢ in the range ¥¢/d 2
=(6/a)*” contribute top,,, which gives
<%¢
15t
pux(B) po=nR.dIn( /). (67) 5 | 4)
e
This equation is valid with decreasinija down to §/a~1. = 1 (;’ + %
At still smaller é/a, the particle is scattered out by the same - o
AD after passing a distance of ordérAccordingly, the char- _~<x *)
acteristic time between changes of AD’s in this regime in- a05 ¢
creases due to the slowing down of the drift ag/ 5. It +
follows that for 6/a<1, ‘
%5 5 4R 10
pxx(B)/po~nRcd d/a. (68) ¢

FIG. 12. Magnetoresistivity,(B) in units of (/e?)/kgl 5 (spin

Equations(68) and (66) match each other at~a?/d and  included as a function ofl/R, for a model system specified in the
we conclude that the regimeg$7) and (68), intermediate text. Characteristic values af/R; are: R./Is=1 at d/R.=0.25;
between those described by E¢®2) and (66), occur in the  8/d=1 atd/R,~1.8; nRd=1 atd/R;=1.9; mnRe=1 atd/R;
interval a/d<é&/a<(nR.d) ¥4 By requiring that 5 at =2.5;82a=1 atd/R.=7.1.
R./ls~1 is much smaller than?/d we arrive at the condi-
tion (64). The overall behavior gb,,(B) for the case of very VI. SUMMARY
weak long-range disorder is obtained by adding the short-
scale contribution, described by E482) and(66)—(68), and
the percolative contribution analyzed in Sec. IV D. This
leads to nonmonotonic behavior of the MR, such {hatB)
first falls off with increasindd and then crosses over into the
percolative growth.

In summary, we have discussed a rich set of magne-
totransport phenomena which take place in a random en-
semble of antidots in the presence of long-range fluctuations
of a random potential. We believe that the model studied in
the paper adequately describes an antidot array in semicon-
ductor heterostructures with a wide spacer for not too Eigh
when quantum effectéShubnikov—de Haas oscillationare
V. NUMERICAL SIMULATION still weak. We show that even weak long-range disorder
. . . yields a wealth of pronounced effects in the behavior of the
We have solved numerically the classical equation 9f mc.)hagnetoresistancpxx(B) in the antidot array. Essentially,
Nhese effects are associated with a magnetic-field induced
MNocalization of electrons which develops when only one type
of disorder is present. As a result of the localizatipg,(B)
vanishes in the limit of larg® both in an idealized antidot
system without long-range disorder and in a system with
- - (69) smooth inhomogeneities without antidots. Conceptually, the
[1+(r/d)?]%? most striking result of our work is that the interplay of two
types of disorder does not simply modify the localization; in
with the ratiod/a=21.5. The concentration of the isolated fact, it destroys the localization, so thag(B) even diverges
scatterers has been chosen such that they make an importamtthe limit B—o. The divergence takes place despite a
contribution to the resistance at zero magnetic field. Specifistrong falloff of p,,(B) that occurs in intermediate magnetic
cally, mnd®=6.2 andl/Is=0.58, wherel is the total mean fields in the case when one of the types of disorder is suffi-
free path ands=3/8na. ciently strong as compared to the other.

In Fig. 12 we present the MR data for our model system. Piecing together all the numerous regimes we arrive at a
Since the characteristic values of the magnetic figiden in  rather complex overall picture, due to the interplay of several
the figure caption in terms of the parametéR) are rather distinctly different mechanisms of the MR. Let us list these
close to each other, it has not been possible to unambigunechanisms. Some of them are closely related to the mecha-
ously separate different regimes. Yet, the nonmonotonic beaisms of the MR characteristic to the limiting cases of
havior of p,,(B), predicted by the theoretical analysis, is strongly non-Gaussian or purely Gaussian disorder. Specifi-
clearly seen. Note that the size of the error bard/&.=5 cally, we have:
denotes only the statistical uncertainty. In addition to the (i) Memory effects operative in the case of strongly non-
latter, there is a systematic uncertainty originating from aGaussian disordgiLorentz gas, or any other system of rare
very slow guiding-center motion in the lardgetimit, which  strong scatterers, without long-range inhomogeneities
makes it difficult to observe the true diffusion constant. These effects lead to a stronggativeMR (see Sec. Il A In
However, the size of the systematic uncertainty is sufficientljthe limit of largeB the system is insulating.
small as compared to the structure of the nonmonotonic de- (ii) Memory effects in smooth Gaussian disorder. In this
pendence opy,(B). case, the memory effects give rise to a straogitive MR,

the presence of smooth disorder. In the numerical simulatio
the latter is characterized by the correlator

(V(r)v(0))=
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(i)
(i)
(iii)

for which, however, the ratip,,(B)/pg cannot be parametri-
cally much larger than 1, since after having reached a maxi-
mum value of order 1 it starts to fall off with increasiisy
thus yielding a strongiegative MR (see Sec. || B In the
limit of large B the system is insulating.

In the presence of a long-range random potential, the
mechanism(i) of the MR is destroyed by the diffusive mo-
tion of electrons scattered by the long-range disorder. None-
theless, as we have demonstrated in the paper, it is reincar-
nated in the form of hopping ringéSec. Ill ©Q once the
diffusive motion in the long-range disorder turns into the
drift with increasingB. In this different form, this kind of a ‘
negative contribution to the MR is developed at much larger Baa B

B as compared to the pure Lorentz-gas system. On the other FIG. 13. Schematic behavior of the magnetoresistiyity( B)

hand, the mechanisitb) is destroyed by scattering on hard . ' .
: . . . on a log-log scale for different values of the concentration of anti-
scatterers, which checks the negative MR associated with thée

X - o ; ots n: n>nl>...>n®  keeping all other parameters
adiabaticity of drift in the long-range potentiedec. Il B). ping P

S . N ) . . (lg,l_ ,d) fixed. Only one characteristic fiel@,4 is shown, at
A nontrivial point to notice in our results is that, in addi- which the crossover between diffusive dynamics and adiabatic drift

tion to the above, there are memory effects that are specifify the jong-range potential takes place. Different curves illustrate
to the inhomogeneous system with two types of disordefgiterent mechanisms of the magnetoresistarfethe magnetore-
These are: sistance is positive owing to the “diffusion-controlled percolation;”

(i) “Diffusion-controlled percolation.” As we have i) due to the adiabatic localization, the concentration of conduct-
shown in the paper, scattering by short-range inhomogenéng electrons decreases Bs 'In B before the percolation becomes
ities not just destroys the adiabaticity of motion in a smootheffective, which yields a negative magnetoresistansg(B)
random potential, thus checking the strong negative MR. In<B~In B for intermediateB; (iii) an exponentially sharp falloff of
fact, it reverses the sign of the MR by giving rise t@pasi-  p,.(B) atB~B,q4 (shown as a vertical jumseparates the diffusive
tive MR which keeps growing with increasirig)(Sec. Il B). and drift regimes(iv) because of the memory effects, the collision
This positive MR is a peculiar feature of percolation of drift time for scattering by antidots is increased as compared to the
trajectories with superimposed diffusive dynamics across th@rude value already in the diffusive regimB<«B,g), which leads
drift lines. to the negative magnetoresistangg(B)<B~* for small B; (v) for

(iv) Renormalization, by long-range disorder, of the col-intermediateB, the scattering on antidots stops playing any role and
lision time for hard scatterers. We have demonstrated that ifix(B) iS saturated at a value determined by the long-range disorder
a system where the hard scatterers give the main contributio?{!ly: Whereas at larger fields the diffusion-controlled percolation
to the scattering rate at zeB) a weak smooth disorder can 9/Ves rse to a positive magnetoresistance.
drastically suppress the scattering rate with increading ) N )
(Sec. IV A). The effect takes place for any type of dynamics ~ Relaxing the conditions of the hydrodynamic model, we
of scattering by the long-range potential, both for diffusioncalculatep,,(B) in an antidot array of high but finite density
and drift. The increase of the collision time translates into the (Sec. Ill O. We show that diffusing cyclotron orbits exhibit

(i)

(v)

negativeMR. intricate dynamics by sticking for a long time to a single
The overall behavior of the MR is illustrated in Fig. 13. antidot. This leads to a power-law falloff gfx(B) in an
Different curves correspond to differentfor givenlg, I,,  intermediate range d, namelypy(B)>B~ "In B[Eq. (22)].

andd. The characteristic fiel®,4 marks the diffusion-drift ~The small parameter that governs the physics of this trans-
crossover. Figure 13 describes the case of not too weak longort regime isnR.d, whereR is the cyclotron radius. With
range disorder; specifically, it is assumed tRatls<1 at furtherincreasingg, this mechanism of diffusion is switched
B~B,4, which meand, /d<(ls/d)3. off abruptly, in a cr|t|c_al manr!e[rEq. (23)].

Having listed the main mechanisms of the MR, let us now f the long-range disorder is not too weak, we show that
summarize our main results. We analyze a “hydrodynamidhe Drude regime and thg~*In B falloff are connected via
model” of the chaotic antidot array, i.e., tiny antidots scat-an exponentially fast decreasemf(B) in a narrow range of
tered with a high densitp— in a smoothly varying ran- the magnetic field, which is a trace of the adiabatic localiza-
dom potentia(Sec. Il B). At large B, p,,(B) turns out to be ~ tion in smooth disordefSec. Il B). In this regime p(B) is
a growing power-law function of the magnetic field. We determ.med by th_e interplay of nonadiabatic transitions and
identified several different regimes of the behaviopgf(B) ~ Scattering on antidotEq. (25)].

[Egs. (14)—(17)], depending on the parametés/\/dI,, We calculate the scattering timg(B) between collisions
wherels and |, are the mean free paths for scattering onWith antidots for extended electron trajectori@ec. IV A),
antidots and long-range disorder with a correlation lemgth S€e Eqs(27), (30), (33), and (38). At large B, 75 becomes
respectively. In the limitB—o, the hydrodynamic model longer than the Drude time. The smaller the earlierrg
universally predictp,(B)<B®**[Eq.(17)]. The physics of starts to grow with increasinB. In a very dilute AD array
this divergence is a percolation of drifting cyclotron orbits the renormalization ofrg starts already in the diffusive re-
limited by scattering on antidots. gime and leads to a falloff gb,,(B)=B~* [Eq. (39)].
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We solve a scattering problem for a drifting cyclotron guishable from a saturation of the magnetoresistance. This
orbit colliding with an antidot at smalb/a (Sec. IV B. We  behavior is in sharp contrast to the localization that would
study dynamics of cyclotron orbits skipping along the sur-develop in the antidot array in the absence of long-range
face of the hard disc and show that the skipping goes oulisorder.
almost adiabatically, which results in a strong suppression of We discuss dynamics of cyclotron orbits which stick to a
transitions between different drift trajectorigsq. (53)]. single antidot for a long time before hopping to another one

We analyze complex dynamics of skipping cyclotron or-(similar to theB~1In B regime in Sec. Ill §in the case of a
bits interacting with an antidot when the rafa/d is large,  very weak long-range disordéBec. IV B. Taking this limit
which includes multiple breakaways from the antidot andeventually restores th@ ™! behavior ofp,,(B) characteristic
multiple returns to it, accompanied by drift along closed tra-to the Lorentz gas.
jectories in betweefSec. IV Q. We discuss the accumulated =~ We present results of numerical simulatid®&gc. \j. The
effect of these multiple collisions with a single antidot in numerical data qualitatively confirm the predictions of the
terms of the scattering shiR,(B) of the guiding center of theory.
the cyclotron orbit after it finally escap€gq. (57)]. We also
calculate the shift in the limit of a smoothly varying environ- ACKNOWLEDGMENTS
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