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Energies of strained vicinal surfaces and strained islands
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We show that the interaction between the strain field of a surface step with uniform strain gives rise to a
negative line energy of steps. The energy of a vicinal surface under compressive strain is found to be lower
than the energy of the singular-crystal facet. We consider the surface of a three-dimensional strained island as
a stepped surface and derive the island’s energy and equilibrium shape from step energies and step-step
interactions under strain. We develop a kinetic model of the island growth as the motion of atomic steps
forming the island surface. Mass transport to the island top is provided by attachment of adatoms to steps from
the down terraces and detachment to the up terraces.
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I. INTRODUCTION whose facets make small angles to the interface and can be
treated as vicinal surfaces. We expect that such a treatment
The energetics of strained heteroepitaxial films has atean be applied, at least qualitatively, even to {hé5 or
tracted enormous interest after it was found that the film carfl15) facets of Ge/SD01) islands mentioned above as being
relax its elastic energy by forming small dislocation-free vicinal with respect to th€001) surface.
three-dimensional island§Stranski-Krastanov growjt? The energy of a vicinal surface is given by the line ener-
The investigations are stimulated by potential applications ofjies of the steps and the step-step interaction energies. A
these islands as quantum dots in optoelectronic devices. Themarkable study of the step energies on strained surfaces
applications require dense arrays of uniform islands, whichwas performed by Xieet al'® Their atomistic calculation
inspired numerous experimental and theoretical studies d¥f the steps on a strained (801 surface showed that the
the island growth and shape. Theoretical motiélzonsider ~ step energies are strongly influenced by the applied strain.
the competition between the released elastic energy and théhe compressive strain gives rise to negative step energies,
extra surface energy. Approaches to evaluate the elastic emhich explains the dependence of the roughening of strained
ergy are well established and involve either numerical finitefilms on the sign of the straitf:'” We show below that the
element calculatiods'! or a very useful analytical results of Xieet al. can be understood in terms of linear
approximatiod—>*23applicable for small slopes of the is- €elasticity, as an interaction of the strain field of the step with
land surface. the uniform strain in the film. We express the energy of a
The surface energy is regarded either as being indeperstrained vicinal surface by the step-step interaction energy on
dent of the surface orientatioRr’® or the consideration is an unstrained surface. We find that, under compressive strain,
restricted to a limited number of predefined low-index facetghe energy of a vicinal surface is lower than the energy of the
with fixed orientations and surface energiéd®!!The first ~ singular surface.
approximation implies that the crystal is above the roughen- The negative line energy of steps under compressive
ing temperature for the actual surface orientation. Howeverstrain gives rise to step creation as a way of reducing the
the Stranski-Krastanov growth is performed well below thesurface energy. Such a roughening of an initially singular
roughening temperature. The applicability of the second apfacet is limited by the short-range step-step repulsion which
proximation can be justified by the presence of the low-indexnakes small distances between steps unfavorable. Hence,
dense-packed facets bounding the strained islands in systemgder lateral compression, an initially flat singular facet can
with very large misfit, such as InAs/GaAs or InAs/IHP. reduce its surface energy by developing surface undulations
However, systems with smaller misfits reveal high-index fac-with a finite strain-dependent slope. We calculate the energy
ets making smaller angles to the substrate surface. A notabteleased by these undulations and estimate the surface slope.
example is the growth of Ge islands or{(1). The islands We analyze the energy of three-dimensional strained is-
obtained by molecular beam epitaxy develd®5 facets? lands obtained by Stranski-Krastanov growth. We consider
while the islands obtained by liquid phase epitaxy @®5  axially symmetric islands with the surface consisting of con-
faceted!® Both orientations obviously do not correspond to acentric circular steps. We perform an exact calculation of the
cusp in the orientational dependence of the surface energy ¢iteraction energy between these circular steps. Previous
the unstrained Ge crystal. It is also worth to note that thénvestigations of the dynamics of an unstrained crystalline
treatment of low-index dense-packed facets together with theoné®® approximated the interactions between circular
small-slope approximation for the elastic enérfjymplies  steps by those of straight steps. Such an approximation, how-
that the low-index facets form small angles to the substratever, is valid only when the difference between the step radii
surface. This means that it applies only to islands grown ois small compared to the radii. This condition is satisfied for
high-index substrate surfaces. steps on unstrained surfaces since the step-step interaction is
In the present paper, we consider corrugated heteroepshort rangdthe interaction energy decaysxs?, wherex is
taxial systems with moderate misfits, likg Sg, _,/Si(001), the distance between stgpsiowever, the interaction be-
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tween steps on strained surfaces is long rdtigeinteraction  Specifically, a 2% strain changes the step energies by 150
energy is proportional to k) and an exact calculation is meV per ledge atom, a quantity which is large compared to
necessary. the energies of these steps on an unstrained surface. More-

We treat arbitrary axially symmetric islands. In describingover, the effect has opposite signs for compressive and ten-
the line energies of the steps on the surface of strained isile strain, respectively decreasing or increasing the step en-
lands and their interactions, we take into account that thergy by the mentioned quantity.
strain acting on a step is not the same for all steps but de- Let us show now that this effect can be explained very
pends on the position of the step in the cone, as a result afenerally as an interaction between the step strain field and
strain relaxation at the island apex and strain concentration dhe uniform strain field of compression or tension. The inter-
its bottom. The faceting of the island is modeled by the suraction energy of two strain fields, 1 and 2, can be written as
face consisting of one or two straight segments in cross se¢Ref. 27, Sec. 12)1
tion. In the simplest case, our general formulas agree with
those of Tersoffet al® who considered pyramids, but sub- o @) )
stantially differ in specifying the surface energy. U= _f P2 -u=(nd, &)

We finally develop a kinetic model of island growth by
extending the model which we have initially proposed forwheref (1)(r) is the surface force field producing the strain
straight step® to the case of circular steps. We follow the field 1 andu(®(r) is the displacement field 2. The integral is
familiar Burton-Cabrera-Frank step kinetics equatfon®  taken over the flat surface of the crystal.
with the appropriate modification for circular stefig® The The strain field 1 is that of a surface step. The force
island growth proceeds by attachment of adatoms from thé(*)(r) arises from the interaction forces between atoms near
wetting layer. The material transport to the island top is prothe step edge. At distances away from the step that are large
vided by attachment of adatoms to the steps from down tereompared to the lattice spacing, the displacement field pro-
races and detachment to up terraces. New atomic layers adeiced by this force distribution can be described by a mul-
created on the island top if the step that bounds it is able ttipole expansion, similarly to the corresponding problem in
expand. We show that the negative line energy of the step oalectrostatics. The displacement vector in elasticity requires
the compressed film mentioned above gives rise to the exiigher order tensors than the scalar potential in electrostatics,
pansion of the top layer and hence to the growth of the isso that the elastic dipole is a second-rank ter(&wsf. 27,
land. This behavior is mediated by the strain and is not posSec. 22. The strain field of a straight step can be described
sible for unstrained islands which can only contract inby two components of an elastic dip8f?°The dipole force
time.**'We find that the shapes and energies of the islandaas a component normal to the surfaies Q,d5(x)/dx, due
obtained with this kinetic model differ from those of islands to the uncompensated moment of the surface stress, and a
obtained by energy minimization. The size of a nucleus neceomponent in the surface plarfg= Q,d5(x)/dx, which is a
essary for island growth significantly differs from the one property of any linear crystal defect. Hersds the coordinate
reducing the energy. Hence, energy minimization is not sufin the surface plane in the direction normal to the step line
ficient to describe the observed islands, and kinetic modeland z is the coordinate normal to the surface. We do not

are necessary. combine the two components of the force into a vector, since
Q, andQ, do not form a vectofrather, they are two com-
Il. ENERGY OF A STRAINED VICINAL SURFACE ponents of the second-rank tensddumerical values of the

coefficientsQ,,Q, can be obtained from atomistic simula-
tions of the steps on various surfaces of semiconductors and
metals?®3%3!Below we use the resuffSof atomistic calcu-
lations of the step-step interactions orfi0Bil) to estimate the

wherey, is surface tension of the singular crystal surfage, dipole strength. o . '

is the slope of the surface with respect to the singular crystal We gon5|der a he_teroepltaxlal strained f|Ir_n gnd take as the
orientation (=tand, where® is the angle between the vici- stram field 2 the uniform strain due to a ml?ﬂg between

nal and the singular surfage is the height of the steps, and 1€ film and the substrate crystal, so thaf) = —eox. A
\(6) is the energy of a step per its unit length. The StepIarger lattice parameter of the film compared _to_that of the
energy\ (6) consists of the energy, of an isolated step and Substrateso>0, gives rise to compressive strain in the film,
the energy of the step-step interaction. The latter quantity’Nich explains the minus sign in the expression above. Mak-
originates from the elastic dipole-dipole interaction betweer]nd the integral(3) by parts, we obtain the energy per unit
steps and is proportional €, so that length of the step

The energy of a vicinal surface per unit are¥"fs

¥=7ot\|6|/h, (1)

A=No+ 2\ 462. ) A= Q,auP/ax+Q,aul?/ ox. (4)

Here \4 is a constant and the factor of 2 is introduced toWe restrict ourselves to sufficiently high elastic symmetry, so
keep the same notation as in Refs. 16 and 26. that the shear distortioau?)/ox is absent. In particular, the
Xie et al'® found, by means of atomistic calculations of elastically isotropic case and tl@01) surface orientation of
the step energies on a strained0®il) surface, that the strain a cubic crystal belong to this class. Then, we obtain a re-
strongly influences the line energy of an isolated stgp  markably simple expression for the step energy change due
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to its interaction with the uniform strain field of the misfi,
which we denote\ g (keeping\, for the step energy on an
unstrained surfage

5

result of the atomistic

As=—Qx&p.

Equation (5) explains the
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calculation$® which showed that the change of the step en-

ergy by an external strain field is proportional to the strain

go. It follows also that\g is proportional to the dipole
strength of the ste,, the quantity which is responsible for

the step-step repulsion on an unstrained surface. The interal

tion energy of two parallel steps separated by the distance
is, per unit step lengtff?°

= 2A-A(QQ)
Y X ,

(6)

whereY is the Young modulus and is the Poisson ratio. We
restrict ourselves to the elastic isotropy. The two signs co
respond to two steps of the same sefiseth up or both
down) versus two steps of the opposite seiisee up and
one down, respectively. The atomistic calculations of the
step energies on an unstrained08il) surfacé® show that
the interaction energies for pairs of steps of the same and

opposite senses differ by not more than 12%. We conclud

that Q,>Q, and use this assumption to simplify our formu-
las. We checked the effect @, and did not find any quali-

tative changes in the results. Then, applying E).to a
vicinal surface with miscu#=h/x and taking into accoun

only the interactions between nearest-neighbor steps, we o

tain by comparing Eq92) and (6):

(-9

7
=T @)

Here, Q is written instead of), for simplicity.

We can determing& for different types of steps on the
unstrained $002) surface using the values &f; obtained in
the atomistic calculation® We use the surface lattice con-

(@) (b)

FIG. 1. Qualitative polar plots of surface energy far an un-
%t_rained andb) a strained crystal.

an additional factor of 4 in Eq(7). With the value\g4
=1.271 eVA we obtainQ=5.92 eVha for Dg steps.

Now, with the misfit eg=0.02 used in the atomistic
calculation$® we obtain from Eq(5) A= —180 meVA and
—120 meVa for Sz andDg steps, respectively. These val-
ues agree well with the ones obtained by Xjeal.'® ap-

rproximately— 150 meVA for both steps, with a somewhat

larger value for theSg step. This agreement confirms our
interpretation of the influence of the uniform strain on the
energy of an isolated step as an interaction between the strain
field of the step and the uniform strain. The change of the

Step energy under the action of the strainis large com-

Qared to the step energy on an unstrained surfgacevhich
is —11 and—42 meV/a for Sz andDg steps, respectiveff
Below we neglechy compared to\g, with the aim to sim-
plify formulas. This assumption does not significantly alter

¢ the results and ; can be easily reintroduced in the equations
H_necessary.

Thus, the step energy on a strained vicinal surface is

®

where the line energy of an isolated step, given by Eq.
(5), is proportional to the strain, and can be either positive
or negative, depending on the sign of the strain. @gr-0,
compressive strain gives rise to a negathe see Eq.(5).

For sufficiently small miscut angle®, the surface energy of

a vicinal surface is lower than the energy of the singular

A=\t 2Nq602,

stanta=3.85 A as a natural length unit and the elasticfacet. The minima of the surface ener@y are obtained at

constant® Y=63.1 eVA® and »=0.333. The X 1 recon-
struction of the SD01) surface gives rise to either alternating
S, and Sz steps of single-atomic-layer heigtit=a/ /8,
which bound 90° domains with different orientation of the
reconstruction, or double-layer stefs, and Dg.*? The
calculationé® yield a vanishingly small dipole-dipole inter-
action\ 4 betweenS, steps. Then, according to E¢), the

o=~ (|Ng /BN )12 9

With the values discussed above, we obtdor the misfit
£0=0.04 of Ge/Sj the minima of the surface energy at the
miscut angles¥,= arctarf, equal to+4.8° for Sz steps and
+1.8° for Dy steps.

The analysis above shows that the presence of compres-

influence of strain on the energy of this step is also neglisive strain(for Q,>0) qualitatively changes the azimuthal

gible, and this is confirmed by the calculation of tBestep
energy on a strained surfat®.
Considering theSg steps, we take into account that the

dependence of the crystal surface energy. The cusp at the
singular orientation of the surface turns from a minimum to a
local maximum of the surface energy, while the minimum is

distance between these steps is twice the distance betweaohieved at an angle which scales:g% and typically makes

the neighboring stepsvhich areS, andSg), so that a factor

a few degrees with the singular orientation. Figure 1 presents

of 1/4 should be introduced in the right-hand sides of Eqgsa qualitative picture of these changes.

(6) and (7). With the valué® \4=0.728 eVA we obtain,
from Eq. (7), Q=8.95 eVi for Sz steps. The double-layer

For unstrained crystals, knowledge of the orientational de-
pendence of the surface energy is sufficient to determine the

height step®y are separated by twice the distance betweerequilibrium crystal shape by means of the Wulff construc-

steps, to maintain the same miscut arf§leshich results in

tion. In contrast, the shape transformation of a strained crys-
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tal influences its elastic energy. In particular, the energy of anfinite elastically isotropic solitf and calculating the inte-
singular facet can be decreased by development of surfaggals with theés function, we obtain

undulations that both decrease the elastic energy and increase 5
the number of steps with negative line energy. The growth of U (X) = — 2(1—v°)
the undulations is limited by the short-range step-step repul- X Y
sion which makes small distances between steps unfavor-

able. The balance between all these contributions and thezrhere we have neglectdd, in comparison withQ,~Q, as

influence on the energy of an undulated crystal surface i iscussed apoye. . .
considered in the next section The elastic interaction energ¥,, per unit step length of

two parallel steps separated by a distareex,,— X, is ob-
tained by using Eq(3):

P+Qﬁix)ln|x|, (11

IIl. MORPHOLOGICAL INSTABILITY OF A STRAINED

2(1-17)
CRYSTAL BELOW THE ROUGHENING TRANSITION V, o= — [PmPn+ (Pn_ Pm)Qﬁ/&x

The morphological instability of strained solidbovethe
rough%ngr;glg transition has already been studied in — Q29?1 9x?]In|x|. (12)
detail>>~>**>The origin of the instability is regarded as a _ _ _
competition between the elastic energy release by surfac'é'elref’ P”_S“haci“' wheres,=+1 for a step up and,=
undulations and the respective surface area increase. The su_r-_l_hc;r ﬁrsstt?grmogfnl'z (12) gives, after summing over the
face tension of the solid is taken independent of orientationét th lasti qI t'g ’ in th 9 ll-s|
an approximation which is valid above the roughening tran- €ps, the %?E,{S,lsre.rﬁxa lon egergy n h € sma slope
sition. The competing energy contributions result in a CmiCalg!)%rl(;x'irr?tztrlgcfion is rgsesr?tcglrjnl Itfe ;rr?e i;t(érargt(i)r?ops(i:-s
wavelength of the undulations: all modes with wavelength%;ve different mc;nopgle strengthi In the problemgcons[i)d-
exceeding the critical one are unstable and get amplified. ered in this section, the monopole-dipole interaction takes

The morphological instability of a strained crystalow | bet i d tep d It is absent f
the roughening transition is qualitatively different, since theP'ace between a step up and a step down. 1t IS absent for
gieps on a strained vicinal surfateThe monopole-dipole

crystal surface consists of steps and terraces and the surfal ) X
eraction between steps of the same sense is also present,

. . 1N
energy strongly depends on the surface orientation, as d'éé_s discussed in the next sections, if the bulk sttasd hence

cussed in the previous section. It also follows from the pre- e monopole strengttis influenced by the stress fields of
vious section that the line energy of steps becomes negati\} P €ng : . y
her steps forming a strained island. The last term of Eq.

under compressive strain and hence favors undulations, i . oo :
b ﬁZ) describes the step-step repulsion in the absence of strain

addition to the elastic relaxation. Our aim now is to calculate d coincid ith Eq(6), wh ) lected d
the energy of the periodically undulated surface of a straine nd concides wi q6), whereQ;, is neglected compare

crystal. We restrict ourselves to a surface consisting of facet TF(]. 0 of the diol | hs is the ch
formed by equidistantly spaced steps and do not search for € ratio of the dipole to mopopo e strengths Is the char-
an optimum shape of the undulation. We consider only thécteristic length of the problem:

energetics and do not study surface kinetics, a problem l,=QI|P|. (13)
which is fairly complicated even in the absence of

strain?23%4%We have proposed a kinetic model for a single Using the values for the Ge/8D1) system discussed above,
undulation in a previous publicati6hand further develop we find [o=3.3a for Sg steps and,=2.2a for Dg steps.
this kinetic model in Sec. VIII to describe the kinetics of a Hence,l, amounts to a few times the surface unit cell pa-
single three-dimensional strained island. rametera.

The action of the bulk stress on the step edge produces, in The ratioh/l, is the only dimensionless free parameter of
addition to the force dipole described above, an uncomperthe problem under consideration. One hgss, * and hence
sated force, a force monopdtef,(x)=P&(x), where P= h/lgey. We employ throughout the paper the small-slope
+ho,,. Thex axis is in the surface plane and directed nor-approximation which consists in replacing the surface steps
mal to the step lineh is the step heighty,, is the in-plane by force multipoles applied to a flat surface. We will see
bulk stress at the step location, and the plus sign correspondielow that the surface slopes of the ridges and islands are of
to an upward step and the minus to a step down. The dighe order ofh/ly. Hence, applicability of the present theory
placement field of the surface step can be evaluated using thiequires h/l,<<1. With the values given above, we find

general formula h/l;=0.1 and 0.3 forSg and Dy steps in the Ge/8)01)
system, respectively. A 4% misfit of the Ge/Si is therefore at
w the upper limit of applicability of the present theory. In other
ui(r):f Gij(r—r’)fj(r’)dzr’, (100  words, we expect that the small-slope approximation is still

— valid for the slope of 11°€0.2 rad) of the Ge/$001) py-

ramidal islands.
where Gj;(r) is theith component of displacement at the ~ We can also express the slopg of the vicinal surface
surface due to a unit force applied to the surface injthe corresponding to a minimum of the surface energy, @y.
direction. The coordinatg is along the step edge. Using the throughl,. Using the expressions forg and A4, Egs.(5)
expressions for the elastic Green funct@p(r) for a semi-  and(7), we obtain
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number of steps N number of steps N
ax h\¥2 cally located one. The contribution decays as the square of
0o= i(m E) (14)  the distance. The minus sign of the last term in @) (i.e.,

—Nly/h) corresponds to compressive strain and the negative

We now consider the periodically undulated stepped Surl_ine_energy of steps. For tensile strain, this term has the op-
face of a laterally strained crystal, which is formed Ky POSIte sign. ,
equidistant steps up followed By steps down. The distance  Figures 2a and 2c) presents the results of numerical
between steps\/(2N), where A is the undulation period, qalculatlons of the_undulqnon energy dengity) as a func-
can be varied and hence the orientation of the “facets’ion of the undulation period and the number of steps per
formed by the steps is arbitrary. The energy of the undulaf@cet;N. The energy densit§ is expressed in units of the
tions with respect to the flat strained surface consists of thg/astic energy densitf, of a uniformly strained crystal. In
line energies of the step) and the energy of step-step the case of compressive strain, there is no energetic barrier
interaction obtained by summation of the ters, . Using for surface yndulatlons: the'energy.contlnuously_decreases as
the definition ofly, Eq. (13), we find for the undulation en- the undulations grow. The initial single-step height undula-

ergy per unit area of the flat surface tion (N=1, a periodic sequence of up and down stepes
creases the energy fok/l1;>1.1; the energy minimum is

2h? [ 2(1+ ») achieved atA/IOwZ._Thg energetically favc_)rable growth
- 0_{— > 1 SmSn IN[Xm— X route, Fig. Zb), consists in a simultaneous increase of the
A ™ mn undulation periodA and the number of stepsl, in it. Ap-
) proximating the dependenck(N) by a straight lineA/l,
N 15 —I—ON (15) ~N, we find that the facet slope is roughly consta#t,
(Xm—X,)2| D =2Nh/A =2h/l,. However, the variation of the period with

increasing height can be kinetically hindeféd?*
HereEozYsS/(l—v) is the elastic energy density of a uni-  In the case of tensile strain, the line energy of steps is
formly strained crystal with flat surface due to the in-planepositive and the competition between the released elastic en-
straineo. The sum ovem runs over all steps, while the sum ergy and the increased surface energy is similar to the one
over n runs overN steps of a single “facet,” e.g., €x, causing the morphological instability above the roughening
< A/2. The prime at the sum indicates that the temmn is  transition®*~3®13Figure 2d) shows that, although an insta-
excluded from the summation. The monopole-dipole interachility is formally present for any, undulations with a height
tion vanishes after summation over the steps, due to mirrosmaller than about 20possess very large periods and give
symmetry of the step distribution. The convergence of theise to only an insignificant energy gain.
sum of logarithmic terms in Eq15) is obtained by perform- In the following sections, we generalize the energetics of
ing first summation over a distant period plus the symmetristraight steps presented above and our kinetic model of Ref.
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20 to three-dimensional islangStranski-Krastanov growjh The two terms in the square brackets in EfP) corre-
We consider axially symmetric islands with the surface conspond to the monopole and quadrupole terms, respectively.
sisting of circular steps whose line ener@y is assumed to Their ratio is of the ordeR/l,, whereR is the island base
be constant along the step. However, the line energies ahdius, so that the latter term can be neglected for reasonable
different steps may differ since the bulk strain acting on thenisland sizes which are much larger thearTherefore, we take
is produced not only by the misfit but also by other stepsinto account only the long-range term related to the mono-
The strain relaxation at the island top and the strain concerpole and obtain, by summation over all steps, the bulk strain
tration at the island base respectively decrease or increase thethe position of thenth stepr=r,,,
line energy.
1+v , OW(r /)
IV. STRAIN AND STRESS PRODUCED en=go 1~ h, p) '
T “n M
BY A THREE-DIMENSIONAL ISLAND

(20)

where, in the same way as above, the prime at the sum indi-

We proceed now to the energetics of three-dimensionglates that the term=n is not included in the summation.
strained islands and restrict ourselves to axially symmetric - gyajyation of the stress requires the determination of the
islands whose surface is formed by coaxial circular steps. L&tormal straire ,,= du,/dz. It can be found by employing the

us first determine the displacement field of a single circulaig|astic Green tens&rfor the bulk displacement field, rather
step on a strained surface and then obtain, by summing ovefan the surface one:

the steps, the strain and stress fields of a three-dimensional

island. x

The elastic field of a step of radius, on a strained sur- Szz(r):f 9Gj(r—r")1dz|,-of(r")d?r",

face is that of the axially symmetric distribution of force o

monopoles f,(r)=P4&(r—r,) and force dipolesf,(r)  \here summation ovefr=1,2 is implied. Evaluation of the

=Qdé(r—ry)/dr. Herer is the radial coordinateh is the  integral gives the normal strain at the surface caused by the
step heightP=—hoy, , andoy, is the in-plane bulk stress at i step:

the step location acting normal to the step line. The minus

sign corresponds to downward steps and gives rise to a posi- v(1+v)
tive monopole P for compressive bulk stressof,<0). £2d1) == ——— Poldlar+ LUn)W(r/ry). (21)
Evaluation of the integral€L0) in polar coordinates gives the
displacement field of a circular step of radiys Using Eg.(16), we find the in-plane stress produced by a
step of radiug,,:
Y o Qaarwr 16
U (1=~ (Pa=Qalar)W(tlry),  (16) ) e
Oy =" 7 ~ < —V)—/— V— ve
whereP,, is the monopole strength of tmth step. Below we T (1+w)(1-2v) ar r “
take into account that the value B, is influenced by the _ I
stress produced by other steps. It is assumed that the dipole (Po/m)(d/9r+vIr)W(r/ry). 22
strength is not changed under the action of strain. Summation of the stress produced by all steps gives the
We have denoted monopole strength of theth step:
W(p) “r___Cosede (17 P./Po=1—(h/m)>," (dl I )W(r,/ 23
= . =1- alor p+vir Fallm).
POW n/Fo (W)m(nyn)(nm)()

The integral(17) is elliptic and can be expressed via canoni-
cal elliptic integrals. However, we found the direct numerical
evaluation more appropriate. In the limjit—r|<r,r, one
can expand cog~1—¢?/2 in the denominator and obtain

The continuous limit of the equations above can be ob-
tained by substitutinp— 6(r)dr, whereé(r)=dz/dr is the
local slope of the island surfa@ér), and replacing the sums
by integrals. Ther component of the in-plane bulk strain at

W(r/r)~2In(ry/|r=r,)) (19  theisland surface is obtained from HQO):
so that the expression for the displacement field of a circular — 1+v g (R o
step(16) reduces to that of a straight stépl). e(N=1-——= . o(r")W(r/r')dr’, (24)

The radial strainde (r)=du,/dr due to themth step is
obtained by differentiating Eq16). We substitute the zeroth where R is the island base radius and we have denoted
order approximatiorPo= —hoo, whereoo=—Yeo/(1=v)  (1y=¢ (r)/e,. Hereafter we denote by overbars the di-
is the stress produced by the uniform strain, and obtain  hensjonless quantities of order unity. Similarly, tiecom-
14 ponent of the bulk stress follows from E@®3):
ey (r)=— Th&/ﬁr[l—Ioo’!/ﬁrm]W(r/rm), (19

—r=1 1 8+V
o=1=Tla*r

where the length, has been introduced by E(L3). ™

fRG(r’)W(r/r’)dr’, (25)
0
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metric island in the small-slope approximation. This approxi-

2.51 mation replaces the island by forces applied to the flat sur-
o 201 face. Hence, Eqs(24), (25), and the strain distributions
% gl presented in Fig. 3 do not distinguish the strain at the island
Wt 1.0 surface and that at the interface. An accurate determination
5] of three-dimensional strain distribution, as well as the ac-
' count of the island faceting, requires numerical finite-
00 element calculation$: !
057 |
1o 0.0 0.5 1.0 15 2.0 V. ENERGY OF A STRAINED THREE-DIMENSIONAL
/R ISLAND
R zz (b) : The elastic interaction energy between two coaxial circu-
= 5] lar steps of radir, andr,, can be calculated using E(B).
o 1'0_ AR Evaluating the integrals witlé functions, we obtain
0.5{ === 2(1—12)
0.0 H Unm:_T[PmPn_Q(Pn‘?/arm'l' Pmdl ar )
'0.5' 2R
10l , , : , +Q25%9r mdr )1 W(rn/t )] (26)
0.0 0.5 1.0 15 2.0
/R In the limit |r,—r,|<r,.r,, the elastic interaction energy
251 per unit step lengthV,,=U,/(27r,), reduces to the in-
& 207 (c) teraction energy between two straight parallel steps given by
= 15 Eqg. (12). We note that if the variation of the monopole
@ o] T strength caused by strain fields of other steps is neglected,
051 _—_::-7" Pn=P,=P, the monopole-dipole interaction between
. IH straight steps of the same sense _is abgent anq only the
5l monopole-monopole and dipole-dipole interactions are
) 2R presenf! However, the monopole-dipole interaction be-
Lo 05 10 15 20 tween two circular steps does not vanish even if the mono-
/R pole strengths are equal, since the step radii differ.

Now we can write the energy of the island as
FIG. 3. Radial strain distributions at the surface of islands of
different shapes calculated from E@4). The insets show the is- 1 ,
land cross sectionga) straight line,(b) half of a cosine period, and E=2 L+ > > Unm, (27)
(c) full period of a cosine. Breaks in the island cross section give " mn

rise to strain smgularltles. where

where o(r) =0 (r)/og. In the continuous limit, both the
strain and the stress do not depend on the height of the indi-
vidual steps and are solely determined by the island shapI
function 6(r).

L,=—27r,Q¢, (28

€ the line energy of theith step. We consider the case of
Figure 3 presents the strain distributions calculated by E Stranski—Krastanov growth, with the substrate surface cov-

(24) for islands of several model shapes. We consider axiall red by a wetting layer. The surface tension of the wetting
o pes. We ¥ayer is the same as on the terraces of the island surface. The
symmetric islands generated by a straight line, half of a co

sine period, and full period of a cosine. The island profile hasaifference of the island energy from the flat layer energy is
breaks at the top and at the base in the first case, only at t due to the step line energy and the step-step interaction en-

: : ! . Sy, EQ.(27).
base in the second case, and is smooth in the third case. eWe apply the same substitution as abolve; 6(r)dr, to

have chc_>sen the same ratios of the island hd'g“? its base obtain the island energy in the continuous limit. Then, the
2R. Strain relaxation at the island top and strain concentray.

tion at its base takes place in all three cases, in agreemeléni Oersgggy of the steps given by the first term of &27)

with the finite-element calculatior’s,as well as other

analyticaf® and numericdf*” calculations. It is also obvious 5

from Fig. 3 that breaks in the island profile give rise to sin- L= _zﬂQSOh—lf o(r)e(r)rdr. (29)

gularities of the strain. The smooth island profilég. 3(c)] 0

leads to smaller, although still pronounced, variations of

strain. The step-step interaction energy in H&7) consists of
Equations(24) and (25) provide a simple estimate of the three terms given by EQq(26), which are monopole-

strain and stress distributions for an arbitrary axially sym-monopole, monopole-dipole, and dipole-dipole interactions.
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We consider them separately. Going to the continuous limition of the straine,, and the stress,, . This is done in the
of the first term in Eq.(26), we arrive at the monopole- next section. Islands consisting of two “facets” are analyzed

monopole interaction energy in Sec. VII.
Unm=—(1+1)Eq V1. ISLANDS WITH CONSTANT SURFACE SLOPE
R . .
NN , / Let us determine the energy of a cone-shaped island, the
X a(r)o(r ryo(r’ ) rW(r/r")drdr’, o . .
j fo (N6 o(r)olr’)rv( ) slope # of which is constant. Such a cone is an axially sym-

metric analog of the pyramidal islands investigated by Ter-

soff et al® Let us first neglect the influence of step strain

where Eo:Ysgl(l— v) is the elastic energy density of the fields on other steps, i.e., takdr)=1 ando(r)=1. Then,

uniform strained film, as introduced in Sec. lll. In deriving the integrals(29)—(32) can be evaluated analytically and

Eq. (30), we took into account thaP,=—hoy=hYey/(1  yield the energy of a strained island,

—v). The symmetry of the integrand with respect to its two . .

arguments is ensured by the identity/(r/r’)=r"W(r'/r) E=(1+v)Eol3(Tv?30Y3— &0 6), (33

which follows from the definition oW(r/r’) in Eq. (17).

The monopole-monopole interaction energy is obviouslyV1ere we have denoted

nothing else but the elastic relaxation energy in the small-

slope approximatiof;>*213 T=— & 04 2E446% /N, (34)
A similar treatment of the monopole-dipole interaction 1+v

given by the second term of E(R6) leads to

(30

We have expressed the island eneEyhrough the dimen-

R o sionless volume = 7R3¢/313 and omitted the factor/3 to
Ung=(1+ V)Eo|of f o(r)6(r")o(r)alar' simplify the formulas. The constant factors entering Egs.
0 (33) and(34) are

+o(r')alar rw(r/r)drdr’, (31)

1
= W(p/p')dpdp'~1.11, 35
where the characteristic length of the problégnhas been $rm J Jo pWiplp")dpdp 39

introduced by Eq(20).

The dipole-dipole interaction cannot be treated similarly 1
to the monopole-monopole and monopole-dipole terms gdeZL pW(p)dp~3.33, (36)
above, since the corresponding integral diverges=at’.
The behavior of the integral at—r’ can be established us- and¢y~1.4 as described below.
ing Eq. (18), which givesd®W(r/r")/aror'=—2/(r—r")? Equation (33) represents the island energy in the same
for [r—r’|<r,r’. The integral diverges even if treated as aform as given by Tersofét al:® the first term is the surface
principal value. To make it meaningful, we take into accountenergy proportional to > and the second term is the elastic
that the nearest steps are separated by the distaii{e).  energy proportional to. In contrast to Ref. 3, where both
Then, a finite interval —h/&uq0(r)<r—r'<h/&y46(r), and 6 were treated as constants corresponding to a cusp in
where £4q is a constant of the order of unity, should be ex-the polar plot of the surface energy ahidwvas strictly posi-
cluded from the integration range. We find below, by com-tive, our analysis of vicinal surfaces led us to the surface
paring with numerical calculations, thgg~1.4. Since the energy(34) which depends on the slogeand is negative for
integral is acquired around~r"', the approximatior{18) is  small 6.
applicable and the integration gives Now, we search for a minimum of the island ene(g®)
over 6 for a given volumev. The only free parameter of the
problem is the ratid/l, which is proportional to the misfit
€0

Figure 4 compares the energies obtained by the analytical

The SUME = £+ U+ Ung+ Uy gives the energy of the formulas(33) and(34) with the numericz_al calcqlation base_d
island of arbitrary shap@(r). In principle, the shape of an 0N EQ.(27), where the constant slope is obtained by taking
island which minimizes the energy can be found by varyingeduidistant steps. We fixed the step heigh=0.1 and the
the energy with respect t6(r) under additional restrictions, island volumev =2.5x 10° and calculated the enerdyas a
e.g., fixed volume or height of the island. However, such dunction of the slop&. Different contributions to the energy
minimization leads to nonlinear integro-differential equa-are presented separately. We find a good agreement between
tions. On the other hand, the energyderived above does numerical and analytical calculations for each term. We used
not imply faceting of the island surface, which is an addi-the calculations of the dipole-dipole term to obtgjp~1.4.
tional effect governed by the surface reconstruction energiesit #— 0, the island energy is dominated by the negative line
We mimic faceting of the island by restricting its profdér) tension of steps and the elastic ener@fie monopole-
to be a linear or piecewise linear function. The former casenonopole interaction which is also negative. At large, the
can be investigated analytically, if we also neglect the variadistance between steps is smaller and the energy increases

R
Ug=4(1+ y)gddEoléh‘lf rg%(r)dr. (32
0
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3000-
(@)
2000
~ hi=02
= 1000 v o1
g% (b) 0.05
5o
a3
1000+
©
2000+
0.0 0.1 02 03 04 05 06 0.7 FIG. 6. Shapes of strained islands with two facéssvariation

slope 0 of shape with increasing volume, volumes of subsequent islands
differ by a factor of 2,h/1,=0.2; (b) shapes of islands with the
FIG. 4. Different contributions to the energy of a cone-shapedsame volume =6.4x 10°h? for different ratiosh/lo; (c) shape of
island as a function of its slopg=tand: L denotes the line energy the island obtained by energy minimization taking into account
of steps, M-M is the monopole-monopole interaction endedgstic ~ variations ofe, and o, (thick line) and under the additional as-
energy, M-D is the monopole-dipole interaction energy, D-D is the sumption thate,= €;,0,= o (thin line), h/l;=0.2.
dipole-dipole interaction energy, and “Total” denotes the sum of all
these contributions. Thick lines: numerical calculation of the stepisland volume. Hence, there is remergeticbarrier for the
energies and step-step interactions with Exy) taking e,/€,=1 island to grow. BelowSec. VIII) we find akineticbarrier for
and o,/o=1; thin lines: analytical approximatiof83); dashed the island nucleation. Tensile strain gives rise to an energy
lines: numerical calculation taking into account the variationsof parrier which needs to be overcome before the island can
andoy,. grow, as discussed in Refs. 3, 10 and 48. For the vhlue
=0.1, used in Fig. 5, the barri€E~32E|} is reached at
due to the short-range repulsion between sigps dipole-  ,~3203. With the parameter estimates given above and tak-
dipole interactiop The energy minimum is obtained at an jng lo=2.5a, we obtain a barrier height of 75 eV, and a
intermediate value o#. fluctuation which would overcome this barrier should in-
The energy minimum for a given volume of a cone-  volve some thousands of atoms. Such a fluctuation is highly
shaped island under compressive strain is presented in Fig.unlikely, which explains the differences in the growths of
by line 1. For comparison, line’1shows its energy under compressive and tensile heteroepitaxial layér8ur esti-
tensile strain. It is obtained by inverting the signs of the firstmate of the barrier height is much larger than the estimates
two terms in Eq(34). Other lines in the figure are described of Refs. 10 and 48 since we use the line energy of a step on
in the next sections. We find that, under compressive straim strained crystal surfatewhich is large compared to typi-
the island energy monotonously decreases with increasingal step energies on an unstrained surface used in the other
estimates.

VII. ISLANDS WITH TWO “FACETS”

We now relax the restriction of a constant slope on the
island surface and allow the presence of two different slopes.
The slopes and the sizes of corresponding “facets” are arbi-
trary and are found by minimizing the island energy with
respect to these parameters at a given volume. We even allow
the “facets” consisting of one step. In the latter case, the
separations between all but one steps are equal. Figaye 6
compares the island shapes obtained by energy minimization
for h/l3=0.2. The volumes of the islands differ by a factor of
1000 2000 3000 2. We find_ that the surface slope at t_he_island bottom con-
tinuously increases as the volume is increased. The top
“facet” is flat at small volumes and possesses a relatively

. . . small slope at larger volumes.
FIG. 5. Island energies as functions of the island volume: 1: P 9

conical island with constant slope under compressive strairth# Figure &b) compares the lslar_1d shapes for different ratios
same island under tensile strain. 2: island with two “facets” of of h/lo. We vary Fhe misfitzo while all other par.ameters of
different slopes. 3: island obtained by the kinetic model described ilji_he system remain constant. Hen(_;e, the rhtig is propor-
Sec. VIIl. Insets show cross sections of the islands of volumdional to go. The island volumev is constant, so that the

v/13=3500 in a common scale. The step heighhis0.1l,. dimensionless volume varies aslgs. One can see from Fig.

-1000
0

volume v/ZO3
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6(b) that the island shape strongly dependshdhy. When  where J,(r) is the radial component of the curred(r).
h/ly increases, the surface slope increases and the surfaBelution of this equation on thath terrace,r,<r<r,, 1,
breaks into two facets with noticeably different slopes. Thewherer , is the radius of theth step, isJ,(r)=j,/r, where
top part of the island is flatter and the bottom is steeper. |, is a constant. On the top terrage= 1, one hag;=0. The
Line 2 in Fig. 5 presents the volume dependence of thatep moves due to the difference between the adatom cur-
energy of the two-facet island. Comparison with line 1 pre-rents from two adjacent terraces and hence its velocity is
senting the energy of the single-facet island shows that thdr,/dt=—S(J,—J,_1), Where S is the surface area per
appearance of the second facet gives rise to very little gain iatom in the solid phase. With the currents obtained above, we
the island energy. have
The presence of the second facet is due to strain relax-
ation in the top part of the island. This is demonstrated by drp/dt=—=S8(jn=jn-2)/Tn. (39
Fig. 6(c) where the shape of the island obtained by minimiz-

ing the energy is compared with the one obtained by neglect- The current(r) is given by Fick's law

ing the variation ofe, and o, i.e., by takinge,=¢y and _

) J=-D.Vc, (40
o,= gg. In the latter case, the top facet with a smaller slope
does not develop. whereDy is the surface diffusion coefficient. The solution of

this equation on thath terrace is

VIIl. GROWTH KINETICS OF STRAINED ISLANDS c(f)=—(j,/DJIn(r/r,)+a,. (41)

hThe constant§,, and a,, can be found from the common
assumption that the adatom flux to théh step is propor-

In this section, we propose a model of the island growt
kinetics. It is an extension of our preliminary one-

dimensional model with straight stéfisto the two- tional to the difference between the adatom concentration at

dimensional case of circular steps and is based on the islaq e stepc(r .+ 0) and the equilibrium adatom concentration

energies derived above. We assume that the Stransk|-t the stere. -
Krastanov growth of strained islands proceeds by attachmefit Fn-

of adatoms from the flat wetting layer. Attachment of ada- K[c(r,+0)—c,]=—3(r,+0), (42)
toms to a step from the lower terrace and detachment to the
higher terrace provides an adatom flux to the island apex. We K[C(rps1—0)—Cpsq]=I(r sy —0), (43)

assume that a new two-dimensional island is nucleated on

the top of the three-dimensional island as soon as the stéghereK is a kinetic coefficient. The limiK— o is referred

edge of the newly created island expands after it is created® as the case of diffusion-limited kineti¢te adatom con-

We neglect the incoming flux of atoms and assume that th€entration at a step is equal to the equilibrium concentration

three-dimensional island is fed solely by adatoms from thévhile the opposite limitk—0 is the case of attachment-

flat surface of the wetting layer. The adatom concentratiodimited kinetics.

far from the island is taken equal to the equilibrium adatom From these boundary conditions we find

concentration. In this model, the incoming atomic flux in-

creases the adatom concentration and gives rise to the nucle- __p Ch+17Cn

ation of other three-dimensional islands far from the island In= SIN(r s /1) +le(r i+’

under consideration. These islands serve as sinks for atoms " " neLoon

from the deposition flux. The island nucleation reduces thavherely=D¢/K. The equilibrium adatom concentration at

adatom concentration to the equilibrium concentration. Anynth step,c,, can be expressed through the equilibrium ada-

other possible interaction between the islands is neglectedtom concentration at an isolated step and the chemical
We follow the familiar Burton-Cabrera-Frank step kinet- potential of the step,,: c,=cqexp(u,/KT). Taking into ac-

ics equation® 2% with the appropriate modification for cir- count thatu,/kT<1, one can expand,~cq(1+ u,/KT).

cular steps®'® The adatom densitg(r) on a terrace be- Finally, the island kinetics are described by the following set

(44)

tween two steps satisfies the continuity equation of equations:
Jc dr b Mne1— M
_:_V‘Jr (37) d_tn:_ o El —1
ot Pl In(rpy o /) + k(Mo +r, )
where J(r) is the adatom current along the surface. We do wn—
. .. . - ; n~ Mn-1
not include the deposition flux into the continuity equation, - 1| (45
as discussed above. We make the common assumption that INCry /rn—g) +le(ry "+ =y

the step motion is slow compared to the equilibration of thewherebzcoDSS/kT is a constant. For the fifsop) step, the
adatom distribution and takéc/dt=0. Then, the continuity gecond term of Eq(45) is omitted. At the bottom of the

equation(37) can be written in polar coordinates as island, one can virtually add one more circular step of a
radius large compared with the island size. This step pro-
HJF ﬁzo (38) vides the equilibrium adatoms concentration at its location.

dr r ' Taking the limitry,—, we find that the requirement of
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the equilibrium adatom concentration at infinity is equivalent
to omitting the first term in Eq45) for the bottom step. //'—-\ (a)

The chemical potential of a step, is the change of its e T
energy when an atom is attached to it. The step is advanced
and the energy of its elastic interaction with other steps
changes. The change of area of the circular step by the
atomic areaS gives rise to a radius chande ,=S/(27r,).
Then, the chemical potential ig,=(8E/dr,)Ar,. Using
Egs.(27) and(28), we obtain

_an 1 » Unm
rh 2@, & arg |

Mn=§ (46)

The interaction energy of two circular steps on the strained
surface is given by Eq26).

Equations(45) describe the kinetics of a set of circular
steps. The chemical potential of théh stepu,,, Eq.(46), is
expressed through the straip, Eq. (20), acting on this step P
and the step-step interaction enetdy;,, Eq. (26), where, in 0

height N, base radius R/J;

turn, the monopole strengtR,, of the nth step is given by 0 1x10’ 2x10°

Eq. (23). Previous investigations of the kinetics of circular time, (I, /hY’t

step®t9were limited to unstrained crystals and, in addition,

used the interaction energy of straight stéfs instead of FIG. 7. Island shape&),(b) and time dependence of the island

circular steps. In the absence of strain, the velodity/dt of ~ height and base widtiic) in the model of growth kinetics(a)
the top step is directed to the center of the cone. The top steghapes of islands 10, 20, 30, and 40 atomic layers Higl3=0.2,
shrinks and annihilates, then the next step follows, and th&) island shapes with of the same volume 2.75x 10°h® for dif-
island vanishe&®*°In contrast, the negative line energy of a ferent ratiosh/l,, and(c) time evolution of island dimensions, with
step under compressive strain, which is present in the firdhe timet scaled aslg/h)<t.
term of Eq.(46), causes the top step to expand and hence the
island to grow. model. On the other hand, when we attempt to create a small
The smallest nucleus in the present model is two atomi¢compared to the characteristic distance between digps
layers high, since the model is based on step-step interatwo-dimensional island on the top terrace, we find that it
tions and does not handle a single step. We simulated thiends to shrink if the top terrace is not large enoutypi-
island growth by numerically solving E¢45) for two-layer-  cally a few times larger thaky). Therefore, successful nucle-
high nuclei of different step radii,,r, and found that the ation is limited by the size of the top terrace and, if the
nucleus has to be large enough to give rise to threenucleation proceeds faster than the step motion, the proposed
dimensional growth. Fon/l,=0.2 we found that, if the bot- model of island growth is insensitive to the nucleation
tom step radius, is smaller than 113, the radius of the top mechanism and the nucleus size: the step surrounding the
stepr, decreases in time, so that the growth of such a smaliwo-dimensional nucleus on the top terrace is able to expand
nucleus consists in increasing of the radius of the bottononly if the top terrace is sufficiently large.
step while the top one shrinks and vanishes. In other words, Thus, the growth of a three-dimensional island is modeled
the three-dimensional growth does not begin despite the eras follows. The growth kinetics is obtained by numerical
ergy of the nucleus is negative: the energy is reduced furthesolution of Eqs(45), (46), and(26). We start with a nucleus
by transforming the nucleus into a two-dimensional single-consisting of two steps which is able to grow, as described
step height island. With the vallg~3.3a obtained in Sec. above. As soon as the radius of the top terrace exceells 0.5
Il for single-layer Sz steps in the Ge/8)01) system, the we attempt to create an additional two-dimensional island
smallest nucleus contains(3.3x 1.3)>~58 atoms. This re- bounded by a step of radius Q,11f it tends to shrink(.e.,
sult is in a qualitative agreement with recent experimentallr,/dt<0), it is discarded; if it tends to expand, it is re-
studie4®°® which show that the growth of strained three- tained. We have checked that the island growth kinetics is
dimensional islands requires a nucleus consisting of somisensitive to the nucleation parameters listed above.
hundreds of atoms. Figure 7 presents the results of the kinetics calculations.
As the three-dimensional island grows, its top terrace infigure fa shows snapshots of the growing island at heights
creases in size, and a new monolayer-height island magf 10, 20, 30, and 40 atomic layers. The snapshots are taken
nucleate on it. The theories of nucleation of two-dimensionajust before the next step is successfllg., with subsequent
islands(see Ref. 51 and references thej&iannot be applied expansioncreated. The radius of the top terrace varies from
to the present problem since they consider adatoms delivere3ill, for the 10-layer island to 51§ for the 40-layer island,
by a deposition flux, which is neglected in our model, and dowvhich makes the model insensitive to the nucleation param-
not take into account the equilibrium adatom concentratioreters, as described above. The island shapes obtained in the
at the steps, which is a driving force for step motion in ourkinetic model can be compared with those obtained from
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energy minimization, Fig. &. In both cases, the islands  We have shown that the energy of a vicinal surface can be
possess a flat top and steep sides, which is a result of tHewer, under the action of strain, than the energy of the sin-
strain relaxation at the top and strain concentration at thgular surface. We have estimated the miscut angle which
base. The surface of the energy-minimizing island is about 2orresponds to a minimum of the surface energy and found
times steeper Compared to that of the island obtained frOffhat this ang|e amounts to a few degrees for steps (ﬂﬂsl
the kinetic model, as can be seen from the inset in Fig. 5 The energy of a singular facet can be lowered under strain
where the islands are shown with a common scale. ~  py generating steps with the negative line energy. Such a
The distance between steps at the island base obtained ifechanism of instability of strained surfaces is qualitatively
the kinetic model does not change when the island volume igjifferent from that above the roughening transitidn®®
increased and remains approximately equdbiso that the  First, the step energy linearly depends on the strain. It is
slope isé~h/l,. Using the values for the GelSD1) system  pegative for compressive strain and the instability develops
obtained in Sec. lll, we find0~0.1 for Sz steps 1 only in this case. Second, there is no critical wavelength —
=a/\/8,1p=3.3a) and #~0.3 for Dy steps h=2a/\8,ls  periodic undulations consisting of steps decrease the energy
=2.2a), to be compared with the surface slope of the experiat any undulation period. The period corresponding to the
mentally observed Ge/@01) islands of¢~0.2. Figure o)  energy minimum increases with the amplitude of the undu-
compares the shapes of the islands grown at different misfitgtion, with the slope being approximately constant propor-
¢ (the ratioh/l, varies proportional t@). The larger misfit  tional to the strain.
gives rise to a steeper island base and a larger top terrace, The surfaces of Stranski-Krastanov islands in systems
similar to the energy-minimized islands in Figb® with small and moderate misfits make sufficiently small
Figure 1c) presents the temporal evolution of the island angles with the substrate to treat them as vicinal surfaces. We
height and base width. Calculations performed for differenforesume that even the promindd05) facets of Ge islands
misfits are combined in a common plot by scaling the timepn Sj001) making an angle of 11° to the substrate can be
by (Io/h)?. The island height is represented by the numberualitatively treated as vicinal. For the purpose of analytical
of stepsN and displayed by zigzag lines simply becalls  calculations, we have considered axially symmetric islands
an integer. The radiR of the island base are shown by the consisting of coaxial circular steps. This approximation is as
smooth lines. The calculations presented in the figure argccurate as the approximation of a pyramidal island where
performed for diffusion-limited kineticsly=0. We found the effects of edges are neglecfe@he treatment of the
that the kinetic coefficienK has very little influence on the monopole-monopole interaction between steps in our model
growth kinetics and the results for attachment-limited kinet-is equivalent to the small-slope approximation in the evalu-
ics (Ik—) only slightly differ from these for diffusion- ation of the elastic energy>!**3
limited kinetics. The stress relaxation at the island top and the stress con-
The observations of fairly narrow island size centration at its base are evaluated as the sum of stress fields
distributionéz‘%gave rise to a theoretical controversy on theof the steps. The strain and stress are expressed in quadra-
presencd’>*or absencE® of an energy minimum at an in- tures and can be calculated more easily than it can be done
termediate island size. Recent experimental observations gfith the aid of the finite-element method. The stress relax-
single-island kinetic® ~>®show that the island growth is con- ation has a twofold effect in our model: the line energies of
tinuous, but it essentially slows down as the island sizesteps become smaller at the island top since they are propor-
increase. Our model gives a continuous decrease of the igonal to the strain and the monopole strengths of the steps
land energy during its growth and continuous increase of it@ilso become smaller at the island top since they are propor-
sizes. We do not find, however, a slowing of the growth.tional to the stress. The distances between steps are not
Thus, the present model is not sufficient in this respect anéqual: faceting is not inherent to our model. It can be con-
further development of the growth kinetics model is re-sidered as an effect of the surface reconstruction which
quired. makes the equal distances between steps favorable. We
model faceting by assuming that the surface has a constant
slope or consists of two segments with constant slope. In the
latter case we find that the top part of the island has a smaller
We have shown that the results of atomistic calculati§ns, slope, as a result of the stress relaxation. The flatter island
giving a negative line energy of surface steps under compresep and steeper base develop with increasing misfit, which is
sive strain, can be explained in terms of linear elasticity as ain agreement with the shapes of experimentally observed is-
interaction of the strain produced by the step with the unidands. We expect that atomistic calculations of energies of
form bulk strain. The line energy of a step on a strainedvicinal facets, which can be performed similarly to the cal-
surface can be expressed through the dipole strength of thmilations of energies of low-index facets under straiw;ll
step in the absence of strain. We used the results of atomistgive insight into island shapes in systems with smaller mis-
calculations of step energies on théBil) surface without fits.
strairf® to obtain the dipole strengths and then were able to We propose a model of island growth based on the
determine the line energies of steps under strain. These eBurton-Cabrera-Frank step kinetics model. The growth of a
ergies are in good agreement with the results of atomistithree-dimensional island requires material transport to the
calculations® for different types of steps on ®01), which island top where it can be used to form a new atomic layer.
confirms our approach. This is provided by attachment of adatoms to steps from the

IX. CONCLUSIONS
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down terrace and detachment to the up terrace, to ensure aircular steps do not lead to three-dimensional growth.
equilibrium adatom concentration at the step. The adatomRather, the top step shrinks and disappears while the bottom
on the top terrace can nucleate a new two-dimensional islangne grows as a two-dimensional island. A minimum nucleus
bounded by the circular step. We find that a newly createdllowing the growth of a three-dimensional island is esti-
step is able to expand only if the terrace underneath is larggated to contain about 60 atoms. These results are in a quali-
enough; otherwise, it shrinks and disappears. This makes thgtive agreement with experimefité*49595%% revealing
model insensitive to the details of the nucleation process anfcleationless formation of ripples in the case of low misfit
the size of the nucleus. The slope of the island obtained ignd nucleation of islands at large misfit.
the kinetic model is about 2 times smaller than the slope of
the island obtained by energy minimization.
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