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Energies of strained vicinal surfaces and strained islands

V. M. Kaganer and K. H. Ploog
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We show that the interaction between the strain field of a surface step with uniform strain gives rise to a
negative line energy of steps. The energy of a vicinal surface under compressive strain is found to be lower
than the energy of the singular-crystal facet. We consider the surface of a three-dimensional strained island as
a stepped surface and derive the island’s energy and equilibrium shape from step energies and step-step
interactions under strain. We develop a kinetic model of the island growth as the motion of atomic steps
forming the island surface. Mass transport to the island top is provided by attachment of adatoms to steps from
the down terraces and detachment to the up terraces.
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I. INTRODUCTION

The energetics of strained heteroepitaxial films has
tracted enormous interest after it was found that the film
relax its elastic energy by forming small dislocation-fr
three-dimensional islands~Stranski-Krastanov growth!.1,2

The investigations are stimulated by potential applications
these islands as quantum dots in optoelectronic devices.
applications require dense arrays of uniform islands, wh
inspired numerous experimental and theoretical studies
the island growth and shape. Theoretical models3–11consider
the competition between the released elastic energy and
extra surface energy. Approaches to evaluate the elastic
ergy are well established and involve either numerical fin
element calculations8–11 or a very useful analytica
approximation3–5,12,13applicable for small slopes of the is
land surface.

The surface energy is regarded either as being inde
dent of the surface orientation5,9,13 or the consideration is
restricted to a limited number of predefined low-index fac
with fixed orientations and surface energies.3,4,10,11The first
approximation implies that the crystal is above the rough
ing temperature for the actual surface orientation. Howe
the Stranski-Krastanov growth is performed well below t
roughening temperature. The applicability of the second
proximation can be justified by the presence of the low-ind
dense-packed facets bounding the strained islands in sys
with very large misfit, such as InAs/GaAs or InAs/InP.14

However, systems with smaller misfits reveal high-index f
ets making smaller angles to the substrate surface. A not
example is the growth of Ge islands on Si~001!. The islands
obtained by molecular beam epitaxy develop~105! facets,2

while the islands obtained by liquid phase epitaxy are~115!
faceted.15 Both orientations obviously do not correspond to
cusp in the orientational dependence of the surface energ
the unstrained Ge crystal. It is also worth to note that
treatment of low-index dense-packed facets together with
small-slope approximation for the elastic energy3,4 implies
that the low-index facets form small angles to the subst
surface. This means that it applies only to islands grown
high-index substrate surfaces.

In the present paper, we consider corrugated hetero
taxial systems with moderate misfits, like SixGe12x /Si(001),
0163-1829/2001/64~20!/205301~14!/$20.00 64 2053
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whose facets make small angles to the interface and ca
treated as vicinal surfaces. We expect that such a treatm
can be applied, at least qualitatively, even to the~105! or
~115! facets of Ge/Si~001! islands mentioned above as bein
vicinal with respect to the~001! surface.

The energy of a vicinal surface is given by the line en
gies of the steps and the step-step interaction energie
remarkable study of the step energies on strained surf
was performed by Xieet al.16 Their atomistic calculation
of the steps on a strained Si~001! surface showed that th
step energies are strongly influenced by the applied str
The compressive strain gives rise to negative step energ
which explains the dependence of the roughening of strai
films on the sign of the strain.16,17 We show below that the
results of Xieet al. can be understood in terms of linea
elasticity, as an interaction of the strain field of the step w
the uniform strain in the film. We express the energy o
strained vicinal surface by the step-step interaction energy
an unstrained surface. We find that, under compressive st
the energy of a vicinal surface is lower than the energy of
singular surface.

The negative line energy of steps under compress
strain gives rise to step creation as a way of reducing
surface energy. Such a roughening of an initially singu
facet is limited by the short-range step-step repulsion wh
makes small distances between steps unfavorable. He
under lateral compression, an initially flat singular facet c
reduce its surface energy by developing surface undulat
with a finite strain-dependent slope. We calculate the ene
released by these undulations and estimate the surface s

We analyze the energy of three-dimensional strained
lands obtained by Stranski-Krastanov growth. We consi
axially symmetric islands with the surface consisting of co
centric circular steps. We perform an exact calculation of
interaction energy between these circular steps. Prev
investigations of the dynamics of an unstrained crystall
cone18,19 approximated the interactions between circu
steps by those of straight steps. Such an approximation, h
ever, is valid only when the difference between the step ra
is small compared to the radii. This condition is satisfied
steps on unstrained surfaces since the step-step interacti
short range~the interaction energy decays asx22, wherex is
the distance between steps!. However, the interaction be
©2001 The American Physical Society01-1
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V. M. KAGANER AND K. H. PLOOG PHYSICAL REVIEW B64 205301
tween steps on strained surfaces is long range~the interaction
energy is proportional to lnx) and an exact calculation i
necessary.

We treat arbitrary axially symmetric islands. In describi
the line energies of the steps on the surface of strained
lands and their interactions, we take into account that
strain acting on a step is not the same for all steps but
pends on the position of the step in the cone, as a resu
strain relaxation at the island apex and strain concentratio
its bottom. The faceting of the island is modeled by the s
face consisting of one or two straight segments in cross
tion. In the simplest case, our general formulas agree w
those of Tersoffet al.3 who considered pyramids, but sub
stantially differ in specifying the surface energy.

We finally develop a kinetic model of island growth b
extending the model which we have initially proposed
straight steps20 to the case of circular steps. We follow th
familiar Burton-Cabrera-Frank step kinetics equations21–23

with the appropriate modification for circular steps.18,19 The
island growth proceeds by attachment of adatoms from
wetting layer. The material transport to the island top is p
vided by attachment of adatoms to the steps from down
races and detachment to up terraces. New atomic layers
created on the island top if the step that bounds it is abl
expand. We show that the negative line energy of the step
the compressed film mentioned above gives rise to the
pansion of the top layer and hence to the growth of the
land. This behavior is mediated by the strain and is not p
sible for unstrained islands which can only contract
time.18,19 We find that the shapes and energies of the isla
obtained with this kinetic model differ from those of islan
obtained by energy minimization. The size of a nucleus n
essary for island growth significantly differs from the o
reducing the energy. Hence, energy minimization is not s
ficient to describe the observed islands, and kinetic mod
are necessary.

II. ENERGY OF A STRAINED VICINAL SURFACE

The energy of a vicinal surface per unit area is24,25

g5g01luuu/h, ~1!

whereg0 is surface tension of the singular crystal surfaceu
is the slope of the surface with respect to the singular cry
orientation (u5tanq, whereq is the angle between the vic
nal and the singular surface!, h is the height of the steps, an
l(u) is the energy of a step per its unit length. The s
energyl(u) consists of the energyl0 of an isolated step and
the energy of the step-step interaction. The latter quan
originates from the elastic dipole-dipole interaction betwe
steps and is proportional tou2, so that

l5l012ldu2. ~2!

Here ld is a constant and the factor of 2 is introduced
keep the same notation as in Refs. 16 and 26.

Xie et al.16 found, by means of atomistic calculations
the step energies on a strained Si~001! surface, that the strain
strongly influences the line energy of an isolated stepl0.
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Specifically, a 2% strain changes the step energies by
meV per ledge atom, a quantity which is large compared
the energies of these steps on an unstrained surface. M
over, the effect has opposite signs for compressive and
sile strain, respectively decreasing or increasing the step
ergy by the mentioned quantity.

Let us show now that this effect can be explained ve
generally as an interaction between the step strain field
the uniform strain field of compression or tension. The int
action energy of two strain fields, 1 and 2, can be written
~Ref. 27, Sec. 12.1!

U52E f (1)~r !•u(2)~r !d2r , ~3!

where f (1)(r ) is the surface force field producing the stra
field 1 andu(2)(r ) is the displacement field 2. The integral
taken over the flat surface of the crystal.

The strain field 1 is that of a surface step. The for
f (1)(r ) arises from the interaction forces between atoms n
the step edge. At distances away from the step that are l
compared to the lattice spacing, the displacement field p
duced by this force distribution can be described by a m
tipole expansion, similarly to the corresponding problem
electrostatics. The displacement vector in elasticity requ
higher order tensors than the scalar potential in electrosta
so that the elastic dipole is a second-rank tensor~Ref. 27,
Sec. 22!. The strain field of a straight step can be describ
by two components of an elastic dipole.28,29The dipole force
has a component normal to the surface,f z5Qz]d(x)/]x, due
to the uncompensated moment of the surface stress, a
component in the surface plane,f x5Qx]d(x)/]x, which is a
property of any linear crystal defect. Here,x is the coordinate
in the surface plane in the direction normal to the step l
and z is the coordinate normal to the surface. We do n
combine the two components of the force into a vector, si
Qx andQz do not form a vector~rather, they are two com
ponents of the second-rank tensor!. Numerical values of the
coefficientsQx ,Qz can be obtained from atomistic simula
tions of the steps on various surfaces of semiconductors
metals.26,30,31Below we use the results26 of atomistic calcu-
lations of the step-step interactions on Si~001! to estimate the
dipole strength.

We consider a heteroepitaxial strained film and take as
strain field 2 the uniform strain due to a misfit«0 between
the film and the substrate crystal, so thatux

(2)52«0x. A
larger lattice parameter of the film compared to that of
substrate,«0.0, gives rise to compressive strain in the film
which explains the minus sign in the expression above. M
ing the integral~3! by parts, we obtain the energy per un
length of the step

ls5Qx]ux
(2)/]x1Qz]uz

(2)/]x. ~4!

We restrict ourselves to sufficiently high elastic symmetry,
that the shear distortion]uz

(2)/]x is absent. In particular, the
elastically isotropic case and the~001! surface orientation of
a cubic crystal belong to this class. Then, we obtain a
markably simple expression for the step energy change
1-2
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ENERGIES OF STRAINED VICINAL SURFACES AND . . . PHYSICAL REVIEW B64 205301
to its interaction with the uniform strain field of the misfit«0,
which we denotels ~keepingl0 for the step energy on a
unstrained surface!,

ls52Qx«0 . ~5!

Equation ~5! explains the result of the atomisti
calculations16 which showed that the change of the step e
ergy by an external strain field is proportional to the str
«0. It follows also thatls is proportional to the dipole
strength of the stepQx , the quantity which is responsible fo
the step-step repulsion on an unstrained surface. The inte
tion energy of two parallel steps separated by the distanx
is, per unit step length,28,29

U~x!5
2~12n2!~Qx

26Qz
2!

pYx2
, ~6!

whereY is the Young modulus andn is the Poisson ratio. We
restrict ourselves to the elastic isotropy. The two signs c
respond to two steps of the same sense~both up or both
down! versus two steps of the opposite sense~one up and
one down!, respectively. The atomistic calculations of th
step energies on an unstrained Si~001! surface26 show that
the interaction energies for pairs of steps of the same an
opposite senses differ by not more than 12%. We concl
that Qx@Qz and use this assumption to simplify our form
las. We checked the effect ofQz and did not find any quali-
tative changes in the results. Then, applying Eq.~6! to a
vicinal surface with miscutu5h/x and taking into accoun
only the interactions between nearest-neighbor steps, we
tain by comparing Eqs.~2! and ~6!:

ld5
~12n2!Q2

pYh2
. ~7!

Here,Q is written instead ofQx for simplicity.
We can determineQ for different types of steps on th

unstrained Si~001! surface using the values ofld obtained in
the atomistic calculations.26 We use the surface lattice con
stant a53.85 Å as a natural length unit and the elas
constants26 Y563.1 eV/a3 andn50.333. The 231 recon-
struction of the Si~001! surface gives rise to either alternatin
SA and SB steps of single-atomic-layer heighth5a/A8,
which bound 90° domains with different orientation of th
reconstruction, or double-layer stepsDA and DB .32 The
calculations26 yield a vanishingly small dipole-dipole inter
actionld betweenSA steps. Then, according to Eq.~5!, the
influence of strain on the energy of this step is also ne
gible, and this is confirmed by the calculation of theSA step
energy on a strained surface.16

Considering theSB steps, we take into account that th
distance between these steps is twice the distance bet
the neighboring steps~which areSA andSB), so that a factor
of 1/4 should be introduced in the right-hand sides of E
~6! and ~7!. With the value26 ld50.728 eV/a we obtain,
from Eq. ~7!, Q58.95 eV/a for SB steps. The double-laye
height stepsDB are separated by twice the distance betwe
steps, to maintain the same miscut angle,26 which results in
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an additional factor of 4 in Eq.~7!. With the valueld
51.271 eV/a we obtainQ55.92 eV/a for DB steps.

Now, with the misfit «050.02 used in the atomistic
calculations16 we obtain from Eq.~5! ls52180 meV/a and
2120 meV/a for SB andDB steps, respectively. These va
ues agree well with the ones obtained by Xieet al.,16 ap-
proximately2150 meV/a for both steps, with a somewha
larger value for theSB step. This agreement confirms ou
interpretation of the influence of the uniform strain on t
energy of an isolated step as an interaction between the s
field of the step and the uniform strain. The change of
step energy under the action of the strainls is large com-
pared to the step energy on an unstrained surfacel0, which
is 211 and242 meV/a for SB andDB steps, respectively.26

Below we neglectl0 compared tols , with the aim to sim-
plify formulas. This assumption does not significantly alt
the results andl0 can be easily reintroduced in the equatio
if necessary.

Thus, the step energy on a strained vicinal surface is

l5ls12ldu2, ~8!

where the line energy of an isolated stepls , given by Eq.
~5!, is proportional to the strain«0 and can be either positive
or negative, depending on the sign of the strain. ForQx.0,
compressive strain gives rise to a negativels ; see Eq.~5!.
For sufficiently small miscut anglesu, the surface energy o
a vicinal surface is lower than the energy of the singu
facet. The minima of the surface energy~1! are obtained at

u056~ ulsu/6ld!1/2. ~9!

With the values discussed above, we obtain~for the misfit
«050.04 of Ge/Si! the minima of the surface energy at th
miscut anglesq05arctanu0 equal to64.8° for SB steps and
61.8° for DB steps.

The analysis above shows that the presence of comp
sive strain~for Qx.0) qualitatively changes the azimuth
dependence of the crystal surface energy. The cusp at
singular orientation of the surface turns from a minimum to
local maximum of the surface energy, while the minimum
achieved at an angle which scales as«0

1/2 and typically makes
a few degrees with the singular orientation. Figure 1 prese
a qualitative picture of these changes.

For unstrained crystals, knowledge of the orientational
pendence of the surface energy is sufficient to determine
equilibrium crystal shape by means of the Wulff constru
tion. In contrast, the shape transformation of a strained c

FIG. 1. Qualitative polar plots of surface energy for~a! an un-
strained and~b! a strained crystal.
1-3
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V. M. KAGANER AND K. H. PLOOG PHYSICAL REVIEW B64 205301
tal influences its elastic energy. In particular, the energy o
singular facet can be decreased by development of sur
undulations that both decrease the elastic energy and incr
the number of steps with negative line energy. The growth
the undulations is limited by the short-range step-step re
sion which makes small distances between steps unfa
able. The balance between all these contributions and t
influence on the energy of an undulated crystal surfac
considered in the next section.

III. MORPHOLOGICAL INSTABILITY OF A STRAINED
CRYSTAL BELOW THE ROUGHENING TRANSITION

The morphological instability of strained solidsabovethe
roughening transition has already been studied
detail.33–38,13 The origin of the instability is regarded as
competition between the elastic energy release by sur
undulations and the respective surface area increase. The
face tension of the solid is taken independent of orientat
an approximation which is valid above the roughening tr
sition. The competing energy contributions result in a criti
wavelength of the undulations: all modes with waveleng
exceeding the critical one are unstable and get amplified

The morphological instability of a strained crystalbelow
the roughening transition is qualitatively different, since t
crystal surface consists of steps and terraces and the su
energy strongly depends on the surface orientation, as
cussed in the previous section. It also follows from the p
vious section that the line energy of steps becomes nega
under compressive strain and hence favors undulations
addition to the elastic relaxation. Our aim now is to calcul
the energy of the periodically undulated surface of a strai
crystal. We restrict ourselves to a surface consisting of fa
formed by equidistantly spaced steps and do not search
an optimum shape of the undulation. We consider only
energetics and do not study surface kinetics, a prob
which is fairly complicated even in the absence
strain.22,39,40We have proposed a kinetic model for a sing
undulation in a previous publication20 and further develop
this kinetic model in Sec. VIII to describe the kinetics of
single three-dimensional strained island.

The action of the bulk stress on the step edge produce
addition to the force dipole described above, an uncomp
sated force, a force monopole41 f x(x)5Pd(x), where P5
6hsxx . Thex axis is in the surface plane and directed n
mal to the step line,h is the step height,sxx is the in-plane
bulk stress at the step location, and the plus sign corresp
to an upward step and the minus to a step down. The
placement field of the surface step can be evaluated using
general formula

ui~r !5E
2`

`

Gi j ~r2r 8! f j~r 8!d2r 8, ~10!

where Gi j (r ) is the i th component of displacement at th
surface due to a unit force applied to the surface in thej th
direction. The coordinatey is along the step edge. Using th
expressions for the elastic Green functionGi j (r ) for a semi-
20530
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infinite elastically isotropic solid42 and calculating the inte-
grals with thed function, we obtain

ux~x!52
2~12n2!

pY S P1Q
]

]xD lnuxu, ~11!

where we have neglectedQz in comparison withQx'Q, as
discussed above.

The elastic interaction energyVnm per unit step length of
two parallel steps separated by a distancex5xn2xm is ob-
tained by using Eq.~3!:

Vnm5
2~12n2!

pY
@PmPn1~Pn2Pm!Q]/]x

2Q2]2/]x2# lnuxu. ~12!

Here, Pn5snhsxx , wheresn511 for a step up andsn5
21 for a step down.

The first term of Eq.~12! gives, after summing over the
steps, the elastic relaxation energy in the small-slo
approximation.3–5,12,13 The second term, the monopole
dipole interaction, is present only if the interacting ste
have different monopole strengths. In the problem cons
ered in this section, the monopole-dipole interaction ta
place between a step up and a step down. It is absen
steps on a strained vicinal surface.41 The monopole-dipole
interaction between steps of the same sense is also pre
as discussed in the next sections, if the bulk stress~and hence
the monopole strength! is influenced by the stress fields o
other steps forming a strained island. The last term of
~12! describes the step-step repulsion in the absence of s
and coincides with Eq.~6!, whereQz is neglected compared
to Qx .

The ratio of the dipole to monopole strengths is the ch
acteristic length of the problem:

l 05Q/uPu. ~13!

Using the values for the Ge/Si~001! system discussed above
we find l 053.3a for SB steps andl 052.2a for DB steps.
Hence,l 0 amounts to a few times the surface unit cell p
rametera.

The ratioh/ l 0 is the only dimensionless free parameter
the problem under consideration. One hasl 0}«0

21 and hence
h/ l 0}«0. We employ throughout the paper the small-slo
approximation which consists in replacing the surface st
by force multipoles applied to a flat surface. We will s
below that the surface slopes of the ridges and islands ar
the order ofh/ l 0. Hence, applicability of the present theo
requires h/ l 0!1. With the values given above, we fin
h/ l 050.1 and 0.3 forSB and DB steps in the Ge/Si~001!
system, respectively. A 4% misfit of the Ge/Si is therefore
the upper limit of applicability of the present theory. In oth
words, we expect that the small-slope approximation is s
valid for the slope of 11°(50.2 rad) of the Ge/Si~001! py-
ramidal islands.

We can also express the slopeu0 of the vicinal surface
corresponding to a minimum of the surface energy, Eq.~9!,
through l 0. Using the expressions forls and ld , Eqs. ~5!
and ~7!, we obtain
1-4
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FIG. 2. The energy release per unit surfa
area of a laterally strained crystal developing p
riodic undulations. ~a!,~b! Compressive and
~c!,~d! tensile strain. Left column: the energy dis
tribution plotted vs the undulation periodL
~measured in units ofl 0) and height~measured in
number of steps,N). The regions of negative en
ergy ~with respect to the flat surface! are only
shown. Right column: the energy minimum an
the corresponding lateral period for a given u
dulation height.h/ l 050.1.
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h

l 0
D 1/2

. ~14!

We now consider the periodically undulated stepped s
face of a laterally strained crystal, which is formed byN
equidistant steps up followed byN steps down. The distanc
between stepsL/(2N), whereL is the undulation period
can be varied and hence the orientation of the ‘‘face
formed by the steps is arbitrary. The energy of the undu
tions with respect to the flat strained surface consists of
line energies of the steps~5! and the energy of step-ste
interaction obtained by summation of the termsVnm . Using
the definition ofl 0, Eq. ~13!, we find for the undulation en
ergy per unit area of the flat surface

E5E0

2h2

L H 2~11n!

p (
mn

8 F smsn lnuxm2xnu

1
l 0
2

~xm2xn!2G2
l 0

h
NJ . ~15!

HereE05Y«0
2/(12n) is the elastic energy density of a un

formly strained crystal with flat surface due to the in-pla
strain«0. The sum overm runs over all steps, while the sum
over n runs overN steps of a single ‘‘facet,’’ e.g., 0,xn
,L/2. The prime at the sum indicates that the termm5n is
excluded from the summation. The monopole-dipole inter
tion vanishes after summation over the steps, due to mi
symmetry of the step distribution. The convergence of
sum of logarithmic terms in Eq.~15! is obtained by perform-
ing first summation over a distant period plus the symme
20530
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cally located one. The contribution decays as the squar
the distance. The minus sign of the last term in Eq.~15! ~i.e.,
2Nl0 /h) corresponds to compressive strain and the nega
line energy of steps. For tensile strain, this term has the
posite sign.

Figures 2~a! and 2~c! presents the results of numeric
calculations of the undulation energy density~15! as a func-
tion of the undulation periodL and the number of steps pe
facet, N. The energy densityE is expressed in units of the
elastic energy densityE0 of a uniformly strained crystal. In
the case of compressive strain, there is no energetic ba
for surface undulations: the energy continuously decrease
the undulations grow. The initial single-step height undu
tion (N51, a periodic sequence of up and down steps! de-
creases the energy forL/ l 0.1.1; the energy minimum is
achieved atL/ l 0'2. The energetically favorable growt
route, Fig. 2~b!, consists in a simultaneous increase of t
undulation periodL and the number of steps,N, in it. Ap-
proximating the dependenceL(N) by a straight lineL/ l 0
'N, we find that the facet slope is roughly constant,u
52Nh/L52h/ l 0. However, the variation of the period wit
increasing height can be kinetically hindered.43,44

In the case of tensile strain, the line energy of steps
positive and the competition between the released elastic
ergy and the increased surface energy is similar to the
causing the morphological instability above the roughen
transition.33–38,13Figure 2~d! shows that, although an insta
bility is formally present for anyN, undulations with a height
smaller than about 20h possess very large periods and gi
rise to only an insignificant energy gain.

In the following sections, we generalize the energetics
straight steps presented above and our kinetic model of
1-5
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20 to three-dimensional islands~Stranski-Krastanov growth!.
We consider axially symmetric islands with the surface c
sisting of circular steps whose line energy~5! is assumed to
be constant along the step. However, the line energie
different steps may differ since the bulk strain acting on th
is produced not only by the misfit but also by other ste
The strain relaxation at the island top and the strain conc
tration at the island base respectively decrease or increas
line energy.

IV. STRAIN AND STRESS PRODUCED
BY A THREE-DIMENSIONAL ISLAND

We proceed now to the energetics of three-dimensio
strained islands and restrict ourselves to axially symme
islands whose surface is formed by coaxial circular steps.
us first determine the displacement field of a single circu
step on a strained surface and then obtain, by summing
the steps, the strain and stress fields of a three-dimens
island.

The elastic field of a step of radiusr n on a strained sur-
face is that of the axially symmetric distribution of forc
monopoles f r(r )5Pd(r 2r n) and force dipoles f r(r )
5Q]d(r 2r n)/]r . Here r is the radial coordinate,h is the
step height,P52hs rr , ands rr is the in-plane bulk stress a
the step location acting normal to the step line. The min
sign corresponds to downward steps and gives rise to a p
tive monopole P for compressive bulk stress (s rr ,0).
Evaluation of the integrals~10! in polar coordinates gives th
displacement field of a circular step of radiusr n :

ur~r !5
12n2

pY
~Pn2Q]/]r n!W~r /r n!, ~16!

wherePn is the monopole strength of thenth step. Below we
take into account that the value ofPn is influenced by the
stress produced by other steps. It is assumed that the d
strength is not changed under the action of strain.

We have denoted

W~r![E
0

2p coswdw

A122r cosw1r2
. ~17!

The integral~17! is elliptic and can be expressed via cano
cal elliptic integrals. However, we found the direct numeric
evaluation more appropriate. In the limitur 2r nu!r ,r n one
can expand cosw'12w2/2 in the denominator and obtain

W~r /r n!'2 ln~r n /ur 2r nu!, ~18!

so that the expression for the displacement field of a circ
step~16! reduces to that of a straight step~11!.

The radial straind« rr (r )5]ur /]r due to themth step is
obtained by differentiating Eq.~16!. We substitute the zeroth
order approximationP052hs0, wheres052Y«0 /(12n)
is the stress produced by the uniform strain, and obtain

d« rr ~r !52
11n

p
h]/]r @12 l 0]/]r m#W~r /r m!, ~19!

where the lengthl 0 has been introduced by Eq.~13!.
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The two terms in the square brackets in Eq.~19! corre-
spond to the monopole and quadrupole terms, respectiv
Their ratio is of the orderR/ l 0, whereR is the island base
radius, so that the latter term can be neglected for reason
island sizes which are much larger thana. Therefore, we take
into account only the long-range term related to the mo
pole and obtain, by summation over all steps, the bulk str
at the position of thenth stepr 5r n ,

«n5«0F12
11n

p
h(

m
8

]W~r n /r m!

]r n
G , ~20!

where, in the same way as above, the prime at the sum i
cates that the termm5n is not included in the summation.

Evaluation of the stress requires the determination of
normal strain«zz[]uz /]z. It can be found by employing the
elastic Green tensor42 for the bulk displacement field, rathe
than the surface one:

«zz~r !5E
2`

`

]Gz j~r2r 8!/]zuz50f j~r 8!d2r 8,

where summation overj 51,2 is implied. Evaluation of the
integral gives the normal strain at the surface caused by
nth step:

«zz~r !52
n~11n!

pY
P0~]/]r 11/r !W~r /r n!. ~21!

Using Eq. ~16!, we find the in-plane stress produced by
step of radiusr n :

ds rr 5
Y

~11n!~122n! F ~12n!
]ur

]r
1n

ur

r
1n«zzG

5~P0 /p!~]/]r 1n/r !W~r /r n!. ~22!

Summation of the stress produced by all steps gives
monopole strength of thenth step:

Pn /P0512~h/p!(
m

8 ~]/]r n1n/r n!W~r n /r m!. ~23!

The continuous limit of the equations above can be
tained by substitutingh→u(r )dr, whereu(r )5dz/dr is the
local slope of the island surfacez(r ), and replacing the sum
by integrals. Therr component of the in-plane bulk strain a
the island surface is obtained from Eq.~20!:

«̄~r !512
11n

p

]

]r E0

R

u~r 8!W~r /r 8!dr8, ~24!

where R is the island base radius and we have deno
«̄(r )5« rr (r )/«0. Hereafter we denote by overbars the d
mensionless quantities of order unity. Similarly, therr com-
ponent of the bulk stress follows from Eq.~23!:

s̄~r !512
1

p S ]

]r
1

n

r D E
0

R

u~r 8!W~r /r 8!dr8, ~25!
1-6
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ENERGIES OF STRAINED VICINAL SURFACES AND . . . PHYSICAL REVIEW B64 205301
where s̄(r )5s rr (r )/s0. In the continuous limit, both the
strain and the stress do not depend on the height of the
vidual steps and are solely determined by the island sh
function u(r ).

Figure 3 presents the strain distributions calculated by
~24! for islands of several model shapes. We consider axi
symmetric islands generated by a straight line, half of a
sine period, and full period of a cosine. The island profile h
breaks at the top and at the base in the first case, only a
base in the second case, and is smooth in the third case
have chosen the same ratios of the island heightH to its base
2R. Strain relaxation at the island top and strain concen
tion at its base takes place in all three cases, in agreem
with the finite-element calculations,9 as well as other
analytical45 and numerical46,47calculations. It is also obvious
from Fig. 3 that breaks in the island profile give rise to s
gularities of the strain. The smooth island profile@Fig. 3~c!#
leads to smaller, although still pronounced, variations
strain.

Equations~24! and ~25! provide a simple estimate of th
strain and stress distributions for an arbitrary axially sy

FIG. 3. Radial strain distributions at the surface of islands
different shapes calculated from Eq.~24!. The insets show the is
land cross sections:~a! straight line,~b! half of a cosine period, and
~c! full period of a cosine. Breaks in the island cross section g
rise to strain singularities.
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metric island in the small-slope approximation. This appro
mation replaces the island by forces applied to the flat s
face. Hence, Eqs.~24!, ~25!, and the strain distributions
presented in Fig. 3 do not distinguish the strain at the isla
surface and that at the interface. An accurate determina
of three-dimensional strain distribution, as well as the
count of the island faceting, requires numerical finit
element calculations.8–11

V. ENERGY OF A STRAINED THREE-DIMENSIONAL
ISLAND

The elastic interaction energy between two coaxial cir
lar steps of radiir n and r m can be calculated using Eq.~3!.
Evaluating the integrals withd functions, we obtain

Unm52
2~12n2!

Y
@PmPn2Q~Pn]/]r m1Pm]/]r n!

1Q2]2/]r m]r n#@r nW~r n /r m!#. ~26!

In the limit ur m2r nu!r m ,r n , the elastic interaction energ
per unit step length,Vnm5Unm /(2pr n), reduces to the in-
teraction energy between two straight parallel steps given
Eq. ~12!. We note that if the variation of the monopo
strength caused by strain fields of other steps is neglec
Pm5Pn5P, the monopole-dipole interaction betwee
straight steps of the same sense is absent and only
monopole-monopole and dipole-dipole interactions
present.41 However, the monopole-dipole interaction b
tween two circular steps does not vanish even if the mo
pole strengths are equal, since the step radii differ.

Now we can write the energy of the island as

E5(
n

Ln1
1

2 (
m,n

8 Unm , ~27!

where

Ln522pr nQ«n ~28!

is the line energy of thenth step. We consider the case
Stranski–Krastanov growth, with the substrate surface c
ered by a wetting layer. The surface tension of the wett
layer is the same as on the terraces of the island surface.
difference of the island energy from the flat layer energy
due to the step line energy and the step-step interaction
ergy, Eq.~27!.

We apply the same substitution as above,h→u(r )dr, to
obtain the island energy in the continuous limit. Then, t
line energy of the steps given by the first term of Eq.~27!
becomes

L522pQ«0h21E
0

R

u~r !«̄~r !rdr . ~29!

The step-step interaction energy in Eq.~27! consists of
three terms given by Eq.~26!, which are monopole-
monopole, monopole-dipole, and dipole-dipole interactio

f

e

1-7
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V. M. KAGANER AND K. H. PLOOG PHYSICAL REVIEW B64 205301
We consider them separately. Going to the continuous li
of the first term in Eq.~26!, we arrive at the monopole
monopole interaction energy

Umm52~11n!E0

3E E
0

R

u~r !u~r 8!s̄~r !s̄~r 8!rW~r /r 8!drdr8,

~30!

whereE05Y«0
2/(12n) is the elastic energy density of th

uniform strained film, as introduced in Sec. III. In derivin
Eq. ~30!, we took into account thatP052hs05hY«0 /(1
2n). The symmetry of the integrand with respect to its tw
arguments is ensured by the identityrW(r /r 8)5r 8W(r 8/r )
which follows from the definition ofW(r /r 8) in Eq. ~17!.
The monopole-monopole interaction energy is obviou
nothing else but the elastic relaxation energy in the sm
slope approximation.3–5,12,13

A similar treatment of the monopole-dipole interactio
given by the second term of Eq.~26! leads to

Umd5~11n!E0l 0E E
0

R

u~r !u~r 8!@s̄~r !]/]r 8

1s̄~r 8!]/]r #rW~r /r 8!drdr8, ~31!

where the characteristic length of the probleml 0 has been
introduced by Eq.~20!.

The dipole-dipole interaction cannot be treated simila
to the monopole-monopole and monopole-dipole ter
above, since the corresponding integral diverges atr 5r 8.
The behavior of the integral atr→r 8 can be established us
ing Eq. ~18!, which gives]2W(r /r 8)/]r ]r 8522/(r 2r 8)2

for ur 2r 8u!r ,r 8. The integral diverges even if treated as
principal value. To make it meaningful, we take into accou
that the nearest steps are separated by the distanceh/u(r ).
Then, a finite interval 2h/jddu(r ),r 2r 8,h/jddu(r ),
wherejdd is a constant of the order of unity, should be e
cluded from the integration range. We find below, by co
paring with numerical calculations, thatjdd'1.4. Since the
integral is acquired aroundr'r 8, the approximation~18! is
applicable and the integration gives

Udd54~11n!jddE0l 0
2h21E

0

R

ru3~r !dr. ~32!

The sumE5L1Umm1Umd1Udd gives the energy of the
island of arbitrary shapeu(r ). In principle, the shape of an
island which minimizes the energy can be found by vary
the energy with respect tou(r ) under additional restrictions
e.g., fixed volume or height of the island. However, suc
minimization leads to nonlinear integro-differential equ
tions. On the other hand, the energyE derived above does
not imply faceting of the island surface, which is an ad
tional effect governed by the surface reconstruction energ
We mimic faceting of the island by restricting its profilez(r )
to be a linear or piecewise linear function. The former ca
can be investigated analytically, if we also neglect the va
20530
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tion of the strain« rr and the stresss rr . This is done in the
next section. Islands consisting of two ‘‘facets’’ are analyz
in Sec. VII.

VI. ISLANDS WITH CONSTANT SURFACE SLOPE

Let us determine the energy of a cone-shaped island,
slopeu of which is constant. Such a cone is an axially sy
metric analog of the pyramidal islands investigated by T
soff et al.3 Let us first neglect the influence of step stra
fields on other steps, i.e., take«̄(r )51 ands̄(r )51. Then,
the integrals~29!–~32! can be evaluated analytically an
yield the energy of a strained island,

E5~11n!E0l 0
3~G v̄2/3u1/32jmmv̄u!, ~33!

where we have denoted

G52
p

11n
1jmdu12jddu

2l 0 /h. ~34!

We have expressed the island energyE through the dimen-
sionless volumev̄5pR3u/3l 0

3 and omitted the factorp/3 to
simplify the formulas. The constant factors entering E
~33! and ~34! are

jmm[E E
0

1

rW~r/r8!drdr8'1.11, ~35!

jmd[2E
0

1

rW~r!dr'3.33, ~36!

andjdd'1.4 as described below.
Equation ~33! represents the island energy in the sa

form as given by Tersoffet al.:3 the first term is the surface
energy proportional tov2/3 and the second term is the elast
energy proportional tov. In contrast to Ref. 3, where bothG
and u were treated as constants corresponding to a cus
the polar plot of the surface energy andG was strictly posi-
tive, our analysis of vicinal surfaces led us to the surfa
energy~34! which depends on the slopeu and is negative for
small u.

Now, we search for a minimum of the island energy~33!
overu for a given volumev. The only free parameter of th
problem is the ratioh/ l 0, which is proportional to the misfit
«0.

Figure 4 compares the energies obtained by the analy
formulas~33! and ~34! with the numerical calculation base
on Eq. ~27!, where the constant slope is obtained by taki
equidistant steps. We fixed the step heighth/ l 050.1 and the
island volumev̄52.53103 and calculated the energyE as a
function of the slopeu. Different contributions to the energ
are presented separately. We find a good agreement bet
numerical and analytical calculations for each term. We u
the calculations of the dipole-dipole term to obtainjdd'1.4.
At u→0, the island energy is dominated by the negative l
tension of steps and the elastic energy~the monopole-
monopole interaction!, which is also negative. At largeu, the
distance between steps is smaller and the energy incre
1-8
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ENERGIES OF STRAINED VICINAL SURFACES AND . . . PHYSICAL REVIEW B64 205301
due to the short-range repulsion between steps~the dipole-
dipole interaction!. The energy minimum is obtained at a
intermediate value ofu.

The energy minimum for a given volumev of a cone-
shaped island under compressive strain is presented in F
by line 1. For comparison, line 18 shows its energy unde
tensile strain. It is obtained by inverting the signs of the fi
two terms in Eq.~34!. Other lines in the figure are describe
in the next sections. We find that, under compressive str
the island energy monotonously decreases with increa

FIG. 4. Different contributions to the energy of a cone-shap
island as a function of its slopeu5tanq: L denotes the line energy
of steps, M-M is the monopole-monopole interaction energy~elastic
energy!, M-D is the monopole-dipole interaction energy, D-D is t
dipole-dipole interaction energy, and ‘‘Total’’ denotes the sum of
these contributions. Thick lines: numerical calculation of the s
energies and step-step interactions with Eq.~27! taking en /e051
and sn /s051; thin lines: analytical approximation~33!; dashed
lines: numerical calculation taking into account the variations ofen

andsn .

FIG. 5. Island energies as functions of the island volume:
conical island with constant slope under compressive strain. 18: the
same island under tensile strain. 2: island with two ‘‘facets’’
different slopes. 3: island obtained by the kinetic model describe
Sec. VIII. Insets show cross sections of the islands of volu
v/ l 0

353500 in a common scale. The step height ish50.1l 0.
20530
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island volume. Hence, there is noenergeticbarrier for the
island to grow. Below~Sec. VIII! we find akineticbarrier for
the island nucleation. Tensile strain gives rise to an ene
barrier which needs to be overcome before the island
grow, as discussed in Refs. 3, 10 and 48. For the valuh
50.1l 0 used in Fig. 5, the barrierE'32E0l 0

3 is reached at
v'320l 0

3. With the parameter estimates given above and t
ing l 052.5a, we obtain a barrier height of 75 eV, and
fluctuation which would overcome this barrier should i
volve some thousands of atoms. Such a fluctuation is hig
unlikely, which explains the differences in the growths
compressive and tensile heteroepitaxial layers.16 Our esti-
mate of the barrier height is much larger than the estima
of Refs. 10 and 48 since we use the line energy of a step
a strained crystal surface16 which is large compared to typi
cal step energies on an unstrained surface used in the o
estimates.

VII. ISLANDS WITH TWO ‘‘FACETS’’

We now relax the restriction of a constant slope on
island surface and allow the presence of two different slop
The slopes and the sizes of corresponding ‘‘facets’’ are a
trary and are found by minimizing the island energy w
respect to these parameters at a given volume. We even a
the ‘‘facets’’ consisting of one step. In the latter case, t
separations between all but one steps are equal. Figure~a!
compares the island shapes obtained by energy minimiza
for h/ l 050.2. The volumes of the islands differ by a factor
2. We find that the surface slope at the island bottom c
tinuously increases as the volume is increased. The
‘‘facet’’ is flat at small volumes and possesses a relativ
small slope at larger volumes.

Figure 6~b! compares the island shapes for different rat
of h/ l 0. We vary the misfit«0 while all other parameters o
the system remain constant. Hence, the ratioh/ l 0 is propor-
tional to «0. The island volumev is constant, so that the
dimensionless volumev̄ varies asl 0

23. One can see from Fig

d

l
p

:

in
e

FIG. 6. Shapes of strained islands with two facets:~a! variation
of shape with increasing volume, volumes of subsequent isla
differ by a factor of 2,h/ l 050.2; ~b! shapes of islands with the
same volumev56.43105h3 for different ratiosh/ l 0; ~c! shape of
the island obtained by energy minimization taking into acco
variations ofen and sn ~thick line! and under the additional as
sumption thaten5e0 ,sn5s0 ~thin line!, h/ l 050.2.
1-9
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V. M. KAGANER AND K. H. PLOOG PHYSICAL REVIEW B64 205301
6~b! that the island shape strongly depends onh/ l 0. When
h/ l 0 increases, the surface slope increases and the su
breaks into two facets with noticeably different slopes. T
top part of the island is flatter and the bottom is steeper.

Line 2 in Fig. 5 presents the volume dependence of
energy of the two-facet island. Comparison with line 1 p
senting the energy of the single-facet island shows that
appearance of the second facet gives rise to very little gai
the island energy.

The presence of the second facet is due to strain re
ation in the top part of the island. This is demonstrated
Fig. 6~c! where the shape of the island obtained by minim
ing the energy is compared with the one obtained by negl
ing the variation of«n and sn , i.e., by taking«n5«0 and
sn5s0. In the latter case, the top facet with a smaller slo
does not develop.

VIII. GROWTH KINETICS OF STRAINED ISLANDS

In this section, we propose a model of the island grow
kinetics. It is an extension of our preliminary on
dimensional model with straight steps20 to the two-
dimensional case of circular steps and is based on the is
energies derived above. We assume that the Stran
Krastanov growth of strained islands proceeds by attachm
of adatoms from the flat wetting layer. Attachment of ad
toms to a step from the lower terrace and detachment to
higher terrace provides an adatom flux to the island apex.
assume that a new two-dimensional island is nucleated
the top of the three-dimensional island as soon as the
edge of the newly created island expands after it is crea
We neglect the incoming flux of atoms and assume that
three-dimensional island is fed solely by adatoms from
flat surface of the wetting layer. The adatom concentrat
far from the island is taken equal to the equilibrium adat
concentration. In this model, the incoming atomic flux i
creases the adatom concentration and gives rise to the n
ation of other three-dimensional islands far from the isla
under consideration. These islands serve as sinks for a
from the deposition flux. The island nucleation reduces
adatom concentration to the equilibrium concentration. A
other possible interaction between the islands is neglect

We follow the familiar Burton-Cabrera-Frank step kine
ics equations21–23 with the appropriate modification for cir
cular steps.18,19 The adatom densityc(r ) on a terrace be-
tween two steps satisfies the continuity equation

]c

]t
52¹•J, ~37!

whereJ(r ) is the adatom current along the surface. We
not include the deposition flux into the continuity equatio
as discussed above. We make the common assumption
the step motion is slow compared to the equilibration of
adatom distribution and take]c/]t50. Then, the continuity
equation~37! can be written in polar coordinates as

dJr

dr
1

Jr

r
50, ~38!
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where Jr(r ) is the radial component of the currentJ(r ).
Solution of this equation on thenth terrace,r n,r ,r n11,
wherer n is the radius of thenth step, isJr(r )5 j n /r , where
j n is a constant. On the top terracen51, one hasj 150. The
step moves due to the difference between the adatom
rents from two adjacent terraces and hence its velocity
drn /dt52S(Jn2Jn21), where S is the surface area pe
atom in the solid phase. With the currents obtained above
have

drn /dt52S~ j n2 j n21!/r n . ~39!

The currentJ(r ) is given by Fick’s law

J52Ds¹c, ~40!

whereDs is the surface diffusion coefficient. The solution
this equation on thenth terrace is

c~r !52~ j n /Ds!ln~r /r n!1an . ~41!

The constantsj n and an can be found from the commo
assumption that the adatom flux to thenth step is propor-
tional to the difference between the adatom concentratio
the stepc(r n60) and the equilibrium adatom concentratio
at the stepcn :

K@c~r n10!2cn#52J~r n10!, ~42!

K@c~r n1120!2cn11#5J~r n1120!, ~43!

whereK is a kinetic coefficient. The limitK→` is referred
to as the case of diffusion-limited kinetics~the adatom con-
centration at a step is equal to the equilibrium concentratio!,
while the opposite limitK→0 is the case of attachmen
limited kinetics.

From these boundary conditions we find

j n52Ds

cn112cn

ln~r n11 /r n!1 l K~r n11
21 1r n

21!
, ~44!

where l K5Ds /K. The equilibrium adatom concentration
nth step,cn , can be expressed through the equilibrium ad
tom concentration at an isolated stepc0 and the chemical
potential of the stepmn : cn5c0 exp(mn /kT). Taking into ac-
count thatmn /kT!1, one can expandcn'c0(11mn /kT).
Finally, the island kinetics are described by the following s
of equations:

drn

dt
5

b

r n
F mn112mn

ln~r n11 /r n!1 l K~r n11
21 1r n

21!

2
mn2mn21

ln~r n /r n21!1 l K~r n
211r n21

21 !
G , ~45!

whereb5c0DsS/kT is a constant. For the first~top! step, the
second term of Eq.~45! is omitted. At the bottom of the
island, one can virtually add one more circular step o
radius large compared with the island size. This step p
vides the equilibrium adatoms concentration at its locati
Taking the limit r N11→`, we find that the requirement o
1-10
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ENERGIES OF STRAINED VICINAL SURFACES AND . . . PHYSICAL REVIEW B64 205301
the equilibrium adatom concentration at infinity is equivale
to omitting the first term in Eq.~45! for the bottom step.

The chemical potential of a stepmn is the change of its
energy when an atom is attached to it. The step is advan
and the energy of its elastic interaction with other ste
changes. The change of area of the circular step by
atomic areaS gives rise to a radius changeDr n5S/(2pr n).
Then, the chemical potential ismn5(dE/dr n)Dr n . Using
Eqs.~27! and ~28!, we obtain

mn5SF2
Q«n

r n
1

1

2pr n
(
m

8
]Unm

]r n
G . ~46!

The interaction energy of two circular steps on the strain
surface is given by Eq.~26!.

Equations~45! describe the kinetics of a set of circula
steps. The chemical potential of thenth stepmn , Eq. ~46!, is
expressed through the strain«n, Eq. ~20!, acting on this step
and the step-step interaction energyUnm , Eq.~26!, where, in
turn, the monopole strengthPn of the nth step is given by
Eq. ~23!. Previous investigations of the kinetics of circul
steps18,19were limited to unstrained crystals and, in additio
used the interaction energy of straight steps~6! instead of
circular steps. In the absence of strain, the velocitydr1 /dt of
the top step is directed to the center of the cone. The top
shrinks and annihilates, then the next step follows, and
island vanishes.18,19 In contrast, the negative line energy of
step under compressive strain, which is present in the
term of Eq.~46!, causes the top step to expand and hence
island to grow.

The smallest nucleus in the present model is two ato
layers high, since the model is based on step-step inte
tions and does not handle a single step. We simulated
island growth by numerically solving Eq.~45! for two-layer-
high nuclei of different step radiir 1 ,r 2 and found that the
nucleus has to be large enough to give rise to thr
dimensional growth. Forh/ l 050.2 we found that, if the bot-
tom step radiusr 2 is smaller than 1.3l 0, the radius of the top
stepr 1 decreases in time, so that the growth of such a sm
nucleus consists in increasing of the radius of the bott
step while the top one shrinks and vanishes. In other wo
the three-dimensional growth does not begin despite the
ergy of the nucleus is negative: the energy is reduced fur
by transforming the nucleus into a two-dimensional sing
step height island. With the valuel 0'3.3a obtained in Sec.
III for single-layer SB steps in the Ge/Si~001! system, the
smallest nucleus containsp(3.331.3)2'58 atoms. This re-
sult is in a qualitative agreement with recent experimen
studies49,50 which show that the growth of strained thre
dimensional islands requires a nucleus consisting of so
hundreds of atoms.

As the three-dimensional island grows, its top terrace
creases in size, and a new monolayer-height island m
nucleate on it. The theories of nucleation of two-dimensio
islands~see Ref. 51 and references therein! cannot be applied
to the present problem since they consider adatoms deliv
by a deposition flux, which is neglected in our model, and
not take into account the equilibrium adatom concentrat
at the steps, which is a driving force for step motion in o
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model. On the other hand, when we attempt to create a s
~compared to the characteristic distance between stepsl 0)
two-dimensional island on the top terrace, we find tha
tends to shrink if the top terrace is not large enough~typi-
cally a few times larger thanl 0). Therefore, successful nucle
ation is limited by the size of the top terrace and, if t
nucleation proceeds faster than the step motion, the prop
model of island growth is insensitive to the nucleati
mechanism and the nucleus size: the step surrounding
two-dimensional nucleus on the top terrace is able to exp
only if the top terrace is sufficiently large.

Thus, the growth of a three-dimensional island is mode
as follows. The growth kinetics is obtained by numeric
solution of Eqs.~45!, ~46!, and~26!. We start with a nucleus
consisting of two steps which is able to grow, as describ
above. As soon as the radius of the top terrace exceeds 0l 0,
we attempt to create an additional two-dimensional isla
bounded by a step of radius 0.1l 0. If it tends to shrink~i.e.,
dr1 /dt,0), it is discarded; if it tends to expand, it is re
tained. We have checked that the island growth kinetics
insensitive to the nucleation parameters listed above.

Figure 7 presents the results of the kinetics calculatio
Figure 7~a! shows snapshots of the growing island at heig
of 10, 20, 30, and 40 atomic layers. The snapshots are ta
just before the next step is successfully~i.e., with subsequen
expansion! created. The radius of the top terrace varies fro
3.1l 0 for the 10-layer island to 5.8l 0 for the 40-layer island,
which makes the model insensitive to the nucleation para
eters, as described above. The island shapes obtained i
kinetic model can be compared with those obtained fr

FIG. 7. Island shapes~a!,~b! and time dependence of the islan
height and base width~c! in the model of growth kinetics:~a!
shapes of islands 10, 20, 30, and 40 atomic layers high,h/ l 050.2,
~b! island shapes with of the same volumev52.753106h3 for dif-
ferent ratiosh/ l 0, and~c! time evolution of island dimensions, with
the timet scaled as (l 0 /h)2t.
1-11
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V. M. KAGANER AND K. H. PLOOG PHYSICAL REVIEW B64 205301
energy minimization, Fig. 6~a!. In both cases, the island
possess a flat top and steep sides, which is a result o
strain relaxation at the top and strain concentration at
base. The surface of the energy-minimizing island is abo
times steeper compared to that of the island obtained f
the kinetic model, as can be seen from the inset in Fig
where the islands are shown with a common scale.

The distance between steps at the island base obtain
the kinetic model does not change when the island volum
increased and remains approximately equal tol 0, so that the
slope isu'h/ l 0. Using the values for the Ge/Si~001! system
obtained in Sec. III, we findu'0.1 for SB steps (h
5a/A8,l 053.3a) and u'0.3 for DB steps (h52a/A8,l 0
52.2a), to be compared with the surface slope of the exp
mentally observed Ge/Si~001! islands ofu'0.2. Figure 7~b!
compares the shapes of the islands grown at different mi
«0 ~the ratioh/ l 0 varies proportional to«0). The larger misfit
gives rise to a steeper island base and a larger top ter
similar to the energy-minimized islands in Fig. 6~b!.

Figure 7~c! presents the temporal evolution of the isla
height and base width. Calculations performed for differ
misfits are combined in a common plot by scaling the ti
by (l 0 /h)2. The island height is represented by the num
of stepsN and displayed by zigzag lines simply becauseN is
an integer. The radiiR of the island base are shown by th
smooth lines. The calculations presented in the figure
performed for diffusion-limited kinetics,l K50. We found
that the kinetic coefficientK has very little influence on the
growth kinetics and the results for attachment-limited kin
ics (l K→`) only slightly differ from these for diffusion-
limited kinetics.

The observations of fairly narrow island siz
distributions52–56gave rise to a theoretical controversy on t
presence6,7,54 or absence3–5 of an energy minimum at an in
termediate island size. Recent experimental observation
single-island kinetics56–58show that the island growth is con
tinuous, but it essentially slows down as the island si
increase. Our model gives a continuous decrease of th
land energy during its growth and continuous increase o
sizes. We do not find, however, a slowing of the grow
Thus, the present model is not sufficient in this respect
further development of the growth kinetics model is r
quired.

IX. CONCLUSIONS

We have shown that the results of atomistic calculation16

giving a negative line energy of surface steps under comp
sive strain, can be explained in terms of linear elasticity as
interaction of the strain produced by the step with the u
form bulk strain. The line energy of a step on a strain
surface can be expressed through the dipole strength o
step in the absence of strain. We used the results of atom
calculations of step energies on the Si~001! surface without
strain26 to obtain the dipole strengths and then were able
determine the line energies of steps under strain. These
ergies are in good agreement with the results of atomi
calculations16 for different types of steps on Si~001!, which
confirms our approach.
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We have shown that the energy of a vicinal surface can
lower, under the action of strain, than the energy of the s
gular surface. We have estimated the miscut angle wh
corresponds to a minimum of the surface energy and fo
that this angle amounts to a few degrees for steps on Si~001!.

The energy of a singular facet can be lowered under st
by generating steps with the negative line energy. Suc
mechanism of instability of strained surfaces is qualitativ
different from that above the roughening transition.33–35

First, the step energy linearly depends on the strain. I
negative for compressive strain and the instability devel
only in this case. Second, there is no critical wavelength
periodic undulations consisting of steps decrease the en
at any undulation period. The period corresponding to
energy minimum increases with the amplitude of the un
lation, with the slope being approximately constant prop
tional to the strain.

The surfaces of Stranski-Krastanov islands in syste
with small and moderate misfits make sufficiently sm
angles with the substrate to treat them as vicinal surfaces
presume that even the prominent~105! facets of Ge islands
on Si~001! making an angle of 11° to the substrate can
qualitatively treated as vicinal. For the purpose of analyti
calculations, we have considered axially symmetric islan
consisting of coaxial circular steps. This approximation is
accurate as the approximation of a pyramidal island wh
the effects of edges are neglected.3 The treatment of the
monopole-monopole interaction between steps in our mo
is equivalent to the small-slope approximation in the eva
ation of the elastic energy.3–5,12,13

The stress relaxation at the island top and the stress
centration at its base are evaluated as the sum of stress
of the steps. The strain and stress are expressed in qu
tures and can be calculated more easily than it can be d
with the aid of the finite-element method. The stress rel
ation has a twofold effect in our model: the line energies
steps become smaller at the island top since they are pro
tional to the strain and the monopole strengths of the st
also become smaller at the island top since they are pro
tional to the stress. The distances between steps are
equal: faceting is not inherent to our model. It can be co
sidered as an effect of the surface reconstruction wh
makes the equal distances between steps favorable.
model faceting by assuming that the surface has a cons
slope or consists of two segments with constant slope. In
latter case we find that the top part of the island has a sma
slope, as a result of the stress relaxation. The flatter isl
top and steeper base develop with increasing misfit, whic
in agreement with the shapes of experimentally observed
lands. We expect that atomistic calculations of energies
vicinal facets, which can be performed similarly to the c
culations of energies of low-index facets under strain,11 will
give insight into island shapes in systems with smaller m
fits.

We propose a model of island growth based on
Burton-Cabrera-Frank step kinetics model. The growth o
three-dimensional island requires material transport to
island top where it can be used to form a new atomic lay
This is provided by attachment of adatoms to steps from
1-12
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down terrace and detachment to the up terrace, to ensur
equilibrium adatom concentration at the step. The adato
on the top terrace can nucleate a new two-dimensional is
bounded by the circular step. We find that a newly crea
step is able to expand only if the terrace underneath is la
enough; otherwise, it shrinks and disappears. This makes
model insensitive to the details of the nucleation process
the size of the nucleus. The slope of the island obtaine
the kinetic model is about 2 times smaller than the slope
the island obtained by energy minimization.

Our calculations show that both surface undulations
three-dimensional islands reduce the energy, primarily
cause of the negative line energy of steps under strain.
kinetic model shows that very small nuclei bounded by t
lly

rg,
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circular steps do not lead to three-dimensional grow
Rather, the top step shrinks and disappears while the bo
one grows as a two-dimensional island. A minimum nucle
allowing the growth of a three-dimensional island is es
mated to contain about 60 atoms. These results are in a q
tative agreement with experiments43,44,49,50,59,60 revealing
nucleationless formation of ripples in the case of low mis
and nucleation of islands at large misfit.
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