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Persistent currents and dissipation in narrow bilayer quantum Hall bars
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Bilayer quantum Hall states support a flow of nearly dissipationless staggered current which can only decay
through collective channels. We study the dominant finite-temperature dissipation mechanism which in narrow
bars is driven by thermal nucleation of pseudospin solitons. We find the finite-temperature resistivity, predict
the resulting staggered current-voltage characteristics, and calculate the associated zero-temperature critical
staggered current and gate voltage.
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A 2D electron gas bilayer, subjected to a strong perpent(1).2° A combination of the external gate voltayk and
dicular magnetic field, can exhibit incompressible quantunthe single-electron interlayer tunnelingacts as an external

Hall (QH) states even for filling fractions corresponding to pseudomagnetic fie|ﬂ):(t/2ﬂ-/2);(+vgil Because the tun-
compressible states of noninteracting layeFhe nontrivial, nelingt can be tuned independently gfto be quite small,
strongly interacting nature of these QH states lies in the facgie low-energy physics of this anisotropic QH pseudo-
that they survive the limit of vanishing interlayer tunnelthg, ferromagnet, described by the Goldstone madecan be
which to many striking predictions and observatidrighey fully explorea experimentally

are stabilized by the exchange part of the Coulomb interac- In the limit of vanishing tu.nneling, an essentially exact

tion, which, in the limit of vanishing single-particle t“r?”‘?" analytical treatment of narro@lD limit) QH bars is possible

ing, sets the scale of the gap and leads to macroscopic mte&hd leads to the following results. The bilayer QH phase

layer pha.s.e coherenICt_a.. . exhibits staggered current-carrying states that are metastable
In addition to exhibiting t_he QHE for a uniform current, and therefore it supports staggered persistent currentd for

these states support persistent currents that are counter-, (V.), where the critical current density is given by

propagating in the two layers with= Jiop— Jpottom- IN this cr el

Rapid Communication, we study a thermally-driven decay

mechanism of] which controls the current-voltage charac- Je(Vg) =320, (v) A —v?[1- 0% (v)]?) (2a)

teristics for staggered currents smaller than the critical cur-

rentJ.. Because the bilayer system displays a quantum Hall b0

gap A in the phase-coherent ground state, dissipation via . Jg[l—(v/4)2’3], (2b)

single-particle mechanisms is strongly suppressedk§dr

<A. Therefore, as with supercurrents in superconduétors, 0 = Ts - ”
the staggered-current decay rate is dominated, for a range yghere J;=2v2Bps/f is the critical current at zero gate

. . . . . . . 6
parameters, by the collective mechanism of soliton nucleY0!tage, which vanishes in the $) invariant3—0 limit,
ation. v=Vy/2p3 is a reduced measure of the gate voltage and

2 _ .

A convenient language for describing this strongly corre-dx (v) = 1= v (V4+v?+2)"~ (V4+0v?-2)"). At a fi-
lated quantum-coherent gapped state is in terms of a pseflite temperature].(V,), plotted in Fig. 1, therefore delin-
dospin unit vector fieldn(r)=(m, ,m,),2 with m,=cos@ eates a low resistivity regime, where Ohmic dissipation is

- Lo tz) ra f . . .
=Niop— Npottom 9iViNg the electron charge-density difference dominated by slow thermal soliton nucleation, from a highly

-0 _ resistive state dominated by quasiparticle dissipation.

between .to.p and bOttOT“ layers anyl =sin §(cos¢.sin¢) For J<J.(V,), the staggered IV characteristics are plot-
characterizing the relative phagg= ¢ p— Pporom Of €lec- o4 in Fig. 2 and given by
trons in two layers. The energy functional describing long
length scale(larger than the magnetic length= \Ac/Be)
variations ofm(r) is given by

Hzf d?r

where electron Coulomb interaction is the origin of the ef-
fective exchange constarpé™ that drive the transition into

the pseudoferromagnetic ground state, corresponding to the
interlayer phase-coherent QH state. The electrostatic capaci- FiG. 1. Main Plot: Critical staggered curreftas a function of
tive energyg introduces a hard-axis anisotropy, which forcesgate voltagev. Upper Inset: Sample geometry considered in this
the pseudomagnetization to lie in theplane m,=0) and  work. Lower Inset: Pseudospin configuration of the-Bne soliton
thereby reduces the full SB) pseudospin symmetry to whose nucleation leads to staggered-current decay.
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FIG. 2. Main Plot:IV curve ford<Jy(Vy), pi=ps . V4=0 and
To/T=6. Inset: Energy barrier for various gate voltages
=Vg4/2, with the barrier vanishing far— 1. Qualitatively similar
curves are obtained for the full ranges@Z/ps<1.

hwoL _
O sinh( 7] To/2T)e (Us+miATo/T,

V(Ved)=—

(©)

where wo=27/%tBI% is the microscopic attempt fre-
qguency,j —J/JO is the reduceddimensionlesscurrent den-

RAPID COMMUNICATIONS

PHYSICAL REVIEW B 64 201314R)

From exact diagonalization studfeat d//'=1/2, we have
B=5.1x103e?//3¢ and ps =1.5x10 %e?//e. Taking in
addition /=20 nm, T=1 K, dielectric constant=13.2, t

=0.1 meV,Vy=0, ande=0, we obtain

p(0)=~10°N(0.2NQ, (7)

where N=L, /7. SettingN=5, 10, 15 respectively gives
p(0)=245Q, 0.20Q, and 115u().

For a realistic system, there is a limited range of validity
of the above results, with other effects dominating outside of
this range. The constraint of quasiequilibrium, which implies
low decay rate, together with the requirement that the ther-
mal collective dissipation mechanism dominates over single-
particle current decay requirdgT<Eg<<A. At the same
time, however, T must be sufficiently high so that thermal
nucleation dominates over quantum tunneling of phase
slips! Furthermore, in order for the bulk nucleation rate to
be experimentally observable, it is necessary that it domi-
nates over phase slips nucleated at surfaces, contacts, and
sample inhomogeneities. Since the bulk nucleation rate
scales with the Hall bar length, we expect that the bulk

sity, keTo=AJcLy, with L, the narrow sample dimension mechanism dominates over surface nucleation Lfr /.
<L,=L, andEg=kgToUgp is the saddle- point energy barrier also, for the staggered current decay rate to be dominated by
separatlng two different current-carrying states. The barriefhe 1D line solitons studied here, the saddle-point energy
is plotted in the inset of Fig. 2 and is explicitly given by parrier given in Eq(4) must be lower than barriers for the

Z , competing mechanism of vortex pair nucleation. For a
Mo ps m
Ug(Vy,d)= fml dm[ ( 1+ o 1—m2) {(mg—mz)
S

sufficiently wide Hall bar, the latter scenario will dominate,
qmo)2 12
0
x(l—(— +ZU(\/1—m§—\/l—m2)H :
m

with the crossover occurring fdr,~§= \/pglﬂ.

We now present the highlights of calculations that lead to
these results. Although quite distinct in detail, the spirit of
our analysis follows the classic work of Langer and
Ambegaokaf.

The Euler—LagrangéEL) equations for Eq(1) admit the

@ yniform current-carrying solutions:
where the limits of integration aremO—J/q and m? " g
=g [m2+2m3(1+\1+m3/m?)], with m?=(1-md)(1 ¢(k)= (83
-q? d the di I defined im-
g°), and the dimensionless wave vectpis defined im M2 (0.0) = 1— 02 (1— )2, (8b)

plicitly through the currenf=q[1—v?/(1—q?)?]. The ana-
lytic expression for the barrier simplifies considerably Whenwhereq2=
one of its arguments vanishes. We find thbg(vg,J) de-
pends weakly or=1—(p%ps) and fore—1 is given by

k?ps/2p is the dimensionless wave vector, and
we have taken our sample to lie in tlkey plane with di-
mensionsL,=L>L,. Equation(8b) is valid in the region
g’<1-v andu—V /2,8<1 (We considerV, to be non-

Ug(0J)= f(l_j)Z’ (59  nhegative) The staggered current for thls solution
4 =2psm?k/#, or, equivalentlyj=m?q.
e . 5 For nonuniform solutions, the EL equations can be com-
Ug(Vg,0)=3[sin"(V1-v?)—v1-0v?] (5b)  bined into a single equation which, after some manipulation,
and, for O<e<1. can be written as
l 1 [ %M(ﬁxml)z'l'veff: Eerrs 9)
T i 1—
Us(0.0=5V1-e 4\/g[2 sin (1-2¢)|. (50 for some constariE;, with
For such narrow Hall bars thetaggeredinear resistivity o, z2e2ya 2
p is always finite at finite temperature and is given by M(m,)=ps +psmi/(1=m), (109
J—0 B2 j2
p(Vg)= VT Moy ugvgomorm © Ver(m,) =B —5 —(1—m)+2v1T-m?|. (10
LJe 2|(BT62/ mJ_

201314-2



RAPID COMMUNICATIONS

PERSISTENT CURRENTS AND DISSIPATION IN . . . PHYSICAL REVIEW 84 201314R)

defect—which may be either singular, as it is in supercon-
ductors, or nonsingular, as it is in the present case of the full

g'i SU(2) space—although we expect them to be close in en-
Vegr 0'4 ergy. Instead, the barrier is controlled by nan-singular
B saddle-point field configuratiotinset of Fig. 3, which is in
02 the same topological sector as the current-carrying meta-
0 stable minimum. It is also important to note that for suffi-
-02

m o ciently small 8, the energy for such phase slips is much
e m. e smaller than the quantum Hall gdp and that therefore the
entire system remains in the fully gapped quantum Hall state
FIG. 3. Main Plot: Effective potential, Eq10b), for the me-  throughout the phase-slip process. This is to be contrasted
chanical analogy of the EL equations plotted t+0.5 andj iy phase slips inside a superconductor, where the order
=0.1. The physically stable configuration is the mechanically un_parameter, and therefore the bulk gap, are suppressed within

stable pointmi”). Inset: Schematic drawing of the saddle-point the vortex core and one in principle has to take into account
(bounce solution—the dominant contribution to the transition P p

probability. the core-confined low energyorma) quasiparticle degrees
of freedom.
In the usual mechanical analogy, E8) represents the en- The energy barrier is defined as the difference in energy

ergy E.¢ of a particle at “position”’m, and “time” x, mov-  between the saddle-point solution, Eg1), and the uniform
ing in a potentiaVe¢(m, ) and with a space-dependent massCUrrent-carrying solution, Eq8). By exploiting the me-
M(m,). This potential is plotted in Fig. 3 fop=0.5 (j chanical analogy, and in particular the conservation law, Eq.
~0.28) andj=0.1. ¢ (9), we obtain the expression quoted in Ed).

The “conservation of energy,” Eq9), immediately im- _ In the steady-state regime, the staggered volt&gs; ,J)
plies the existence of two extended solutiSns.uniform 1S Proportional to the net rate of phase slipg) ¢/2m, which
current-carrying solution is given by E¢g), corresponding itself is the difference between the rate of current-decreasing
to the particle forever remaining on top of the hill mf?) ~ ansitions € weexfi—Eg/ksT]) and the rate of current-

. . . e . increasing transitions £ woexd —(Eg+ 7#JL))/kgT]). In a
s oy, Sample of I, thre are approxmatel” possile

y e (0) . _ nucleation sites. These considerations lead directly to the ex-
amplitude m}™’ deviating from the equatorial planem(

—1) with | . For fixed windinak. thi i pression in Eq(3).

=1) wit mc_reasm?\/_g. or |x|e v;nn lingk, t |Z{un| 8”.“ In contrast to the energy barriétg, which is a static
current-carrying solution s a local minimum and 1s uantity, we must consider pseudospin dynamics in order to
hence metastable. Since the energy is lowered with decre

) . “compute the attempt frequenay, appearing in Eq.(3).
ing k, we expect that at finite temperature the system W'”Within the microscopic dynamic;I model valid at low tem-
thermally activate down to th&=0 zero-current ground

. . o 8 peraturesT <t, for finite interlayer tunneling«,oé is given by
e e e o o comie ffe, 315, o Tie cnature of T metasabe, el
. . . . ) comp E~t/2m/2) and the dynamical mass term-(2/472/4p),
saddle-point barrier separating two “neighboring” current-

carrying metastable states. Brief reflection on the mechanicé?ad'ng toh wo= y27/tp. In contrast, forT>1, we expect

analogy shows that the second solution is in fact a saddlec‘zl""ss'c""I Langevin dynamicscharacterized by a kinetic

point solution corresponding to the particle starting at “po- drag Cﬁeff'c'e”t v, and which in the simplest estimate
sition” m(® and “time” x= — =, spiraling down hill tom(® ~ 9'V€S wo=ply. . .

L . ’ o When the transvers@arrow dimensionL,, of the sample
at x=0 while conserving angular momentum but increasing, Y

. . 2 , . comes sufficiently large, the energy barridtg
s angu(loa)r velocitk(m, )o 1/m gnd"fmally bouncing bf”‘Ck,, ~(psB)ML, for nucleating a line-soliton defect becomes
out tom(?) for x=+ . The resulting “energy conservation

i I ¢ determinati f th ddi . comparable to the energy of nucleating-avortex pair—a
equation aflows an exact determination ot the saddie-poin ompeting mechanism for inducing phase slips. Up to weak
solution, written in terms of a 1D integral,

logarithmic corrections, the energy of such a vortex pair is
) " E,~ps=B&%, whereé=(ps/B)Y? is the core size. Vortex

m X nucleation should therefore dominate the 1D soliton nucle-
x= \/Ef dmy VM(m)/[Eer—Ver(m,)], (12 ation considered here fdr,> ¢, which can be tuned inde-
pendently of the QH gap. This is in contrast with super-
for an appropriate value d&.¢, and is shown in the inset of conductors, where the corresponding 1D to 2D crossover

1
e

Fig. 3. scale is the Ginzburg—Landau correlation length, controlled
The saddle-point solution is the nucleation site for theby the superconducting gap.
eventual singularity wherm, —0 (m*— +1), and whereby Although it is difficult to extend our exact 1D analysis to

the system can slip a loop reducing the total phase windinghe 2D limit, we can estimate the staggered current decay
A ¢ by 27, and therefore leading to staggered-current decayate using simple scaling arguments. In 2D, the phase slip
Contrary to what is often tacitly assumed, the barrier forrate is controlled by: vortex pair nucleation, analogously to

defect nucleation isot determined by the energy of the superfluids and superconductors. However, in contrast to
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those more familiar systems, here vortidéslf-skyrmion, In the dense soliton limitn 6> 1, (relevant for smalt and
i.e., merong carry = 1/2 electromagnetic charge in addition largeJ) the currentl(x) is nearly uniform and our 1D results
to theirU(1) topological charge, and there are therefore fourdirectly apply. In the dilute limitnhd<1 (which is always
elementary vortex defectsH1/2L), (=1/2L), (+1/2R),  reached for sufficiently lowd>J.~t, [see Refs. 6 and
and (— 1/2R), with L,R respectively corresponding to27  11]), for £&< ¢, phase slips are confined to a single soliton,
circulation of ¢. Correspondingly, within the interlayer jnside whichd, ¢~ 27/ 8 is uniform and the tunneling en-
phase () coherent state, the andR vortices are bound into ergy is on average zero. Hence, our 1B,0 analysis again
two types of topplogically neutral pairsi) eIecF.romagneti— applies with thel-independent wave vectég =2/ 8. Fur-
cally neutral pairsf(+1/2L)~(~1/2R)] and (ii) electro- thermore, scaling analysisuggests that in the opposite limit

i . 9
magnetically charged paiis t /2L)~(+1/2R)]._ Never: e 5 this solution is still valid, but with the nucleation width
theless, we do not expect the Coulomb interaction, which i

Set by §, rather tharg.

subdominant to the topological-charge confining potential, to N S
play a role in staggered-current-induced vortex ionization In the 2D I|m|t,.the staggered current decays bY lonization
processes. Hence, in the limit of vanishipgtandard nucle- °f L—R vortex pairs, whoseljzene(gy for-0 growslinearly
ation analysis for dissipation in superconducting fifnsan ~ With the separatioR as (ost) ““R//. This therefore suggests
be easily extended to our system. It predicts a higidglin- ~ the existence of a true staggereditical current J.
ear power-law staggeretV, E~J% with «(T)=3 in the = =(€/%h)pst//=, with E(J<J;)=0 even at finiteT (up to
interlayer coherent state, a result that contrasts strikinglgorrections that vanish in the thermodynamic liménd for
with the linear staggeredV found in the 1D limit. J>J., E(9)~|3—J3,«M,

Nonvanishing interlayer tunnelingt explicitly breaks
U(1) symmetry and leads to nonuniform staggered current- We thank Anton Andreev, Ramin Abolfath, and Allan
carrying states composed of a lattice of solitons of wifth MacDonald for discussions. This work was supported by the
=/(2mp, It)*? and densityn akin to a periodic array of NSF Grant No. DMR-9625111, and by the A. P. Sloan and
Rayleigh—Benard current rolls. Packard Foundations.
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