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Persistent currents and dissipation in narrow bilayer quantum Hall bars
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Bilayer quantum Hall states support a flow of nearly dissipationless staggered current which can only decay
through collective channels. We study the dominant finite-temperature dissipation mechanism which in narrow
bars is driven by thermal nucleation of pseudospin solitons. We find the finite-temperature resistivity, predict
the resulting staggered current-voltage characteristics, and calculate the associated zero-temperature critical
staggered current and gate voltage.
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A 2D electron gas bilayer, subjected to a strong perp
dicular magnetic field, can exhibit incompressible quant
Hall ~QH! states even for filling fractions corresponding
compressible states of noninteracting layers.1 The nontrivial,
strongly interacting nature of these QH states lies in the
that they survive the limit of vanishing interlayer tunneling2

which to many striking predictions and observations.3 They
are stabilized by the exchange part of the Coulomb inte
tion, which, in the limit of vanishing single-particle tunne
ing, sets the scale of the gap and leads to macroscopic i
layer phase coherence.

In addition to exhibiting the QHE for a uniform curren
these states support persistent currents that are cou
propagating in the two layers withJ5Jtop2Jbottom. In this
Rapid Communication, we study a thermally-driven dec
mechanism ofJ which controls the current-voltage chara
teristics for staggered currents smaller than the critical c
rentJc . Because the bilayer system displays a quantum H
gap D in the phase-coherent ground state, dissipation
single-particle mechanisms is strongly suppressed forkBT
!D. Therefore, as with supercurrents in superconducto4

the staggered-current decay rate is dominated, for a rang
parameters, by the collective mechanism of soliton nuc
ation.

A convenient language for describing this strongly cor
lated quantum-coherent gapped state is in terms of a p
dospin unit vector fieldm̂(rW)5(mW ' ,mz),

2 with mz5cosu
5ntop2nbottom giving the electron charge-density differen
between top and bottom layers andmW '5sinu(cosf,sinf)
characterizing the relative phasef5f top2fbottom of elec-
trons in two layers. The energy functional describing lo
length scale~larger than the magnetic lengthl 5A\c/Be)
variations ofm̂(rW) is given by2

H5E d2r Frs
'

2
u“mW 'u21

rs
z

2
u“mzu21bmz

22hW •m̂G , ~1!

where electron Coulomb interaction is the origin of the
fective exchange constantsrs

z,' that drive the transition into
the pseudoferromagnetic ground state, corresponding to
interlayer phase-coherent QH state. The electrostatic cap
tive energyb introduces a hard-axis anisotropy, which forc
the pseudomagnetization to lie in the' plane (mz50) and
thereby reduces the full SU~2! pseudospin symmetry to
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U~1!.2,5 A combination of the external gate voltageVg and
the single-electron interlayer tunnelingt acts as an externa
pseudomagnetic fieldhW 5(t/2pl 2) x̂1Vgẑ. Because the tun-
neling t can be tuned independently ofb to be quite small,
the low-energy physics of this anisotropic QH pseud
ferromagnet, described by the Goldstone modem̂, can be
fully explored experimentally.

In the limit of vanishing tunnelingt, an essentially exac
analytical treatment of narrow~1D limit! QH bars is possible
and leads to the following results. The bilayer QH pha
exhibits staggered current-carrying states that are metas
and therefore it supports staggered persistent currents fJ
,Jc(Vg), where the critical current density is given by

Jc~Vg!5Jc
0q* ~v !„12v2/@12q

*
2 ~v !#2

… ~2a!

→
v→0

Jc
0@12~v/4!2/3#, ~2b!

where Jc
052A2brs

'/\ is the critical current at zero gat
voltage, which vanishes in the SU~2! invariantb→0 limit,6

v5Vg/2b is a reduced measure of the gate voltageVg , and
q
*
2 (v)512v2/3@(A41v212)1/32(A41v222)1/3#. At a fi-

nite temperature,Jc(Vg), plotted in Fig. 1, therefore delin
eates a low resistivity regime, where Ohmic dissipation
dominated by slow thermal soliton nucleation, from a high
resistive state dominated by quasiparticle dissipation.

For J,Jc(Vg), the staggered IV characteristics are plo
ted in Fig. 2 and given by

FIG. 1. Main Plot: Critical staggered currentj c as a function of
gate voltagev. Upper Inset: Sample geometry considered in t
work. Lower Inset: Pseudospin configuration of the 2p-line soliton
whose nucleation leads to staggered-current decay.
©2001 The American Physical Society14-1
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V~Vg ,J!5
hv0L

el
sinh~p jT0/2T!e2(UB1p j /2)T0 /T, ~3!

where v05A2pl 2tb/\ is the microscopic attempt fre
quency,j 5J/Jc

0 is the reduced~dimensionless! current den-

sity, kBT05\Jc
0Ly , with Ly the narrow sample dimensio

!Lx[L, andEB5kBT0UB is the saddle-point energy barrie
separating two different current-carrying states. The bar
is plotted in the inset of Fig. 2 and is explicitly given by

UB~Vg ,J!5E
m1

m0
dmH S 11

rs
z

rs
'

m2

12m2D F ~m0
22m2!

3S12Sqm0

m
D2D12v~A12m0

22A12m2!G J 1/2

,

~4!

where the limits of integration arem0
25 j /q and m1

2

5q2@m0
212m̄2(11A11m0

2/m̄2)#, with m̄25(12m0
2)(1

2q2), and the dimensionless wave vectorq is defined im-
plicitly through the currentj 5q@12v2/(12q2)2#. The ana-
lytic expression for the barrier simplifies considerably wh
one of its arguments vanishes. We find thatUB(Vg ,J) de-
pends weakly on«[12(rs

z/rs
') and for«→1 is given by

UB~0,J!5
p

4
~12 j !2, ~5a!

UB~Vg,0!5 1
2 @sin21~A12v2!2vA12v2#, ~5b!

and, for 0<e<1,

UB~0,0!5
1

2
A12«2

1

4A«
Fp2 2sin21~122«!G . ~5c!

For such narrow Hall bars thestaggeredlinear resistivity
r is always finite at finite temperature and is given by

r~Vg!5
V

LJe
→

J→0 h2v0Ly

2kBTe2l
e2UB(Vg,0)T0 /T. ~6!

FIG. 2. Main Plot:IV curve forJ,Jc(Vg), rs
z5rs

' , Vg50 and
T0 /T56. Inset: Energy barrier for various gate voltagesv
5Vg /2b, with the barrier vanishing forv→1. Qualitatively similar
curves are obtained for the full range 0<rs

z/rs
'<1.
20131
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From exact diagonalization studies2 at d/l 51/2, we have
b55.131023e2/l 3e and rs

'51.531022e2/l e. Taking in
addition l 520 nm, T51 K, dielectric constante513.2, t
50.1 meV,Vg50, and«50, we obtain

r~0!'105N~0.2!NV, ~7!

where N5Ly /l . Setting N55, 10, 15 respectively gives
r(0)5245 V, 0.2 V, and 115mV.

For a realistic system, there is a limited range of valid
of the above results, with other effects dominating outside
this range. The constraint of quasiequilibrium, which impli
low decay rate, together with the requirement that the th
mal collective dissipation mechanism dominates over sing
particle current decay requireskBT,EB,D. At the same
time, however,T must be sufficiently high so that therma
nucleation dominates over quantum tunneling of ph
slips.7 Furthermore, in order for the bulk nucleation rate
be experimentally observable, it is necessary that it do
nates over phase slips nucleated at surfaces, contacts
sample inhomogeneities. Since the bulk nucleation r
scales with the Hall bar lengthL, we expect that the bulk
mechanism dominates over surface nucleation forL@l .
Also, for the staggered current decay rate to be dominate
the 1D line solitons studied here, the saddle-point ene
barrier given in Eq.~4! must be lower than barriers for th
competing mechanism of6 vortex pair nucleation. For a
sufficiently wide Hall bar, the latter scenario will dominat
with the crossover occurring forLy'j5Ars

'/b.
We now present the highlights of calculations that lead

these results. Although quite distinct in detail, the spirit
our analysis follows the classic work of Langer an
Ambegaokar.4

The Euler–Lagrange~EL! equations for Eq.~1! admit the
uniform current-carrying solutions:

f~k!5kx, ~8a!

m'
2 ~v,q!512v2/~12q2!2, ~8b!

whereq25k2rs
'/2b is the dimensionless wave vector, an

we have taken our sample to lie in thex–y plane with di-
mensionsLx[L@Ly . Equation~8b! is valid in the region
q2<12v and v5Vg /2b<1. ~We considerVg to be non-
negative.! The staggered current for this solution isJ
52rs

'm'
2 k/\, or, equivalently,j 5m'

2 q.
For nonuniform solutions, the EL equations can be co

bined into a single equation which, after some manipulati
can be written as

1
2 M ~]xm'!21Veff5Eeff , ~9!

for some constantEeff , with

M ~m'!5rs
'1rs

zm'
2 /~12m'

2 !, ~10a!

Veff~m'!5bF j 2

m'
2

2~12m'
2 !12vA12m'

2 G . ~10b!
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In the usual mechanical analogy, Eq.~9! represents the en
ergy Eeff of a particle at ‘‘position’’m' and ‘‘time’’ x, mov-
ing in a potentialVeff(m') and with a space-dependent ma
M (m'). This potential is plotted in Fig. 3 forv50.5 (j c
'0.28) andj 50.1.

The ‘‘conservation of energy,’’ Eq.~9!, immediately im-
plies the existence of two extended solutions.8 A uniform
current-carrying solution is given by Eq.~8!, corresponding
to the particle forever remaining on top of the hill atm'

(0)

with angular velocityk. For this solution,mW ' winds azimuth-
ally at a constant rate as a function ofx with a constant
amplitude m'

(0) deviating from the equatorial plane (m'

51) with increasingVg . For fixed windingk, this uniform
current-carrying solution is a local minimum ofH and is
hence metastable. Since the energy is lowered with decr
ing k, we expect that at finite temperature the system w
thermally activate down to thek50 zero-current ground
state via successive thermal transitionsk→k22p/L. To cal-
culate the rate of such transitions we need to compute
saddle-point barrier separating two ‘‘neighboring’’ curren
carrying metastable states. Brief reflection on the mechan
analogy shows that the second solution is in fact a sad
point solution corresponding to the particle starting at ‘‘p
sition’’ m'

(0) and ‘‘time’’ x52`, spiraling down hill tom'
(1)

at x50 while conserving angular momentum but increas
its angular velocityk(m')}1/m'

2 , and finally bouncing back
out tom'

(0) for x51`. The resulting ‘‘energy conservation
equation allows an exact determination of the saddle-p
solution, written in terms of a 1D integral,

x5
1

A2
E

m'
(1)

m'(x)

dm'AM ~m'!/@Eeff2Veff~m'!#, ~11!

for an appropriate value ofEeff , and is shown in the inset o
Fig. 3.

The saddle-point solution is the nucleation site for t
eventual singularity wherem'→0 (mz→61), and whereby
the system can slip a loop reducing the total phase wind
Df by 2p, and therefore leading to staggered-current dec
Contrary to what is often tacitly assumed, the barrier
defect nucleation isnot determined by the energy of th

FIG. 3. Main Plot: Effective potential, Eq.~10b!, for the me-
chanical analogy of the EL equations plotted forv50.5 and j
50.1. The physically stable configuration is the mechanically
stable pointm'

(0) . Inset: Schematic drawing of the saddle-po
~bounce! solution—the dominant contribution to the transitio
probability.
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defect—which may be either singular, as it is in superco
ductors, or nonsingular, as it is in the present case of the
SU~2! space—although we expect them to be close in
ergy. Instead, the barrier is controlled by anon-singular
saddle-point field configuration~inset of Fig. 3!, which is in
the same topological sector as the current-carrying m
stable minimum. It is also important to note that for suf
ciently small b, the energy for such phase slips is mu
smaller than the quantum Hall gapD and that therefore the
entire system remains in the fully gapped quantum Hall s
throughout the phase-slip process. This is to be contra
with phase slips inside a superconductor, where the o
parameter, and therefore the bulk gap, are suppressed w
the vortex core and one in principle has to take into acco
the core-confined low energy~normal! quasiparticle degree
of freedom.

The energy barrier is defined as the difference in ene
between the saddle-point solution, Eq.~11!, and the uniform
current-carrying solution, Eq.~8!. By exploiting the me-
chanical analogy, and in particular the conservation law,
~9!, we obtain the expression quoted in Eq.~4!.

In the steady-state regime, the staggered voltageV(Vg ,J)
is proportional to the net rate of phase slips,] tDf/2p, which
itself is the difference between the rate of current-decreas
transitions (5v0exp@2EB /kBT#) and the rate of current
increasing transitions (5v0exp@2(EB1p\JLy)/kBT#). In a
sample of lengthL, there are approximatelyL/l possible
nucleation sites. These considerations lead directly to the
pression in Eq.~3!.

In contrast to the energy barrierEB , which is a static
quantity, we must consider pseudospin dynamics in orde
compute the attempt frequencyv0 appearing in Eq.~3!.
Within the microscopic dynamical model valid at low tem
peratures,T!t, for finite interlayer tunneling,v0

2 is given by
the ratio of the curvature of the metastable well
(;t/2pl 2) and the dynamical mass term (;\2/4p2l 4b),
leading to\v05A2pl 2tb. In contrast, forT@t, we expect
classical Langevin dynamics,3 characterized by a kinetic
‘‘drag’’ coefficient g, and which in the simplest estimat
givesv05b/g.

When the transverse~narrow! dimensionLy of the sample
becomes sufficiently large, the energy barrierEB

'(rs
'b)1/2Ly for nucleating a line-soliton defect become

comparable to the energy of nucleating a6 vortex pair—a
competing mechanism for inducing phase slips. Up to we
logarithmic corrections, the energy of such a vortex pair
Ev'rs

'5bj2, wherej5(rs
'/b)1/2 is the core size. Vortex

nucleation should therefore dominate the 1D soliton nuc
ation considered here forLy.j, which can be tuned inde
pendently of the QH gapD. This is in contrast with super
conductors, where the corresponding 1D to 2D crosso
scale is the Ginzburg–Landau correlation length, control
by the superconducting gap.

Although it is difficult to extend our exact 1D analysis
the 2D limit, we can estimate the staggered current de
rate using simple scaling arguments. In 2D, the phase
rate is controlled by6 vortex pair nucleation, analogously t
superfluids and superconductors. However, in contras

-
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those more familiar systems, here vortices~half-skyrmion,
i.e., merons! carry 61/2 electromagnetic charge in additio
to theirU(1) topological charge, and there are therefore fo
elementary vortex defects (11/2,L), (21/2,L), (11/2,R),
and (21/2,R), with L,R respectively corresponding to62p
circulation of f. Correspondingly, within the interlaye
phase (f) coherent state, theL andR vortices are bound into
two types of topologically neutral pairs:~i! electromagneti-
cally neutral pairs@(11/2,L) –(21/2,R)# and ~ii ! electro-
magnetically charged pairs@(11/2,L) –(11/2,R)#.9 Never-
theless, we do not expect the Coulomb interaction, which
subdominant to the topological-charge confining potential
play a role in staggered-current-induced vortex ionizat
processes. Hence, in the limit of vanishingt, standard nucle-
ation analysis for dissipation in superconducting films10 can
be easily extended to our system. It predicts a highlynonlin-
ear power-law staggeredIV, E;Ja, with a(T)>3 in the
interlayer coherent state, a result that contrasts strikin
with the linear staggeredIV found in the 1D limit.

Nonvanishing interlayer tunneling,t explicitly breaks
U(1) symmetry and leads to nonuniform staggered curre
carrying states composed of a lattice of solitons of widthd
5l (2pr' /t)1/2 and densityn akin to a periodic array of
Rayleigh–Benard current rolls.7
on
ad
n

ng

st

H.
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In the dense soliton limit,nd@1, ~relevant for smallt and
largeJ) the currentJ(x) is nearly uniform and our 1D result
directly apply. In the dilute limit,nd!1 ~which is always
reached for sufficiently lowJ.Jc1;At, @see Refs. 6 and
11#!, for j!d, phase slips are confined to a single solito
inside which]xf'2p/d is uniform and the tunneling en
ergy is on average zero. Hence, our 1D,t50 analysis again
applies with theJ-independent wave vectorkeff52p/d. Fur-
thermore, scaling analysis7 suggests that in the opposite lim
j.d, this solution is still valid, but with the nucleation widt
set byd, rather thanj.

In the 2D limit, the staggered current decays by ionizat
of L –R vortex pairs, whose energy fort.0 grows linearly
with the separationR as (rst)

1/2R/l . This therefore suggest
the existence of a true staggeredcritical current Jc

5(e/\)Arst/l
2, with E(J,Jc)50 even at finiteT ~up to

corrections that vanish in the thermodynamic limit!, and for
J.Jc , E(J)'uJ2Jcua(T).
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NSF Grant No. DMR-9625111, and by the A. P. Sloan a
Packard Foundations.
a
a
d

,

mb
-
yer

fy
lu-

gi-
ex-
ill
tate
iza-
e
fore

.

*Present address: Institute for Microstructural Sciences, Nati
Research Council of Canada, Ottawa, Ontario K1A OR6, Can

1J.P. Eisenstein, G. S. Boebinger, L. N. Pfeiffer, K. W. West, a
Song He, Phys. Rev. Lett.68, 1383 ~1992!; S.Q. Murphy, J. P.
Eisenstein, G. S. Boebinger, L. N. Pfeiffer, and K. W. West,ibid.
72, 728 ~1994!.

2X.-G. Wen and A. Zee, Phys. Rev. Lett.69, 1811 ~1992!; Kun
Yang, K. Moon, Lotfi Belkhir, H. Mori, S. M. Girvin, A. H.
MacDonald, L. Zheng, and D. Yoshioka, Phys. Rev. B54,
11 644~1996!; K. Moon, H. Mori, Kun Yang, S. M. Girvin, A.
H. MacDonald, L. Zheng, D. Yoshioka, and Shou-Cheng Zhe
ibid. 51, 5138~1995!.

3I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. We
Phys. Rev. Lett.84, 5808 ~2000!; ibid. 87, 036803~2001!; L.
Balents and L. Radzihovsky, Phys. Rev. Lett.86, 1825 ~2001!;
Ady Stern, S. M. Girvin, A. H. MacDonald, and Ning Ma,ibid.
86, 1829 ~2001!; Michael M. Fogler and Frank Wilczek,ibid.
86, 1833 ~2001!; L. Radzihovsky, Phys. Rev. Lett.~in press!,
cond-mat/0104128; M. Abolfath, L. Radzihovsky, and A.
MacDonald, cond-mat/0110049.

4J.S. Langer and V. Ambegaokar, Phys. Rev.164, 498~1967!; D.E.
McCumber and B.I. Halperin, Phys. Rev. B1, 1054~1970!.
l
.

,

5Here, we have ignored the long-range part of the Coulo
interaction,2,10 which if kept forbids a detailed analytical treat
ment. The resulting short-ranged model is realized in bila
systems with a screening conductor.

6T.L. Ho, Phys. Rev. Lett.73, 874 ~1994!.
7J. Kyriakidis and L. Radzihovsky~unpublished!.
8Although an infinite number of solutions exist, only two satis

the physically-motivated requirement that a saddle-point so
tion should be ‘‘close’’ in form to the uniform current carrying
state, only deviating from itlocally.

9Interestingly, such an electromagnetically charged but topolo
cally neutral vortex pair corresponds to a charged fermionic
citation which is gapped in the QH state. Although disorder w
undoubtedly induce such charged quasiparticles, the QH s
should survive as long as they remain localized. The delocal
tion of such topologically neutral vortex dipoles will destroy th
QHE, but will preserve the interlayer phase-coherence, there
suggesting the possibility of an exoticgaplessinterlayer phase-
coherent state in a narrow sliver aroundn51/2. L.R. thanks
Steve Girvin for discussion on this point.

10V. Ambegaokar, B. I. Halperin, David R. Nelson, and Eric D
Siggia, Phys. Rev. B21, 1806~1980!.

11R. Abolfath and A.H. MacDonald~unpublished!.
4-4


