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Interaction corrections to the Hall coefficient at intermediate temperatures
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We investigate the effect of electron-electron interaction on the temperature dependence of the Hall coeffi-
cient of two-dimensional electron gas at arbitrary relation between the tempeFfanckthe elastic mean-free
time 7. At small temperaturd 7<# we reproduce the known relation between the logarithmic temperature
dependences of the Hall coefficient and of the longitudinal conductivity. At higher temperatures, this relation
is violated quite rapidly; correction to the Hall coefficient becom@#T whereas the longitudinal conductivity
becomes linear in temperature.

DOI: 10.1103/PhysRevB.64.201201 PACS nunider72.10—d, 71.30+h, 71.10.Ay

It is well knownt that electron-electron interaction at low tron momentum and angular averaging i6.. .00
temperaturesTr<#) leads to the logarithmically divergent = [(d6/2w) . ... The Boltzmann-like equation for the sta-
correction day, to the longitudinal conductivity of two- tionary and homogeneous distribution function is
dimensional(2D) electron gas. Whereas for a wide range of
temperatures the sign and the magnitude of those corrections .0

nXxX—
an
intact? there is no logarithmic interaction correction to the 2 . . . .
Y . . whereE is the applied electric field and, is the cyclotron
Hall conductivity o, for any type of the interaction. When PP ¢ Y

I -
are not universalin particular due to the Fermi-liquid-type evF(nE)gﬁLwcb
the interaction correction is still smaller than the Drude con{réduency due to the external magnetic field anid the unit

f=Stf}, 4

interactions in the triplet channelone property remains

ductivity, the latter fact can be also rewritten as vector along the field. _ _
All of the interaction effects are taken into accotintthe
y=2, (1)  elastic and inelastic parts of the collision integral{ f$t
) . =St {f}+St,{f}. The inelastic part does not contribute to

where the parametey is defined as the Hall current. The relevant, elastic part can be written as

110 po(T) (in all intermediate formulas we use the units with-1)

T Xy
’)/(T) - (9_'_ |n O_XX(T) ’ (2)

f(fvﬁ)_<f(€!ﬁ)>n
T

, , o St{f}=~ +lo(e,M)(f(e,N))n
with p,, being the Hall resistivity.

Equation(1) is not controlled by any symmetries of the n |8 =

e . n,l ngf(e, Ny,

system and comes about as a result of the diffusive approxi- al 7 (e)(ngf (M)
mation justified only forTr<7%. For the 2D electron gas where the second line describes the effect of interaction on
based on semiconductor heterostructiifehis condition is  elastic collisions and
easily violated. Therefore, one can no longer rely on the

relation(1) for Tr=%. The theory describing the correspond- . 8 [ dw .

ing temperature behavior of is still not available. Our goal lo(€,n)=— ;j z[ NoKgP(w)(ngf(e—w,n)),

in this paper is to derive the corresponding analytic formulas.

Temperature dependence of the Hall coefficient much N.L§A(w) -

weaker than predicted by E¢(R) was reported in Ref. 4. +———eE(fle-wn)), (53

We will use the kinetic equation formalism for the inter-
action corrections which we briefly summarize below and 8 de
then apply it to the calculation of the Hall coefficient. The |i¥ﬁ(6): — _J _Kfﬁ’(w)(f(e_w,ﬁ))n_ (5h)
detailed derivation of the formalism and the region of its 7] 2w
validity can be found in Ref. 5.

The electric current is expressed in terms of the distribu
tion functionf(t;e,r,n) as

One can easily see that the elastic collision integral vanishes
in equilibrium f(e,A) =f(e), E=0. The explicit definitions
of Ky, Ky, andL, entering Egs(5) are

o

de(nf(t;e,r,n)),. 3 2

tH=eve | L0 (n0)0ny

Kgﬁ(w)zlmf ony?

Here v is the density of states of the noninteracting system 5
taken at the Fermi surface ang is the Fermi velocity,i _ 9ap J
=(cos#,sind) is the unit vector in the direction of the elec- 2 (<D><D>+'aw<D> ' (63
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2 A unknown quantitied"*? are first order in the electric field
Kgﬁ(w)zlmf 2 )ZDR(a),q){maDnB)(D) and zeroth order in the magnetic field.
ar

Substituting Eq(10) into Egs.(4), (5), we obtain the fol-

i 9 lowing system of equations:
_;E(Dnﬁ)—(Dna)(DnB)], (6b)
dfe(e)
d? J F
La*%):—Ref ] DR<w,q>[<D>—<naD> R e
(2m)? g
; ; TP 4deK T
—(Dna>—(D)—<Dna—D>]. (60) T
7% " e (T ®
Here, DR denotes the retarded interaction propagator in sin- XTo (&)t Ko()Tr(T 7 (e~ )]
glet channel and the angular averaging is Af(e) [ dw J
R fELo(w)eEc@fF(e—w), (118
dode’
<an>Ef a(A)D(A,A’;0,d)b(R"),
(2m)?
d
(aDbDc) F&l><e>=—rgz’<e>—4f %fpu—w)[mww?(e)
_fdade,de,’ ~ D U b =/ D =/ R/ 1 dw
=] ~ms AMD(AYBE)D( M) +Kl(w)r9>(e)]_4fﬂfF(e)

> >y

for arbitrary functionsa, b. The functionD(A,n’;w,q) de-
scribes the classical motion of a particle on the energy shell
eg in a magnetic field:

X[Ko(@)T@(e—0)+Ko(0) TP (e—0)]

J ~ d b
L(a)eEa,ng(E_w). (11 )

d
—4&(@]%

Jdwg

_ 1%
—lw+ivend+wb| AX—
on

We solve Egs(11) by iteration and substitute the result into
T E[D(ﬁ,ﬁ’)—w( 3] =2m8(0— ). 7y Ea.(10 [T™ does not contribute to the Hall currénand
T then into Eq.(3). Performing angular averaging and integra-
It is noteworthy, that unlike in the ordinary Boltzmann equa-1ON Overe one finds components of the conductivity tensor.
tion, the Lorentz force affects also the collision processes as Rather than writing explicit results for the Hall conduc-
one can see from Eqé6) and (7). tivity we present the expression for the Hall resistivity,,
The above equations are written for the interaction in the= PB+ Opxy >
singlet channel only. In a situation where both triplet and
singlet channels are present, but the distribution function

does not have a spin structuf@o Zeeman splitting or non- Spxy S0y S04y

equilibrium spin occupation presgnbne has to replace in == - ;

Eq. (6) pa (we7)op 9D
DR-DR+3DR, (8)

oot . . whereop=e€?vv27/2 is the Drude conductivity, ang? is
We calculate the Hall resistivity, in the first order in clazgical :;IFIq;esistivit €= — wyrlo) WZ findﬂH
magnetic field. We notice that due to the rotational and re- y ¢t o

flection symmetries of the system

af _ X . o ~ ~
KE8(0)= 8,1 (0)  €qpoeri(0), (9) ey [* 90 7 o] Raten Koo

D
and the same structure for the kernel. Heree,z is the PH
antisymmetric tensofe,,= 1. ~

In order to calculate the conductivity we look for a solu- +M+ M .

(12
tion of Egs.(4) and(5): VET VET

f(A,e)=fe(e)+n, I P(e)+ ne..l'?(e), (10
(Me)=fe(e) nl'c () F (wemNacagl 7€), (10 What remains is to find the explicit expressions for the ker-
wherefr(e)=1/(eT+1) is the Fermi distribution function nels entering into E¢(12). To do so, we solve Eq7) up to

(all the energies are counted from the Fermi lgvahd the the first order in magnetic field:
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. . dé, o To study the details of temperature behavior+gfone

D(n,n")=Dy(A,A")— ch 25, D1(M) needs to evaluate the integrals in Eg) for both the singlet

and the triplet channel propagaisee Eq(50) and Eq.(60)

in Ref. 5:

X| AipX—[Dy(fy,A"),
nl R 1 C—- 1/7'
DR=-= :
c Mk 1((: 1/r)
AR =7 iw —1/T
D4 (1,i") =2 8( 8- 6")Do() + Do(M)Do(i") =7 v
(133 \here Fg is the interaction constant in the triplet channel,

and singlet propagatoi??, is obtained by settingj— .

C=\/(—iw+1/7')2+v2q2 Dy(f) = 1 For completely spin-polarized electrons only the singlet
e 0 —iw+iveAg+1/r channel correction is present. We find
(13b
. . phy e’ 1 1
We note, that only the second term on the right-hand side b = 5 —4C+ o' 1+
. ~ ~ R o 420 247 TT 27T
(rhs) of Eq. (133 contributes tK; andL,. Substituting Eqgs.
(13)]c into Eqﬁ. (6), th?a resulting kernels ti)nt(') Erc]{12) anld f 11 (1+ 1 ) 19fld J1s X )
performing the angular integration we obtain the results for —- 75 =5 XX
the correction to the diagonal conductivityy,,, and to the 12 2mir) 2 Jo 2mTr
Hall resistivity, 1 X
+
5f0dxx21p I ] (16)

5ny/PB f dw d
=Im
Soyylop A

R
“’COthz_) f D (@,0) where C~0.577 is Euler’s constany(x) is the di-gamma
function. Equation(16) can be approximated by the follow-

Bxy(w,q)) 14 ing interpolation formula:
B , )
wd @ Q) 5p§y_ e2 I . 117 4 )
where the form-factors are defined as P T2k oo n 192 T+ (17)
2020 v 2C-5(—iw+1/7)] This formula reproduces the logarithmic beha¥iorthe dif-
=" 3 3T P > fusive limit (T7<#) in accordance with Eq.1), and
C3*(C—-1/7) 27°C°(C—1/7)
P 2
| ClotUn[C—(~iot1n)] 158 5’)ny: ° %ZTE
, T
2C4(C—1/7)? pn ™hop
for Tr>#h, in contrast with the linear dependence of the
v§q2/72 3v,2:q2 diagonal conductivity in this reginteFinally, at intermediate
*lcdc-1n)®  27C3(C—1i7)? (%) (2222)
2[C—(—iw+1/7)] 20
0.015
C(C—1/7)?
15 g 0.010
2C—1Ur(C—(—iw+1/7)\?2 §
5 . (15b) 3 o005
CU q2 C—-1/r & ™
F 1.0 SN ]
Expression for the form-factoB,, was obtained before in ‘ %o 10 20 30 4o
Ref. 5 and cited here for comparison. It is noteworthy that o Tr/h
By xx(@,0=0)=0 as it is dictated by the gauge invariance. ' \\,\
Equations(15) enable one to anticipate the behavior of M
parametery from Eq.(2) even before the form of the inter- 00, 10“2—0——30—“40

action in Eq.(14) is specified. At low temperatures, the in-
tegrals are determined by, qug<1l/r. In this case both

formfactors in Eq(15) are controlled by the firstterms inthe  FiG. 1. Singlet channel correction to Hall resistiviiyf, , given
rhs. As a result, one arrives at EG). At largerq>1/ve7, by Eq.(16) (solid line) and interpolation formulél?) (dashed ling

the behavior of the formfactors is completely differeBf,  On this scale two curves are indistinguishable, and the relative de-
x1/g?, B,y>1/q*, so the relatior{(1) can no longer hold. viation is blown up on the inset.

Tr/h
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FIG. 3. Temperature dependence of the paramgtsee Eq(2),
FIG. 2. Total correction to Hall resistivityp,, for different relating the Hall coefficient tar, .
values of the Fermi-liquid parametdfg. For —0.61<Fg<
—0.45, the temperature dependence is nonmonotonous, though very

weak, see inset. The total correction to the Hall coefficiend,pxy= & p%,

+ 3 pyy, is shown in Fig. 2. Let us note in passing, that if the
temperatures Eq17) provides accuratéfor numerical rea- electron system is polarized by strong in-plane field, only the

song description of the crossover, see Fig. 1. singlet correction(17) remains.
The triplet channel correction is calculated analogously Finally, we present the temperature dependence of the
and the interpolation formula similar to E(L7) reads quantity y from Eg. (2). The plot shown in Fig. 3 was ob-
tained with the help of Eqs(17) and (18) of the present
gy 8e¢® |1 1+Fg+(Tr/h)g(Fp) paper and Eq(16) of Ref. 5. We note, that the slope of this
Pa mhop Fg ' 1+Trlh curve at zero temperature is always finite. According to the

figure, y(T)’s deviation from the value of 2 happens already
at much lower temperatures than expected: it changes by a
factor of 2 at aboufl7/4=0.1 for the weak couplingKg

<1) case.

XIn

1 117 & 18
T 19274/ (18
Once again, Eq(18) reproduces the asymptotic behavior at

high and low temperature and gives numerically accurate To conclude, we investigated the temperature dependence
results in the intermediate region. The definition of theof the Hall resistivity of 2D electron gas for arbitrary values

smooth functiong(x) is of T7/#. It is shown that whereas the relation between the
4 Hall and diagonal resistivityl) indeed holds foil 7<%, itis
Ing(x)= 1—1[— 5f4(x) — 12f 5(x) — 3 1(x) + 4 o(X)], rapidly violated at higher temperatures, see Fig. 3.
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