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Interaction corrections to the Hall coefficient at intermediate temperatures
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We investigate the effect of electron-electron interaction on the temperature dependence of the Hall coeffi-
cient of two-dimensional electron gas at arbitrary relation between the temperatureT and the elastic mean-free
time t. At small temperatureTt!\ we reproduce the known relation between the logarithmic temperature
dependences of the Hall coefficient and of the longitudinal conductivity. At higher temperatures, this relation
is violated quite rapidly; correction to the Hall coefficient becomes}1/T whereas the longitudinal conductivity
becomes linear in temperature.
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It is well known1 that electron-electron interaction at lo
temperatures (Tt!\) leads to the logarithmically divergen
correction dsxx to the longitudinal conductivity of two-
dimensional~2D! electron gas. Whereas for a wide range
temperatures the sign and the magnitude of those correc
are not universal~in particular due to the Fermi-liquid-typ
interactions in the triplet channel!, one property remains
intact:2 there is no logarithmic interaction correction to th
Hall conductivitysxy for any type of the interaction. Whe
the interaction correction is still smaller than the Drude co
ductivity, the latter fact can be also rewritten as

g52, ~1!

where the parameterg is defined as

g~T!52
]T ln rxy~T!

]T ln sxx~T!
, ~2!

with rxy being the Hall resistivity.
Equation~1! is not controlled by any symmetries of th

system and comes about as a result of the diffusive appr
mation justified only forTt!\. For the 2D electron gas
based on semiconductor heterostructures3,4 this condition is
easily violated. Therefore, one can no longer rely on
relation~1! for Tt*\. The theory describing the correspon
ing temperature behavior ofg is still not available. Our goa
in this paper is to derive the corresponding analytic formu
Temperature dependence of the Hall coefficient mu
weaker than predicted by Eq.~2! was reported in Ref. 4.

We will use the kinetic equation formalism for the inte
action corrections which we briefly summarize below a
then apply it to the calculation of the Hall coefficient. Th
detailed derivation of the formalism and the region of
validity can be found in Ref. 5.

The electric current is expressed in terms of the distri
tion function f (t;e,rW,nW ) as

JW~ t,rW !5envFE
2`

`

de^nW f ~ t;e,rW,nW !&n . ~3!

Heren is the density of states of the noninteracting syst
taken at the Fermi surface andvF is the Fermi velocity,nW
5(cosu,sinu) is the unit vector in the direction of the elec
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tron momentum and angular averaging iŝ . . . &n
5*(du/2p) . . . . The Boltzmann-like equation for the sta
tionary and homogeneous distribution function is

FevF~nW EW !
]

]e
1vcbW S nW 3

]

]nW
D G f 5St$ f %, ~4!

whereEW is the applied electric field andvc is the cyclotron
frequency due to the external magnetic field andbW is the unit
vector along the field.

All of the interaction effects are taken into account5 in the
elastic and inelastic parts of the collision integral, St$ f %
5Stel$ f %1Stin$ f %. The inelastic part does not contribute
the Hall current. The relevant, elastic part can be written
~in all intermediate formulas we use the units with\51!

Stel$ f %52
f ~e,nW !2^ f ~e,nW !&n

t
1I 0~e,nW !^ f ~e,nW !&n

1naI 1
ab~e!^nb f ~e,nW !&n ,

where the second line describes the effect of interaction
elastic collisions and

I 0~e,nW !52
8

tE dv

2p H naK0
ab~v!^nb f ~e2v,nW !&n

1
naL0

ab~v!

2
eEb

]

]e
^ f ~e2v,nW !&nJ ~5a!

I 1
ab~e!52

8

tE dv

2p
K1

ab~v!^ f ~e2v,nW !&n . ~5b!

One can easily see that the elastic collision integral vanis
in equilibrium f (e,nW )5 f (e), E50. The explicit definitions
of K0 , K1, andL0 entering Eqs.~5! are

K1
ab~v!5ImE d2q

~2p!2
D R~v,qW !H ^naD&^Dnb&

2
dab

2 S ^D&^D&1 i
]

]v
^D& D J , ~6a!
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GÁBOR ZALA, B. N. NAROZHNY, AND I. L. ALEINER PHYSICAL REVIEW B 64 201201~R!
K0
ab~v!5ImE d2q

~2p!2
D R~v,qW !H ^naDnb&^D&

2
i

vF

]

]qa
^Dnb&2^Dna&^Dnb&J , ~6b!

L0
ab~v!52ReE d2q

~2p!2
D R~v,qW !H ^D&

]

]qb
^naD&

2^Dna&
]

]qb
^D&2 K Dna

]

]qb
D L J . ~6c!

Here,D R denotes the retarded interaction propagator in s
glet channel5 and the angular averaging is

^aDb&[E dudu8

~2p!2
a~nW !D~nW ,nW 8;v,qW !b~nW 8!,

^aDbDc&

[E dudu8du9

~2p!3
a~nW !D~nW ,nW 8!b~nW 8!D~nW 8,nW 9!c~nW 9!

for arbitrary functionsa, b. The functionD(nW ,nW 8;v,qW ) de-
scribes the classical motion of a particle on the energy s
eF in a magnetic field:

F2 iv1 ivFnW qW 1vcbW S nW 3
]

]nW
D GD~nW ,nW 8!

1
1

t
@D~nW ,nW 8!2^D~nW ,nW 8!&n#52pd~u2u8!. ~7!

It is noteworthy, that unlike in the ordinary Boltzmann equ
tion, the Lorentz force affects also the collision processe
one can see from Eqs.~6! and ~7!.

The above equations are written for the interaction in
singlet channel only. In a situation where both triplet a
singlet channels are present, but the distribution funct
does not have a spin structure~no Zeeman splitting or non
equilibrium spin occupation present!, one has to replace in
Eq. ~6!

D R→D s
R13D t

R . ~8!

We calculate the Hall resistivityrxy in the first order in
magnetic field. We notice that due to the rotational and
flection symmetries of the system

Ki
ab~v!5dabKi~v!1eabvctK̃ i~v!, ~9!

and the same structure for theL kernel. Hereeab is the
antisymmetric tensor,exy51.

In order to calculate the conductivity we look for a sol
tion of Eqs.~4! and ~5!:

f ~nW ,e!5 f F~e!1naGa
(1)~e!1~vct!naeabGb

(2)~e!, ~10!

where f F(e)51/(ee/T11) is the Fermi distribution function
~all the energies are counted from the Fermi level!, and the
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unknown quantitiesG (1,2) are first order in the electric field
and zeroth order in the magnetic field.

Substituting Eq.~10! into Eqs.~4!, ~5!, we obtain the fol-
lowing system of equations:

evFEa

] f F~e!

]e

52
Ga

(1)~e!

t
2

4

tE dv

2p
@K1~v! f F~e2v!

3Ga
(1)~e!1K0~v! f F~e!Ga

(1)~e2v!#

2
4 f F~e!

t E dv

2p
L0~v!eEa

]

]e
f F~e2v!, ~11a!

Ga
(1)~e!52Ga

(2)~e!24E dv

2p
f F~e2v!@K1~v!Ga

(2)~e!

1K̃1~v!Ga
(1)~e!#24E dv

2p
f F~e!

3@K0~v!Ga
(2)~e2v!1K̃0~v!Ga

(1)~e2v!#

24 f F~e!E dv

2p

]

]vc
L̃ ~veEa

]

]e
f F~e2v!. ~11b!

We solve Eqs.~11! by iteration and substitute the result in
Eq. ~10! @G (1) does not contribute to the Hall current#, and
then into Eq.~3!. Performing angular averaging and integr
tion overe one finds components of the conductivity tens

Rather than writing explicit results for the Hall condu
tivity we present the expression for the Hall resistivity,rxy

5rH
D1drxy ,

drxy

rH
D

52
dsxy

~vct!sD
22

dsxx

sD
,

wheresD5e2nvF
2t/2 is the Drude conductivity, andrH

D is
the classical Hall resistivity (rH

D52vct/sD). We find

drxy

rH
D

5E
2`

` dv

p

]

]v S v coth
v

2TD F K̃1~v!2K̃0~v!

1
L̃0~v!

vFt
1

L0~v!

vFt
G . ~12!

What remains is to find the explicit expressions for the k
nels entering into Eq.~12!. To do so, we solve Eq.~7! up to
the first order in magnetic field:
1-2
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D~nW ,nW 8!5D1~nW ,nW 8!2vcE du1

2p
D1~nW ,nW 1!

3S nW 13
]

]nW 1
D D1~nW 1 ,nW 8!,

D1~nW ,nW 8!52pd~u2u8!D0~nW !1D0~nW !D0~nW 8!
C

Ct21
,

~13a!

C5A~2 iv11/t!21vF
2q2, D0~nW !5

1

2 iv1 ivFnW qW 11/t
.

~13b!

We note, that only the second term on the right-hand s
~rhs! of Eq. ~13a! contributes toK̃ i andL̃0. Substituting Eqs.
~13! into Eqs. ~6!, the resulting kernels into Eq.~12! and
performing the angular integration we obtain the results
the correction to the diagonal conductivity,dsxx , and to the
Hall resistivity,

S drxy /rH
D

dsxx /sD
D 5ImE

2`

` dv

p

]

]v S v coth
v

2TD E qdq

4p
D R~v,q!

3S Bxy~v,q!

Bxx~v,q!
D , ~14!

where the form-factors are defined as

Bxy52H 2vF
2q2/t2

C3~C21/t!3
1

vF
2q2@2C25~2 iv11/t!#

2t2C5~C21/t!2

1
~2 iv11/t!@C2~2 iv11/t!#

t2C4~C21/t!2 J , ~15a!

Bxx5H vF
2q2/t2

C3~C21/t!3
1

3vF
2q2

2tC3~C21/t!2

1
2@C2~2 iv11/t!#

C~C21/t!2

1
2C21/t

CvF
2q2 S C2~2 iv11/t!

C21/t D 2J . ~15b!

Expression for the form-factorBxx was obtained before in
Ref. 5 and cited here for comparison. It is noteworthy t
Bxy,xx(v,q50)50 as it is dictated by the gauge invarianc

Equations~15! enable one to anticipate the behavior
parameterg from Eq. ~2! even before the form of the inter
action in Eq.~14! is specified. At low temperatures, the in
tegrals are determined byv, qvF!1/t. In this case both
formfactors in Eq.~15! are controlled by the first terms in th
rhs. As a result, one arrives at Eq.~1!. At larger q@1/vFt,
the behavior of the formfactors is completely different,Bxx
}1/q2, Bxy}1/q4, so the relation~1! can no longer hold.
20120
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To study the details of temperature behavior ofg, one
needs to evaluate the integrals in Eq.~14! for both the singlet
and the triplet channel propagator@see Eq.~50! and Eq.~60!
in Ref. 5#:

D t
R52

1

n

C21/t

iv1
F0

s11

F0
s

~C21/t!

,

whereF0
s is the interaction constant in the triplet chann

and singlet propagator,D s
R , is obtained by settingF0

s→`.
For completely spin-polarized electrons only the sing
channel correction is present. We find

drxy
r

rH
D

52
e2

4p2sD
H 24C1

1

24pTt
c8S 11

1

2pTt D
2

11

12
cS 11

1

2pTt D2
19

2 E
0

1

dxxcS 11
x

2pTt D
15E

0

1

dxx2cS 11
x

2pTt D J , ~16!

whereC'0.577 is Euler’s constant,c(x) is the di-gamma
function. Equation~16! can be approximated by the follow
ing interpolation formula:

drxy
r

rH
D

5
e2

p2\sD

lnS 11
11p

192

\

Tt D . ~17!

This formula reproduces the logarithmic behavior2 in the dif-
fusive limit (Tt!\) in accordance with Eq.~1!, and

drxy
r

rH
D

5
e2

p2\sD

11p

192

\

Tt
,

for Tt@\, in contrast with the linear dependence of t
diagonal conductivity in this regime.5 Finally, at intermediate

FIG. 1. Singlet channel correction to Hall resistivitydrxy
r , given

by Eq.~16! ~solid line! and interpolation formula~17! ~dashed line!.
On this scale two curves are indistinguishable, and the relative
viation is blown up on the inset.
1-3
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temperatures Eq.~17! provides accurate~for numerical rea-
sons! description of the crossover, see Fig. 1.

The triplet channel correction is calculated analogou
and the interpolation formula similar to Eq.~17! reads

drxy
s

rH
D

5
3e2

p2\sD
H 12

1

F0
s

ln
11F0

s1~Tt/\!g~F0
s!

11Tt/\ J
3 lnS 11

11p

192

\

Tt D . ~18!

Once again, Eq.~18! reproduces the asymptotic behavior
high and low temperature and gives numerically accur
results in the intermediate region. The definition of t
smooth functiong(x) is

ln g~x!5
4

11
@25 f 3~x!212f 2~x!23 f 1~x!14 f 0~x!#,

f j~x!5
1

xj S ln@11x#1 (
n51

j
~2x!n

n D , ~19!

and it has the following asymptotic behavior,g(x)511x
1 3

22 x21 . . . , x!1, andg(x)→e270/33, x→21. The latter
asymptotic is realized when the system is close to the Sto
instability.

FIG. 2. Total correction to Hall resistivitydrxy for different
values of the Fermi-liquid parameterF0

s . For 20.61,F0
s,

20.45, the temperature dependence is nonmonotonous, though
weak, see inset.
S
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The total correction to the Hall coefficient,d rxy5d rxy
r

1d rxy
s , is shown in Fig. 2. Let us note in passing, that if t

electron system is polarized by strong in-plane field, only
singlet correction~17! remains.

Finally, we present the temperature dependence of
quantity g from Eq. ~2!. The plot shown in Fig. 3 was ob
tained with the help of Eqs.~17! and ~18! of the present
paper and Eq.~16! of Ref. 5. We note, that the slope of th
curve at zero temperature is always finite. According to
figure,g(T)’s deviation from the value of 2 happens alrea
at much lower temperatures than expected: it changes
factor of 2 at aboutTt/\.0.1 for the weak coupling (F0

s

!1) case.

To conclude, we investigated the temperature depende
of the Hall resistivity of 2D electron gas for arbitrary value
of Tt/\. It is shown that whereas the relation between
Hall and diagonal resistivity~1! indeed holds forTt!\, it is
rapidly violated at higher temperatures, see Fig. 3.
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FIG. 3. Temperature dependence of the parameterg, see Eq.~2!,
relating the Hall coefficient tosxx .
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