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Bound polaron in a spherical quantum dot: The all-coupling variational approach
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The effect of the electron-phonon interaction on an electron bound to an impurity in a spherical quantum dot
embedded in a nonpolar matrix is studied theoretically. The all-coupling variational method is used to calculate
the polaron energy shift including interaction with both bulk and surface LO phonons. The interaction of an
electron with the image charge potential is taken into account. Comparison with the results of the adiabatic
approach is also provided. General analytical results are obtained for small and large dots for different impurity
positions. Numerical studies of the polaron properties have been performed for quantum dots of different radii
with arbitrary strengths of the electron-phonon coupling and electron-impurity binding. It is show(i)tlaat
a function of the impurity position, the total value of the electron-phonon interaction has a maximum
magnitude when the impurity is located in the center of the dot in the case of weak coupling, and reaches its
maximum at some intermediate impurity position for greater values of the electron-phonon and electron-
impurity interactions and(2) as a function of the impurity position, the interaction with surface phonons is
greater for strong binding when the impurity is close to the boundary of the dot, reaches a maximum when the
impurity is positioned on the surface of the dot in the weak coupling case and at some arbitrary impurity
position inside the dot for the strong electron-phonon coupling and/or binding.
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[. INTRODUCTION angular quantum boxésand QD’s with a parabolic confine-
ment potentiat®~*® In spherical quantum dots polaron ef-
Progress in crystal growth techniques has made it possibliects have been investigated within the dielectric continuum
to fabricate semiconductor nanostructures with characteristimodel® These effects were studied for the case of the a
dimensions of the order of the electron or hole de Brogliepolaron in a spherical QDan electron confined in a QD
wavelength. In these systems electronic states are subject tardgeracts with phonons implementing an adiabatic
strong dimensional confinement effect arising from the mis-approximatiorf.~®in which surface optical phonon modes do
match in the band gaps of the constituent materials. Amongot contribute to the polaron energy shift. Second-order per-
various kinds of nanostructuréguantum wells and superlat- turbation theory# was also used to calculate the polaron
tices with electronic confinement in one dimension, quantunshift; it was found that bulk-type phonons play a dominant
wires with two-dimensional confinement potentials, androle in the polaron energy shift. The all-coupling variational
quantum dots with the quantum confinement present in aliechniqué’ valid for a wide range of dot radii and electron-
three dimensions quantum dofQD) systems have attracted phonon coupling strengths, was also developed, and system-
the most attention because of their potential applications tatic calculations of the polaron energy shift were performed.
electronic and optoelectronic devi¢ésand the interesting The major results of these considerations are thatulk
guantum-mechanical phenomena associated with them; e.gghonons play the most important role in the polaron effects
exciton states remain stable at room temperature, and thend the contribution from the SO phonons is either negligible
so-called phonon bottleneck may exist under some condier nonexistent; and2) with the increase of the dot’s radius
tions (an electron in the excited state cannot relax by virtuethe magnitude of the polaron energy shift decreases rapidly
of phonon emission when the distance between electron lefrom a large value and then gradually approaches its bulk
els is not equal to the phonon energy value. Experimental studies of electron-phonon interaction in
Electron-phonon coupling in nanostructures also has difQD’s were concerned mainly with the measurement of the
ferent features from that in the bulk. That is, there is a strongffective value of the Huang-Rhys fact@ee, e.g., Refs. 15
increase of its strength with the reduction of dimensionalityand 16, and references thengithe major observed result is
[from three-dimensional3D) in the bulk to OD in the quan- the increase of its value with the decrease of the dot size for
tum dofl. In these confined systems the dielectric constantsvell-formed QD's.
of the materials inside and outside the structure differ from The study of impurity states in nanostructures is also im-
each other, and the resulting surface opti€®0) mode$  portant, since the impurities greatly affect both electronic
need to be considered. To discuss phonon effects on eleand optical properties of the real QD’s, much as in the bulk
trons in nanostructures in a proper way, these phonon feaase'’ Since the impurity can be located, in principle, any-
tures(polaron effectshave to be taken into account. where in the dot, it is necessary to study the dependence of
Since the QD is one of the simplest examples of quantunall relevant physical quantities on its position. The problem
confined structures, the polaron effects on an electron havef the polaron effect on the so-called donorlike exciton in
been studied extensively both theoretically and experimennanocrystals can also be treated within the frameworks of
tally. Polaron effects have been studied theoretically in QD’smodels applied to the free polaron cds&.recent experi-
of various forms: spherical QOs,” cylindrical QDs® rect-  mental study of the luminescence in AgCl nanocrysfats
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TABLE I. Values of the material parameters for typical semiconductor Qm;s: electron effective mass
(in units of the free electron masdiw, o, LO-phonon frequencyin me\V); ¢, static dielectric constant;
£, , high-frequency dielectric constant; electron-phonon coupling constant. Values of these parameters are
taken from Ref. 24 for InAs and PbS, Ref. 25 for GaN, Ref. 23 for ZnSe, and Ref. 7 for all other materials.

InAs GaAs GaN CdSe CucCl ZnS ZnSe TICI KBr PbS

Mg 0.0239 0.067 0.2 0.13 0.504 0.34 0.171 0.424  0.369 0.08
ho o 29.63 35.33 92.5 26.54 25.64 43.18 38.49 21.46 20.97 254
g9 15.2 12.4 9.8 9.3 7.9 8 8.33 4.76 4.52 169
£ 12.3 10.6 54 6.1 3.61 51 59 2.94 2.39 17.2
a 0.05 0.07 0.45 0.46 2.46 0.74 0.38 2.94 3.05 0.34

dicated that the compact, heavy hole can be trapped at diffifferent sizes of QD’s using various values of electron-

ferent lattice sites, causing changes in peak positions in thehonon and electron-impurity interactions and surrounding

observed spectra when it tunnels or hops toward the center ofiatrix material parameters. Finally, Sec. V gives the con-

the nanocrystal. cluding remarks and outlines briefly possible future exten-
The binding energy of the electron in a spherical QD wassions of this model.

also studie®®~**theoretically. In Refs. 19-21 the depen-

dence of the binding energy for the ground state and several Il. MODEL
excited electronic states on the location of the impurity was o
investigated by means of variational calculations. It was Variational procedure

found, in particular, that the binding energy of the ground |n this section, the basic equation that will be employed in
state has a maximum when the impurity is positioned at théhe study of the bound polaron confined in the quantum dot
center of the dot, and that it decreases with a shift of thes derived. This will be achieved by implementing the varia-

impurity from the center. In Refs. 22 and 23 the influence oftjonal procedure to find the minimum expectation energy
electron-phonon interaction on that energy was investigateffom the Hamiltonian of Ref. 23.

in the adiabatic case, varying the impurity position and the First, as is usually done for a bulk bound polaron, we

radius of the QD, and it was shown, in particular, that unlikeeliminate the contribution to the total electron energy from

a free polaron in a QD, the bound polaron interacts stronglythe impurity—LO-phonon interaction. Next we implement the

with SO modes, especially when the impurity is locatedgeneralized Lee-Low-Pines theory first used to treat the ex-
close to the dot’s boundary. citon polaron problem?® generalized to the case of the bound

In the present work we also study the effect of thepulk polaron?’ and recently adapted for the case of a polaron
electron-phonon interaction in a spherical QD for the case o€onfined in a spherical QDutilizing the unitary transforma-
an electron bound to a hydrogen like impurityr donor like  tion
exciton with a heavy ho)elocated at some point within the
dot. From the values presented in Table I, one can conclude
that the material parameters of typical semiconductor QD’s U=exp( IE; [Fl(Das—Fis(nafly, @
correspond to weak or intermediate electron-phonon cou- '
pling, which cannot be handled, generally speaking, by thavhere parametefS;s(r) are assumed to be real and are to be
adiabatic method. Thus, in this paper, calculations and disdetermined variationally. With these transformations taken
cussion of the polaron energy shift are conducted for variou§ito account, the trial wave function of the system is given
values of the electron-phonon coupling and electronby the product
impurity binding using the all-coupling variational approach
similar to that from Ref. 7 in order to clarify the nature of the |¥)=U[y(r))[0), 2)
bound polaron confined in the spherical QD. The calculatioq,vhere|0> is the phonon vacuum state.
of the polaron ground stat&S) energy is performed within Then the expectation value of the Hamiltorfidis given
the framework of the effective-mass approximation, i.e., asy,
suming that all characteristic lengths of the problem are large
compared to the lattice constait. E=(V|H|W)=(y|Ho| ), ©)

This paper is organized in the following way. In Sec. Il . )
the all-coupling variational model for an electron in a spheri-whereHo s the zero-phonon term of the transformed Hamil-
cal QD interacting with bulk and SO phonons is describedfonianU“HU:
In Sec. lll the general behavior of the bound polaron in small 2
and large QD’s is analyzed analytically. Special attention is
paid to the cases when the impurity is located in the center of
the dot or close to its boundary. Then, in Sec. IV the depen-
dence_ of the pol_aron (_anergy.e.md electron_—phonon interaction +2 ﬁszleS|2—2 hoig[VjsSisFjstH.cl. (4)
energies on the impurity position are studied numerically for s s

_p B e 2
Ho=5m Vool +Ve(rro) + 2 50l V|
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The functionF ¢(r) is taken in the following form: In the above expressions for the electron-phonon interaction
. energies, the first terms in brackets are the same as were
Fis(r)=Vsfis+VsSi(r)gjs - (5)  obtained earlier for the adiabatic treatment of the polaron

. N ‘23 .
The first term in this equation corresponds to the adiabati@rOblem In the'QD§. .Th? seconld.parts can be mterp.reted
as nonadiabatic contributions arising from the term in the

method?® while the choice of the second one is appropriate! ionF-. d dent on the elect dinat
to the intermediate electron-phonon coupling case. Note tha{Vn_I(_:r:on is epinthenb on q € elec ron cogr |fna e('j by mini
in large QD’s, the adiabatic approach is valid only for the € energy of the bound polaron can bé found by mini-

strong electron-phonon and/or electron-impurity interactions"'4/N9 E with respect to the parametex. In the following

To describe weakly coupled or bound electrons in Iargecalculations we will pay special attention to these quantities:

quantum dots, it is necessary to use the intermediaten® Pinding energy of the polaron, which is determined as a

coupling variational approach. Thus it is expected that tdlifference between the total energy of 'ghe pplaron“and tr},e
form of F 5 given by Eq.(5) will yield a reasonable descrip- groun_d-state energy qf the electron confined in the “empty
tion of the polaron effects for a wide range of the QD radii,QD without the impurity present,
electron-phonon, and electron-impurity interactions. ) )

The subsequent minimization of E) with respect to E —E— h_(f) (15)
the variational parametefs; andg; leads to the following tot 2m '

R
expressions for them:
and contributions to the total energy from electron—bulk-

AisCjs phonon €®) and electron—SO-phonorE®) interactions
(6)  given by Eqs(13) and(14).

jS:—zy
Bis+ CiS_Ajs
B, — A2 lll. ANALYTICAL RESULTS FOR LARGE AND SMALL
gis=———, 7) QUANTUM DOTS
Bje+ Cjs— A%

A. Polaron effects in the small quantum dot

with coefficientsA;s , Bjs, andCjs defined by Before proceeding with the numerical calculations of the

A]_S:<¢,|Sjs(r)|¢>, (8) polar_on energy shift, it i_s interest_ing_to find an ar_1a|ytica|
solution of Eqs(12)—(14) in some limiting cases. This ana-
Bjs:<¢||3js(f)|2|¢>, (9) lytical consideration can be performed separately for the

cases of the large and small QD’s.

Let us first consider the case of a small QD wikh
<l//||VSjs(r)|2|llf>- (10) <ag, Whereag is the Bohr radius of the effective-mass
2m* wjs electron. In this case the kinetic energy of the electron will
_ ) ) ) predominate, and the interaction energy may be regarded as a

Choosing the electronic part of the trial function as aperturbation to the free moving electron in the QD. This
product of a ground-state wave function pertinent to the barg,gicates that in order to obtain the leading term of the en-
electron confined in the QD, and an exponential functiongygy £, we can puty=0 in the electronic wave function

CjS:

describing the effect of the electron binding, [Eq. (11)], thus making it the eigenfunction of the unper-
turbed Hamiltonian. After some calculations, the final result
ly(r)) = Njo(w_r) e o (11  for this term in the polaron binding energy can be cast in the
R ' form

with N as a normalization constant andas a variational () 4 (9
parameter indicating the degree of the spatial correlation be- Eo=Eco—ExwtEy’TEp”, (16)
tween the electron and the impurity, after some calculations

we can findE as a functional of the variational parameter ~ Where theEc, representing the potential energy of the elec-
tron in the QD, the “exchange” energl,,, and the bulk

E[y]=(He+H,l ) +EQ+ES),, (12 EY and interfaceE? phonon intractions are equal to
where the electron—bulk-phonorE®) and electron—SO- )
phonon E®) interactions can be written in the following e - |k 2mro +1 Bx 4
. co—
forms: exR R 2\ &g
g® — _2 Ao ~V2| A% + M (13) g i LJWdXSinz(X)Xm (17)
pol S LOVi1s| Mis Bls""Cls_Ais ' 2 =1 71_2|+1 0 !
(Bos—AS)? e? 27t
EG® = — fhoV3| A2 +——— = | (14 = o) _
o z Ve Mast gz Eo=——IF| g1 (189)
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() aR, Using this wave function, the matrix elememts, Bjs, and

Eo'=—Ci—(x fowo, (199 Cjs can be presented in the forms

12 1 .
aR €08 A= —— o€ ) (23)

E®=_c,— ho o, 1s 10 )
P TR \(eot 2eq)(ent2e0?] vam
(20) L
with the functionF(x) given by Bis=7- %o, (24)
sin(x) . 202

F(x)=1- +cin(2) —cin(x). (21 C1s=k°R;Bys, (25)

- _ . . _ here 8, is Kronecker delta symbok= /R, and coeffi-

The coefficientsC,=[1— Si(2)+ Si(47)/2]=0.7862 and " 10 n!

C.— 4/372 (773/6—177/E1)2=0(026)6 an(d ci)n()] and Si§) are cientsA,g, By, andC,s approach zero. The fact that only
2 ) ' pwe terms witH =0 have nonzero values can be explained by

the integral cosine and sine functions, respectively. In Ordenoting that in this case the trial wave function has a spherical
to obtain Egs(18) and(19) above, first the summation over o
qs(18) (19 symmetry(the electron is in the 4 statg, and thus the cor-

the roots ofj o(x) was performed and then the resulting two- A . AR :
dimensional integrals were evaluated. Equat®) was cal- responding intergrals give the most significant input to the
' total polaron energy shift.

culated using only the first term in the summation in Egf) After this, changing the summation ovein Eq. (13) into

with 1=1, and taking the fimit ofR<R;, which can be an integral ovek gives rise to the following expression for
justified by noting that in a small QD the distance betweenE(b) ey gives 1 ) 9 exp
p  inthe large dot limit:

adjacent levels is large enough to provide a negligible mix-
ing between states with higher valuesloand the ground
state. EO_ _p

The major difference between these results and those p — N@o
given in Ref. 23 for the adiabatic case is in the electron—SO-

phonon interaction energy: unlike the adiabatic result, thisyith Gy={(y|e'"|y). This is exactly the same equation as
energy is not equal to zero when the impurity located in theyptained by Matsuura and Boer® for the case of the bound

center of the QD. The value & is linearly proportional to  polaron in the bulk. The total polaron energy functional then
the radius of the dot and will approach zero value only fortakes the form

R— 0 when the adiabatic effects predominate. This indicates

that this behavior of the electron—SO-phonon interaction is 7?2 42 ey .

due to the presence of the nonadiabatic processes in the sys- Elyl=5=-5——5+E}. (27)
. . 2m 4 gg2 P

tem, and thus cannot be obtained from the strong-coupling

approach. The results and conclusions for the situation whegysing this expression the limiting cases of the weak binding
ro—R are the same as given in Ref. 23, and will not begng coupling G,—0) and the strong binding and/or cou-
repeated here. pling (adiabatic approaci@,— 1 for most values ok)*’ can

be easily obtained:

2aR, (» 1-G2+R%k3G?
@ pf dkM, (26)

1-GE+R3K?

B. Electron-phonon coupling in a large quantum dot

The transition of the electronic state with the displace- [y] h? y? ey 28)
ment of the impurity away from the surface of the dot be-
comes especially interesting when the dot's size becomes
very large. Then we may expect to obtain the standard bulk
bound polaron results when the impurity is in the center of Elvl=es——5—"=%— 5 . (29
the QD, and the bound surface polaron model will be appro-
priate to describe the impurity on the boundary of the dot.
Let us first consider the case of an impurity in the center of Minimization of these equations with respect to the pa-
the QD. rametery immediately leads to the polaron enef§yand the

electron-phonon interaction ener@y” , given by

1. Impurity is in the center of the QD
2

Provided that the radius of the electron localization is E——ah me' E— me* S &g
much smaller than the dot’s radius, the electronic wave func- =~ ~ ¢"*®Lo™ 272:2" - 2722 + ﬂ;s_* '
tion [Eq. (11)] is easily reduced to the form usually adopted 0 0
for the description of the GS of the bulk bound polaf8n:

— —yr €p€ &
[p(r)) ( 7T) e . (22) (30
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which are the well-known expressions for the system withthe surface of the cryst&l. One would expect that in this
weak (left pair) and strongright pair electron-phonon cou- limit the results of the surface polaron theory should be
pling or binding in the bulk® with the bare electron in the recovered® where interaction energies with both bulk and
1s-state. SO phonons make nonzero contributions to the total polaron
energy.
2. Impurity is on the surface of the QD Since we assumed thaty~ 1, the asymptotic forms of

In this situation the electron will be localized around anthe spherical Bessel function(u,r/R) and spherical har-
impurity far away from the center of the dot. In order to MONICSYim(6,¢) become valid for thes(l)arge root numbers
simplify consideration in this case, a new coordinate systen?>|>1 and small values of the angte
with an origin at the impurity position is introduced. Assum-

ing that the radius of the electron localization is much '(x)=£sin x—ll—z (32)
smaller than the dot’s size, one can cast the electron wave i X 2 4)
function[Eq. (11)] in the form
245 1/2 B [ ime
w(r): 7 Ze_VP’ (31) Ylm( 01(10)_ Ee ‘]m(le)v (33)

wherez=p co®, andp and® are the radius and azimuthal with J(x)=7"1fJexp(x cos¢)cosm¢p)de being the
angle in this new coordinate system. This is the wave funcBessel function of ordem.

tion of the 2p state, which is appropriate for a description of Making use of Eqs(32) and (33), the matrix elements
the GS of the electron bound to the hydrogenlike impurity onpresent in Eq(12) can be rewritten as

|
[ o | .
(=" z(wlsin(kzz)e'kumq,/,):(_1)nw/E,:m, j=1

Ajs= | N | "
\/;( yleMzeikiel| ) = \/;F(kz), -2,
I \? )2
( \/;> (lﬁlsinz(kzz)llﬁ):( \/;> G j=1
- (35)

I \? | \? @
—2kjz — 2 =
(\/27,) (yle 2 |¢>—( \/2W> G, =2
2 ) ; ikipy |2 )2 24(1) =
Ry \/—277 (| V (sin(k,z)e™IPI)|?| ) = \/277 RoH, 1=1,

C..= (36)

e [1)? .y [17)? _
Rf)( ﬂ) <¢||V(e_kZe'kIIPI)|2|¢>=( ﬂ) ROH,  1=2,

wherek,= 7n/R, k= (I/R)pjcose, pj=p sin®, and ¢ is o 2aRyee. o
the angle between vectoks andp . Epoi= _ﬁ“’to(go+8d)(8x+8d) 0 dk
Substitution of these matrix elements in Eq$3) and
(14), and replacement of the sums by the corresponding in- Gﬁ)(G(k‘z‘)— F(kﬁ))+ RS(F(kT))sz(ﬁ)
tegrals, leads to the following expressions for the electron— (39
: : o G@+R2HP — (F(?)?
bulk-phonon and electron—SO-phonon interaction energies: K Pk K|

The equations above can be regarded as an extension of

EO) g 401Rpf°°f°°d kdkk; the method developed in Ref. 26 to the case of the surface
pol N polaron. Using them, the total polaron energy can be found
S by the standard minimization procedure for arbitrary values

GM(GH-FM) + Rg(F(kl))zH(kl) of the constantr and the electron-impurity interaction. How-

(37) ever, since the detailed investigation of the surface polaron

(1) R2y@) _ (p(1)y2 X )
G+ RpH = (F) problem is beyond the scope of the present paper, we will
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limit ourselves by considering only the limiting case of the 00T - - -

bound surface polaron interacting weakly with phonons and 02 et : ST

an impurity, which gives some physical information pertinent 04 — ]

to the bound polaron confined in a quantum dot. 08 + (X=X X—x\é‘ﬁ\—
In this case the relation§{"'<G{", Fﬁ%G(kﬁ) and osf X T z 7

b
Epm( e o

HP=K?RIGLY, HIP=2kfREGLY hold. Thus, Eqs(37) or
and(38) for large values of (z>R;)) reduce to : a /

Y/ ]
1 1)\e? or / 1
E(b)__aﬁwl_o+<'lf (_—— — l//>, (39 8y ]

pol™ Ex €p 4z 20 -

o2 [ . 1 . 1 . 1
0

eZ

48dZ

Ep— &g Ex €y

Efo= < v ¢> . (4 @

goteq extey

which are the same as were obtained by Evans and fiills. 002y
Combining them with the asymptotic values for the electro-
static energy and the electron-impurity exchange potential, :

- 1€ e.—eq € e,—gq €
Velp)=———-

— , (41
€u P EwTEJELP Enteqdenz (42)

2 -0.12

e A
(42) -0.14

€T &q E€x &y
Hy= -

gotegq &nteg/degp’

one obtains the polaron energy in the form (b)
20

1 e eo—gq €°

(egteg)l2 ;_ goteqdeyz |9)-

(43

E=—aho o (¥

15

From this equation the physical meaning of all terms is
seen: from the two image charge terms present in the elec-
trostatic energyW, one is responsible for the interaction of
the impurity with its imagdthe second terjnwhile the other 5
corresponds to the interaction of the electron with its image
(the third term. The presence of the exchange potenitlal
arising from the impurity-phonon interaction gives rise to the oz
renormalization of the second term in the electrostatic energy
(e is replaced byy) much like the case of the bound bulk
polaron®? The electron-phonon interactioE{gsgI and the sec-
ond part ofEfo,) produces the same result for the electronic  FIG. 1. (a) Dependence of the electron—bulk-phonon interaction
part of V., making the net effect like that from the classical nergyEgy) on the radius of the quantum dBt(ro=0): curve 1
electrostatic potential. The first part Eﬁgl shifts the bottom ~ €Orresponds to a system with=1, e../eo=0.1; curve 2 to a sys-
of the conduction band analogously to the case of the bulf€™ With @=1, 2../eo=05; curve 3 to a system witr=6,
bound polaron. It should also be noted that this effect occur§/0=0-1; and curve 4 to a system with=6, ../2,=0.5. Al

other parameters are given in the text. Results for curves 3 and 4 are

only when the electron is weakly localized around the "MPU-ivided by 20 and 50, respectively, to fit the scale of the graph; the

“ty’. SO that the binding energy of the.elect_ron ".:m(.j Its Inter'scaling factor on the horizontal axis is 0.05 for curves 1 and 2 and
action with phonons are small, and is qu!te S|m|I_ar to the0.01 for curves 3 and 4. Dots represent calculated values, and the
results of ,REf' 31. Thus we sge that the Intgractlon of thPcurves are a guide to the ey®) Dependence of the electron—SO-
el_ectron Wlt_h surface phonons is not respon5|ble_ f_or the Cl'€5honon interaction energygsgl on the radius of the quantum dat

ation of the image charge potentiakcept for the trivial case g curves are calculated using the same values of parameters as in
whene..=eg); it just gives rise to its renormalization, and it (g). (c) Dependence of the average electron-impurity distafice

is important to treat the image charge effects properly since-r |} on the radius of the quantum dt the scaling factor is equal
they should significantly affect the total polaron energy forto 0.05 for curves 1 and 2 and to 0.01 for curves 3 and 4; all curves

all values of the binding and coupling. are calculated using the same values of parameters @. in

<|r—r0|>/nF{p
3

(c) Radius R/zR,
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6.0 . . . . . . . .

Eo/hoyo
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Epol( Vhey o

(a) (d)
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/
0.8 gf——p——N—— R —— ————— i —a——R
g cop—p—y—p—r 1
£ [ Q
5 osf 53
g aA—A— 4 A /A @_
w —X— — A 2 S
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g
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n
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FIG. 2. (@) The polaron energ¥,, as a function of the impurity positiory/R for a QD with R/7R,=0.75 for curves 1 and 2, and
R/7R,=0.25 for others. Results for curve 1 are multiplied by 2; results for curves 3 and 4 are divided by 8 and 20, respectively, to fit the
scale of the graph; the values of the parameters are the same as ifarigb)1The total electron-phonon interaction energy as a function
of the impurity position; curves 3 and 4 are scaled down by 12 and 25 times to fit the graph; the parameters specifying different curves are
the same as for Fig.(d). (c) The average electron-impurity distan¢e —rg|) as a function of the impurity position; the parameters
specifying different curves are the same as for Figl).1(d) The electron—bulk-phonon interaction energy as a function of the impurity
position; curves 3 and 4 are scaled down by 12 and 25 times to fit the graph; the parameters specifying different curves are the same as for
Fig. 1(a). (e) The electron—SO-phonon interaction energy as a function of the impurity position; curves 3 and 4 are scaled down by four and
50 times respectively, the parameters specifying different curves are the same as f@a)Fig. 1

IV. RESULTS OF NUMERICAL CALCULATIONS the static and high-frequency dielectric constargsande.,
Now, changing physical parameters of the system, we ca-f the mgterial in;ide the QD, the dielectric constant of the
culate the polaron energy and systematically discuss the ge yrroundl_ng matrxeq, the_ bulk LO-phonon energy O.f. the
eral properties of the bound polaron confined in a sphericaf©t materiatiw o, the radius of the QIR, and the position
quantum dot. The present system is characterized by the fof2f the impurity inside the quantum dop. Values of some
lowing physical parameters: the electron effective mass these parameters are given in Table |. If we take the polaron
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FIG. 3. () The electron—bulk-phonon interaction energy in the ~ FIG. 4. (@) Dependence of the the electron—bulk-phonon inter-
adiabatic case as a function of the impurity position; curves 3 and 4ction energyE\?, on the radius of the quantum dot for the case of
are scaled down by 12 and 25 times to fit the graph; the parametetge impurity on the surfacer§/R=1); curves 3 and 4 are scaled
specifying different curves are the same as for Fi@).1(b) The down by a factor of 25, and all curves are calculated using the same
electron—SO-phonon interaction energy in the adiabatic case as\@lues of parameters as in Fig(al (b) Dependence of the
function of the impurity position; curve 1 is multiplied by 10, electron—SO-phonon interaction ener§{f); on the radius of the
curves 3 and 4 are scaled down by 4 and 50 times respectivelgjuantum dot; curves 3 and 4 are scaled down by a factor of 4 and
and the parameters specifying different curves are the same &9, respectively, and all curves are calculated using the same values
for Fig. 1(a). of parameters as in Fig.(d).

radiusR, andfw g as units of length and energy, then the 4/, but keeping other material parameters fixed=(1,
properties of the system can be characterized by the followe,, /e,=0.5).
ing five parameters: the electron-phonon coupling streagth  First the dependence of the electron—bulk-phonon inter-
[see Eqg. (12)], the electron-impurity binding strength action energy on the radius of the quantum dot for the case of
e..1e0,> the effect of the image charge potentigl/so, the  ro=0 is plotted in Fig. {a). The absolute value of this en-
size of the QDR/R;,, and the impurity positiomy/R. To  ergy increases rapidly as the dot's radius becomes small, in
discuss the general properties of the electron-phonon inteegreement with results of Sec. Ill. It is also seen that the
action in the QD, these quantities will be varied in a widemagnitude of this energy is greater for stronger binding and
range covering the interval of the real material parametersoupling. It is also visible from the curves shown in this
given by Table I. figure that the magnitude of the electron—bulk-phonon en-
The results of the numerical calculations for the polaronergy decreases rapidly from a large value as the radius of the
energy, contributions from the electron—bulk-phonon anddot increases, passes through a minimum, and then gradually
electron—SO-phonon interactions for various impurity posi-approaches the bulk value. The presence of this minimum is
tions and dot radii are first given here for two values of thedue to the nonadiabatic processes whose roles become more
coupling parameter=1 and 6, keeping the fixed value of important as the radius increases. The interaction with SO
eqlep=0.164. For each of the electron-phonon couplingphonons also exhibits a minimum at some intermediate ra-
constants two values of the ratig, /e, are choseng.. /e,  dius, but this time aR—0 and R—oo this energy ap-
=0.1 and 0.5, corresponding to weak and strong bindingsproaches zerfsee Fig. 1b)]. Also note that the increase of
respectively. After this the effect of the surrounding materialbinding and coupling strengths results in a decrease of this
is studied separately for different QD’s, changing the ratio ofenergy magnitude, since the electron becomes more localized
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FIG. 5. (a) Dependence of the polaron energy, on the radius of the quantum dot fog=0: curve 1 corresponds to a system with
egq4/e,.=0.164, curve 2 to a system withy/e,,=1, and curve 3 to a system witly/e.,=5. The scaling factor for the horizontal axis is 0.05.
All other parameters are defined in the ték). Dependence of the electron-bulk-phonon interaction enEEﬁyon the radius of the quantum
dotR; all curves are calculated using the same values of parameters as ifdrigc/Dependence of the electron—SO-phonon interaction
energyEffgI on the radius of the quantum dB results for curves 2 and 3 are multiplied by 3 and 25, respectively, and all curves are
calculated using the same values of parameters as in &yg.(d) Dependence of the average electron-impurity distghicerq|) on the
radius of the quantum ddr: the scaling factor is 0.05, and all curves are calculated using the same values of parameters agah Fig. 4

around the impurity and thus effectively farther from the phonon interactioribulk and SO modgshas a maximum in
surface. The effect of the increase in electron localization isnagnitude when the impurity is positioned in the center of
also quite visible on the plots of the average electronthe dot for the weak coupling and bindifigig. 2(b), curve
impurity distance|r —r|) presented in Fig.(®): in the limit 1], and reaches its maximum at some intermediate value of
of y=0 (no impurity and interaction with phononshis  r for greater values of ande../s.

value should be equal /2 shown as a straight line in Fig.  |n order to clarify this qualitative change, the dependen-
1(c), while the stronger the binding and/or coupling, the cjes of the electron—bulk-phond) and electron—surface-
greater the deviation of the curves from the lile—rol)  nonon E(), interaction energies are plotted separately in

=R/2 is observed. . . (b) o
To see how the different impurity positions affect the re-F'gS' ad) an_d de). The quantltyEpol_ has a !’“'”'m”m for
k=0, and increases gradually to its maximum fgy/R

sults, we plotted the same quantities as above, but as a fun )
=1. The lower value of the ratie., /e, corresponds to the

tion of the impurity positionry/R. The polaron energy as ; i X -
well as the average electron-impurity position have minimaveaker dependence of this energy on the impurity position.

atro=0 for all studied values of binding and coupling as The electron—SO-phonon interaction energy changes its
seen in Figs. @ and 2c), and then they increase as the value by an order of magnitude with the increase of coupling
impurity is moved away from the center and reach theirffom a=1 to 6 whene../e,=0.5. Its dependence an is
maxima atr,/R=1. This would correspond to a gradual also stronger fore=6 ande../eo=0.5. Whenr,=0, the
transition from the § state to the P state for a very large magnitude ofE(), has a minimum, and increases signifi-
quantum dot, as shown in Sec. lll. It should also be men<antly as the impurity is shifted toward the surface. However,
tioned that the stronger binding with a fixed electron-phonorit reaches its maximun on the surface only for weak coupling
coupling value causes larger variations in the energy as thand binding, while for the rest of the studied parameters the
position ry is changed. The total value of the electron- maximum value occurs when the impurity is inside the dot
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but close to the surface. This considerable increase in the  ©75 - . ; T
electron—SO-phonon interaction is responsible for the mini-
mum in the total electron-phonon energy when the impurity -0.80 -
is positioned away from the center of the dot. The qualitative
change in the energy vs impurity position behavior can be
attributed to the transition from the weak-coupling approach 3
to the adiabatic case, which governs the situation for stronger & T .
binding or coupling cases in the confined systems such as the ——o—o—

spherical QD considered here. Note that in the bwk 6 |
corresponds to the intermediate-coupling case while in the ~ *®[ . 4" 7

-0.85 |-

ho o

A
Ai—A——A—A

pol

case of the QD system the behavior of the interaction ener- T
gies agrees qualitatively with the predictions of the adiabatic -1.00 ' L L '

0.0 0.2 0.4 0.6 0.8 1.0
approach. (@ r/R

To prove this point, we have also performed calculations
of the electron-phonon interaction energy for the same set of
parameters, but using the adiabatic variational approach us-
ing only the first terms in brackets in Eq4.3) and(14). The
results for the electron—bulk-phonon and electron—SO-
phonon interactions as functions of the impurity positign
are presented in Figs(8 and 3b), respectively. Compari-
son with the corresponding curves in Figgd2and Ze)
shows that in general the adiabatic approach underestimate
the value of the electron-phonon interaction energy, espe-
cially for weak coupling and/or bindinef. curve 1 in Figs.

2(d) and Ze) and 3a) and 3b)]. As the value of the coupling
and/or binding increases, the results of the full all-coupling 012 N N S S L
and adiabatic methods approach each ditfere.g., curve 4 (b) : } "R
in Figs. 4d) and 2e) and 3a) and 3b)]. It is also seen that

the behavior of the electron—SO-phonon interaction obtained 12 ————

by these two methods is rather different: when the impurity

is positioned in the center of the dﬁﬁf& is equal to zero for

the adiabatic approach and has a nonzero value in the all- 10
coupling case, in agreement with predictions of Sec. Ill A.
When the impurity is located close to the surface of the dot,
this interaction energy reaches a maximum in absolute value
inside the dot in the adiabatic case for all values of the cou- :
pling and binding, but only for sufficiently strong coupling oL /A
and binding in the all-coupling methddf. curve 1 in Figs. -
2(e) and 3b)]. This can be attributed to the fact that the r
adiabatic method enhances the localization of the electron 4l‘§f—"§.2‘ P S
around the impurity compared to the all-coupling method © 00 02 * R 08 10

(see, e.g, Sec. lll Aand thus effectively decreases the o

electron—SO-phonon interaction when the adiabatic case is FIG. 6. (a) The electron—bulk-phonon interaction energy as a
applied to the systems with weak electron-phonon andunction of the impurity positionr,/R for a QD with R/7R,
electron-impurity interactions. =0.5; the values of parameters are the same as in Fay.(%) The

The significant decrease in the values of the electron—SCelectron—SO-phonon interaction energy as a function of the impu-
phonon interaction energies for the case of the impurity lo+ity position; the results for curves 2 and 3 are multiplied by 4 and
cated on the dot's surface is clearly seen in the results give#0, respectively, all other parameters specifying different curves are
in Fig. 4(a). Unlike the dependencies from Fig(b], the the same as for Fig.(d). (c) The average electron-impurity distance
magnitude of this interaction energy is much larger for af|r—rdl) as a function of the impurity position; the scaling factor is
stronger binding and coupling, and amounts to up to 50% of-05, an_d other parameters specifying different curves are the same
the electron—bulk-phonon energy for sufficiently large QDS for Fig. 4a).
radii [cf. Figs. 4a) and 4b)]. This can be explained by not-
ing that the increase in the coupling and/or binding enhances
the electron localization around the impurity, thus forcing thethe electron-phonon coupling gives rise to an increase of the
electron to interact strongly with SO phonons. This result iselectron localization in the center of the dot, making it far-
quite different from those obtained for the free polaron con-ther from the dot's surface and diminishing its interaction
fined in the QDs(see, e.g, Ref.)7since in that case the with SO phonons. In our case, the electron is always local-
electron is always spread across the dot and the increase iakd around the impurity, and moves away from the center of

poI(S)/ thO

<|r-r0|>/7tF{p
(o]
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the dot as the impurity is shifted toward the surface of thdarge QD’s were first studied, and some general analytical
guantum dot. results were obtained. It was shown that in the large dot limit
Now let us consider the effect of the image charge potenthis method transforms into the standard variational approach
tial on the electron-phonon interaction. The study of this ef-used in the bulk and surface polaron models, and its impli-
fect is provided for three values of the ratig/e..=0.164, cations were studied for the cases of the im_purity located in
1, and 5 keeping the electron-phonon coupling constant the center and on the surface of the dot which would corre-
equal to unity and the parametes /s,=0.5. Note that the SPONd to the & and 2 states of the bare electron.
situatione 4/e..= 1 corresponds to the absence of the image Results of the numerical simulations show that for any

potential contribution to the total energy. From Figa)5(the value of coupling and fqr small binding strength the total
impurity is in the center of the dptone can see that small electron-phonon interaction energy depends weakly on the

S ) . impurity position, and has a maximum when the impurity is
values of the matrix dielectric constasy result in a notable. at the center of the dot. As the binding strength increases, the
Qecrease of the total polaron_energy compared to the Sltu"i\ﬁaximum of the electron-phonon interaction energy shifts
qurr: V\tlﬂg?%‘r/ g;;;”l 21?de§.oﬁhsec(?gIg::atrt'jg((j:ce)fst?aorg :)a%.;efhléinside the dot. The interaction with bulk and SO phonons is
:zlaélging term. of th\é iLrJnage poterlwtial blecome$2/28 é greater for the stronger electron-impurity inter_action case

. R : d™ rovided the value of the electron-phonon coupling stays the
causing this significant change in the value of the polaro

| v 1o th its obtained f ¢ ame and the impurity is close to the surface. This interaction
energy apa ogously 1o the resulls obtained for quantum-weid, , 1,q quite significant, and comparable to the electron—
systems* However, these changes in the total energy do no

) ) ulk-phonon interaction energy for strong coupling and bind-
affect the electron—bulk-phonon interaction energy, as can b . : oS N
seen from the data presented in Figb)5 The interaction ﬁg' As the impurity position is changed, the maximyim

bet the elect d SO oh . i Fi absolute valueof this energy occurs on the surface of the
energy between the electron an phonons given In Figy i i, the weak coupling or binding regime, unlike the re-

5(¢), conversely changes drastically with the increase of the i o ained in the adiabatic limit, and shifts inside the QD
eq value, since this energy depends on iegS . The radius i’ the increase of the coupling-binding strength and/or
of the electron localization is also weakly dependent on theyectron-impurity binding, contrary to the situation observed
value of the image potential, as seen in Figd)5 in the quantum-well structurés The image charge potential
The dependencies in Fig. 6 op/R with fixed value ofR ;e rise to a significant lowering of the total polaron energy
show the electron—bulk-phonon interaction enefdyg.  \yhen the dielectric constant of the matrix is smaller than the
S(@)] and the value of the average electron-impurity distancé,jgi_frequency dielectric constant of the QD material, and it
[Fig. 5(0)]; it just shifts these quantities as a whole along thej,creases the polaron energy in the opposite limit.
energy axis, and this shift is significant for the total polaron To conclude, we mention one of the possible future exten-

energy but rather small for the electron-phonon contributiorsjong of this work. This concerns the more realistic case of
and average distance dependencies. On the other hand, t¢yerfect electron confinement in a QEnite value poten-

electron—SO-phonon interaction depends strongly on thg, parrier on the interfade which should also be studied
strength of the image potential as can be observed from t king into account the frequent situation when the LO

curves plotted in Fig. ®): the stronger the potentidthe  honons are present not only in the dot but also within the
greater the ratiey/¢.,), the smaller the dependence of this barrier(such as CuCl in a NaCl crysjavhere it is expected
energy on the impurity position, which can be explained byiha; the all-coupling variational method will work well.
the fact that in tlhis case the image charge potential is_diverHowever, the Hamiltonian used in this paper is, strictly
gent as R—r) "~ for most values of/r whenr—R. This  gneaking, valid only for the infinite values of the surface
potential repels the electron away from the surface, effechiential barrier when the dot is embedded in the matrix; this

tively decreasing its interaction with surface phonons. is manifested in the form of the electron—bulk-phonon inter-
action potentials and in the choice of the electron trial func-
V. CONCLUDING REMARKS tion. Therefore, in order to attempt such a study, certain

changes should first be done to the initial Hamiltonian of the

The effect of the electron interaction with LO phonons bl onlv after that t . ith
was discussed for an electron bound to a hydrogenlike jmProblem. nly arter that can an accurate comparison wi
available experimental data be made.

purity perfectly confined in a spherical quantum dot embed-
ded in a nonpolar matrix. Both bulk and SO phonons were
taken into account when calculating the energy of the po-
laron. An all-coupling variational method appropriate for the We would like to thank F. Ham, M. Stavola, M. White,
description of the polaron effects in a broad range of the Qland R. Folk for useful discussions of these results. One of the
sizes and material parameters was used. Using this methoaythors(D.V.M.) also acknowledges support in the form of a
the limiting cases of small QD'$adiabatic approaghand  Sherman Fairchild Fellowship.
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