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Bound polaron in a spherical quantum dot: The all-coupling variational approach
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The effect of the electron-phonon interaction on an electron bound to an impurity in a spherical quantum dot
embedded in a nonpolar matrix is studied theoretically. The all-coupling variational method is used to calculate
the polaron energy shift including interaction with both bulk and surface LO phonons. The interaction of an
electron with the image charge potential is taken into account. Comparison with the results of the adiabatic
approach is also provided. General analytical results are obtained for small and large dots for different impurity
positions. Numerical studies of the polaron properties have been performed for quantum dots of different radii
with arbitrary strengths of the electron-phonon coupling and electron-impurity binding. It is shown that~1! as
a function of the impurity position, the total value of the electron-phonon interaction has a maximum~in
magnitude! when the impurity is located in the center of the dot in the case of weak coupling, and reaches its
maximum at some intermediate impurity position for greater values of the electron-phonon and electron-
impurity interactions and;~2! as a function of the impurity position, the interaction with surface phonons is
greater for strong binding when the impurity is close to the boundary of the dot, reaches a maximum when the
impurity is positioned on the surface of the dot in the weak coupling case and at some arbitrary impurity
position inside the dot for the strong electron-phonon coupling and/or binding.

DOI: 10.1103/PhysRevB.64.195335 PACS number~s!: 73.21.La, 71.38.2k, 71.55.2i
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I. INTRODUCTION

Progress in crystal growth techniques has made it poss
to fabricate semiconductor nanostructures with character
dimensions of the order of the electron or hole de Brog
wavelength. In these systems electronic states are subjec
strong dimensional confinement effect arising from the m
match in the band gaps of the constituent materials. Am
various kinds of nanostructures~quantum wells and superla
tices with electronic confinement in one dimension, quant
wires with two-dimensional confinement potentials, a
quantum dots with the quantum confinement present in
three dimensions!, quantum dot~QD! systems have attracte
the most attention because of their potential application
electronic and optoelectronic devices1,2 and the interesting
quantum-mechanical phenomena associated with them;
exciton states remain stable at room temperature, and
so-called phonon bottleneck may exist under some co
tions ~an electron in the excited state cannot relax by vir
of phonon emission when the distance between electron
els is not equal to the phonon energy!.

Electron-phonon coupling in nanostructures also has
ferent features from that in the bulk. That is, there is a stro
increase of its strength with the reduction of dimensiona
@from three-dimensional~3D! in the bulk to 0D in the quan-
tum dot#. In these confined systems the dielectric consta
of the materials inside and outside the structure differ fr
each other, and the resulting surface optical~SO! modes3

need to be considered. To discuss phonon effects on e
trons in nanostructures in a proper way, these phonon
tures~polaron effects! have to be taken into account.

Since the QD is one of the simplest examples of quan
confined structures, the polaron effects on an electron h
been studied extensively both theoretically and experim
tally. Polaron effects have been studied theoretically in Q
of various forms: spherical QDs,4–7 cylindrical QDs,8 rect-
0163-1829/2001/64~19!/195335~12!/$20.00 64 1953
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angular quantum boxes,9 and QD’s with a parabolic confine
ment potential.10–13 In spherical quantum dots polaron e
fects have been investigated within the dielectric continu
model.4,5 These effects were studied for the case of the
polaron in a spherical QD~an electron confined in a QD
interacts with phonons! implementing an adiabatic
approximation,4–6 in which surface optical phonon modes d
not contribute to the polaron energy shift. Second-order p
turbation theory14 was also used to calculate the polar
shift; it was found that bulk-type phonons play a domina
role in the polaron energy shift. The all-coupling variation
technique,7 valid for a wide range of dot radii and electron
phonon coupling strengths, was also developed, and sys
atic calculations of the polaron energy shift were perform
The major results of these considerations are that~1! bulk
phonons play the most important role in the polaron effe
and the contribution from the SO phonons is either negligi
or nonexistent; and~2! with the increase of the dot’s radiu
the magnitude of the polaron energy shift decreases rap
from a large value and then gradually approaches its b
value. Experimental studies of electron-phonon interaction
QD’s were concerned mainly with the measurement of
effective value of the Huang-Rhys factor~see, e.g., Refs. 15
and 16, and references therein!; the major observed result i
the increase of its value with the decrease of the dot size
well-formed QD’s.

The study of impurity states in nanostructures is also
portant, since the impurities greatly affect both electro
and optical properties of the real QD’s, much as in the b
case.17 Since the impurity can be located, in principle, an
where in the dot, it is necessary to study the dependenc
all relevant physical quantities on its position. The proble
of the polaron effect on the so-called donorlike exciton
nanocrystals can also be treated within the frameworks
models applied to the free polaron case.6 A recent experi-
mental study of the luminescence in AgCl nanocrystals18 in-
©2001 The American Physical Society35-1
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TABLE I. Values of the material parameters for typical semiconductor QD’s:me , electron effective mass
~in units of the free electron mass!; \vLO , LO-phonon frequency~in meV!; «0, static dielectric constant
«` , high-frequency dielectric constant;a, electron-phonon coupling constant. Values of these parameter
taken from Ref. 24 for InAs and PbS, Ref. 25 for GaN, Ref. 23 for ZnSe, and Ref. 7 for all other mate

InAs GaAs GaN CdSe CuCl ZnS ZnSe TlCl KBr PbS

me 0.0239 0.067 0.2 0.13 0.504 0.34 0.171 0.424 0.369 0.
\vLO 29.63 35.33 92.5 26.54 25.64 43.18 38.49 21.46 20.97 25
«0 15.2 12.4 9.8 9.3 7.9 8 8.33 4.76 4.52 169
«` 12.3 10.6 5.4 6.1 3.61 5.1 5.9 2.94 2.39 17.2
a 0.05 0.07 0.45 0.46 2.46 0.74 0.38 2.94 3.05 0.3
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dicated that the compact, heavy hole can be trapped at
ferent lattice sites, causing changes in peak positions in
observed spectra when it tunnels or hops toward the cent
the nanocrystal.

The binding energy of the electron in a spherical QD w
also studied6,19–23 theoretically. In Refs. 19–21 the depe
dence of the binding energy for the ground state and sev
excited electronic states on the location of the impurity w
investigated by means of variational calculations. It w
found, in particular, that the binding energy of the grou
state has a maximum when the impurity is positioned at
center of the dot, and that it decreases with a shift of
impurity from the center. In Refs. 22 and 23 the influence
electron-phonon interaction on that energy was investiga
in the adiabatic case, varying the impurity position and
radius of the QD, and it was shown, in particular, that unl
a free polaron in a QD, the bound polaron interacts stron
with SO modes, especially when the impurity is locat
close to the dot’s boundary.

In the present work we also study the effect of t
electron-phonon interaction in a spherical QD for the case
an electron bound to a hydrogen like impurity~or donor like
exciton with a heavy hole! located at some point within th
dot. From the values presented in Table I, one can conc
that the material parameters of typical semiconductor Q
correspond to weak or intermediate electron-phonon c
pling, which cannot be handled, generally speaking, by
adiabatic method. Thus, in this paper, calculations and
cussion of the polaron energy shift are conducted for vari
values of the electron-phonon coupling and electr
impurity binding using the all-coupling variational approa
similar to that from Ref. 7 in order to clarify the nature of th
bound polaron confined in the spherical QD. The calculat
of the polaron ground state~GS! energy is performed within
the framework of the effective-mass approximation, i.e.,
suming that all characteristic lengths of the problem are la
compared to the lattice constant.19

This paper is organized in the following way. In Sec.
the all-coupling variational model for an electron in a sphe
cal QD interacting with bulk and SO phonons is describ
In Sec. III the general behavior of the bound polaron in sm
and large QD’s is analyzed analytically. Special attention
paid to the cases when the impurity is located in the cente
the dot or close to its boundary. Then, in Sec. IV the dep
dence of the polaron energy and electron-phonon interac
energies on the impurity position are studied numerically
19533
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different sizes of QD’s using various values of electro
phonon and electron-impurity interactions and surround
matrix material parameters. Finally, Sec. V gives the co
cluding remarks and outlines briefly possible future exte
sions of this model.

II. MODEL

Variational procedure

In this section, the basic equation that will be employed
the study of the bound polaron confined in the quantum
is derived. This will be achieved by implementing the var
tional procedure to find the minimum expectation ener
from the Hamiltonian of Ref. 23.

First, as is usually done for a bulk bound polaron, w
eliminate the contribution to the total electron energy fro
the impurity–LO-phonon interaction. Next we implement t
generalized Lee-Low-Pines theory first used to treat the
citon polaron problem,26 generalized to the case of the boun
bulk polaron,27 and recently adapted for the case of a polar
confined in a spherical QD,7 utilizing the unitary transforma-
tion

U5expH(
j ,s

@F js* ~r !ajs2F js~r !ajs
† #J , ~1!

where parametersF js(r ) are assumed to be real and are to
determined variationally. With these transformations tak
into account, the trial wave function of the system is giv
by the product

uC&5Uuc~r !&u0&, ~2!

whereu0& is the phonon vacuum state.
Then the expectation value of the Hamiltonian23 is given

by

E5^CuHuC&5^cuH0uc&, ~3!

whereH0 is the zero-phonon term of the transformed Ham
tonianU21HU:

H05
p2

2m
1VQD~r !1VC~r ,r 0!1(

j ,s

\2

2m
u,F jsu2

1(
j ,s

\v jsuF jsu22(
j ,s

\v js@VjsSjsF js1H.c.#. ~4!
5-2
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The functionF js(r ) is taken in the following form:

F js~r !5Vjsf js1VjsSjs* ~r !gjs . ~5!

The first term in this equation corresponds to the adiab
method,23 while the choice of the second one is appropri
to the intermediate electron-phonon coupling case. Note
in large QD’s, the adiabatic approach is valid only for t
strong electron-phonon and/or electron-impurity interactio
To describe weakly coupled or bound electrons in la
quantum dots, it is necessary to use the intermedi
coupling variational approach. Thus it is expected that
form of F js given by Eq.~5! will yield a reasonable descrip
tion of the polaron effects for a wide range of the QD rad
electron-phonon, and electron-impurity interactions.

The subsequent minimization of Eq.~3! with respect to
the variational parametersf js andgjs leads to the following
expressions for them:

f js5
AjsCjs

Bjs1Cjs2Ajs
2

, ~6!

gjs5
Bjs2Ajs

2

Bjs1Cjs2Ajs
2

, ~7!

with coefficientsAjs , Bjs , andCjs defined by

Ajs5^cuSjs~r !uc&, ~8!

Bjs5^cuuSjs~r !u2uc&, ~9!

Cjs5
\

2m* v js

^cuu,Sjs~r !u2uc&. ~10!

Choosing the electronic part of the trial function as
product of a ground-state wave function pertinent to the b
electron confined in the QD, and an exponential funct
describing the effect of the electron binding,

uc~r !&5N j0S pr

R De2gur2r0u, ~11!

with N as a normalization constant andg as a variational
parameter indicating the degree of the spatial correlation
tween the electron and the impurity, after some calculati
we can findE as a functional of the variational parameterg:

E@g#5^cuHe1Hxuc&1Epol
(b) 1Epol

(s) , ~12!

where the electron–bulk-phonon (E(b)) and electron–SO-
phonon (E(s)) interactions can be written in the followin
forms:

Epol
(b) 52(

s
\vLOV1s

2 FA1s
2 1

~B1s2A1s
2 !2

B1s1C1s2A1s
2 G , ~13!

Epol
(s) 52(

s
\v lV2s

2 FA2s
2 1

~B2s2A2s
2 !2

B2s1C2s2A2s
2 G . ~14!
19533
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In the above expressions for the electron-phonon interac
energies, the first terms in brackets are the same as w
obtained earlier for the adiabatic treatment of the pola
problem in the QD’s.6,23 The second parts can be interpret
as nonadiabatic contributions arising from the term in
function F js dependent on the electron coordinate.

The energy of the bound polaron can be found by mi
mizing E with respect to the parameterg. In the following
calculations we will pay special attention to these quantiti
the binding energy of the polaron, which is determined a
difference between the total energy of the polaron and
ground-state energy of the electron confined in the ‘‘emp
QD without the impurity present,

Etot5E2
\2

2m S p

RD 2

, ~15!

and contributions to the total energy from electron–bu
phonon (E(b)) and electron–SO-phonon (E(s)) interactions
given by Eqs.~13! and ~14!.

III. ANALYTICAL RESULTS FOR LARGE AND SMALL
QUANTUM DOTS

A. Polaron effects in the small quantum dot

Before proceeding with the numerical calculations of t
polaron energy shift, it is interesting to find an analytic
solution of Eqs.~12!–~14! in some limiting cases. This ana
lytical consideration can be performed separately for
cases of the large and small QD’s.

Let us first consider the case of a small QD withR
!aB , where aB is the Bohr radius of the effective-mas
electron. In this case the kinetic energy of the electron w
predominate, and the interaction energy may be regarded
perturbation to the free moving electron in the QD. Th
indicates that in order to obtain the leading term of the
ergy E0, we can putg50 in the electronic wave function
@Eq. ~11!#, thus making it the eigenfunction of the unpe
turbed Hamiltonian. After some calculations, the final res
for this term in the polaron binding energy can be cast in
form

E05EC02Ex01E0
(b)1E0

(s) , ~16!

where theEC0 representing the potential energy of the ele
tron in the QD, the ‘‘exchange’’ energyEx0, and the bulk
E0

(b) and interfaceE0
(s) phonon intractions are equal to

EC05
e2

«`RFFS 2pr 0

R D1
1

2 S «`

«d
21D

2
«`

2 (
l 51

`
a l

p2l 11E0

p

dx sin2~x!x2l G , ~17!

Ex05
e2

«* R
FFS 2pr 0

R D21G , ~18!
5-3
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E0
(b)52C1

aRp

R
\vLO , ~19!

E0
(s)52C2

aR

Rp
S «0«`

3

~«012«d!~«`12«d!3D 1/2

\vLO ,

~20!

with the functionF(x) given by

F~x!512
sin~x!

x
1cin~2p!2cin~x!. ~21!

The coefficientsC15@12Si(2p)1Si(4p)/2#50.7862 and
C254/3p2 (p3/62p/4)250.0266, and cin(x) and Si(x) are
the integral cosine and sine functions, respectively. In or
to obtain Eqs.~18! and~19! above, first the summation ove
the roots ofj 0(x) was performed and then the resulting tw
dimensional integrals were evaluated. Equation~20! was cal-
culated using only the first term in the summation in Eq.~14!
with l 51, and taking the limit ofR!Rp , which can be
justified by noting that in a small QD the distance betwe
adjacent levels is large enough to provide a negligible m
ing between states with higher values ofl and the ground
state.

The major difference between these results and th
given in Ref. 23 for the adiabatic case is in the electron–S
phonon interaction energy: unlike the adiabatic result, t
energy is not equal to zero when the impurity located in
center of the QD. The value ofE0

(s) is linearly proportional to
the radius of the dot and will approach zero value only
R→0 when the adiabatic effects predominate. This indica
that this behavior of the electron–SO-phonon interaction
due to the presence of the nonadiabatic processes in the
tem, and thus cannot be obtained from the strong-coup
approach. The results and conclusions for the situation w
r 0→R are the same as given in Ref. 23, and will not
repeated here.

B. Electron-phonon coupling in a large quantum dot

The transition of the electronic state with the displac
ment of the impurity away from the surface of the dot b
comes especially interesting when the dot’s size beco
very large. Then we may expect to obtain the standard b
bound polaron results when the impurity is in the center
the QD, and the bound surface polaron model will be app
priate to describe the impurity on the boundary of the d
Let us first consider the case of an impurity in the center
the QD.

1. Impurity is in the center of the QD

Provided that the radius of the electron localization
much smaller than the dot’s radius, the electronic wave fu
tion @Eq. ~11!# is easily reduced to the form usually adopt
for the description of the GS of the bulk bound polaron:28

uc~r !&5S g3

p D 1/2

e2gr. ~22!
19533
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Using this wave function, the matrix elementsAjs , Bjs , and
Cjs can be presented in the forms

A1s5
1

A4p
d l0^cueik•ruc&, ~23!

B1s5
1

4p
d l0 , ~24!

C1s5k2Rp
2B1s , ~25!

whered l0 is Kronecker delta symbol,k5mnl /R, and coeffi-
cientsA2s , B2s , andC2s approach zero. The fact that onl
the terms withl 50 have nonzero values can be explained
noting that in this case the trial wave function has a spher
symmetry~the electron is in the 1s state!, and thus the cor-
responding intergrals give the most significant input to
total polaron energy shift.

After this, changing the summation overn in Eq. ~13! into
an integral overk gives rise to the following expression fo
Ep

(b) in the large dot limit:

Ep
(b)52\vLO

2aRp

p E
0

`

dk
12Gk

21Rp
2k2Gk

2

12Gk
21Rp

2k2
, ~26!

with Gk5^cueik•ruc&. This is exactly the same equation a
obtained by Matsuura and Bu¨ttner26 for the case of the bound
polaron in the bulk. The total polaron energy functional th
takes the form

E@g#5
\2

2m

g2

4
2

e2

«0

g

2
1Ep

(b) . ~27!

Using this expression the limiting cases of the weak bind
and coupling (Gk→0) and the strong binding and/or cou
pling ~adiabatic approach,Gk→1 for most values ofk)17 can
be easily obtained:

E@g#5
\2

2m

g2

4
2

e2

«0

g

2
2a\vLO , ~28!

E@g#5
\2

2m

g2

4
2

e2

«0

g

2
2

5

16

e2

«*

g

2
. ~29!

Minimization of these equations with respect to the p
rameterg immediately leads to the polaron energyE and the
electron-phonon interaction energyEp

(b) , given by

E52a\vLO2
me4

2\2«0
2

, E52
me4

2\2«0
2 F11

5

16

«0

«*
G 2

,

Ep
(b)52a\vLO , Ep

(b)52
5

16

me4

2\2«0«*
F11

5

8

«0

8«*
G ,

~30!
5-4
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which are the well-known expressions for the system w
weak~left pair! and strong~right pair! electron-phonon cou
pling or binding in the bulk,28 with the bare electron in the
1s-state.

2. Impurity is on the surface of the QD

In this situation the electron will be localized around
impurity far away from the center of the dot. In order
simplify consideration in this case, a new coordinate sys
with an origin at the impurity position is introduced. Assum
ing that the radius of the electron localization is mu
smaller than the dot’s size, one can cast the electron w
function @Eq. ~11!# in the form

c~r !5S 2g5

p D 1/2

ze2gr, ~31!

wherez5r cosQ, andr andQ are the radius and azimutha
angle in this new coordinate system. This is the wave fu
tion of the 2p state, which is appropriate for a description
the GS of the electron bound to the hydrogenlike impurity
i
n

es

19533
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the surface of the crystal.29 One would expect that in this
limit the results of the surface polaron theory should
recovered,31 where interaction energies with both bulk an
SO phonons make nonzero contributions to the total pola
energy.

Since we assumed thatr @g21, the asymptotic forms of
the spherical Bessel functionj l(m lnr /R) and spherical har-
monicsYlm(u,w) become valid for the large root numbe
n@ l @1 and small values of the angleu:30

j l~x!5
1

x
sinS x2

p l

2
2

p

4 D , ~32!

Ylm~u,w!5A l

2p
eimwJm~ lu!, ~33!

with Jm(x)5p21*0
pexp(ix cosf)cos(mf)df being the

Bessel function of orderm.
Making use of Eqs.~32! and ~33!, the matrix elements

present in Eq.~12! can be rewritten as
Ajs55 ~21!nA l

2p
^cusin~kzz!eikir

W
iuc&5~21!nA l

2p
Fk

(1) , j 51

A l

2p
^cue2kizeikir

W
iuc&5A l

2p
Fki

(2) , j 52,

~34!

Bjs55 SA l

2p D 2

^cusin2~kzz!uc&5SA l

2p D 2

Gk
(1) , j 51

SA l

2p D 2

^cue22kizuc&5SA l

2p D 2

Gki

(2) , j 52,

~35!

Cjs55 Rp
2SA l

2p D 2

^cuu,~sin~kzz!eikir
W

i!u2uc&5SA l

2p D 2

Rp
2Hk

(1) , j 51,

Rp
2SA l

2p D 2

^cuu,~e2kizeikir
W

i!u2uc&5SA l

2p D 2

Rp
2Hki

(2) , j 52,

~36!
n of
ace
nd
es
-
ron
will
wherekz5pn/R, kirW i5( l /R)r icosf, r i5r sinQ, andf is

the angle between vectorski andrW i .
Substitution of these matrix elements in Eqs.~13! and

~14!, and replacement of the sums by the corresponding
tegrals, leads to the following expressions for the electro
bulk-phonon and electron–SO-phonon interaction energi

Epol
(b) 52\vLO

4aRp

p E
0

`E
0

`dkzdkiki

kz
21ki

2

3
Gk

(1)~Gk
(1)2Fk

(1)!1Rp
2~Fk

(1)!2Hk
(1)

Gk
(1)1Rp

2Hk
(1)2~Fk

(1)!2
~37!
n-
–
:

Epol
(s) 52\vLO

2aRp«0«`

~«01«d!~«`1«d!
E

0

`

dki

3
Gki

(2)~Gki

(2)2Fki

(2)!1Rp
2~Fki

(2)!2Hki

(2)

Gki

(2)1Rp
2Hki

(2)2~Fki

(2)!2
. ~38!

The equations above can be regarded as an extensio
the method developed in Ref. 26 to the case of the surf
polaron. Using them, the total polaron energy can be fou
by the standard minimization procedure for arbitrary valu
of the constanta and the electron-impurity interaction. How
ever, since the detailed investigation of the surface pola
problem is beyond the scope of the present paper, we
5-5
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DMITRIY V. MELNIKOV AND W. BEALL FOWLER PHYSICAL REVIEW B 64 195335
limit ourselves by considering only the limiting case of t
bound surface polaron interacting weakly with phonons a
an impurity, which gives some physical information pertine
to the bound polaron confined in a quantum dot.

In this case the relationsFk
(1)!Gk

(1) , Fki

(2)!Gki

(2) and

Hk
(1)5k2Rp

2Gk
(1) , Hki

(2)52ki
2Rp

2Gki

(2) hold. Thus, Eqs.~37!

and ~38! for large values ofz (z@Rp) reduce to

Epol
(b) 52a\vLO1 K cUS 1

«`
2

1

«0
D e2

4zUc L , ~39!

Epol
(s) 5 K cUS «02«d

«01«d
2

«`2«d

«`1«d
D e2

4«dzUc L , ~40!

which are the same as were obtained by Evans and Mil31

Combining them with the asymptotic values for the elect
static energy and the electron-impurity exchange potenti

VC~rW !52
1

«`

e2

r
2

«`2«d

«`1«d

e2

«`r
1

«`2«d

«`1«d

e2

4«`z
, ~41!

Hx5S «02«d

«01«d
2

«`2«d

«`1«d
D e2

4«dr
, ~42!

one obtains the polaron energy in the form

E52a\vLO2^cuF 1

~«01«d!/2

e2

r
2

«02«d

«01«d

e2

4«dzG uc&.

~43!

From this equation the physical meaning of all terms
seen: from the two image charge terms present in the e
trostatic energyVC , one is responsible for the interaction
the impurity with its image~the second term! while the other
corresponds to the interaction of the electron with its ima
~the third term!. The presence of the exchange potentialHx
arising from the impurity-phonon interaction gives rise to t
renormalization of the second term in the electrostatic ene
(«` is replaced by«0) much like the case of the bound bu
polaron.32 The electron-phonon interaction (Epol

(s) and the sec-
ond part ofEpol

(b) ) produces the same result for the electro
part ofVC , making the net effect like that from the classic
electrostatic potential. The first part ofEpol

(b) shifts the bottom
of the conduction band analogously to the case of the b
bound polaron. It should also be noted that this effect occ
only when the electron is weakly localized around the imp
rity, so that the binding energy of the electron and its int
action with phonons are small, and is quite similar to t
results of Ref. 31. Thus we see that the interaction of
electron with surface phonons is not responsible for the
ation of the image charge potential~except for the trivial case
when«`5«d); it just gives rise to its renormalization, and
is important to treat the image charge effects properly si
they should significantly affect the total polaron energy
all values of the binding and coupling.
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FIG. 1. ~a! Dependence of the electron–bulk-phonon interact
energyEpol

(b) on the radius of the quantum dotR (r 050): curve 1
corresponds to a system witha51, «` /«050.1; curve 2 to a sys-
tem with a51, «` /«050.5; curve 3 to a system witha56,
«` /«050.1; and curve 4 to a system witha56, «` /«050.5. All
other parameters are given in the text. Results for curves 3 and
divided by 20 and 50, respectively, to fit the scale of the graph;
scaling factor on the horizontal axis is 0.05 for curves 1 and 2
0.01 for curves 3 and 4. Dots represent calculated values, and
curves are a guide to the eye.~b! Dependence of the electron–SO
phonon interaction energyEpol

(s) on the radius of the quantum dotR:
all curves are calculated using the same values of parameters
~a!. ~c! Dependence of the average electron-impurity distance^ur
2r 0u& on the radius of the quantum dotR: the scaling factor is equa
to 0.05 for curves 1 and 2 and to 0.01 for curves 3 and 4; all cur
are calculated using the same values of parameters as in~a!.
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FIG. 2. ~a! The polaron energyEpol as a function of the impurity positionr 0 /R for a QD with R/pRp50.75 for curves 1 and 2, and
R/pRp50.25 for others. Results for curve 1 are multiplied by 2; results for curves 3 and 4 are divided by 8 and 20, respectively, t
scale of the graph; the values of the parameters are the same as in Fig. 1~a!. ~b! The total electron-phonon interaction energy as a funct
of the impurity position; curves 3 and 4 are scaled down by 12 and 25 times to fit the graph; the parameters specifying different c
the same as for Fig. 1~a!. ~c! The average electron-impurity distance^ur2r 0u& as a function of the impurity position; the paramete
specifying different curves are the same as for Fig. 1~d!. ~d! The electron–bulk-phonon interaction energy as a function of the impu
position; curves 3 and 4 are scaled down by 12 and 25 times to fit the graph; the parameters specifying different curves are the s
Fig. 1~a!. ~e! The electron–SO-phonon interaction energy as a function of the impurity position; curves 3 and 4 are scaled down by
50 times respectively, the parameters specifying different curves are the same as for Fig. 1~a!.
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IV. RESULTS OF NUMERICAL CALCULATIONS

Now, changing physical parameters of the system, we
culate the polaron energy and systematically discuss the
eral properties of the bound polaron confined in a spher
quantum dot. The present system is characterized by the
lowing physical parameters: the electron effective massm,
19533
l-
n-

al
ol-

the static and high-frequency dielectric constants«0 and«`

of the material inside the QD, the dielectric constant of t
surrounding matrix«d , the bulk LO-phonon energy of the
dot material\vLO , the radius of the QDR, and the position
of the impurity inside the quantum dotr 0. Values of some
these parameters are given in Table I. If we take the pola
5-7
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radiusRp and\vLO as units of length and energy, then th
properties of the system can be characterized by the foll
ing five parameters: the electron-phonon coupling strengta
@see Eq. ~12!#, the electron-impurity binding strengt
«` /«0,33 the effect of the image charge potential«d /«0, the
size of the QDR/Rp , and the impurity positionr 0 /R. To
discuss the general properties of the electron-phonon in
action in the QD, these quantities will be varied in a wi
range covering the interval of the real material parame
given by Table I.

The results of the numerical calculations for the polar
energy, contributions from the electron–bulk-phonon a
electron–SO-phonon interactions for various impurity po
tions and dot radii are first given here for two values of t
coupling parametera51 and 6, keeping the fixed value o
«d /«050.164. For each of the electron-phonon coupli
constants two values of the ratio«` /«0 are chosen,«` /«0
50.1 and 0.5, corresponding to weak and strong bindin
respectively. After this the effect of the surrounding mater
is studied separately for different QD’s, changing the ratio

FIG. 3. ~a! The electron–bulk-phonon interaction energy in t
adiabatic case as a function of the impurity position; curves 3 an
are scaled down by 12 and 25 times to fit the graph; the param
specifying different curves are the same as for Fig. 1~a!. ~b! The
electron–SO-phonon interaction energy in the adiabatic case
function of the impurity position; curve 1 is multiplied by 10
curves 3 and 4 are scaled down by 4 and 50 times respecti
and the parameters specifying different curves are the sam
for Fig. 1~a!.
19533
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«d /«0 but keeping other material parameters fixed (a51,
«` /«050.5).

First the dependence of the electron–bulk-phonon in
action energy on the radius of the quantum dot for the cas
r 050 is plotted in Fig. 1~a!. The absolute value of this en
ergy increases rapidly as the dot’s radius becomes sma
agreement with results of Sec. III. It is also seen that
magnitude of this energy is greater for stronger binding a
coupling. It is also visible from the curves shown in th
figure that the magnitude of the electron–bulk-phonon
ergy decreases rapidly from a large value as the radius o
dot increases, passes through a minimum, and then grad
approaches the bulk value. The presence of this minimum
due to the nonadiabatic processes whose roles become
important as the radius increases. The interaction with
phonons also exhibits a minimum at some intermediate
dius, but this time asR→0 and R→` this energy ap-
proaches zero@see Fig. 1~b!#. Also note that the increase o
binding and coupling strengths results in a decrease of
energy magnitude, since the electron becomes more loca

4
rs

a

ly,
as

FIG. 4. ~a! Dependence of the the electron–bulk-phonon int
action energyEpol

(b) on the radius of the quantum dot for the case
the impurity on the surface (r 0 /R51); curves 3 and 4 are scale
down by a factor of 25, and all curves are calculated using the s
values of parameters as in Fig. 1~a!. ~b! Dependence of the
electron–SO-phonon interaction energyEpol

(s) on the radius of the
quantum dot; curves 3 and 4 are scaled down by a factor of 4
30, respectively, and all curves are calculated using the same va
of parameters as in Fig. 1~a!.
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FIG. 5. ~a! Dependence of the polaron energyEpol on the radius of the quantum dot forr 050: curve 1 corresponds to a system wi
«d /«`50.164, curve 2 to a system with«d /«`51, and curve 3 to a system with«d /«`55. The scaling factor for the horizontal axis is 0.0
All other parameters are defined in the text.~b! Dependence of the electron-bulk-phonon interaction energyEpol

(b) on the radius of the quantum
dot R; all curves are calculated using the same values of parameters as in Fig. 4~a!. ~c! Dependence of the electron–SO-phonon interact
energyEpol

(s) on the radius of the quantum dotR; results for curves 2 and 3 are multiplied by 3 and 25, respectively, and all curve
calculated using the same values of parameters as in Fig. 4~a!. ~d! Dependence of the average electron-impurity distance^ur2r 0u& on the
radius of the quantum dotR: the scaling factor is 0.05, and all curves are calculated using the same values of parameters as in Fi~a!.
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around the impurity and thus effectively farther from t
surface. The effect of the increase in electron localization
also quite visible on the plots of the average electr
impurity distancê ur2r 0u& presented in Fig. 1~c!: in the limit
of g50 ~no impurity and interaction with phonons! this
value should be equal toR/2 shown as a straight line in Fig
1~c!, while the stronger the binding and/or coupling, t
greater the deviation of the curves from the line^ur2r 0u&
5R/2 is observed.

To see how the different impurity positions affect the r
sults, we plotted the same quantities as above, but as a f
tion of the impurity positionr 0 /R. The polaron energy a
well as the average electron-impurity position have mini
at r 050 for all studied values of binding and coupling
seen in Figs. 2~a! and 2~c!, and then they increase as th
impurity is moved away from the center and reach th
maxima atr 0 /R51. This would correspond to a gradu
transition from the 1s state to the 2p state for a very large
quantum dot, as shown in Sec. III. It should also be m
tioned that the stronger binding with a fixed electron-phon
coupling value causes larger variations in the energy as
position r 0 is changed. The total value of the electro
19533
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n
he

phonon interaction~bulk and SO modes! has a maximum in
magnitude when the impurity is positioned in the center
the dot for the weak coupling and binding@Fig. 2~b!, curve
1#, and reaches its maximum at some intermediate valu
r 0 for greater values ofa and«` /«0.

In order to clarify this qualitative change, the depende
cies of the electron–bulk-phononEpol

(b) and electron–surface
phonon Epol

(s) interaction energies are plotted separately
Figs. 2~d! and 2~e!. The quantityEpol

(b) has a minimum for
r 050, and increases gradually to its maximum forr 0 /R
51. The lower value of the ratio«` /«0 corresponds to the
weaker dependence of this energy on the impurity positi
The electron–SO-phonon interaction energy changes
value by an order of magnitude with the increase of coupl
from a51 to 6 when«` /«050.5. Its dependence onr 0 is
also stronger fora56 and «` /«050.5. Whenr 050, the
magnitude ofEpol

(s) has a minimum, and increases signi
cantly as the impurity is shifted toward the surface. Howev
it reaches its maximun on the surface only for weak coupl
and binding, while for the rest of the studied parameters
maximum value occurs when the impurity is inside the d
5-9
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but close to the surface. This considerable increase in
electron–SO-phonon interaction is responsible for the m
mum in the total electron-phonon energy when the impu
is positioned away from the center of the dot. The qualitat
change in the energy vs impurity position behavior can
attributed to the transition from the weak-coupling approa
to the adiabatic case, which governs the situation for stron
binding or coupling cases in the confined systems such as
spherical QD considered here. Note that in the bulka56
corresponds to the intermediate-coupling case while in
case of the QD system the behavior of the interaction e
gies agrees qualitatively with the predictions of the adiab
approach.

To prove this point, we have also performed calculatio
of the electron-phonon interaction energy for the same se
parameters, but using the adiabatic variational approach
ing only the first terms in brackets in Eqs.~13! and~14!. The
results for the electron–bulk-phonon and electron–S
phonon interactions as functions of the impurity positionr 0
are presented in Figs. 3~a! and 3~b!, respectively. Compari-
son with the corresponding curves in Figs. 2~d! and 2~e!
shows that in general the adiabatic approach underestim
the value of the electron-phonon interaction energy, es
cially for weak coupling and/or binding@cf. curve 1 in Figs.
2~d! and 2~e! and 3~a! and 3~b!#. As the value of the coupling
and/or binding increases, the results of the full all-coupl
and adiabatic methods approach each other@cf., e.g., curve 4
in Figs. 2~d! and 2~e! and 3~a! and 3~b!#. It is also seen tha
the behavior of the electron–SO-phonon interaction obtai
by these two methods is rather different: when the impu
is positioned in the center of the dot,Epol

(s) is equal to zero for
the adiabatic approach and has a nonzero value in the
coupling case, in agreement with predictions of Sec. III
When the impurity is located close to the surface of the d
this interaction energy reaches a maximum in absolute v
inside the dot in the adiabatic case for all values of the c
pling and binding, but only for sufficiently strong couplin
and binding in the all-coupling method@cf. curve 1 in Figs.
2~e! and 3~b!#. This can be attributed to the fact that th
adiabatic method enhances the localization of the elec
around the impurity compared to the all-coupling meth
~see, e.g, Sec. III A! and thus effectively decreases th
electron–SO-phonon interaction when the adiabatic cas
applied to the systems with weak electron-phonon a
electron-impurity interactions.

The significant decrease in the values of the electron–
phonon interaction energies for the case of the impurity
cated on the dot’s surface is clearly seen in the results g
in Fig. 4~a!. Unlike the dependencies from Fig. 1~b!, the
magnitude of this interaction energy is much larger for
stronger binding and coupling, and amounts to up to 50%
the electron–bulk-phonon energy for sufficiently large Q
radii @cf. Figs. 4~a! and 4~b!#. This can be explained by not
ing that the increase in the coupling and/or binding enhan
the electron localization around the impurity, thus forcing t
electron to interact strongly with SO phonons. This resul
quite different from those obtained for the free polaron co
fined in the QDs~see, e.g, Ref. 7! since in that case the
electron is always spread across the dot and the increa
19533
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the electron-phonon coupling gives rise to an increase of
electron localization in the center of the dot, making it fa
ther from the dot’s surface and diminishing its interacti
with SO phonons. In our case, the electron is always loc
ized around the impurity, and moves away from the cente

FIG. 6. ~a! The electron–bulk-phonon interaction energy as
function of the impurity positionr 0 /R for a QD with R/pRp

50.5; the values of parameters are the same as in Fig. 4~a!. ~b! The
electron–SO-phonon interaction energy as a function of the im
rity position; the results for curves 2 and 3 are multiplied by 4 a
40, respectively, all other parameters specifying different curves
the same as for Fig. 4~a!. ~c! The average electron-impurity distanc
^ur2r 0u& as a function of the impurity position; the scaling factor
0.05, and other parameters specifying different curves are the s
as for Fig. 4~a!.
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the dot as the impurity is shifted toward the surface of
quantum dot.

Now let us consider the effect of the image charge pot
tial on the electron-phonon interaction. The study of this
fect is provided for three values of the ratio«d /«`50.164,
1, and 5 keeping the electron-phonon coupling constana
equal to unity and the parameter«` /«050.5. Note that the
situation«d /«`51 corresponds to the absence of the ima
potential contribution to the total energy. From Fig. 5~a! ~the
impurity is in the center of the dot!, one can see that sma
values of the matrix dielectric constant«d result in a notable
decrease of the total polaron energy compared to the s
tion when«d /«`51 and 5. This can be understood by re
izing that for small values of the dielectric constant ratio t
leading term of the image potential becomes2e2/2«dR,
causing this significant change in the value of the pola
energy analogously to the results obtained for quantum-w
systems.34 However, these changes in the total energy do
affect the electron–bulk-phonon interaction energy, as ca
seen from the data presented in Fig. 5~b!. The interaction
energy between the electron and SO phonons given in
5~c!, conversely changes drastically with the increase of
«d value, since this energy depends on it as«d

22 . The radius
of the electron localization is also weakly dependent on
value of the image potential, as seen in Fig. 5~d!.

The dependencies in Fig. 6 onr 0 /R with fixed value ofR
show the electron–bulk-phonon interaction energy@Fig.
5~a!# and the value of the average electron-impurity dista
@Fig. 5~c!#; it just shifts these quantities as a whole along
energy axis, and this shift is significant for the total polar
energy but rather small for the electron-phonon contribut
and average distance dependencies. On the other hand
electron–SO-phonon interaction depends strongly on
strength of the image potential as can be observed from
curves plotted in Fig. 5~b!: the stronger the potential~the
greater the ratio«d /«`), the smaller the dependence of th
energy on the impurity position, which can be explained
the fact that in this case the image charge potential is di
gent as (R2r )21 for most values ofr /r when r→R. This
potential repels the electron away from the surface, eff
tively decreasing its interaction with surface phonons.

V. CONCLUDING REMARKS

The effect of the electron interaction with LO phono
was discussed for an electron bound to a hydrogenlike
purity perfectly confined in a spherical quantum dot emb
ded in a nonpolar matrix. Both bulk and SO phonons w
taken into account when calculating the energy of the
laron. An all-coupling variational method appropriate for t
description of the polaron effects in a broad range of the
sizes and material parameters was used. Using this me
the limiting cases of small QD’s~adiabatic approach! and
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large QD’s were first studied, and some general analyt
results were obtained. It was shown that in the large dot li
this method transforms into the standard variational appro
used in the bulk and surface polaron models, and its im
cations were studied for the cases of the impurity located
the center and on the surface of the dot which would co
spond to the 1s and 2p states of the bare electron.

Results of the numerical simulations show that for a
value of coupling and for small binding strength the to
electron-phonon interaction energy depends weakly on
impurity position, and has a maximum when the impurity
at the center of the dot. As the binding strength increases
maximum of the electron-phonon interaction energy sh
inside the dot. The interaction with bulk and SO phonons
greater for the stronger electron-impurity interaction ca
provided the value of the electron-phonon coupling stays
same and the impurity is close to the surface. This interac
can be quite significant, and comparable to the electro
bulk-phonon interaction energy for strong coupling and bin
ing. As the impurity position is changed, the maximum~in
absolute value! of this energy occurs on the surface of th
dot in the weak coupling or binding regime, unlike the r
sults obtained in the adiabatic limit, and shifts inside the Q
with the increase of the coupling-binding strength and
electron-impurity binding, contrary to the situation observ
in the quantum-well structures.35 The image charge potentia
gives rise to a significant lowering of the total polaron ener
when the dielectric constant of the matrix is smaller than
high-frequency dielectric constant of the QD material, and
increases the polaron energy in the opposite limit.

To conclude, we mention one of the possible future ext
sions of this work. This concerns the more realistic case
imperfect electron confinement in a QD~finite value poten-
tial barrier on the interface!, which should also be studie
taking into account the frequent situation when the L
phonons are present not only in the dot but also within
barrier~such as CuCl in a NaCl crystal! where it is expected
that the all-coupling variational method will work wel
However, the Hamiltonian used in this paper is, stric
speaking, valid only for the infinite values of the surfa
potential barrier when the dot is embedded in the matrix; t
is manifested in the form of the electron–bulk-phonon int
action potentials and in the choice of the electron trial fun
tion. Therefore, in order to attempt such a study, cert
changes should first be done to the initial Hamiltonian of
problem. Only after that can an accurate comparison w
available experimental data be made.
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