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Single-particle path integral for composite fermions and the renormalization of the effective mass

Kasper Astrup Eriksen,* Per Hedega˚rd, and Henrik Bruus
O” rsted Laboratory, Niels Bohr Institute APG, Universitetsparken 15, DK-2100 Copenhagen, Denmark

~Received 22 December 2000; published 29 October 2001!

To study composite fermions around an even denominator fraction, we adapt the phase-space single-particle
path integral technique for interacting electrons in zero magnetic field developed recently by Golubev and
Zaikin @Phys. Rev. B59, 9195~1999!#. This path integral description gives an intuitive picture of composite
fermion propagation very similar to the Caldeira-Leggett treatment of a particle interacting with an external
environment. We use this description to explain the origin of the famous cancellation between the self-energy
and the vertex corrections in semiclassical transport measurements. The effective range of the cancellation is
given by the size of the propagating particle, which for the Coulomb interaction scales with the temperatureT
asT21/4u ln Tu21 in the semiclassical limit. Using this scheme we find that the effective mass in the semiclassical
limit for composite fermions in GaAs is approximately 6 times the bare mass.

DOI: 10.1103/PhysRevB.64.195327 PACS number~s!: 73.40.2c, 71.10.Pm, 03.65.Sq, 72.15.2v
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I. INTRODUCTION

In this article we address the question of semiclass
propagation of an interacting system in a real-sp
formulation.1 In particular we have in mind the composi
fermion ~CF! system which is seen in the fractional quantu
Hall regime around filling factor12 . The experimental efforts
so far indicate that this system is to a high degree a class
system in the sense that it is very hard to observe any kin
interference effects.

In elementary textbooks2 the notion of semiclassica
transport is sometimes introduced through localized w
packets, and these appear to be essential building blo
Historically this has really not always been the case.
instance the derivation of the Boltzmann equation in the c
of impurity scattering typically only uses individual quas
particles with a given momentum, i.e., delocalized pla
waves.3 This is also the case for other weakly interacti
systems like electrons scattering on phonons at low temp
tures. However, a Boltzmann equation for electrons sca
ing on hot phonons could not be derived using plane wav
Prange and Kadanoff solved that problem by shifting foc
from individual quasiparticles to deformations of the Fer
surface.4 In real space this step corresponds to forming
electron wave packet that is localized in the direction
propagation. This localization in the direction of propagati
causes the electron-phonon scattering to be very brief in t
due to the huge difference between the Fermi velocity
the sound velocity. Recently, Kim, Lee, and Wen showed t
the Boltzmann equation for composite fermions only ma
sense for smooth Fermi surface deformations.5 In real space
the wave packet now also needs to be localized in the di
tion transverse to the direction of propagation, so the co
posite fermions is the first system where the textbook in
duction actually is a proper description. For compos
fermions the necessity of transverse confinement of the w
packet can be understood intuitively. The important inter
tion is mediated through a gauge field and the coupling
thus through the flux enclosed by an area. For a locali
wave packet with a finite width propagating along a class
path the relevant area is the area swept by the wave pa
0163-1829/2001/64~19!/195327~22!/$20.00 64 1953
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The width of the packet is thus a natural cutoff on the tra
verse gauge fluctuations. In this article we pursue some
the consequences of this idea.

We will study the real-space propagation with the help
phase-space path integrals. Originally, the Feynman path
tegral technique was developed for noninteracting system6

Feynman and Vernon7 and Caldeira and Leggett8 expanded
the idea to systems~e.g., a particle! interacting with an en-
vironment. The result of integrating out the environment w
an extra definite contribution to the effective action in t
path integral. Recently, Golubev and Zaikin extended
technique to cover the linear response regime for the redu
one-particle density matrix in a Coulomb interacting gas
electrons.1 Their main insight was that when focusing on
single particle~response! the interaction with all the othe
particles can be viewed as an effective environment in
Caldeira-Leggett sense. The Fermi statistics reveals it
only in the complicated form of the resulting effective actio
which depends on the distribution function.

For the CF system the Chern-Simons transformation
troduces the Chern-Simons gauge field as the effective e
ronment. The resulting noninteracting particles we call co
posite fermions. The Chern-Simons transformation o
attaches two flux quanta to each electron. Recently, it
been suggested that a better description of the quasipart
is obtained by associating two vortices to each electron
sulting in neutral quasiparticles with a momentum-depend
dipole moment.9–11 In the Chern-Simons description the fo
mation of the neutral quasiparticles is presumably due
dynamical screening. Here we want to stress that the o
particle density matrix in our approach is defined in terms
the original electron variables, so the connection between
quasiparticles and the physical response is automatically
cluded. The Chern-Simons transformation is only used
introduce an effective environment in a relatively simp
way. Another scheme might lead to a different physical p
ture and eventually suggest other approximations.

Anyway, within the resulting single-particle phase-spa
path integral formulation we show how to define the effe
tive mass in the semiclassical limit and calculate it to be
times the vacuum electron mass in a typical experiment.12
©2001 The American Physical Society27-1
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This article is organized as follows. In Sec. II we ada
the Golubev-Zaikin extension of the Caldeira-Leggett me
odology to the case of composite fermions. We summa
the main points of the resulting path integral technique
Sec. II G. In Sec. III the path integral technique is on a f
mal level compared with the Kubo formula description
transport and, more briefly, with the Landauer-Bu¨ttiker scat-
tering approach to transport. In Sec. IV we discuss the ty
cal semiclassical approximation scheme of saying that
two paths are almost identical, and the typical width betwe
the two paths is calculated. In Sec. V the calculation of
effective mass of composite fermions is carried through
the semiclassical limit.

We have found it necessary to introduce quite a few
erages and shorthand notation. As a reader’s guide we
them here.̂ X& is the full quantum and thermal average.
subscript 0 as in̂X&0 means that the average is perform
for the noninteracting electron gas.^X&a,t is the average ove
different Chern-Simons gauge field configurations; the p
cise definition is Eq.~17!. ^uXu&5^uXu& [0,t] in Eq. ~68! is the
average in the time interval@0,t# over different single-
particle paths, where each path is given a weight that refl
its importance in a given experiment. It thus depends
what experiment is considered.^̂ X&&5 ^̂ X&&[0,t] is the short-
hand notation for the sum over single-particle paths incl
ing the weight due to the interactions. It is defined in E
~69!. ^^^X&&& defined in Eq.~A4! is a shorthand notation fo
the Grassmann integral. It is only used in Appendix A. Qu
generally the superscript ‘‘eq’’ refers to the average be
calculated in equilibrium. For instance^X&a,t

eq in Eq. ~27! is
the equilibrium version of̂X&a,t .

II. DENSITY MATRIX

We consider a two-dimensional electron gas in a st
and homogeneous external magnetic fieldBext perpendicular
to the plane. We writeBext as a scalar since its direction
fixed, and likewise we consider the rotation of any vec
potential in the two-dimensional~2D! plane as a scalar. Fur
thermore, we also apply an external electrical poten
f(r ,t). The external potentials are written in four-vect
form asA5(f,A). In this section the goal is to derive a pa
integral description of the linear response of the reduced o
particle density matrixr to the potentialf(r ,t). For simplic-
ity we will in this section neglect the influence of impuritie
but it is straightforward to include them in the formalism
an extra external potential.

Our notation is introduced in Sec. II A. In Sec. II B th
Chern-Simons transformation to composite fermions is c
ried out. This renders the problem in the Caldeira-Legg
form of a particle interacting with an environment. The im
portant formula is Eq.~16!. The properties of the environ
ment, which in our case is the gauge field, are discusse
Sec. II C. The density matrix in the presence of this envir
ment fulfills a nonlinear differential equation, presented
Sec. II D, and in Sec. II E the linear response is discussed
the differential equation level. In Sec. II F the linearized d
ferential equation is solved formally with the help of singl
particle path integrals and the environment is integrated
19532
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This leaves us with a single-particle path integral formu
tion of the linear response for composite fermions. In S
II G the major results are summarized.

A. Formulation of the problem using electrons as the
fundamental particles

The system is described by the Hamiltonian

Hel5H0@A#1H int . ~1!

Here

H0@A#5E dr

3ĉ†~r !H 1

2m F\i ¹1eA~r !G2

2ef~r ,t !2mJ ĉ~r !

~2!

is the Hamiltonian for noninteracting particles in the 2
plane represented by the second-quantized electron field
eratorsĉ(r ) and ĉ†(r ), while

H int5
e2

2 E drE dr 8ĉ†~r !ĉ†~r 8!v~r2r 8!ĉ~r 8!ĉ~r !1Heb

~3!

is the part due to electron-electron interaction.Heb represents
the interaction between the electrons and a fixed neutraliz
positively charged background jellium.m is the mass of the
electron, m is the chemical potential,2e is the electron
charge, ande2v(r ) is the Coulomb pair interaction betwee
electrons. If the screening effect of the back gate is
glected,v(r )51/(4peur u), wheree is the permittivity of the
medium surrounding the two-dimensional electron gas.

All the physical one-particle quantities of the system, li
the current and the density, can be expressed in terms o
reduced one-particle density matrix

rc~r ,r 8;t !5^ĉ†~r 8,t !ĉ~r ,t !&. ~4!

Here ^X& denotes the full quantum mechanical and therm
average ofX. The subscript ‘‘c’’ stands for canonical, be
cause upon a Fourier transformation the annihilation and
ation operators correspond to states labeled by the cano
momentum. This labeling is not gauge invariant, so neit
is rc(r ,r 8), but it has some nice formal properties we w
make use of in the following. Final physical expectation v
ues we prefer to phrase in terms of the gauge invariant d
sity matrix

r~r ,r 8!5rc~r ,r 8!expS i
e

\Er8

r
dr 9•A~r 9! D , ~5!

where the path of integration is chosen to be along
straight line fromr 8 to r . In general different choices of th
integration path lead to different values ofr, but we are
mainly interested in local probes like the density and
current. Any path that locally approaches a straight line th
yields the same result. In such local probes it is convenien
introduce variables for the averageR51

2~r1r 8! and for the
differenceDr5r2r 8. We use a new symbol for the densi
matrix expressed in these variables:
7-2
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w~R,Dr !5rS R1
Dr

2
,R2

Dr

2 D . ~6!

The Fourier transform with respect to the difference varia
is the corresponding gauge-invariant Wigner distribut
function

w~R,p!5E dDrexpS 2
i

\
p•Dr Dw~R,Dr ! ——→

eq. non-int.

f F~ep!,

~7!
-
e
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e

where the arrow denotes that in equilibrium for a nonint
acting systemw reduces to the Fermi distribution functio
f F(e)5$11exp@(e2m)/(kBT)#%21. ep is the single-particle
energy.

The thermal and quantum average ofrc and r can be
calculated with the help of a path integral over Grassma

fields c̄el andcel . c̄el andcel correspond to the operatorsĉ†

andĉ, and they should not be confused. Using this repres
tation we obtain
r~r ,r 8;t !5expS i
e

\Er8

r
dr 9•A~r 9! D E Dc̄elE Dcelc̄el~r 8,t !cel~r ,t !expS i

\
S@c̄el ,cel ;t# D

E Dc̄elE DcelexpS i

\
S@c̄el ,cel ;t# D , ~8!
hys-
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where the actionS is given by

S@c̄el ,cel ;t#5E
Ct

dsE dr c̄el~r ,s!i\
]

]s
cel~r ,s!

2E
Ct

dsHel@c̄el ,cel#. ~9!

The contourCt runs from minus infinity up to the observa
tion time t and back again to minus infinity. The contour tim
s5(s,m), where s is a real time andm56 is a contour
index that takes the value1 on the forward part of the
contour and2 on the backward in time part of the contou
see Fig. 1. In the prefactorc̄el(r 8,t)cel(r ,t) the creation
Grassmann fieldc̄el(r 8,t) has to come later than the annih
lation Grassmann fieldcel(r ,t) on the contourCt , but
whether both fields are on the forward or backwa
parts of the contourCt or cel(r ,t) is on the forward part,
while c̄el(r 8,t) is on the backward in time part ofCt is
immaterial.

B. Chern-Simons field-dependent density matrix

The first step towards obtaining an effective sing
particle path integral description is to introduce fluctuati
fields as extra integration variables such that the action
-

e-

comes quadratic in the Grassmann fields. The electron p
ics is then reduced to that of noninteracting electrons i
fluctuating field background. In the case of zero magne
field the relevant transformation is a Hubbard-Stratonov
transformation that introduces an effective electric poten
at each contour point.1 In the case of composite fermions th
relevant transformation is a Chern-Simons transformat
that introduces a Chern-Simons gauge fielda5(a0 ,a) at
each contour point and that also performs a singular ga
transformation on the Grassmann fields attaching two m
netic flux quantah/e to each electron. The transforme
Grassmann fields we denote byc̄ andc, not to be confused
with ĉ†, ĉ, c̄el , andcel .

The action transforms into the standard action for co
posite fermions:13

SCF@c̄,c,a,Aeff2a;t#5SCS@a;t#1eE
Ct

dsE dra0~r ,s!n

1E
Ct

dsE dr c̄~r ,s!i\
]

]s
c~r ,s!

2E
Ct

dsH0@Aeff2a#. ~10!

HereSCS@a;t# is the Chern-Simons action
l

FIG. 1. The Grassmann fieldsc̄el , cel , c̄, andc and the Chern-Simons gauge fielda5(a0 ,a) on the contourCt . As can be seen from
the drawing the contourCt runs along the physical time axis from2` up to timet and then back again to2`. The contour times is on the
forward and backward parts of the contour denoteds5(s,1) ands5(s,2), respectively, wheres is the physical time. To each physica
time s,t there is thus as an example two independent Chern-Simons gauge fieldsa(s,1) and a(s,2). If in particular t5`, the usual
Keldysh contourC` is recovered.
7-3
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SCS@a;t#5E
Ct

dsE dr

3S e2

4p\
a0~s!¹3a~s!1

e2

8p\
a~s!3

]a

]s D
2

e4

2~4p\!2ECt

dsE drE dr 8

3@¹3a~r ,s!#v~r2r 8!@¹3a~r 8,s!#. ~11!

The average mean-field magnetic field 2nh/e has been sub
tracted from both the externally magnetic field¹3A and the
Chern-Simons gauge field. The remaining fields are deno
by Aeff5(0,Aeff)5„0,A2(¹3)212(h/e)n… anda5(a0 ,a),
respectively. For notational consistency with Sec. II E tre
ing the linear response regime we have chosen to ha
vanishing external potentialf50. If nonzero, it would be
added toAeff . The last term inSCS originates from the inter-
action termH int , Eq. ~3!. For later use we notice that in th
terms that couple the Chern-Simons gauge fielda to the
Chern-Simons fieldsc̄ andc, a only enters in the combina
tion Aeff2a.

The prefactor in Eq.~8! transforms as

c̄el~r 8,t !cel~r ,t !expS i
e

\Er8

r
dr 9•A~r 9! D�c̄~r 8,t !c~r ,t !

3expS i
e

\Er8

r
dr 9•@Aeff~r 9,t !2ā~r 9,t !# D . ~12!

The average field

ā~r 9,t !5
1

2
@a~r 9,t,1 !1a~r 9,t,2 !# ~13!

is chosen for notational consistency. It is allowed since tha
field is continuous on the contourCt , so it does not matte
whether the Chern-Simons field at the turning pointt is
evaluated on the forward or on the backward part of
contour. The total expression for the density matrix in ter
of the transformed fields is

r~r ,r 8;t !5F E DaE Dc̄E Dc expS i

\
SCFD G21

3E DaE Dc̄E Dc c̄~r 8,t !c~r ,t !

3expS i

\
SCF1 i

e

\Er8

r
dr 9•@Aeff~r 9!2ā~r 9,t !# D .

~14!

The exponent is quadratic in the Grassmann CF variablec̄
andc and thus describes noninteracting particles in a ga
field historyAeff2a. However, the gauge field is not phys
cally realizable, since it is different on the forward and bac
19532
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ward contours,a(s,1)Þa(s,2). Despite this we follow
Golubev and Zaikin1 and define the Chern-Simons field
dependent density matrix

rac~Aeff2a;r ,r 8,t !

5F E Dc̄E Dc expS i

\
SCFD G21

E Dc̄E Dcc̄~r 8,t !c~r ,t !expS i

\
SCFD , ~15!

in analogy with the usual definition of a density matrix E
~4!. Notice that the right-hand side only depends on
gauge fields in the combinationAeff2a, since the contribu-
tion from SCS@a;t# to the actionSCF cancels out. The sub
script a on rac is to remind us thatrac depends on the field
history, while the subscriptc stands for canonical in analog
with rc ; see Eq.~4!. The physical density matrix is recov
ered fromrac(Aeff2a;r ,r 8,t) by averaging over the differen
a-field histories

r~r ,r 8,t !5K rac~Aeff2a;r ,r 8,t !

3expH i
e

\Er8

r
dr 9•@Aeff~r 9!2ā~r 9,t !#J L

a,t

.

~16!

In the average

^X&a,t5

E DaXexpS i

\
Seff@a;t# D

E DaexpS i

\
Seff@a;t# D , ~17!

the weight

expS i

\
Seff@a;t# D5E Dc̄E Dc

3expS i

\
SCF@c̄,c,a,Aeff2a;t# D ~18!

is the denominator in Eq.~15!. The effective actionSeff@a;t#
for the a field also depends on the external gauge fieldAeff ,
but this dependence has been suppressed in the nota
since it is not needed in the following.

Equation~16! is an important formula, since it establishe
the connection between the density matrixrac depending on
a given history of the gauge field and the physically acc
sible density matrixr. Notice that Eq.~16! is written in the
Caldeira-Leggett spirit as a single-particle objectrac that
couples to a fluctuating field that eventually has to be in
grated out. As in standard Caldeira-Leggett theory the ga
field is different on the two contours. Below it become cle
that, as usual, the average fieldā(r 9,t) in many respects can
be interpreted as an external stochastic physical field. O
keeping the coupling to the average field is thus identica
describing the composite fermions as free particles coup
to the physical gauge fieldā whose fluctuations are given b
the fluctuation-dissipation theorem and the spectral func
7-4
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for the composite fermion gauge field.14 For our discussion
of the effective mass it is, however, crucial that the two fie
are different.

C. Effective action for the a field

Introducing thea-dependent currentja(Aeff2a;r ,s) at
time s,

ja~Aeff2a;r ,s!5
2e

2m F\

i

]

]r
1eAeff~r !2eā~r !2

\

i

]

]r 8

1eAeff~r 8!2eā~r 8!Grac~r ,r 8;s!ur85r ,

~19!

it is shown in Appendix A that the effective single-partic
actionSeff@a;t# is given by

Seff@a;t#5SCS@a;t#2E
2`

t

dsE dr

3@eDa0~r ,s!~rac~r ,r ;s!2n!1Da~r ,s!• ja~r ,s!#,

~20!

where
g

e

19532
s
Daa~r ,s!5aa~r ,s,1 !2aa~r ,s,2 ! ~21!

is the difference of the Chern-Simons gauge field on the
parts ofCt . SCS@a;t# is the usual Chern-Simons action; s
Eq. ~11!. In the notation the explicit dependence of the de
sity matrix rac and the currentja on the gauge fieldAeff2a
has been suppressed. In equilibrium, which is denoted by
superscript ‘‘eq,’’ we have to second order in thea field

Seff
eq@a;t#'SCS@a;t#2(

a,b
E

2`

t

ds8E
2`

s8
ds9E dr 8E dr 9

3Daa~r 8,s8!Rab~r 8,s8;r 9,s9!āb~r 9,s9!

1
i

2 (
a,b

E
2`

t

ds8E
2`

t

ds9E dr 8E dr 8

3Daa~r 8,s8!Fab~r 8,s8;r 9,s9!Dab~r 9,s9!.

~22!

The summation variablesa,bP$0,x,y% run over the single
timelike and the two spatial indices, e.g.,aa5(a0 ,ax ,ay).
The terms linear ina vanish, sinceracua505n and jaua50

50. The retarded 333 response matrix (R̄̄)ab is given by the
usual Kubo formula apart from an extra minus in the p
that mixes the density with the currents,
R̄̄~r 8,s8;r 9,s9![2
i

\ S ^@2erac~r 8,s8!,2erac~r 9,s9!#&0 2^@2erac~r 8,s8!,ja~r 9,s9!#&0

2^@ ja~r 8,s8!,2erac~r 9,s9!#&0 ^@ ja~r 8,s8!,ja~r 9,s9!#&0
DQ~s82s9!

1S 0 0

0
e2

m
rac~r 8,s8!d~r 82r 9!d~s82s9!D , ~23!

and the so-called fluctuation kernel (F̄̄)ab by

F̄̄~r1 ,s1 ;r2 ,s2![
1

2\ S ^$2erac~r 8,s8!,2erac~r 9,s9!%&0 2^$2erac~r 8,s8!,ja~r 9,s9!%&0

2^$ ja~r 8,s8!,2erac~r 9,s9!%&0 ^$ ja~r 8,s8!,ja~r 9,s9!%&0
D . ~24!
^X&0 means the average over the noninteracting electron
without the Chern-Simons gauge fielda, andQ is the step
function. Below we are mainly going to need the retard
gauge field propagatorDab and the correlation functionCab

for fluctuations of the field defined by

Dab~r 8,s8;r 9,s9!

[2
i

\
e2^āa~r 8,s8!Dab~r 9,s9!&a,t

eq

52
i

\
Q~s82s9!e2^@aa~r 8,s8!,ab~r 9,s9!#&0 , ~25!
as

d

Cab~r 8,s8;r 9,s9![
e2

\
^āa~r 8,s8!āb~r 9,s9!&a,t

eq

5
e2

\

1

2
^$aa~r 8,s8!,ab~r 9,s9!%&0 , ~26!

while the autocorrelation function forDaa vanishes:
^Daa(r 8,s8)Dab(r 9,s9)&a,t

eq50. The average

^X&a,t
eq5

E DaX expS i

\
Seff

eq@a;t# D
E Da expS i

\
Seff

eq@a;t# D ~27!
7-5
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is the averagêX&a,t of Eq. ~17!, calculated in equilibrium.
In the Coulomb gauge the most troublesome contributi

arise from the low-frequency limit of the so-called transve
part of the gauge field propagatorD'' ,15,16which in Fourier
space is given by

D''~q,v!5(
i jkl

« ik« j l
qiqj

q2
Dkl~q,v!. ~28!

Here«xx5«yy50, «xy52«yx51, and the indicesi, j, k, and
l run overx andy. In equilibrium in the limit\v!qvF the
propagatorD'' is given by the standard approximation16

D''~q,v!'2p\
q

pF

1

iv2
2pe2v~q!q3

~4p\!2\pF

52p\
q

pF

1

iv2ghqh11
. ~29!

For the Coulomb interactionv(q)5\/2«q, so h51 andg1

5(1/\pF
2) 1

2 Ap«C in terms of the average Coulomb ener
«C5(e2/4pe)An. n is the density of the electron gas. Oth
values of 1<h,2 corresponds to a power law decayr 2h.

In equilibrium C̄̄ is determined from the fluctuation
dissipation theorem. In particular in the Coulomb gauge
the most singular contribution due to the transverse par
the propagator:14

Ci j ~q,v!'2S d i j 2
qiqj

q2 D cothS \v

2kBTD ImD''~q,v!. ~30!

D. Equation of motion for the gauge-field-dependent
density matrix

In Appendix A we have by brute force differentiatio
showed thatrac fulfills the all important nonlinear equatio
of motion

i\] trac5~12rac!H~ t,1 !rac2racH~ t,2 !~12rac!.
~31!

This equation should be read as an operator identity. In
~A12! it is written out.H(1) is the kernel in the quadrati
action for the Grassmann CF variables on the forward par
the contour, i.e.,

H~r 8,r 9;t,1 !5d~r 82r 9!H 2ef~r 9,t !1ea0~r 9,t,1 !

1
1

2m F\i ¹91eAeff~r 9!2ea~r 9,t,1 !G2J .

~32!

a(1)5@a0(1),a(1)# is the gauge field on the forwar
contour. Likewise isH(2) the kernel on the backward i
time part of the contour. If the gauge field is identical
the forward and backward sections of the contour, Eq.~31!
19532
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specializes to the usual equation of motion for the d
sity matrix, i\] tr5@H,r#. The extra complication in the
general case is the term quadratic in the density mat
2rac@H(1)2H(2)#rac . However, we restrict ourselves t
the linear response regime.

E. Formulation of linear response

We are interested in the response of the system to
external driving fieldf and in particular in the change in th
density matrix:dr(r ,r 8;t)5r(r ,r 8;t)2req(r ,r 8;t). The su-
perscript ‘‘eq’’ still denotes equilibrium wheref50. In gen-
eral both the gauge-field-dependent density matrixrac(Aeff
2a;r ,r 8,t) and the effective action for the Chern-Simo
field Seff@a;t# depend onf, giving rise to two different con-
tributions todr(r ,r 8,t)—compare with Eqs.~16! and ~17!.
The contribution coming from the variation ofSeff@a;t# can
be accounted for by a change of variable from the extern
applied fieldf to the total gauge field felt be the composi
fermions:

Atot~a;t !5~f~ t !,0!1Aind~a;t !. ~33!

HereAind is the self-consistently induced gauge field due
the change in the current and the density whenf is applied.
Technically it is defined by the demand that

Seff@a2Aind~a!;t#5Seff
eq@a;t#. ~34!

From this definition it is not immediately clear that the i
duced field is the same on the forward and backward part
the contour and thus can be interpreted as a physical fi
However, a careful inspection of Eqs.~11! and ~20! shows
this is the case. Furthermore, it is seen that the induced e
tromagnetic fields corresponding toAind are

Bind~Aeff2a;r ,t !52
4p\

e
drac~Aeff2a;r ,r ;t !, ~35!

Eind~Aeff2a;r ,t !5
4p\

e2
ẑ3d ja~Aeff2a;r ,t !1e¹E dr 8

3v~r2r 8!drac~Aeff2a;r 8,r 8;t !, ~36!

where

drac~Aeff2a;r ,r 8,t !5rac~Aeff1Atot2a;r ,r 8,t !

3expS i
e

\Er8

r
dr 9•AtotD

2rac
eq~Aeff2a;r ,r 8,t !, ~37!

d ja~Aeff2a;r ,t !5 ja~Aeff1Atot2a;r ,t !2 ja
eq~Aeff2a;r ,t !

~38!

are the changes in the density and the current, respecti
induced by the total field Atot . The phase factor
exp@i(e/\)*r8

r dr 9•Atot# has been introduced in order to le
drac refer to the equilibrium state. For instanced ja results
when drac is substituted forrac

eq in the expression for the
7-6
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equilibrium current, Eq.~19!. Equations~35! and ~36! are
what are expected on physical grounds.17 There is a magnetic
field associated with a change in the density of compo
fermions and thus the amount of attached flux. There is a
a Faraday electric field associated with a current of attac
flux. The last term in Eq.~36! is due to the electron-electro
interaction.

Golubev and Zaikin1 did not perform this change of vari
ables, since the difference between the external and the
field is not of great bearing in their application of the forma
ism to weak localization. The second term in their formu
~46!, which they neglect, is exactly what is covered by th
change of variable. For composite fermions such a negle
not permissible. For instance, the Hall conductance15 due to
the Faraday electric field induced by the current—the fi
term in Eq.~36!. The mechanism is completely analogous
the treatment in the case of the Boltzmann equation.18

The Jacobian associated with the variable change froa
to a2Aind(a) in Eqs. ~16! and ~17! is the identity 1, since
both the density and the current, and thusAind(a), are re-
tarded functions of the gauge fieldAeff2a. Consequently the
change in the physical density matrix

dr~r ,r 8;t !5K drac~Aeff2a,r ,r 8;t !

3expH i
e

\Er8

r
dr 9•@Aeff~r 9!2ā~r 9,t !#J L

a,t

eq

.

~39!

Notice that so far no linearization in the applied field h
been performed and everything is exact.

The averagêX&a,t
eq , Eq. ~17!, we know how to calculate

Eqs. ~25! and ~26!. The linear response ofrac to the total
field Atot , drac(Aeff2a;r ,r 8,t), is obtained in the next sub
section by solving Eq.~31! linearized inAtot :

i\] tdrac~r ,r 8;t !.E dr 9H1~r ,r 9,t !drac~r 9,r 8;t !

2E dr 9drac~r ,r 9;t !H2~r 9,r 8,t !

1 i\D~r ,r 8,t !, ~40!

where the explicit dependence on the gauge fieldsAeff2a
and Atot is suppressed in the notation. New one-parti
Hamiltonians
19532
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e

H15
H~1 !1H~2 !

2 U
f50

1S 1

2
2racD @H~1 !2H~2 !#U

f50

,

~41!

H25
H~1 !1H~2 !

2 U
f50

2@H~1 !2H~2 !#S 1

2
2racD U

f50
~42!

have been introduced in analogy with the equation of mot
for the physical one-particle density matrixi\] tr5@H,r#.
H1ÞH2 because the Chern-Simons field is different on
forward and backward contours. The inhomogeneous sti
lus D5D11D2 is split into two parts, each of which ar
gauge invariant in the total applied fieldAtot . D2 contains all
the dependence upon the difference gauge fieldDa, while D1
is independent ofDa. In Appendix B the explicit expression
for D1 and D2 are listed. In linear responseD1 and D2
contribute additively to the physical density matrix. The r
sponse due toD2 we will neglect, since it vanishes in th
approximation whereD is replaced by its average valu
^D&a,t

eq . Below we do not go beyond this approximation.
In the real-space representation used aboveD is not gauge

invariant in Aeff(r )2ā, so we find it convenient to chang
representation to the gauge-invariant Wigner function se
variables. In analogy with Eqs.~4!, ~5!, and~7!,

D~r ,r 8,t !5E dp

~2p\!2

3expS i

\Er8

r
dr 9•@p2eAeff~r 9!1eā~r 9,t !# D

3DF1

2
~r1r 8!,pG . ~43!

When the generalized density matrixrac(r ,r 8) is peaked
aroundr5r 8 on a length scale which is much smaller th
the typical scale of variation of the total driving field, th
gauge invariantD1 and thusD are approximately equal to
the standard Boltzmann equation driving term

D~R,p!'2eS 1

m
p3 ẑBtot1EtotD • ]

]p
wa~Aeff2a;R,p!. ~44!

In the presence of the gauge fieldAeff2a the Wigner distri-
bution functionwa(Aeff2a;R,p,t) is defined in analogy with
Eqs.~5! and ~7!:
effects

als.
wa~Aeff2a;R,p,t !5E dDr expS 2
i

\ER2Dr /2

R1Dr /2

dr 9•@p2eAeff~r 9!1eā~r 9,t !# D racS Aeff2a;R1
1

2
Dr ,R2

1

2
Dr ;t D . ~45!

In the semiclassical limit it corresponds to a field-dependent phase-space distribution function. We will not consider
beyond the approximation where it is the Fermi distribution function.

F. Single-particle path integral in linear response

In this subsection we obtain a formal representation ofdr in the linear response in terms of a single-particle path integr
The first step is to notice that the solution to Eq.~40! can be written in terms of evolution operatorsUm:
7-7
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drac~r ,r 8;t !52
i

\E2`

t

dtiE dr1E dr2U1~r ,t,r1 ,t i!D~r1 ,r2 ,t i!U
2~r2 ,t ,r 8,t !. ~46!

The evolution operators

Um~ t,t8!5T̂mexpF2
i

\Et8

t

dt9Hm~ t9!G , m56, ~47!

where T̂1 and T̂2 are the time and antitime ordering operators, respectively.U1 and U2 can be represented as usu
single-particle phase-space path integrals

Um~r1 ,t1 ;r2 ,t2!5E
r (t2)5r2

r (t1)5r1DrE Dp expH i

\Et2

t1
dt@~p2eAeff1eā!• ṙ2Hm~r ~s!,p~s!,s!#J , m56. ~48!

The response of the physical Wigner function is then@Eqs.~7!, ~39!, and~46!#

dw~R,p,t !5E
2`

t

dtiE dRiE dpi

~2p\!2
^J~R,p,t;Ri ,pi ,t i!D~Ri ,pi ,t i!&a,t

eq , ~49!

where

J~R,p,t;Ri ,pi ,t i!5E dDrE dDr iE dr i8expS 2
i

\ER1Dr /2

R2Dr /2

dr 9•[p2eAeff(r 9)1eā(r 9,t)] D
3expS i

\ERi1Dr i/2

Ri2Dr i/2

dr 9•@pi2eAeff~r 9!1eā~r 9,t i!# D
3U1S R1

Dr

2
,t;Ri1

Dr i

2
,t iDU2S Ri2

Dr i

2
,t i ;R2

Dr

2
,t D ~50!
- al
2.
ge

t of

o
t

is the propagator of the stimulusD in the Wigner represen
tation.

Inserting Eq.~48! we finally arrive at the following con-
tour path integral representation for the propagatorJ:

J~R,p,t;Ri ,pi ,t i!5E dDrE dDr iE dr i8E Dr ~1 !

3E Dp~1 !E Dr ~2 !E Dp~2 !

3expS i

\
S01

i

\
DSD , ~51!

where

S05 R ds ṙ•$p~s!2eAeff@r ~s!,s#%

2E
t i

t

dsH0@r ~s,1 !,p~s,1 !,s#

1E
t i

t

dsH0@r ~s,2 !,p~s,2 !,s# ~52!
19532
is the action for noninteracting particles in an extern
gauge fieldAeff . The closed contour is depicted in Fig.
All the contributions related to the Chern-Simons gau
field are gathered in the second term in the exponen
Eq. ~51!:

FIG. 2. The closed contour path„r (s),p(s)… starts out
at s5(t i ,1) at (Ri1Dr i/2,pi) and runs along„r (s,1),p(s,1)…
up to (R1Dr /2,p) at contour times5(t,1). Here it runs along
the straight line path fromR1Dr /2 to R2Dr /2 with the con-
stant momentump and at constants. From here it then runs
back along@r (s,2),p(s,2)# to (Ri2Dr i/2,pi) at contour time
s5(t i ,2). Finally it runs along a straight line path back t
Ri1Dr i/2 with the constant momentumpi and at a constan
time t i
7-8
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DS51e R $dr•ā@r ~s!,s#2dsā0@r ~s!,s#%1eE
t i

t

dsH 1

2
2wa@r ~s,1 !,p~s1,1 !,s#J

3H p~s,1 !

m
•Da@r ~s,1 !,s#2Da0@r ~s,1 !,s#J 1eE

t i

t

dsH 1

2
2wa@r ~s,2 !,p~s1,2 !,s#J

3H p~s,2 !

m
•Da@r ~s,2 !,s#2Da0@r ~s,2 !,s#J 2

e2

8mE
t i

t

ds$Da@r ~s,1 !,s#22Da@r ~s,2 !,s#2%

1
e

2m

\

i Et i

t

ds$Da@r ~s,1 !,s#•¹wa@r ~s,1 !,p~s1,1 !,s#1Da@r ~s,2 !,s#•¹wa@r ~s,2 !,p~s1,2 !,s#%. ~53!

Heres1 on both the forward and backward in time contours is a bit closer to the observation timet thans. The only place
where this small time shift is important is inwa„r ,p(s1),s…, the Wigner distribution function corresponding torac , which is
likely to be a rapidly varying function of the momentump at the Fermi surface. Note thatp in the semiclassical limit is the
kinetic momentum in the gauge fieldAeff2ā.

In the rest of this article we are only going to consider the approximation obtained by factorizing Eq.~49!:

dw~R,p,t !5E
2`

t

dtiE dRiE dpi

~2p\!2
^J~R,p,t;Ri ,pi ,t i!&a,t

eq ^D~Ri ,pi ,t i!&a,t
eq . ~54!

Above we argued that the stimulus^D&a,t
eq in the semiclassical limit is the standard Boltzmann driving term, Eq.~44!. We

calculate the average of the propagatorJ perturbatively to second order in the Chern-Simons gauge field‘a. This procedure is
gauge invariant. First notice that^DS&a,t

eq50, since^ā50&a,t
eq50 and all averages with aDa at the latest time vanishes. T

second order in the Chern-Simons field fluctuations is

^J~R,p,t;Ri ,pi ,t i!&a,t
eq5E dDrE dDr iE dr i8E Dr ~1 !E Dp~1 !E Dr ~2 !E Dp~2 !expS i

\
S01

i

\
SintD , ~55!

where

Sint~ t i→t !5
i

2\
^DS2&a,t

eq5 (
m8,m956

m8m9E
t i

t

ds8E
t i

s8
ds9L int~s8,m8;s9,m9!. ~56!

For later use we have incorporated the time interval (t i ,t) in which the interaction takes place into the notation for the act
and introduced the retarded LagrangianL int5L int(s8,m8;s9,m9):

L int5 iQ~s82s9!„21,ṙ ~s8,m8!…C̄̄~r ~s8,m8!,s8;r ~s9,m9!,s9!S 21

ṙ ~s9,m9!
D

2m9H 1

2
2w@p~s91,m9!#J „21,ṙ ~s8,m8!…D̄̄~r ~s8,m8!,s8;r ~s9,m9!,s9!S 21

1

m
p~s9,m9!D . ~57!

We have used that to lowest orderwa(a;R,p,t)5wa(a;R,p,t)ua505w(p)5 f F(ep), where f F(e) is the Fermi distribution

function. The 333 matricesC̄̄ and D̄̄ are defined in Eqs.~25! and~26!. In the Coulomb gauge their most singular part is t
transverse part. Below we only discuss this most singular part, i.e., the transverse contribution toL int ,

i

\
L int''5Q~s82s9!

1

\E dq

~2p\!2E dv

2p
e2 iv(s82s9)expF i

\
q•@r ~s8,m8!2r ~s9,m9!#G

3
1

q2
@q3 ṙ ~s8,m8!#•@q3 ṙ ~s9,m9!#cothS \v

2kBTD ImD''~q,v!2m9
i

\
Q~s82s9!

3E dq

~2p\!2E dv

2p
exp@2 iv~s82s9!#expS i

\
q•@r ~s8,m8!2r ~s9,m9!# D

3
1

mq2
@q3 ṙ ~s8,m8!#•@q3p~s9,m9!#

1

2
D''~q,v!$122w@p~s91,m9!#%. ~58!
195327-9
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FIG. 3. An overview of linear response theor
for noninteracting particles in the Kubo formula
the path integral formalism, and the Boltzman
equation. The linear response results from
stimulus combined with propagation. The figu
illustrates where the distribution functionf 0 ap-
pears in the three different cases. Note in partic
lar the absence off 0 in the propagation part of
the path integral formalism and the Boltzman
equation.
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In the second term1
2 D'' can be replaced by either ReD''

or ImD'' as long as we remember thatL int is retarded (s8
.s9).

G. Recapitulation of the major results

Summing up, the linear response of the one-particle d
sity matrix to an external perturbation is given by Eq.~49!,
which schematically can be written as

dw5E ^JD&a,t
eq . ~59!

This expression we approximately factorize in order to arr
at Eq.~54! or, schematically,

dw5E ^J&a,t
eq ^D&a,t

eq . ~60!

In the semiclassical limit the stimulus^D&a,t
eq is in the classi-

cal limit given by the driving term in the Boltzmann equatio
~44!. In Eq. ~55! the propagator̂ J&a,t

eq is represented as
double single-particle path integral with an action similar
the familiar Caldeira-Leggett influence functional. Schema
cally we write

^J&a,t
eq5E D~path1 !E D~path2 !expF i

\
~S01Sint!G . ~61!

Here S0 is the usual action for noninteracting particles, E
~52!. It does not couple the forward path1 and the back-
ward path2. Sint contains the contribution from the gaug
fields and the interactions, and it couples the two paths.
given by Eqs.~56! and ~57!. The imaginary part ofSint is
governed by the fluctuations, Eq.~26!, while the real part is
determined by the retarded gauge field propagator, Eq.~25!.
The distribution function also enters into the real part.

III. COMPARISON WITH THE KUBO FORMULA

In equilibrium a standard way to perform linear respon
is to use the Kubo formula. Though the path integral form
ism and the Kubo formula on a formal level are similar, the
are some important differences in the descriptions. Thi
most clearly illustrated by considering a noninteracting s
19532
n-

e

i-

.

is

e
l-
e
is
-

tem as is done in Fig. 3, where we also compare to
classical Boltzmann equation. The linear response is in
three cases split into a stimulus that is propagated in orde
give the response. In the Kubo formula the stimulus is
applied potential, while in the path integral formalism it
the induced excitation, which in the semiclassical lim
equals the usual Boltzmann stimulus, Eq.~44!. Despite that,
the stimulus is very different the Kubo formula and the pa
integral formulations have similar pictorial representations
the propagation: in both cases there is a forward and ba
ward propagating electron line. However, in the Kubo fo
mula a line mathematically represents a Green’s function
the propagator in the noninteracting case is the Lindh
function,19 while in the noninteracting path integral forma
ism a line is a conventional free particle Feynman path in
gral. In the semiclassical limit the double Feynman path
tegral reduces to the classical path integral propagator for
Boltzmann equation.20 The difference between the Kubo fo
mula and the path integral formalism is highlighted by t
observation that the~Fermi! distribution function in the
Kubo formula is contained entirely within the propagato
while in the path integral formalism it is the stimulus and n
the propagation that depends on the distribution function
a noninteracting system. Notice also that in the path integ
formulation no statements are made about equilibrium. T
fact that for a noninteracting system the propagation is in
pendent of the actual distribution function is well know
from the Landauer-Bu¨ttiker scattering approach to transpo
through a noninteracting part of the system.

Within the Kubo formalism it is very natural to treat th
interactions perturbatively. The effect of the interaction
traditionally divided into self-energy contributions, which a
ters the propagation properties of a single line or Gree
function, and vertex corrections that connect the two lines
is possible to make the same distinction in a perturba
treatment of the interactions in the path integral formulatio
and we will also use the terms self-energy and vertex cor
tions to distinguish between interactions that only invol
one path and those that connect the forward and backw
propagating paths. For an interacting system the propag
in the path integral formalism thus also depends on the ac
distribution function. This is well known in the classical lim
of the Boltzmann equation, since the propagator then
pends on both the collision integral and the Landau inter
7-10
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tion function, but still the stimulus has already gathered
most trivial dependence upon the distribution function.

IV. SEMICLASSICAL LIMIT AND THE SEPARATION
BETWEEN THE TWO PATHS

Traditionally the semiclassical limit of a double path i
tegral is the limit where the important contributions are tho
where the forward and backward paths are almost ident
In a discussion of the semiclassical limit it is thus importa
to know how far apart on average the forward and backw
paths are. This information is contained in the moments
the difference variableDr (s). For a noninteracting system o
more generally a system with instantaneous interactions
standard deviation ofDr can be estimated from the Heise
berg uncertainty relations betweenDr and its conjugate vari-
able, the average momentumP. That P indeed is the conju-
gate variable can be read off from the relations

]

]Pf
S0~Rf ,Pf ,t;Ri ,Pi,0!52Dr ~ t !, ~62!

]

]Pi
S0~Rf ,Pf ,t;Ri ,Pi,0!5Dr ~0!, ~63!

whereS0 is the action for a noninteracting system, Eq.~52!.
We are mainly interested in Fermi liquids, so we prefer
use a polar coordinate system representation of the ave
momenta:

P~s!5P~s!S cosf~s!

sinf~s!
D , ~64!

where the angle along the Fermi surfacef is measured rela
tive to an arbitrarily fixedx axis. The conjugate variable t
the size of the momentum is

]

]Pf
S0~Rf ,Pf ,t;Ri ,Pi,0!52

1

Pf
Pf•Dr ~ t !. ~65!

From the Heisenberg uncertainty relation we then expect
standard deviation of (1/P)P•Dr , the difference along the
path, to be given by\ divided by the uncertainty in the siz
of the momentum, i.e., (1/P)P•Dr'\vF(kBT)21. This argu-
ment is carried through in more detail in Appendix C and
coefficient to\vF(kBT)21 is also shown to be 1/A3.
19532
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The conjugate variable to the anglef is

]

]f f
S0~Rf ,Pf ,t;Ri ,Pi,0!52Pf3Dr ~ t !. ~66!

Remembering that the relevant momentumPf approximately
is the Fermi momentum we will denote the quantitypF

21Pf

3Dr by the width. The Heisenberg uncertainty relation th
says that the standard deviation of the width is approxima
the Fermi wavelengthlF divided by the angular uncertaint
in the propagation direction. For a well-collimated beam t
width is thus big, while it is small~of the order oflF) when
measuring the current response to a homogeneous field, s
in this case the angular uncertainty is as big as possible~of
order 1).

The separation between the paths is not in itself direc
measurable, but it tends to show up indirectly in experime
probing the semiclassical regime. It marks, e.g., the cro
over between the long-wavelength regime, where the ve
corrections are comparable to and partially cancel the s
energy, and the short-wavelength regime, where the ve
corrections play a minor role. For instance in the calculat
of the inverse transport time due to impurity scattering in
famous factor (12cosu) the scattering angleu can be inter-
preted as (1/\)qlF , whereq is the scattering vector and, a
we saw above,lF is the width. For the composite fermion
where the force is transmitted via a magnetic field and thu
flux through an area, we show in Sec. V that the width acts
an effective cutoff in the conventional calculations of t
effective mass.

The above considerations regarding the width are o
true for a system with a time-local action. For compos
fermions this is not the case, since the important transve
fluctuations have a characteristic frequency aroundg1q2; see
Eq. ~29!. We thus have to take the lowest-order correcti
due to the terms in the action that are not time local in
account. We do this perturbatively.

To this end let us define the average width squa
(\/q'

c )2 at times as

S \

q'
c D 2

[^upF
22@P~s!3Dr ~s!#2u& [0,t] , ~67!

where the averagêuXu& [0,t] is defined as
^uXu& [0,t]5

E dPf

~2p\!2E dRfE dPi

~2p\!2E dRiR~Pf ,Rf!D~Pi ,Ri!K K X expF i

\
S0~Rf ,Pf ,t;Ri ,Pi,0!G L L

[0,t]

E dPf

~2p\!2E dRfE dPi

~2p\!2E dRiR~Pf ,Rf!D~Pi ,Ri!K K expF i

\
S0~Rf ,Pf ,t;Ri ,Pi,0!G L L

[0,t]

. ~68!

Here ^̂ X&& [0,t] is a shorthand notation for the path integral over paths starting at time 0 and ending at timet with the Wigner
function variables as boundary conditions.^̂ X&& [0,t] is defined such as to include the actionSint(t,0) arising from the interac-
tions within the interval@0,t#:

^̂ X&& [0,t]5E
[0,t]

DRE
[0,t]

DPE
[0,t]

DDpE
[0,t]

DDr expS i

\
Sint~ t,0! DX. ~69!
7-11
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In the semiclassical limit the stimulusD(Pi ,Ri) is given by Eq.~44!. For a current measurement the responseR(Pf ,Rf)
52evfV

2152e(1/m)pfV
21. V is the volume of the sample. In the long-time limit the cutoff turns out to be independe

t ands andt can be taken to be infinity or rather a scattering time. When no confusion is possible we will omit the index@0,t#.
Notice that according to Eq.~55! the last factor in the denominator is

K K expF i

\
S0~ t,Rf ,Pf ,t;Ri ,Pi,0!G L L

[0,t]

5^J~Rf ,Pf ,t;Ri ,Pi,0!&a,t . ~70!

It could easily be argued that it is better to use the absolute value of both the responseR(Pf ,Rf) and the stimulusD(Pi ,Ri)
in the definition of̂ uXu&, Eq.~68!, since the response might be the sum of a positive contribution from paths originating i
part of the stimulus phase-space and a negative contribution from other parts of the phase-space. However, the distin
not seem to be terribly important in the examples discussed below, so for simplicity we stick with the above definitio

Ultimately we perform a perturbative expansion in the scattering events that begin before the observation times and finish
later thans. We thus split the action due to the interactionSint , Eq. ~56!, in the averagêuXu& [0,t] into three parts

Sint~ t,0!5Sint~s,0!1Sint~ t,s!1 (
m8,m956

m8m9E
s

t

ds8E
0

s

ds9L int , ~71!

where the LagrangianL int5L int(s8,m8;s9,m9) only considering the transverse contribution given by Eq.~58!. Also using the
conjugate variable relationship, Eq.~66!, to rewrite the width squared, Eq.~67!, we finally obtain

S \

q'
c D 2

5lF
2NE dPf

~2p\!2E dRfE dPi

~2p\!2E dRiR~Pf ,Rf!D~Pi ,Ri!E dP~s!

~2p\!2E dR~s!

3K K K K expS i

\ (
m8,m956

m8m9E
s

t

ds8E
0

s

ds9 L intD ]

]f~s!

3expS i

\
S0@R~s!,P~s!,s;Ri ,Pi,0# D ]

]f~s!
expS i

\
S0@Rf ,Pf ,t;R~s!,P~s!,s# D L L

[0,s]
L L

[s,t]

, ~72!

where the normalization is contained inside the new constantN:

N 215E dPf

~2p\!2E dRfE dPi

~2p\!2E dRiR~Pf ,Rf!D~P i ,Ri!K K expF i

\
S0~Rf ,Pf ,t;Ri ,Pi,0!G L L

[0,t]

. ~73!

In the next two subsections we perturbatively calculate the lowest-order contribution from the non-time-loca
(m8,m956m8m9*s

t ds8*0
sds9 L int to the width, Eq.~72!.

A. Zeroth order or the time-local limit revisited

To lowest order or in the so-called time-local approximation, the last term in Eq.~71! vanishes and the width squared i

S \

q'
c D 2

5lF
2NE dPf

~2p\!2E dRfE dPi

~2p\!2E dRiR~Pf ,Rf!D~Pi ,Ri!E dP~s!

~2p\!2E dR~s!

3
]

]f~s!
^J@R~s!,P~s!,s;Ri ,Pi,0#&a,t

]

]f~s!
^J@Rf ,Pf ,t;R~s!,P~s!,s#&a,t . ~74!

Let us study two distinct examples. The first is the case of homogeneous driving, where

D~Pi ,Ri!5D~Pi!5(
n

exp~ inf i!Dn~Pi!. ~75!

The width squared from thenth mode is thenn2lF
2 for a rotation-invariant system. In a path integral calculation of the impu

scattering integral in the Boltzmann equation the well-known factor 12cos~nu! factor originates from an average o

2 sin2@ 1
2u]/]f(s)#, so as expected it is the widthnlF which sets the boundary between the small-angle scattering regime, w

the vertex corrections given by cos~nu! are important, and a large-angle scattering regime, where the vertex correction av
out. Notice that for an elastic scattering system this averaging has to be performed via the boundary conditions,
general an interacting system is self-averaging.
195327-12
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As another example we consider the gedanken experiment typically considered in connection with the interpreta
single-particle Green’s function. A particle is fed into the system at the Fermi surface and in a direction parallel to thex axis.
In order to make it a bit more realistic we give the direction a finite spreadD i ; i.e., we take D} exp@(1/2D i

2)f i
2#. A time t later

we measure the probability that the particle is still moving along thex axis with a directional spread ofD f ; i.e., we takeR
} exp@(1/2D f

2)f f
2#. The width squared is in this caselF

2(1/D i
211/D f

2). In particular the width diverges as the angular spread
the power21.

B. First-order non-time-local correction

Let us move on to discuss the first-order correction to the width squared due to the non-time-local part of the int
(m8,m956m8m9*s

t ds8*0
sds9( i /\)L int :

DS \

q'
c D 2

5lF
2N i

\E dPi

~2p\!2E dRfE dPi

~2p\!2E dRi R~Pf ,Rf!D ~Pi ,Ri!E dP~s!

~2p\!2E dR~s!

3 (
m8,m956

m8m9E
s

t

ds8E
0

s

ds9K K K K L int~s8,m8;s9,m9!
]

]f~s!
expS i

\
S0@R~s!,P~s!,s;Ri ,Pi,0# D

3
]

]f~s!
expS i

\
S0@Rf ,Pf ,t;R~s!,P~s!,s# D L

[0,s]
L L

[s,t]

. ~76!

The contribution from the expansion of the normalizationN, has been neglected since it turns out to cancel a term in
expansion of Eq.~76!, which we anyway neglect in our discussion below. The dominant contribution is due to the tran
long-wavelength fluctuations, whereq•Dr!1. To lowest order in the interaction the extra contribution fromL int , Eq. ~58!, to
the width squared is then

DS \

q'
c D 2

5NE dPf

~2p\!2E dRfE dPi

~2p\!2E dRi R~Pf ,Rf!D~Pi ,Ri!
1

pF
2E dP~s!

~2p\!2E dR~s!

3
1

\Es

t

ds8E
0

s

ds9E dq

~2p\!2E dv

2p
cothS \v

2kBTD ImD''~q,v!exp@2 iv~s82s9!#

3K K K K 1

\
q•Dr ~s8!F1

q
q3Ṙ~s8!G•F1

q
q3Ṙ~s9!G1

\
q•Dr ~s9!3

]

]f~s!

3expS i

\
S0@R~s!,P~s!,s;Ri ,Pi,0#1

i

\

]«p(s)

]p~s!
•q~s2s9! D ]

]f~s!

3expS i

\
S0@Rf ,Pf ,t;R~s!,P~s!,s#1

i

\

]«p(s)

]p~s!
•q~s82s! D L L

[0,s]
L L

[s,t]

. ~77!
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To lowest order we will neglect the effect ofSint(s,0) and
Sint(t,s) inside the path integralŝ̂ &&@0,s# and ^̂ &&@s,t# , re-
spectively. The productDr (s8)Dr (s9) we will replace by
its average value. The most important contribution com
from the longitudinal part ofDr (s8)Dr (s9). Furthermore,
it turns out that the relevant time scale in the above in
gral, \(vFq)21, for the important fluctuations is smalle
than the correlation time ofDr (s8)Dr (s9), which is of the
order \(kBT)21\g1pF

2/vFpF'\(kBT)21, so we replace
Dr (s8)Dr (s9) by its equal-time longitudinal average valu
1
3 \2vF

2/(kBT)2; see Appendix C. Within these approxim
tions the correction to the width squared is
19532
s

-

DS \

q'
c D 2

5
1

6

\2vF
2

~kBT!2

1

pF
2E0

` dq

2p\
qE dv

2p

3cothS \v

2kBTD @2ImD''~q,v!#. ~78!

For the composite fermions the spectral function

2ImD''~q,v!'2p\
q

pF

v

v21~ghq11h!2
,

Eq. ~29!, so the width squared is approximately
7-13
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\2

qc'
2

'lF
2F11S vFpF

2kBTD (2h21)/(11h)

3S vFpF

2\ghpF
h11D 3/(11h)

23/(11h)
1

9
csc

3p

2~11h!G . ~79!

Hereh51 corresponds to our prime example, the Coulo
interaction

\2

qc'
2

'S \vF

2kBT
lF

3D 1/2S vFpF

2«C
D 3/24

9 S 4

p D 3/4

. ~80!

We expect the Fermi energy12 vFpF to be of the same
order of magnitude as the energy scale set by the interac
i.e., the average Coulomb energy«C5(e2/4pe)An. The fac-

tor (vFpF/2«C)3/24
9 (4/p)3/4 is thus of order 1 and the width i

approximately given by the geometric mean of the Fe
wavelength and the de Broglie wavelength.

In perturbative calculations of the self-energy the cutof
often formulated in terms of a frequency cutoff. The fr
quency cutoff corresponding to Eq.~80! is

vcut5g1qc'
2 '\21A«CkBT

9

4 S p

4 D 5/4S 2«C

vFpF
D 2

. ~81!

We want to emphasize that this transverse cutoff is con
erably larger than the longitudinal cutoff, which in Append
C is found to beA3\21kBT. In the next section we show tha
in the case of Coulomb interaction the effective mass
pends logarithmically onvcut, so the temperature depen
dence of vcut and thus the inverse width squared a
ATu ln Tu2, which tends much slower to zero than the mo
conventional linear temperature scaling.5

V. EFFECTIVE MASS

In the last section we calculated the width between
forward and backward path,\/qc' , Eq. ~80!, and we hinted
at how this width might play the role of an effective cutoff
the calculation of the effective mass. In this section
elaborate a bit more on this connection.

Experimentally the effective mass of a particle is det
mined by simultaneously measuring the momentum and
velocity. In a Fermi liquid the momentum is typically th
Fermi momentum. The velocity measurement typically
volves measuring how far the particle has propagated
known time spant. This is a little bit at odds with the semi
19532
b

on

i

d-

-

e

e

-
e

-
a

classical limit, where the external fields are considered to
smooth, so it is hard to define, yet measure, distances sh
than a transport mean-free-path length. This is necessary
mass measurement, since the timet must be comparable to o
smaller than the transport time to make the path reason
well defined. Having said this one might hope for an int
mediate regime, where it is possible to at least put so
limits on the effective mass, while still maintaining the sem
classical line of thought.

One attempt at this is done by Willett, West, an
Pfeiffer,12 who uses a surface acoustic wave~SAW! to gen-
erate an external electric field with a wavelength compara
to the mean free path. They then apply an external magn
field and look for resonances between the cyclotron rad
and the wavelength of the SAW field. In order to obser
these resonances the cyclotron frequency cannot be orde
magnitude larger than frequency of the SAW wave.21 This
leads to an upper estimate of the elapsed time and thus
effective mass.

We will denote this sort of experiment as a semiclassi
mass determination, since the forward and backward p
together perform the cyclotron motion. This is in contrast
experiments probing the single-particle energy spectrum,
Shubnikov–de Haas measurements. In such experiment
cording to the Bohr-Sommerfeld quantization scheme it
the phase of a single path that causes the resonance.

Below we show that in the semiclassical experiments
width between the two paths or in other words the enclo
area acts as an effective cutoff on the contribution from
magnetic field fluctuations to the effective mass. In the Bo
Sommerfeld resonance scheme the cutoff is supplied by
area enclosed by the path itself.22 This area is much bigge
than the semiclassical area and the cutoff is correspondi
smaller.

In order to extract the semiclassical mass from the p
integral description it is in principle necessary to analyze
concrete experiment in detail. Luckily it turns out that in th
semiclassical limit it is possible to come up with an appro
mately local relation between the velocity and the mom
tum. This implies that the effective mass is almost indep
dent of the concrete mass measuring experiment in
semiclassical limit.

For a noninteracting system the derivative of the act
with respect to the momentum yields the Hamilton equat
for the velocity dS0 /dp(s)5 ṙ 2]H/]p50. For the two-
path action it is the derivative with respect to the differen
momentumDp(s):
]S

]Dp~s!
5Ṙ~s!2

1

m
P~s!2E

s

t

ds8E dq

~2p\!2E dv

2p
D''~q,v!

3expH i

\
q•@R~s8!2R~s!#J exp@2 iv~s82s!#3 (

m,m856

mm8expS i

\
m

1

2
q•@Dr ~s8!2Dr ~s!# D1

q
q

3F Ṙ~s8!1
1

2
m8D ṙ ~s8!G3

]

]P H 1

2
2wFP~s1!1m

1

2
Dp~s1!G 1

mq
q3FP~s!1m

1

2
Dp~s!G J , ~82!
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which yields the relation between the velocity and the m
mentum, at least in a stationary phase approximation wh
]S/]Dp(s)50. On average the stationary phase condition
exact, i.e.,

K U ]S

]Dp~s!
U L 50. ~83!

Notice that after performing the integral overR(s) and
Dr (s) inside the average as defined in Eq.~68! we have
Dp(s1)5Dp(s)2q and P(s1)5P(s)2 1

2 mq. The terms
with m5m8 in Eq. ~82!, i.e., those terms where the intera
tion connects either the forward or backward path with its
give rise to that part of the renormalization of the effecti
mass that is attributed to the self-energy in the usual per
bative treatments. This renormalization mainly depends
the local properties of a single path and it is thus independ
of which pair of paths is relevant in the given experime
On the other hand, the terms withmÞm8 in Eq. ~82!, which
are associated with the vertex corrections, depend on
the forward and backward paths. The renormalization du
these terms thus depends on the exact experiment. Fo
stance in an interference experiment the two paths are alm
independent and the vertex contribution is expected to va
due to destructive interference in the phases associated
each path individually. In the semiclassical limit, where t
forward and backward paths typically are close to each ot
it is fortunately possible to derive a universal expression
the renormalization of the mass. Below it will be shown th
the interaction modes with a wavelength longer than
separation between the paths does not renormalize the m
while the renormalization due to the interaction modes wit
shorter wavelength is given by the usual self-energy con
bution. A possible interpretation is that the particle can
distinguish between the field from a long-wavelength int
action and an external potential.

For simplicity we neglect the extra terms arising from t
velocity dependence of the force; i.e., we treat the interac
as scalar. With this small neglect the average of the veloc
denotedvF5^uṘu&, is

vF5
1

m
pF2E

s

t

ds8E dq

~2p\!2E dv

2p
vFm

21pFD''~q,v!

3e2 iv~s82s!K UexpS i

\
q•@R~s8!2R~s!# D2i

3sinF 1

2\
q•Dr ~s8!G (

m56
mexpS 2

i

\
m

1

2
q•Dr ~s! D

3
]

]P
wFP~s!1m

1

2
Dp~s!2mqGU L , ~84!

where in the first term it is used that the average momen
19532
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^uPu& is the Fermi momentumpF5pFvF
21vF ~see Appendix

C!. At least for a noninteracting systemDp(s) is of the order
of the typical wave vector of the external force field. O
interest is the semiclassical limit, so we will assumeDp(s)
•pF,kBT and neglect its contribution; i.e., we putDp(s)
50. The average velocityvF is then

vF5
1

m
pF2E

s

t

ds8E dq

~2p\!2E dv

2p
vFm

21pFD''~q,v!

3expS i

\
q•@R~s8!2R~s!# Dexp@2 iv~s82s!#

3K U2 sinF 1

2\
q•Dr ~s8!G

3H sinF 1

2\
q•Dr ~s!G (

m56

]

]P
w@P~s!2mq#

1 i cosF 1

2\
q•Dr ~s!G (

m56
m

]

]P
w@P~s!2mq#J U L .

~85!

We are mainly interested in the long-wavelength limit, so
will neglect terms of orderq2 compared to terms of orderq.
We also assume that bothuP(s)u and the corresponding ve
locity uṘ(s)u are distributed evenly around the Fermi surfac
In this approximation the second term inside the parenthe
can be neglected. We assume that the relative variation in
velocity around the Fermi velocityvF is small; i.e., the tem-
perature is much smaller than the Fermi energy. It is th
possible to approximate the path locally by a straight lin
i.e., R(s8)2R(s)'vF(s82s). In the long-wavelength limit
the transverse part ofq•Dr is bigger than the longitudina
part. The averaging procedure is approximated by indep
dently carrying out the longitudinal and transverse averag
In the longitudinal average we use the time-local approxim
tion outlined in Appendix C, so the longitudinal average
(m562(]/]P)w@P(s)2mq# is approximately

K U (
m56

2
]

]P
w@P~s!2mq#U L 'vFE

2`

`

d«
]

]«
f F~«!

3 (
m56

]

]«
f F~«2mvF•q!,

~86!

where we have usedvF5]«P /]P. In the transverse averag
we approximate

2 sinF 1

2\
q•Dr ~s8!GsinF 1

2\
q•Dr ~s!G

'H 12cosF1

\
q•Dr ~s!G J 'F12expS 2

1

2
qc'

22q2D G , ~87!
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with the result that the effective massm* , defined aspF
5m* vF , is given by

1

m*
'

1

m H 112vF
2E

2`

`

ds8E dq

~2p\!2E dv

2p
ReD''~q,v!

3F12expS 2
1

2
qc'

22q2D G3expS i

\
q•vF~s82s! D

3exp@2 iv~s82s!#E
2`

`

d«

3
]

]«
f F~«!

]

]«
f F~«2vF•q!J . ~88!

Apart from the extra factor of@12exp(21
2qc'

22q2)# this rela-
tion is identical to the usual relation derived from the se
energy. Thus the contribution from the short-wavelen
modes of the interaction to the renormalization of the mas
identical to the standard result, while the long-wave len
modes do not contribute. The cross over is at the width\qc'

21

and this is why we above have alluded to the width as
effective cutoff.

When the long-wavelength expression for the propaga
D'' , Eq. ~29!, in the case of Coulomb interaction, is in
serted into Eq.~88! the integral is ultraviolet divergent. W
usepF as an approximative upper cutoff and get the effect
mass

m* 'm1m
4

p3/2

pF
2

2m

1

«C
ln

pF
2

2qc'
2

. ~89!

For composite fermions the renormalization of the mass
quite strong, so the effective mass

m* '
2

p3/2

pF
2

«C
ln

pF
2

2qc'
2

~90!

is approximately independent of the bare massm.
The prefactor

m
4

p3/2

pF
2

2m

1

«C
'1.9 m, ~91!

where«C5(e2/4pe)An is the average Coulomb energy an
we as a typical values12 have usedn51.631015 m22, e
513e0, andm'0.067m0, wheree0 andm0 are the vacuum
values of the permittivity and the electron mass, respectiv

The argument of the logarithm is given by Eq.~79!, so
self-consistently the effective mass is

m*

m
'11

4

p3/2

pF
2

2m

1

«C
lnF1

2
1

p9/4

18
A «C

kBT

3S 4

p3/2

pF
2

2m

1

«C
D 2S m

m*
D 2G'6.3, ~92!
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where the estimate is valid at a temperature of;0.13 K.
The cutoff at this temperature happens at distances\qc'

21

'6lF'40 nm.
As expected the semiclassical effective mass, Eq.~92!, is

smaller than the mass deduced from the activation ene
and Shubnikov–de Haas measurements,12 actually about
half as big. In the experiment by Willettet al.12 the estimate,
Eq. ~92!, leads to a cyclotron frequency that at the second
resonance position is about twice as big as the used S
frequency, 10.7 GHz. A naive argument12 leads to the ex-
pectation that the secondary resonance can only be obse
if the cyclotron frequency is much bigger than the SA
frequency. It is thus a matter of taste whether an ‘‘appar
inconsistency’’ between the geometric resonance exp
ments and the size of the effective mass arises. We h
want to stress the word ‘‘apparent’’ since Mirlin and Wo¨lfle21

have shown that the secondary resonance can be obse
even when the cyclotron frequency equals the SAW f
quency.

VI. CONCLUSION

In this paper we have developed a single-particle p
integral description of transport for composite fermion
thereby extending the Caldeira-Leggett formalism for
single particle interacting with an environment. Here the e
vironment is the Chern-Simons gauge field. Our appro
is modeled over the work by Golubev and Zaikin on t
electron gas in zero magnetic field. As in the Caldei
Leggett formalism there is not one, but two paths in the p
integral, one propagating forward in time and one backwa
A new feature compared to the traditional Caldeira-Legg
formalism is that the distribution function enters into th
real part of the single-particle action. The imaginary part
the action is determined by the fluctuation spectrum, jus
in the Caldeira-Leggett formalism. Actually, the imagina
part is so familiar that its effect previously has been
cluded by hand in calculations based on the use of paths14,22

In the second half of this work the formalism was applied
the calculation of the effective mass, a quantity that d
pends crucially on the real part of the action. This is a ma
result, since previously it has not been possible to d
cuss effects related to the renormalization of the propa
tion properties including the mass within a path integ
approach.

Furthermore, for CF’s the effective mass turns out to d
pend on the actual experiment. In a perturbative descrip
of the CF’s the nonuniversality of the effective mass is
tributed to the fact that the long-wave length magnetic fi
fluctuations give rise to an infrared divergence of the se
energy and the vertex corrections, separately. In a trans
measurement these divergences are known to cancel. In
formalism the infrared divergence does not appear beca
the vertex and self-energy contributions are never split. N
only is the infrared divergence absent, but the renormal
tion in the infrared limit is negligible. Furthermore, in th
semiclassical limit the effective mass is universal, indep
dent of the actual semiclassical experiment, just as if th
were some underlying quasiparticles. Recently, various
7-16
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mulations based on dipolar quasiparticles have emerged9–11

Using such an approach Shankar and Murthy noticed tha
a particular approximation, where some of the constraints
neglected, the system is not compressible at half filling.9 This
very cautiously phrased suggestion has been challenge
Halperin and Stern.23,24 Our formulation naturally leads to
compressible system and thus supports the scenario pu
ward by Halperin and Stern.

By working in a real-space formulation our results a
obtained in a natural way, since the magnetic interaction
via fluxes, i.e., areas in real space. In the path integral
malism the size of the particle is defined as the separa
between the forward and backward propagating paths. O
those magnetic field fluctuations with a wavelength sho
than this particle size contribute noticeably to the renorm
ization of the mass. In GaAs atT;0.13 K we find the mass
renormalization due to the magnetic field fluctuations to
roughly 6 times the bare mass. Furthermore, we have sh
that in the semiclassical limit the separation between the
paths, i.e., the size of the particle, scales asT21/4u ln Tu21.
This implies that the effective cutoff in frequency scales
roughly T1/2u ln Tu2. As usual the mass scales approximat
with the logarithm of the frequency cutoff.

Experimentally it is not very easy to measure the mas
the semiclassical limit. The best one can do is to put an up
limit on the size of the mass.12,25Our result is well within the
limit derived from the experiments by Willettet al.12,21 In
standard Fermi liquid theory the mass in the semiclass
regime is identical to the mass obtained from single-part
probes like the Shubnikov–de Haas oscillations. For co
posite fermions this is not the case, and furthermore the m
derived using standard Fermi liquid fitting formulas diffe
from experiment to experiment.11,26–28 In the path integral
formulation single-particle probes are associated with p
of paths, where the forward and backward paths di
qualitatively;14,29 e.g., one of them loops an extra tim
around a cyclotron orbit or the two paths pass through
ferent slits in a double-slit experiment. The gauge field s
gular contribution to the effective mass is thus no long
determined by the semiclassical size of the particle,
rather the nonuniversal geometry of the particular sing
particle probe, e.g., the area of the extra cyclotron orbit. T
effective mass thus depends on the particular geometry o
experiment. However, since the single-particle cutoff ar
are larger than the corresponding semiclassical area,
semiclassical mass is smaller than the one obtained fro
single-particle probe. Indeed in the experiments by Wi
et al.12 it turns out to be a factor of 2 smaller.

The linear response regime around equilibrium is the m
jor focus of our work, but the formalism is still valid out o
equilibrium. In the noninteracting limit, as shown in Fig.
the single-particle path integral technique possesses two
portant features:~i! the effect of the nonequilibrium distribu
tion function is gathered completely within the stimulus, a
~ii ! the propagation out of equilibrium is identical to th
propagation in equilibrium. These features are shared w
other out-of-equilibrium techniques, e.g., the Boltzma
equation and the Landauer-Bu¨ttiker description of transpor
through a noninteracting part of the system. In the case o
19532
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interacting system~i! and~ii ! no longer holds rigorously, bu
in some cases they still are expected to be a good sta
point. The path integral formulation is then well suited
study the lowest-order corrections due to the interactions.
example of a system were this approach might be useful
standard finite source drain measurement. For such a sy
the most important effect is presumably due to an out-
equilibrium stimulus. For a quantum point contact this h
already been explored using Green’s functions.30 However,
in general for an interacting system the propagation prop
ties are expected to be renormalized too. Within the p
integral formalism this should be possible to treat, especi
if the nonequilibrium distribution function turns out, at lea
approximately, to be a translated Fermi distribution with
increased temperature. To our knowledge nobody has
tempted this yet.

The single-particle path integral technique is thus a pro
ising technique for the description of interacting syste
both in and out of equilibrium; especially, it may prove us
ful for studying systems out of equilibrium not easily treat
by other methods.
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APPENDIX A: EQUATIONS OF MOTION

In this appendix we are going to derive differential equ
tions for the composite fermion contribution to the effecti
action Seff@a;t# and the density matrixrac(Aeff2a) in the
presence of the Chern-Simons fieldAeff2a by differentiating
the composite fermion part of Eqs.~18! and~15!. In order to
differentiate quantities in a fixed gauge field background
time s it is necessary to let the Chern-Simons fielda and the
Grassmann fieldsc̄ and c be defined onCt , where t.s.
This is achieved by considering the generalized proble
where the Hamiltonian is artificially put equal to zero f
timess8.s. All the steps leading to the effective action fo
composite fermionsSCF, Eq. ~10!, can also be carried
through in this generalized setting. The only difference
that in all the terms that involve the Hamiltonian the conto
integration is effectively limited toCs . We denote the ac-
tions in this generalized case by their usual symbol, but w
s;t as the temporal variable, so the effective action for
composite fermions is

SCF@c̄,c,a;s;t#5SCS@a;s;t#2eE
Ct

ds8E dra0~r ,s8!n

1SComFer@c̄,c,a;s;t#, ~A1!

where
7-17
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SComFer@c̄,c,a;s;t#5E
Ct

ds8E dr c̄~r ,s8!i\
]

]s8
c~r ,s8!

2E
Cs

ds8H0@Aeff2a#. ~A2!

The terms that depend on the composite fermion Grassm
variables are gathered inSComFer@c̄,c,a;s;t# and it is its con-
tribution we are going to consider in this appendix.

Notice also that whens5t the generalized problem i
identical to the original problem, so for all actions isS(t)
5S(s;t)us5t .

1. Effective action

The composite fermion contribution to the effective acti
Seff@a;s;t# is

Seff@a;s;t#2SCS@a;s;t#1eE
2`

t

ds8E drDa0~r ,s8!n

5
\

i
ln^^^1&&&, ~A3!

whereDa0(s8)5a0(s8,1)2a0(s8,2) is the difference field
and the shorthand notation

^^^X&&&5E Dc̄E Dc expS i

\
SComFer@c̄,c,a;s;t# DX

~A4!

for the Grassmann integral has been introduced. The de
tive of Eq. ~A3! is

]s$Eq. ~A3!%52^^^1&&&21^^^H0@Aeff~s!2a~s,1 !#

2H0@Aeff~s!2a~s,2 !#&&&. ~A5!

The right-hand side of Eq.~A5! is equal to the expectatio
value of 2$H0@Aeff(s)2a(s,1)#2H0@Aeff(s)2a(s,2)#%
in the presence of the contour gauge fieldAeff2a. It can be
expressed in terms of the density matrix as

]s$Eq. ~A3!%52E dr @eDa0~r ,s!rac~Aeff2a;r ,r ;s!

1Da~r ,s!• ja~Aeff2a;r ,s!#, ~A6!

where the current in the presence of the gauge fieldAeff
2a, ja(Aeff2a;r ,s), is defined in Eq.~19!. Equation~20!
then follows upon integration using the conventional
sumption of adiabatic turning on of the gauge field.

2. Density matrix

The density matrix in the presence of the Chern-Sim
gauge fieldrac is defined in Eq.~15!. At a time s,t the
actionSCF@c̄,c,a;s# can be replaced bySComFer@c̄,c,a;s;t#.
In terms of the above shorthand notation,

rac~r ,r 8,s!5^^^1&&&21^^^c̄~r 8,s!c~r ,s!&&&. ~A7!
19532
nn

a-

-

s

Whens is varied both the numerator and denominator va

i\]srac~r ,r 8,s!5^^^1&&&21i\]s^^^c̄~r 8,s!c~r ,s!&&&

2^^^1&&&21^^^c̄~r 8,s!c~r ,s!&&&

3 i\]s^^^1&&&. ~A8!

In the above subsection, the derivative of the denomina
i\]s^^^1&&& was calculated. The contribution from the fir
term ~the numerator! is

^^^1&&&21i\]s^^^c̄~r 8,s!c~r ,s!&&& ~A9!

5^^^1&&&22$^^^H0@Aeff~s!2a~s,1 !#c̄~r 8,s!c~r ,s!

2c̄~r 8,s!c~r ,s!H0@Aeff~s!2a~s,2 !#&&&%. ~A10!

We here used

^^^c̄~r 8,s1Ds!c~r ,s1Ds!&&&5^^^c̄~r 8,s!c~r ,s!&&&,
~A11!

since without a Hamiltonian the system does not evolve. T
action SComFer is quadratic in the Grassmann variablesc̄
and c, so Eq. ~A10! can be evaluated with the help o
Wick’s theorem. The Hartree disconnected diagra
like pairings exactly cancels the contribution from th
variation of the denominator in Eq. ~A8!,

^^^1&&&21^^^c̄(r 8,s)c(r ,s)&&& i\]s^^^1&&&, so paying due
attention to the contour ordering

i\] trac~r ,r 8,t !5E dr 9E dr-~d~r2r 9!

2rac@r ,r 9;t# !H~r 9,r-;t,1 !rac@r-,r 8;t#

2E dr 9E dr-rac@r ,r 9;t#H~r 9,r-;t,2 !

3~d~r-2r 8!2rac@r-,r 8;t# !. ~A12!

This is Eq.~31! written out.

APPENDIX B: LINEARIZATION OF THE DENSITY
MATRIX DIFFERENTIAL EQUATION

The stimulus in the linearized equation of motion f
drac(Aeff2a;r ,r 8,t), Eq. ~40!, D5D11D2 is split into two
parts. The explicit form forD1, which is independent ofDa,
is
7-18
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i\D1~r ,r 8,t !5F2
]

]rEr8

r
dr 9•Atot~r 9!1Atot~r !G• 1

m F\i ]

]r
1eAeff~r !2eā~r !Grac~r ,r 8!

1F2
]

]r 8
E

r8

r
dr 9•Atot~r 9!2Atot~r 8!G• 1

mF2
\

i

]

]r 8
1eAeff~r 8!2eā~r 8!Grac~r ,r 8!

1rac~r ,r 8!
\

2im

]

]r F2
]

]rEr8

r
dr 9•Atot~r 9!2Atot~r !G2rac~r ,r 8!

\

2im

]

]r 8

3F2
]

]r 8
E

r8

r
dr 9•Atot~r 9!2Atot~r 8!G2E

r8

r
dr 9•S ] tAtot1

]f tot

]r 9
D rac~r ,r 8!. ~B1!

The explicit form ofD2, which contains all the dependence uponDa, is

i\D2~r ,r 8,t !5E dr 9~12rac!~r ,r 9!
2eDa~r 9!

2m
•F2

]

]r 9
E

r8

r9
dr-•Atot~r-!1Atot~r 9!Grac~r 9,r 8!

1E dr 9rac~r ,r 9!
2eDa~r 9!

2m
•F ]

]r 9
E

r9

r
dr-•Atot~r-!1Atot~r 9!G ~12rac!~r 9,r 8!

2
i

2\E dr 9rac~r ,r 9!F E
r8

r
dr-•Atot~r-!2E

r8

r9
dr-•Atot~r-!2E

r8

r9
dr-•Atot~r-!G

3
2eDa

2m
•F 1

2m
DaS i

\

]

]r 9
1Aeff~r 9!D 2Da0Grac~r 9,r 8!

2
i

2\E dr 9rac~r 9,r 8!F E
r8

r
dr-•Atot~r-!2E

r8

r9
dr-•Atot~r-!2E

r8

r9
dr-•Atot~r-!G

3
2eDa

2m
•F 1

2m
DaS 2

i

\

]

]r 9
1Aeff~r 9!D 2Da0Grac~r ,r 9!. ~B2!
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APPENDIX C: THE LONGITUDINAL SEPARATION

In this appendix we are interested in the distribution of
longitudinal separation (1/P)P•Dr and its conjugate vari-
able, the size of the momentumP. For simplicity we will
only consider the case of a scalar interaction.

The first step is to rewrite the free particle action such t
the longitudinal and transverse directions appear explicit

To this end we use polar coordinates for the momentu

p5S p cos
ph

p

p sin
ph

p

D , ~C1!

whereph /p is the angle with respect to an arbitrarily defin
x axis. ph , loosely speaking the arc length along the Fer
surface, has been chosen as our variable instead of the a
ph /p in order to avoid a complicated Jacobian. In the sca
approximation the interaction is independent ofph , which
therefore can be integrated out. The free particle action
the forward part of the contour is
19532
e

t

:

i
gle
r

n

E
0

t

dsS ṙ•p2
p2

2mD . ~C2!

The stationary phase approximation forph reads

ph5p arctan
ẏ

ẋ
. ~C3!

There are two solutions to this equation corresponding to
momentum and the velocity being parallel or antiparall
Here we only keep the parallel solution. The resulting s
tionary phase action on the forward contour is

E
0

t

dsS pv2
p2

2mD ,

wherev5Aẋ21 ẏ2 is the velocity. A similar result holds on
the backward path, but with the opposite overall sign. We
interested in discussing the separation between the two p
so we change representation from the position and mom
tum along each path individually to the averageR(s)
5 1

2 @r (s,1)1r (s,2)# and the differenceDr (s)5r (s,1)
7-19
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2r (s,2). In a translation-invariant system one has t
choice between usingR or Ṙ as the variables in the pat
integral. Here we chooseṘ and we parametrize it using th
velocity V(s)5uṘ(s)u and the polar angleVf(s)/V(s):

Ṙ~s!5S V~s!cos
Vf~s!

V~s!

V~s!sin
Vf~s!

V~s!

D 5V~s!n~s!. ~C4!

The unit vectorn(s) points along the direction of the averag
propagation.n(s) can also be thought of as a unit vector
the Fermi surface, since above in Eq.~C3! we only used the
stationary phase condition where the momentum is alig
with the velocity.

Neglecting third-order terms in the difference variab
the free particle action is

(
m

E
0

t

dsFp~s,m!v~s,m!2
p~s,m!2

2m G
'E

0

t

ds@P~s!n~s!•D ṙ ~s!1Dp~s!V~s!#

2E
0

t

ds
P~s!Dp~s!

m

1k•F @R~ t !2R~0!#2E
0

t

dsV~s!n~s!G , ~C5!

wherek is a Lagrange multiplier vector that has been int
duced in order to deal with the boundary condition in t
transition fromR to Ṙ. (1/\)ukuVt tr is a small number, when
the feeding-in and the pickup are not local in space. As
illustration assume that the initial and final positions are d
tributed according to isotropic Gaussians centered aroundRi

0

andRf
0 , respectively. The sum of the variances is denoted

(\/Dk)2. The termk•(Rf2Ri) in the action is then replace
by

k•~Rf
02Ri

0!1
i\

2

k2

Dk2
~C6!

after the integration with respect toRi andRf has been per-
formed. The typical size ofk is now given by the smallest o
the numbers\/(uRf2Riu) andDl. The last number is in the
semiclassical limit small. In the case of a periodic drivingk
is the wave vector of the external field. Anyway, in the sem
classical limit we will neglect the contribution fromk.

1. Interaction part: General formulation

We first Taylor expand the interaction part of the acti
Sint , the scalar part of Eqs.~56! and~57!, to second order in
the difference variableDr . Furthermore, we use a time-loc
approximation. That is, we approximate the quadratic te
Dr (s)Dr (s8) asDr (s)2. Using this,
19532
d

-

n
-
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-

s

Sint'
i

2E0

t

dsDr ~s!•F@R,s#•Dr ~s!2E
0

t

dsDr ~s!•h@R,P,s#,

~C7!

where

h~R,P,s!5h~V~s!,P,s!n~s!, ~C8!

F~R,s!ab5~dab2nanb!FT@V~s!#1nanbFL@V~s!#,
~C9!

with

h~V~s!,P,s!5E
0

t

ds9
]D00

]uRu
„V~s!~s2s9!,s2s9…

3(
m9

F1

2
2wS P~s91!1~21!m9

Dp~s91!

2
D G ,

~C10!

FL@V~s!#5E
0

t

ds8
]2C00

]uRu2
„V~s!us82su,s82s… ~C11!

FT@V~s!#5E
0

t

ds8
1

V~s!us82su

]C00

]uRu
„V~s!us82su,s82s….

~C12!

As a further simplification we have above also approxima
the average path by a straight line inside the kernels. In
we will below treat bothFT andFL as constants.

In this approximation the action separates into a long
dinal and a transverse part. We define

Dr ~s!5Dr uu~s!n~s!1Dr'~s!ẑ3n~s!. ~C13!

In the Wigner variable basis of the propagator we use a p
coordinate representation of the initial and final momenta

Pi5PiS cosf i

sinf i
D , ~C14!

Pf5PfS cosf f

sinf f
D . ~C15!

In the full propagator we now split out all the factors relat
to the transverse direction into the so-called transve
propagator

JT5E DVfE DDr'

2p\

Pf
dFf f2

Vf~ t !

V~ t ! G 2p\

Pi

3dFf i2
Vf~0!

V~0! GexpS 2
1

\E0

t

dsF1

2
FTDr'~s!2

1 iDr'~s!P~s!
d

ds

Vf~s!

V~s! G D . ~C16!

In terms of JT the full propagator is, after integrating ou
Dr (0) andDr (t),
7-20
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J5E DPE DDpE DVE DVDr uu2p\

3d@Pf2P~ t !#2p\d@Pi2P~0!#JT

3expH i

\E0

t

dsFDp~s!V~s!2
1

m
P~s!Dp~s!G

2
1

\E0

t

dsF1

2
Dr uu~s!2FL1 iDr uu~s!

3S d

ds
P~s!1h@V~s!,P,s# D G J . ~C17!

To lowest order the transverse propagator is independen
the dynamics of the longitudinal variables, so we will tre
JT as a constant and absorb it in the overall normalization
the path integral. The study of the remaining longitudin
propagator is the topic of the next subsection.

2. Interaction part: The longitudinal contribution

In the propagator, Eq.~C17!, we will neglect the depen-
dence ofh uponDp. V(s) thus equalsm21P(s). The propa-
gation described by Eq.~C17! is then equivalent to the quan
tum propagation problem

2\]s5
1

2 S \

i

]

]PD 2

FL~P!2\
]

]P
h~P!. ~C18!

We neglect the momentum dependence ofFL . In equilib-
rium it is

h~P!'a
1

2
tanhF vF

2kBT
~P2pF!G , ~C19!

where the constanta in the high-temperature limit is relate
to the fluctuations through
g

19532
of
t
f
l

\FL

a
5

kBT

vF
. ~C20!

The last term in Eq.~C18! is gauged away by the transfo
mation f(P)(2] f F /]p)21/2 and the propagation problem
Eq. ~C18!, is equivalent to

22
\FL

a2
]sf52

\2FL
2

a2

]2f

]P2

1F2
\FL

a

]

]P
tanhS 1

2

vF

kBT
~P2pF! D

1tanh2S 1

2

vF

kBT
~P2pF! D Gf. ~C21!

The ground state of the quantum problem, Eq.~C21!, is the
derivative of the Fermi distribution function and the groun
state energy is zero. The typical decay time of the exc
states is given by\FL /a2. This can be identified as th
correlation time scale ofDr uu or P with themselves. It is also
the time scale it takes before the boundary conditions can
be felt anymore. For the Coulomb interaction this time sc
is approximately \(kBT)21\g1pF

2(vFpF)
21. The ground-

state wave function of the original quantum propagat
problem, Eq.~C18!, is proportional toA2] f F /]p. This im-
plies that the distribution of the longitudinal momentum
energy is given by the derivative of the Fermi distributi
function, while the average of the width squared is

H E
2`

`

dpS 2
] f F

]p D J 21E
2`

`

dpS \

2

]2f F

]p2 D 2S 2
] f F

]p D 21

5
1

3

\2vF
2

~kBT!2
. ~C22!
n-
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