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Single-particle path integral for composite fermions and the renormalization of the effective mass
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To study composite fermions around an even denominator fraction, we adapt the phase-space single-particle
path integral technique for interacting electrons in zero magnetic field developed recently by Golubev and
Zaikin [Phys. Rev. B59, 9195(1999]. This path integral description gives an intuitive picture of composite
fermion propagation very similar to the Caldeira-Leggett treatment of a particle interacting with an external
environment. We use this description to explain the origin of the famous cancellation between the self-energy
and the vertex corrections in semiclassical transport measurements. The effective range of the cancellation is
given by the size of the propagating particle, which for the Coulomb interaction scales with the temperature
asT~¥4In T| "t in the semiclassical limit. Using this scheme we find that the effective mass in the semiclassical
limit for composite fermions in GaAs is approximately 6 times the bare mass.
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[. INTRODUCTION The width of the packet is thus a natural cutoff on the trans-
verse gauge fluctuations. In this article we pursue some of
In this article we address the question of semiclassicathe consequences of this idea.
propagation of an interacting system in a real-space We will study the real-space propagation with the help of
formulation? In particular we have in mind the composite phase-space path integrals. Originally, the Feynman path in-
fermion (CF) system which is seen in the fractional quantumtegral technique was developed for noninteracting sysfems.
Hall regime around filling factok. The experimental efforts Feynman and Verndrand Caldeira and Legg@texpanded
so far indicate that this system is to a high degree a classicéthe idea to system&.g., a particlginteracting with an en-
system in the sense that it is very hard to observe any kind ofironment. The result of integrating out the environment was
interference effects. an extra definite contribution to the effective action in the
In elementary textbooksthe notion of semiclassical path integral. Recently, Golubev and Zaikin extended the
transport is sometimes introduced through localized wavéechnique to cover the linear response regime for the reduced
packets, and these appear to be essential building blockene-particle density matrix in a Coulomb interacting gas of
Historically this has really not always been the case. Foelectrons: Their main insight was that when focusing on a
instance the derivation of the Boltzmann equation in the cassingle particle(responsg the interaction with all the other
of impurity scattering typically only uses individual quasi- particles can be viewed as an effective environment in the
particles with a given momentum, i.e., delocalized planeCaldeira-Leggett sense. The Fermi statistics reveals itself
waves® This is also the case for other weakly interactingonly in the complicated form of the resulting effective action,
systems like electrons scattering on phonons at low temperavhich depends on the distribution function.
tures. However, a Boltzmann equation for electrons scatter- For the CF system the Chern-Simons transformation in-
ing on hot phonons could not be derived using plane wavegroduces the Chern-Simons gauge field as the effective envi-
Prange and Kadanoff solved that problem by shifting focugsonment. The resulting noninteracting particles we call com-
from individual quasiparticles to deformations of the Fermiposite fermions. The Chern-Simons transformation only
surface? In real space this step corresponds to forming arattaches two flux quanta to each electron. Recently, it has
electron wave packet that is localized in the direction ofbeen suggested that a better description of the quasiparticles
propagation. This localization in the direction of propagationis obtained by associating two vortices to each electron re-
causes the electron-phonon scattering to be very brief in timeulting in neutral quasiparticles with a momentum-dependent
due to the huge difference between the Fermi velocity andlipole moment=In the Chern-Simons description the for-
the sound velocity. Recently, Kim, Lee, and Wen showed thatation of the neutral quasiparticles is presumably due to
the Boltzmann equation for composite fermions only makeslynamical screening. Here we want to stress that the one-
sense for smooth Fermi surface deformatidhs.real space particle density matrix in our approach is defined in terms of
the wave packet now also needs to be localized in the diredhe original electron variables, so the connection between the
tion transverse to the direction of propagation, so the comguasiparticles and the physical response is automatically in-
posite fermions is the first system where the textbook intro€luded. The Chern-Simons transformation is only used to
duction actually is a proper description. For compositeintroduce an effective environment in a relatively simple
fermions the necessity of transverse confinement of the wawway. Another scheme might lead to a different physical pic-
packet can be understood intuitively. The important interacture and eventually suggest other approximations.
tion is mediated through a gauge field and the coupling is Anyway, within the resulting single-particle phase-space
thus through the flux enclosed by an area. For a localizegath integral formulation we show how to define the effec-
wave packet with a finite width propagating along a classicative mass in the semiclassical limit and calculate it to be 0.4
path the relevant area is the area swept by the wave packeimes the vacuum electron mass in a typical experiment.
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This article is organized as follows. In Sec. Il we adaptThis leaves us with a single-particle path integral formula-
the Golubev-Zaikin extension of the Caldeira-Leggett methtion of the linear response for composite fermions. In Sec.
odology to the case of composite fermions. We summarizé! G the major results are summarized.
the main points of the resulting path integral technique in . .

Sec. Il G. In Sec. Il the path integral technique is on a for- A Formulation of the problem using electrons as the

mal level compared with the Kubo formula description of fundamental particles

transport and, more briefly, with the Landaueitiiker scat- The system is described by the Hamiltonian

tering approach to transport. In Sec. IV we discuss the typi-

cal semiclassical approximation scheme of saying that the

two paths are almost identical, and the typical width betweerHere

the two paths is calculated. In Sec. V the calculation of the

effective mass of composite fermions is carried through imO[A]:f dr
the semiclassical limit.

We have found it necessary to introduce quite a few av- A 1[4 A
erages and shorthand notation. As a reader’s guide we list xw*(r)[—[.—VJreA(r) W(r)
them here(X) is the full quantum and thermal average. A 2mii
subscript 0 as ifX)q means that the average is performed 2

for the noninteracting electron ga),  is the average over s the Hamiltonian for noninteracting particles in the 2D
d]ffergnft_ C_:the”_"sém(olng ?f‘)ﬁge ?ﬁ(‘% con_ﬁggratggg)s_; t:‘f Preplane represented by the second-quantized electron field op-
cise definition is Eq(17). = (o4 in Eq. is the - 1 .
average in the time intervdlOt] over different single- eratorsy(r) and ¢ (r), while
particle paths, where each path is given a weight that reflects e? T s
its importance in a given experiment. It thus depends onHimzjf drf dri g (N g (r o (r=r")d(r)g(r)+Hep
what experiment is consideredX))= (X))o is the short- 3)
hand notation for the sum over single-particle paths includ- h | | . .
ing the weight due to the interactions. It is defined in Eq.!;]t .etpart ?ue tbo te ectroph-e elctrct)n mteraé:tlbl]@b rzpresctentls .

. . . . e interaction between the electrons and a fixed neutralizin
(69). (((X))) def!ned n Eq(A4) IS & shorthand notation for. positively charged background jelliurm is the mass of the ’
the Grassmann integral. It is only used in Appendix A. Quite

generally the superscript “eq” refers to the average beingeIectron,,u is the chemical potential;-e is the electron

2 . . . .
. S . eq . charge, anc“v(r) is the Coulomb pair interaction between
calculatg_d n equmb_rlum. For instand&), 1 in Eq. (27) is electrons. If the screening effect of the back gate is ne-
the equilibrium version ofX), ;.

glected,v(r)=1/(4me|r|), wheree is the permittivity of the
medium surrounding the two-dimensional electron gas.

Il. DENSITY MATRIX All the physical one-particle quantities of the system, like
the current and the density, can be expressed in terms of the
teduced one-particle density matrix

He=Ho[A]+Hin. Y

2
_e¢(r’t)_M

We consider a two-dimensional electron gas in a stati
and homogeneous external magnetic filg; perpendicular
to the plane. We writd,; as a scalar since its direction is pc(r,r’;t)=<fp*(r’,t)z?/(r,t)). (4
fixed, and likewise we consider the rotation of any vector
potential in the two-dimension&2D) plane as a scalar. Fur-
thermore, we also apply an external electrical potential
¢(r,t). The external potentials are written in four-vector
form asA=(¢,A). In this section the goal is to derive a path
integral description of the linear response of the reduced on
particle density matriy to the potentiakp(r,t). For simplic-
ity we will in this section neglect the influence of impurities,
but it is straightforward to include them in the formalism as
an extra external potential.

Our notation is introduced in Sec. Il A. In Sec. Il B the e(r
Chern-Simons transformation to composite fermions is car- p(r,r’)=pc(r,r’)exp( i%f dr”-A(r”)), (5
. . . . r’
ried out. This renders the problem in the Caldeira-Leggett
form of a particle interacting with an environment. The im- where the path of integration is chosen to be along the
portant formula is Eq(16). The properties of the environ- straight line fromr’ to r. In general different choices of the
ment, which in our case is the gauge field, are discussed iimtegration path lead to different values pf but we are
Sec. Il C. The density matrix in the presence of this environ-mainly interested in local probes like the density and the
ment fulfills a nonlinear differential equation, presented incurrent. Any path that locally approaches a straight line then
Sec. II D, and in Sec. Il E the linear response is discussed oyields the same result. In such local probes it is convenient to
the differential equation level. In Sec. Il F the linearized dif- introduce variables for the average=3(r+r’) and for the
ferential equation is solved formally with the help of single- differenceAr=r—r’. We use a new symbol for the density
particle path integrals and the environment is integrated outnatrix expressed in these variables:

Here(X) denotes the full quantum mechanical and thermal
pverage ofX. The subscript “c” stands for canonical, be-
cause upon a Fourier transformation the annihilation and cre-
ation operators correspond to states labeled by the canonical
dnomentum. This labeling is not gauge invariant, so neither
Is pc(r,r’), but it has some nice formal properties we will
make use of in the following. Final physical expectation val-
ues we prefer to phrase in terms of the gauge invariant den-
sity matrix
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Ar Ar where the arrow denotes that in equilibrium for a noninter-
W(R,Af)=P( R+ 5 R-—= (6)  acting systemw reduces to the Fermi distribution function
fe(e)={1+exd(e—w)/(ksT)]} L. €, is the single-particle
The Fourier transform with respect to the difference variableénergy_
is the corresponding gauge-invariant Wigner distribution The thermal and quantum average mf and p can be
function calculated with the help of a path integral over Grassmann
eq. non-int. fields g and . e and i, correspond to the operatogd

[
MR f dArexp( s Ar)w(R,Ar) fe(€p), and g, and they should not be confused. Using this represen-
(7)  tation we obtain

_ _ [ —
j Dwelj DweI‘//eI(r’rt) ¢e|(f,t)exp(g3[¢e|,$e|;t]>

p(r,r’;t)=ex;<if—eJrr,dr".A(r”)) — — , (8
J’D‘/’eIJ’ D‘[/elex%%s[‘//elv'pel;t])

where the actiors is given by comes quadratic in the Grassmann fields. The electron phys-
ics is then reduced to that of noninteracting electrons in a
J fluctuating field background. In the case of zero magnetic
S[Eelu'r/fel;t]:f dgf dr (1, 0)ih— e (1, 0) field the relevant transformation is a Hubbard-Stratonovich
Ct do transformation that introduces an effective electric potential
at each contour poirltin the case of composite fermions the
_f doH o Yo, Yell. (9)  relevant transformation is a Chern-Simons transformation
Ct that introduces a Chern-Simons gauge field (ay,a) at
each contour point and that also performs a singular gauge
The contourC, runs from minus infinity up to the observa- transformation on the Grassmann fields attaching two mag-
tion timet and back again to minus infinity. The contour time Nnetic flux quantah/e to each electron. The transformed
o=(s,u), wheres is a real time andu== is a contour Grassmann fields we denote Byand ¢, not to be confused
index that takes the value- on the forward part of the with ' 3, g, andy,.
contour and— on the backward in time part of the contour;  The action transforms into the standard action for com-
see Fig. 1. In the prefactog(r’,t)e(r,t) the creation posite fermions?
Grassmann field,(r’,t) has to come later than the annihi-
lation Grassmann fieldf(r,t) on the contourC,, but _
whether both fields are on the forward or backward Scd #,#,a,Aqt— a;t]=SCS[a;t]+ef dof drag(r,o)n
parts of the contouC; or i¢(r,t) is on the forward part, Ct

while Za(r’,t) is on the backward in time part o, is — 0
immaterial. +f dtff dr(//(r,o)lﬁa—z/f(r,o')
Cq (o
B. Chern-Simons field-dependent density matrix _J doHo[ Au—al. (10)
Ct

The first step towards obtaining an effective single-
particle path integral description is to introduce fluctuating
fields as extra integration variables such that the action bedere Scd a;t] is the Chern-Simons action

Cy
+ t
—00 - o) time
-t

FIG. 1. The Grassmann fields,, ¥, ¥, andy and the Chern-Simons gauge figle- (a,a) on the contouC,. As can be seen from
the drawing the contou€, runs along the physical time axis froree up to timet and then back again tec. The contour timer is on the
forward and backward parts of the contour denated(s, +) ando=(s,—), respectively, whers is the physical time. To each physical
time s<t there is thus as an example two independent Chern-Simons gaugeafislds) anda(s,—). If in particulart=o0, the usual
Keldysh contourC,, is recovered.
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ward contours,a(s,+)#a(s,—). Despite this we follow
Scs[a;t]=J dUJ dr Golubev and Zaikih and define the Chern-Simons field-
Ct dependent density matrix
e? e? Ja _—
X| g7 Bo(0) VX a(0) + g —al0) % PaclAeti— AT, I,1)
4ah do

. [ o] ez
—chtdof drfdr' f

[ 20| uic vutrved psed . s

X[VXa(r,o)]Jo(r—=r")[VXa(r',o)]. (12)
! L in analogy with the usual definition of a density matrix Eq.

The average mean-field magnetic fieldtZe has been sub- (4 Notice that the right-hand side only depends on the
tracted from both the externally magnetic figlkA and the  g5,ge fields in the combinatioh,—a, since the contribu-
Chern-Simons gauge field. The remaining fields are denote§on from Scd a;t] to the actionScr cancels out. The sub-
by Aeii=(0,Aer) =(0,A— (V)" *2(h/e)n) anda=(ap,8),  scripta on p, is to remind us thap,. depends on the field
respectively. For notational consistency with Sec. Il E treathjstory, while the subscript stands for canonical in analogy
ing the linear response regime we have chosen to have @ith p.; see Eq.4). The physical density matrix is recov-
vanishing external potentiap=0. If nonzero, it would be ered fromp,.(Aes—a;r,r’,t) by averaging over the different
added toA4. The last term irSqg originates from the inter-  a-field histories
action termH,,,, Eq. (3). For later use we notice that in the

terms th.at couple t_he Chern-Simons gagge fieltb the p(r,r’,t)=<paC(A —arnr b
Chern-Simons fieldgr and ¢, a only enters in the combina-
tion Agg—a. e (r
The prefactor in Eq(8) transforms as Xexpr i ﬁj ,dr”-[Aeﬁ(r”)—ar”,t)]]>
' at
et E ' " " ! (16)
‘/’el(r vt)¢e|(r1t)ex Iﬁ ,dr A(r ) ‘_)ll/(r 1t)lr/l(r1t)
r In the average
e " ” Al [
X ex 'gjr,df [Aer(r",t)—a(r”,t)] |. (12 fDaXexp( Sl a;t]
(X)at= , (17
The average field f Daexp( Serl @;t]
1 the weight
ar”,t)zz[a(r",t,+)+a(r”,t,—)] (13 )
i _
exigseﬂ[a;t] =JD¢J D
is chosen for notational consistency. It is allowed sinceathe
field is continuous on the conto@;, so it does not matter i _
whether the Chern-Simons field at the turning pdinis Xexpy 7 Sl ¥ aAei—ait] | (18)

evaluated on the forward or on the backward part of the
contour. The total expression for the density matrix in termdS the denominator in Eq15). The effective actiorBeq a;t]
of the transformed fields is for the a field also depends on the external gauge fisld,

but this dependence has been suppressed in the notation,

. i -1 since it is not needed in the following
f Daf D,/,f Dy ex;{gscpﬂ Equation(16) is an important formula, since it establishes
the connection between the density majjyx depending on
_ o a given history of the gauge field and the physically acces-
><J Daj Dwf D (', 1) (r,t) sible density matrixp. Notice that Eq(16) is written in the
Caldeira-Leggett spirit as a single-particle objegt. that
[ Lefr couples to a fluctuating field that eventually has to be inte-
XEX[{%SCF'FI %ﬁ,df"'[Aeﬁ(r")—af”'t)])- grated out. As in standard Caldeira-Leggett theory the gauge
field is different on the two contours. Below it become clear
(14)  that, as usual, the average figt”,t) in many respects can
be interpreted as an external stochastic physical field. Only
The exponent is quadratic in the Grassmann CF varlables keeping the coupling to the average field is thus identical to
and ¢ and thus describes noninteracting particles in a gaugdescribing the composite fermions as free particles coupled
field history Agz—a. However, the gauge field is not physi- to the physical gauge fiel@whose fluctuations are given by
cally realizable, since it is different on the forward and back-the fluctuation-dissipation theorem and the spectral function

(r,r';t)=

195327-4



SINGLE-PARTICLE PATH INTEGRAL FOR COMPOSIE . . . PHYSICAL REVIEW B 64 195327

for the composite fermion gauge fiellFor our discussion Aa,(r,s)=a,(r,s,+)—a,(r,s,—) (21)
of the effective mass it is, however, crucial that the two fields ] ) ]
are different. is the difference of the Chern-Simons gauge field on the two

parts ofC;. Scd a;t] is the usual Chern-Simons action; see
Eqg. (11). In the notation the explicit dependence of the den-
sity matrix p,. and the curreng, on the gauge field\—a
Introducing the a-dependent currenf,(Acs—a;r,s) at  has been suppressed. In equilibrium, which is denoted by the

C. Effective action for the a field

times, superscript “eq,” we have to second order in thdield
) —elh o h 9 t s’

ja(Ae—a;r,s)=-—| — —+eAg(r)—ea(r)— — — S a;t]~Scd ait]— >, f ds’f ds”f dr’f dr”
2mi i ar I gr’ B J-w —

XAa,(r',s" ) Rys(r',s';r",s")ay(r",s")

+eAeﬁ(r,)_ear,) Pac(rvr,;s)|r':ra

i t t
+ 5 ds’f ds”f dr’fdr’
(19 2 aE,ﬂ P
it ig shown in Appendix A that the effective single-particle XA, (1,8 )F 4(r',s";1",8") Aay(r",s").
actionSg a;t] is given by
(22
t
Seﬁ[a;t]zscs[a;t]—f dsf dr The summation variables,3e{0x,y} run over the single

timelike and the two spatial indices, e.g.,=(a9,ay,ay).
X[EABY(T1S) (paclF13S) — M)+ AA(T.S) - [o(1,5) ], The terms linear ima vanish, smcq)aclza:():n and jala=o
20 =0. The retarded 83 response matrixR) .z is given by the
(20 usual Kubo formula apart from an extra minus in the part
where that mixes the density with the currents,

E(I" O S")Z—i— <[—8Pac(r’,s'),—ePac(r'/’s//)DO —([—epac(F’,S’),Ja(r",S")]>o @(S,_S”)
T —([lar,s), —epadr”,8) o ([a(r',s").ja(r",s") o

0 0

+ ez ! ’ " ’ U ’ (23)
0 apac(r ,8")o(r'—r")é(s' —s")

and the so-called fluctuation kerneF:F)(aB by

? . =i <{_epac(r,yS’)r_ePac(r"7S,,)}>O —<{—EPaC(r’,S'),ja(r",SH)Do 24
(MSuir2S)=on | i) — e .8 a1 s8)a" o | @4

(X)o means the average over the noninteracting electron gas 2

without the Chern-Simons gauge fiedd and © is the step Caplr’,s'51",8") = 7-(a,(r",s")ag(r",s")gi
function. Below we are mainly going to need the retarded
gauge field propagatd® .z and the correlation functio@

for fluctuations of the field defined by

e?
7

N| -

({au(r',s"),ap(r",s")})o, (26

while the autocorrelation function forAa, vanishes:
D,p(r’,s";r",s") (Aa,(r’,s")Aag(r",s"))1=0. The average

[ .
—_ _ a2 I ! "ot |
=-e (a,(r',s")Aag(r",s"))at fanex;{%sgg[a;t]
(X)at= i

fDaexp{%Sgﬁ[a;t]

(27)

_ ;L_G)(SI _S")ez<[aa(r,,S,),aﬁ(r”,sﬂ):bo, (25)
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is the averagéX),; of Eq. (17), calculated in equilibrium.  specializes to the usual equation of motion for the den-
In the Coulomb gauge the most troublesome contributionsity matrix, izd,p=[H,p]. The extra complication in the
arise from the low-frequency limit of the so-called transversegeneral case is the term quadratic in the density matrix:

part of the gauge field propagator, , ,*>*®which in Fourier  —p,JH(+)—H(—)]pac. However, we restrict ourselves to
space is given by the linear response regime.
i i didj E. Formulation of linear response
D, (qw)=> e¥el =IDy(q,w). (28) _ _ P
ikl q We are interested in the response of the system to an

external driving fieldg$ and in particular in the change in the
density matrix:sp(r,r’;t)=p(r,r’";t)—pY{r,r’;t). The su-
perscript “eq” still denotes equilibrium wheré=0. In gen-
eral both the gauge-field-dependent density masgj A

1 —a;r,r’,t) and the effective action for the Chern-Simons
field Sgi] a;t] depend onp, giving rise to two different con-
tributions to dp(r,r’,t)—compare with Eqs(16) and (17).

Heree™=¢¥¥=0, Y= —¢¥*=1, and the indices j, k, and
[ run overx andy. In equilibrium in the limith o <qug the
propagatoD | | is given by the standard approximatin

q

D ,w)=~2mh—

11(qw)~=2m Pr 2me?v(q)q
iw—

3

(47h)2hpe The contribution coming from the variation & a;t] can
be accounted for by a change of variable from the externally
q 1 applied field¢ to the total gauge field felt be the composite
=27Tﬁp—F fo—gqr L (29 fermions:
7
For the Coulomb interaction(q) =%/2¢q, so =1 andg, Al @) =(¢(1),0) +Ajng(ast). (33

= (1 pd)3\mec in terms of the average Coulomb energy Here A, 4 is the self-consistently induced gauge field due to
ec=(€?/4me)\/n. nis the density of the electron gas. Other the change in the current and the density witeis applied.
values of k= <2 corresponds to a power law decay”. Technically it is defined by the demand that

In equilibrium C is determined from the fluctuation- 1 ceqr -
dissipation theorem. In particular in the Coulomb gauge is Serl a— Aing(a);t] = Scifait]. (34)
the most singular contribution due to the transverse part ofrom this definition it is not immediately clear that the in-
the propagato?4 duced field is the same on the forward and backward parts of
the contour and thus can be interpreted as a physical field.
aiq; ho However, a careful inspection of Egdll) and (20) shows
Cij(Qw)~ _( Sij— ?) CO”’( m) ImD, , (q.0). (30 this is the case. Furthermore, it is seen that the induced elec-
tromagnetic fields corresponding £g,4 are

D. Equation of motion for the gauge-field-dependent A
density matrix Bind(Aer—asr,t)=— Y OpacdAe—a;r,1;t),  (35)

In Appendix A we have by brute force differentiation

showed thajp,. fulfills the all important nonlinear equation Awh
of motion Eind(Aei—a;r,t) = e ZX O] a( Aei— a;r,t)+er dr’
if19tpac= (1= pad H(t, +)pac—pacH (t, )(1_Pac)-(31) X0(r—r")8pac(Aeg—asr’,r';t), (36)

This equation should be read as an operator identity. In Ed{vhere
(Al12) it is written out.H(+) is the kernel in the quadratic
action for the Grassmann CF variables on the forward part of

the contour, i.e., e (r
xXexp | %fr,dr”'Atot

H(r',r";t,+)= 5(r’—r”)( —e¢(r’,t)+eay(r”,t,+)

Opac(Aei—a;r, 1", 1) = pac(Ac+ Agr—asr,r',t)

—padAe—a;r,r',t), (37

2
5j a(Aeff_ a;r:t) :ja(Aeff+ Atot_ a;r,t) _jga(Aeff_ a;r,t)

(39

(32 are the changes in the density and the current, respectively,

a(+)=[ao(+),a(+)] is the gauge field on the forward induced by the total fieldAy. The phase factor
contour. Likewise isH(—) the kernel on the backward in exdi(e/h)[;, dr"- Ayl has been introduced in order to let
time part of the contour. If the gauge field is identical on dp,. refer to the equilibrium state. For instanég, results

the forward and backward sections of the contour, 849)  when 8p,. is substituted forpgd in the expression for the

1[4
+ ﬁ[i—V”nLeAeﬁ(r”)—ea(r”,t,+)
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equilibrium current, Eq(19). Equations(35) and (36) are H(+)+H(-) 1

what are expected on physical grouid3here is a magnetic H” =——> | *l3 _Pac) [H(+)=H(=)]

field associated with a change in the density of composite $=0 ¢(201)

fermions and thus the amount of attached flux. There is also

a Faraday electric field associated with a current of attached H(+)+H(—) 1

flux. The last term in Eq(36) is due to the electron-electron H-= —[H(+)— H(_)](__Pac)

interaction. 2 $-0 2 .
Golubev and Zaikihdid not perform this change of vari- (42

ables, since the difference between the external and the totghe peen introduced in analogy with the equation of motion
field is not of great bearing in their application of the formal- ¢, 1,0 physical one-particle density matiika,p=[H,p].
ism to weak localization. The second term in their formula ++H" because the Chern-Simons field is (tjifferer{t on the

(46), which they neglect, is exactly what is covered by thiStoyarq and backward contours. The inhomogeneous stimu-
change of variable. For composite fermions such a neglect i85 D=D,+D, is split into two parts, each of which are
not permissible. For instance, the Hall conductandee to auge invariant in the total applied fiefd,,. D, contains all

the Faraday electric field induced by the current—the first, | dependence upon the difference gauge Aidwhile D,
term in Eq.(36). The mechanism is completely analogous ©jg independent oAa. In Appendix B the explicit expressions

the treatment in the case of the Boltzmann equéffon. for D, and D, are listed. In linear respons@; and D,

t TEzJacobl'anEass?igted c}’\?f;)the t\r/]arl%blet;:hingg om contribute additively to the physical density matrix. The re-
0 a-Aing(a) in Egs. an IS the 1dentity 1, SN ¢,nse due td, we will neglect, since it vanishes in the

,?Otc:] éhfe d(atpsity ?Tg the currf('ant, a_nd ?‘ﬁd(a)’ arﬁ rteh- approximation whereD is replaced by its average value
arded functions of the gauge fiefdy—a. Consequently the (D)a}. Below we do not go beyond this approximation.

change in the physical density matrix In the real-space representation used alidi®not gauge

invariant in Ag(r) —a, so we find it convenient to change
Sp(r,r’ ;t)=< Opac(Aer—a,r,r';t) representation to the gauge-invariant Wigner function set of
variables. In analogy with Eq$4), (5), and(7),
e(r ed
><exp||hJ’r,dr [Aer(r")—a(r ,t)]]> . D(r,r’,t)zf dp
at (2mh)?
(39 .
Notice that so far no linearization in the applied field has Xexrl(;i—f’dr”.[p—eAeﬁ(r”)Jrear”,t)]
been performed and everything is exact. r
The averagéX)g+, Eq.(17), we know how to calculate, 1
Egs. (25) and (26). The linear response gf,. to the total XD E(r+r’),p . (43
field Awt, Spac(Ae—a;r,r’,t), is obtained in the next sub-
section by solving Eq(31) linearized inAy: When the generalized density matrix(r,r') is peaked
aroundr=r’ on a length scale which is much smaller than
ihatépac(r,r’;t)zf drH* (0,1 1) 8pad(r,r'3t) the typical scale of variation of the total driving field, the
gauge invarianD; and thusD are approximately equal to

the standard Boltzmann equation driving term
—f dr”Spad(r, r"; HH " (r",r',t)
D(R,p)~—e

1 ~ J
EpXZBtot"' Etot ‘ﬁ_pwa(Aeﬁ_a;R!p)' (44)

+inD(r,r’ 1), (40)

where the explicit dependence on the gauge fidlds—a In the presence of the gauge fieddz—a the Wigner distri-
and A is suppressed in the notation. New one-particlebution functionw,(Ag—a;R,p,t) is defined in analogy with
Hamiltonians Eqgs.(5) and(7):

i [R+Ar2 1 1
Wa(Aeﬁ_a;Rypyt):f dArexp{—%f dr”'[p_eAeff(r”)"'ear”,t)])pac<Aeﬁ_a;R+EAr:R_ zAr;t . (45)
R—Ar/2

In the semiclassical limit it corresponds to a field-dependent phase-space distribution function. We will not consider effects
beyond the approximation where it is the Fermi distribution function.

F. Single-particle path integral in linear response

In this subsection we obtain a formal representatioa®in the linear response in terms of a single-particle path integrals.
The first step is to notice that the solution to E40) can be written in terms of evolution operatdjs':
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it
5pac(r,r’;t)=—%ﬁ dtifdrlj droUf(r,t,ry, t)D(rq,rp,t)U = (ro,tr' t). (46)

The evolution operators

R i [t
UM(t,t')=Tﬂex;{—%f dt'HA") |, ==, (47)
t/

where T+ and T~ are the time and antitime ordering operators, respectizely.and U~ can be represented as usual
single-particle phase-space path integrals

r(ty)=rq
UH(ry,tyir,ty) =

r(ty)=rop

- .
Drpo explfll—ft dtf (p—eAgst+ea)-r—H*(r(s),p(s),s)]{, u==. (48

The response of the physical Wigner function is thEgs. (7), (39), and(46)]

— t dpl D, ot . S +)\€q
&N(R,p't)_f,wdtif dRIJ' (zwﬁ)2<‘J(RvpvtiRliplvtl)D(Rliplvtl)>a,t' (49)

where

J(R,p,t,R, ' Pi ’ti):f dArf dArif dr{ex;{ — ;l—fRArlzdr”_ [p_eAeff(r”)"f'ear,',t)])

R+Ar/2

i (Ri—Arj/2
Xex;{%J dr”'[pi—eAeﬂ(r”)+ear”,ti)])

Ri+Arj/2
N Ar Ar; - Ar; Ar
XUT| R+ - R+ — 4 JUT | Ri- = 6 R= 0t (50

is the propagator of the stimull® in the Wigner represen- is the action for noninteracting particles in an external

tation. gauge fieldAg. The closed contour is depicted in Fig. 2.
Inserting Eq.(48) we finally arrive at the following con-  All the contributions related to the Chern-Simons gauge
tour path integral representation for the propagdtor field are gathered in the second term in the exponent of
Eq. (51):

J(R,p,t;Ri,pi,ti)zf dArf dArif dri’f Dr(+)

x [ poce) [ ori=) [ oo

(R’t + A_zriaphti) aa(rv P, ¢ = +) (R+ %7 P, t)
i -
XeX[{%SQ"‘ %As)l (51) }(R’h piati) (R7 P, t) +
Where (R’L - A_zrivpivti) aa(r, p.p= _) (R_ %7 p, t)
. : _ FIG. 2. The closed contour patler(o),p(o)) starts out
So= é dor-{p(0) —eAsr(o).s]} at o=(t;,+) at (Ri+Ari/2,p;) and runs alondgr(s,+),p(s,+))

up to (R+Ar/2p) at contour times=(t,+). Here it runs along
t the straight line path fronR+Ar/2 to R—Ar/2 with the con-
—J't.dsHo[r(s,+),p(s,+),S] stant momentunp and at constant. From here it then runs
: back along[r(s,—),p(s,—)] to (Ri—Ar;/2,p) at contour time
t o=(t;,—). Finally it runs along a straight line path back to
+J' dsHy[r(s,—),p(s,—),s] (52 R;+Ar;/2 with the constant momenturp; and at a constant
§ timet;
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AS=+e fﬁ {dr'E[r(cr),s]—dcr;o[r(cr),s]}+eftds[%—Wa[r(s,+),p(s+,+),s]
5

p(s,+)
X o -Aa[r(s,+),s]—Aag[r(s,+),s]

+eftds(%_Wa[r(sl_)lp(s+!_)ls]]
§

p(

2
Aa[r(s —).s]— Aao[r(s,—),SJ} - ;—mftfds{Aa[r(s,+),SJZ—Aa[r(s,—),S]2}

+%§j ds{Aa[r(s,+),s]-Vw,[r(s,+),p(s*,+),s]+Aar(s,—),s]-Vwy[r(s,—),p(s*,—),s]}. (53

Heres™ on both the forward and backward in time contours is a bit closer to the observation tiraes. The only place
where this small time shift is important is i, (r,p(s"),s), the Wigner distribution function correspondinggg., which is
likely to be a rapidly varying function of the momentymat the Fermi surface. Note thatin the semiclassical limit is the

kinetic momentum in the gauge fielLs—a.
In the rest of this article we are only going to consider the approximation obtained by factorizifg9Eq.

o= [ [ 2

Above we argued that the stimuly®)3% in the semchaSS|caI limit is the standard Boltzmann driving term, (B4). We
calculate the average of the propagaiqerturbatively to second order in the Chern-Simons gauge di€ldiis procedure is
gauge invariant. First notice théAS)34=0, since(a= 0)531=0 and all averages with Aa at the latest time vanishes. To
second order in the Chern-Simons fleld fluctuations is

<‘J(R patanput )> <D(R|1p|1tl)>gf]t (54)

(J(R,p,t;R;,pi 1) eq—fdArfdArfdr fDr(wL po(*f*)fDl’( )po( )exp{ Sot ~ Snt>, (55)

where

t s/
Smt(tﬂt)—zﬁ(AS%eq— > ouu ft'ds’Jt. ds'Li(s', u";8", u"). (56)

r l-"”7+

For later use we have incorporated the time interVatX in which the interaction takes place into the notation for the action
and introduced the retarded Lagranglap="L;(s",u";s",u"):

_ — -1
Lim=i®(s’—s”)(—l,r(s’,u’))C(r(s’,M’),s’;r(s”,ﬂ”),s”)( e ”))
1 -1
_M//[E_W[p(sutﬂ//)]](_1'I',(S/’M/))E(r(sl,M/)’Sl;r(s//”un)’s//) 1 y o ) (57)
P CRVTD)

We have used that to lowest order,(a;R,p,t)=w,(a;R,p,t)[a—o=W(p) =fr(ep), wheref(e) is the Fermi distribution
function. The 3<3 matricesC andD are defined in Eq925) and(26). In the Coulomb gauge their most singular part is the
transverse part. Below we only discuss this most singular part, i.e., the transverse contributjpn to

i

i

’ /" 1 dq do —io(s’'—5") i ' ’ "noon
Limf@(s—s)gf(hmz 77 ® exp 70 [r(s', 1) = (8",u")]

h
—[QXF(S ) ]-[axr(s,p )]COU’< kaT)lmDu(q )= M”ﬁO(S —s")

Xf dq d_w i I F(I_ by - )
(th)z 27TeXF[ iw(s"—s")]ex ﬁq'[r(s )= (s u")]

1 . 1 )
Xm—qz[qx r(s’,u")]-[axp(s”,u") 15 D11 (g, 0){1-2w[p(s 1} (58
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The Kubo formula

stimulus propagation respouse
& ; = . .
Hipert x=1=8 = O X = x Hpers FIG. 3. An overview of linear response theory
E—¢&

for noninteracting particles in the Kubo formula,

the path integral formalism, and the Boltzmann
equation. The linear response results from a
stimulus combined with propagation. The figure

The path integral formalism

stirnulus propagation respouse : R )
& o = illustrates where the distribution functici? ap-
D[fY J = [D e = —5— X =JD[f] pears in the three different cases. Note in particu-
lar the absence of° in the propagation part of
The Boltzmann equation the path integral formalism and the Boltzmann
equation.
stimulus propagation response
& =
D[f Gl= [i--Vr+1'>-Vp]‘1:—>— §f = G™'D[fY

In the second ter;yD |, can be replaced by either Re, tem as is done in Fig. 3, where we also compare to the
or ImD,, as long as we remember thia}, is retarded ¢’  classical Boltzmann equation. The linear response is in all
>g"). three cases split into a stimulus that is propagated in order to
give the response. In the Kubo formula the stimulus is the
applied potential, while in the path integral formalism it is
the induced excitation, which in the semiclassical limit
Summing up, the linear response of the one-particle denequals the usual Boltzmann stimulus, E4g). Despite that,
sity matrix to an external perturbation is given by E49),  the stimulus is very different the Kubo formula and the path

G. Recapitulation of the major results

which schematically can be written as integral formulations have similar pictorial representations of
the propagation: in both cases there is a forward and back-

&sz (ID)% (59) ward prppagating ele_ctron line. However, in the Kub_o for-
at: mula a line mathematically represents a Green'’s function and

the propagator in the noninteracting case is the Lindhard
%unction?® while in the noninteracting path integral formal-
ism a line is a conventional free particle Feynman path inte-
gral. In the semiclassical limit the double Feynman path in-
&N:f (YD), (60) tegral reduces to the classical path integral propagator for the
’ ’ Boltzmann equatio® The difference between the Kubo for-
In the semiclassical limit the stimuly®)3} is in the classi- mula and the path integral formalism is highlighted by the
cal limit given by the driving term in the Boltzmann equation obiervfatmn | that the(F(_ermdl) d|s_tr|t|)ut|o.nh.funﬁt|on in the
(44). In Eq. (55) the propagato(J)l is represented as a Kubo formula is contained entirely within the propagator,

q : . - . : o while in the path integral formalism it is the stimulus and not
ouble single-particle path integral with an action similar to . T .
. . ; . -~the propagation that depends on the distribution function for
the familiar Caldeira-Leggett influence functional. Schemati- . : X . .
. a noninteracting system. Notice also that in the path integral
cally we write ) .
formulation no statements are made about equilibrium. The
i fact that for a noninteracting system the propagation is inde-
(J)gf‘t:f D(path+)f D(path—)exr{%(Sﬁ Sn) |- (61)  pendent of the actual distribution function is well known
from the Landauer-Bttiker scattering approach to transport
Here S, is the usual action for noninteracting particles, Eq.through a noninteracting part of the system.
(52). It does not couple the forward path and the back- Within the Kubo formalism it is very natural to treat the
ward path—. S, contains the contribution from the gauge interactions perturbatively. The effect of the interaction is
fields and the interactions, and it couples the two paths. It igraditionally divided into self-energy contributions, which al-
given by Egs.(56) and (57). The imaginary part oS, is  ters the propagation properties of a single line or Green’s
governed by the fluctuations, E(26), while the real part is function, and vertex corrections that connect the two lines. It

This expression we approximately factorize in order to arriv:
at Eq.(54) or, schematically,

determined by the retarded gauge field propagator(®&s. IS possible to make the same distinction in a perturbative
The distribution function also enters into the real part. treatment of the interactions in the path integral formulation,
and we will also use the terms self-energy and vertex correc-

IIl. COMPARISON WITH THE KUBO EORMULA tions to distinguish between interactions that only involve

one path and those that connect the forward and backward

In equilibrium a standard way to perform linear responsepropagating paths. For an interacting system the propagator

is to use the Kubo formula. Though the path integral formal-in the path integral formalism thus also depends on the actual
ism and the Kubo formula on a formal level are similar, theredistribution function. This is well known in the classical limit

are some important differences in the descriptions. This i®f the Boltzmann equation, since the propagator then de-

most clearly illustrated by considering a noninteracting syspends on both the collision integral and the Landau interac-
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tion function, but still the stimulus has already gathered the The conjugate variable to the angleis

most trivial dependence upon the distribution function. P

—So(Rs,Pr, 1;R;,P;,0) = — P X Ar (1). (66)
IV. SEMICLASSICAL LIMIT AND THE SEPARATION 2o

BETWEEN THE TWO PATHS . .
Remembering that the relevant momentBrapproximately

Traditionally the semiclassical limit of a double path in- is the Fermi momentum we will denote the quantityP;
tegral is the limit where the important contributions are thosex Ar by the width. The Heisenberg uncertainty relation then
where the forward and backward paths are almost identicabays that the standard deviation of the width is approximately
In a discussion of the semiclassical limit it is thus importantthe Fermi wavelength  divided by the angular uncertainty
to know how far apart on average the forward and backwargh the propagation direction. For a well-collimated beam the
paths are. This information is contained in the moments ofvidth is thus big, while it is smal{of the order of\g) when
the difference variablér(s). For a noninteracting system or measuring the current response to a homogeneous field, since
more generally a system with instantaneous interactions thig this case the angular uncertainty is as big as possilfle
standard deviation oAr can be estimated from the Heisen- order 1).

berg uncertainty relations betweAm and its conjugate vari- The separation between the paths is not in itself directly
able, the average momentuf That P indeed is the conju- measurable, but it tends to show up indirectly in experiments
gate variable can be read off from the relations probing the semiclassical regime. It marks, e.g., the cross-
5 over between the long-wavelength regime, where the vertex

2 S(R; P t:R PO = —Ar (1), 62 corrections are comparable to and pamally cancel the self-

7P, (R, Pr.GR;,PLO) ® 62 energy, and the short-wavelength regime, where the vertex

corrections play a minor role. For instance in the calculation
of the inverse transport time due to impurity scattering in the
famous factor (% cosé) the scattering anglé can be inter-

) i , i preted as (#)g\g, whereq is the scattering vector and, as
wheres, is the action for a noninteracting system, B52). ~\ye saw above)( is the width. For the composite fermions,
We are mainly interested in Fermi liquids, so we prefer o, here the force is transmitted via a magnetic field and thus a
use a polar coordinate system representation of the averagg, through an area, we show in Sec. V that the width acts as

O—,ipiSO(Rfvayt;Ri,Pi,O)ZAI'(O), (63)

momenta: an effective cutoff in the conventional calculations of the
cos¢(s) effective mass.
P(s)=P(s) sind(s) )’ (64) The above considerations regarding the width are only

true for a system with a time-local action. For composite
where the angle along the Fermi surfatés measured rela- fermions this is not the case, since the important transverse
tive to an arbitrarily fixedx axis. The conjugate variable to fluctuations have a characteristic frequency arogygf; see
the size of the momentum is Eg. (29). We thus have to take the lowest-order correction
5 1 due to the terms in the action that are not time local into
. _ account. We do this perturbatively.
a_HSO(Rf'Pf't’R"P"O)__Efpf'Ar(t)' (65) To this end let ups define th}(/a average width squared

cy\2 H
From the Heisenberg uncertainty relation we then expect thgl/qi) attimes as

standard deviation of (P)P-Ar, the difference along the

path, to be given byi divided by the uncertainty in the size

of the momentum, i.e., (B)P- Ar~#Avg(kgT) L. This argu-

ment is carried through in more detail in Appendix C and the

coefficient tofiv (kgT) ~* is also shown to be 1B. where the averaggX|)(o; is defined as

2 2
q_c) =(Ipr’[P(S) X A1(5) )0, » €7

L

f aP deff if dR/R(P;,R;)D(P, R-)<<Xexp{i—SO(Rf P, t;R;,P, 0)D>
(27h)? (2mh)2) T o h R (011
(IXDog= : . (68

f dPy defif dRR(P;,R;)D(P, R-)<<exr{l—SO(R b LR P O)D>
(27Tﬁ)2 f (27Tﬁ)2 i faIf (LAY 7 PR P, .

Here (X))[oy IS @ shorthand notation for the path integral over paths starting at time 0 and ending awitinehe Wigner
function variables as boundary conditioi))(o; is defined such as to include the acti§p(t,0) arising from the interac-
tions within the interva[0,t]:

i
<<X>>[O,t]: f[o,t]DRf[o,t]DPf[o,t]DAp DAr ex;{g$nt(t,0))x. (69

(ot
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In the semiclassical limit the stimulu3(P;,R;) is given by Eq.(44). For a current measurement the respoR4®;,R;)
=—evi) 1=—e(1/m)pQ2 L. Q is the volume of the sample. In the long-time limit the cutoff turns out to be independent of
t ands andt can be taken to be infinity or rather a scattering time. When no confusion is possible we will omit th@Gridiex
Notice that according to Eq55) the last factor in the denominator is

i
<<exp{%50(t,Rf,Pf,t;Ri,Pi,O) >> :<J(Rf,Pf,t;Ri,Pi,0)>a’t. (70)
[0.]

It could easily be argued that it is better to use the absolute value of both the regp@isB;) and the stimulu®(P;,R;)
in the definition of(|X|), Eq.(68), since the response might be the sum of a positive contribution from paths originating in one
part of the stimulus phase-space and a negative contribution from other parts of the phase-space. However, the distinction does
not seem to be terribly important in the examples discussed below, so for simplicity we stick with the above definition.

Ultimately we perform a perturbative expansion in the scattering events that begin before the observatamtnfiaish
later thans. We thus split the action due to the interacti®p, Eq. (56), in the averagé|X|>[0,t] into three parts

t S
Sn(t,0)=Sin(8,0)+ St 8) + > M’M”LdS'Jodg'Lim, (71)

;L’,[.L":i

where the Lagrangiab;,,=L;(s",u";s",1”) only considering the transverse contribution given by &8). Also using the
conjugate variable relationship, E@6), to rewrite the width squared, E¢7), we finally obtain

A dP(s)
(E) _)\FNJ (21Th)2f f(zqm)Zf dRR(Pf’Rf)D(PnR)f P dR(s)

i too(s J
><<<<<exp<% ,EN:t w' Lds fods’ Lim)—&d)(s)

I
i
XeXF(gSO[R(S),P(S),S;RiaPiao])a¢(S exp( Sol Ry, Py, tiR(s),P(s), s])>> >> : (72
(0] [s.t]
where the normalization is contained inside the new constant

. dP
N 1:f MI)J f(zwﬁ)zf dRR(Pf,Rf)D(P,,R)<<eX[{ So(Ry Pyt R,,P,,O)}>>[01t]. (73

In the next two subsections we perturbatively calculate the lowest-order contribution from the non-time-local term
S - w[ds [3dS” Lig to the width, Eq(72).

A. Zeroth order or the time-local limit revisited

To lowest order or in the so-called time-local approximation, the last term ir{7gvanishes and the width squared is

\2 dP(s )
(qL) FNJ (2wh)2f f (zwh)zf dRiRA Pf’Rf)D(P"R)f dR(s)
J
ad)( )<‘][R(S) P(S) S; R|1P|10]>ata¢( )<‘][Rf!Pf!t1R(s) P(S) S]>at (74)
Let us study two distinct examples. The first is the case of homogeneous driving, where
D(P,R)=D(P)=2 exli »$)D,(P). (75

v

The width squared from theth mode is thenzz)\,zz for a rotation-invariant system. In a path integral calculation of the impurity
scattering integral in the Boltzmann equation the well-known factercdqv#) factor originates from an average of

2 sirf[26619¢(s)], so as expected it is the widih\  which sets the boundary between the small-angle scattering regime, where
the vertex corrections given by de#) are important, and a large-angle scattering regime, where the vertex correction averages
out. Notice that for an elastic scattering system this averaging has to be performed via the boundary conditions, while in
general an interacting system is self-averaging.
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As another example we consider the gedanken experiment typically considered in connection with the interpretation of a
single-particle Green'’s function. A particle is fed into the system at the Fermi surface and in a direction parallel dsithe
In order to make it a bit more realistic we give the direction a finite sprgad.e., we take B exr{(l/%iz) ¢i2]. Atimet later
we measure the probability that the particle is still moving alongxtlagis with a directional spread &;; i.e., we takeR
« exfd (1/2A7) ¢?]. The width squared is in this caa@(1/A2+ 1/A%). In particular the width diverges as the angular spread to
the power—1.

B. First-order non-time-local correction

Let us move on to discuss the first-order correction to the width squared due to the non-time-local part of the interaction
S e WS [3dS"(i15) Ling:

A(j—i)zzxéjvif(zwﬁ)zf j(Zwﬁ)zf dR; R(P;,R;)D (PI,R)f ﬁ)z dR(s)

t s J i
x> M'M"Jsds’fods'<<<<Lim(s',ﬂ';s",u")w(s)exp(%—so[R(s),P(s),s;Ri,Pi,0]

IJ’"M”: +

ex R,P,tRs)Ps)s)> >> . (76)
&d)( % SO[ fo T f ] 08 .

The contribution from the expansion of the normalizatith has been neglected since it turns out to cancel a term in the
expansion of Eq(76), which we anyway neglect in our discussion below. The dominant contribution is due to the transverse
long-wavelength fluctuations, whege Ar<1. To lowest order in the interaction the extra contribution fiogp, Eq.(58), to

the width squared is then

A(qﬁ_i)zzj\/f 2wh)2f f 2wh)2f dRi (P, ROD(PLR) 5 f (2 ﬁ)zfd ®

he
f ds’ f f(zwﬁﬁ r<2k T)'mDu(q w)exg —io(s' —s")]

. 1 1%
><<<<< q-Ar(s’) qu(s) qqu(s)%q-Ar(s)xM(S)
><exp( SIR(S),P(8).5iR, P,0] + 1 258 q(s—s”)) ’
fi ap(s) Ig(s)
9€p(s)
X ex So[Rf,Pf,t,R(s) P(s), S]+h 7p(s) -q(s’'—s) . (77)
[0,9] [s.t]
|
To lowest order we will neglect the effect &(s,0) and 2\% 1 a2 1
Sin(t,s) inside the path integral§ )os; and { Js. re- <_) - F f
spectively. The productr(s’)Ar(s”) we will replace by a5/ 6 (ksT)? p? 2nh ) 27

its average value. The most important contribution comes 5
from the longitudinal part ofAr(s’)Ar(s"). Furthermore, xcot}(_w)[_”n[)u(q w)]. (79
it turns out that the relevant time scale in the above inte- 2kgT

gral, 2(veq) ', for the important fluctuations is smaller pqp the composite fermions the spectral function
than the correlatlon time aAr(s')Ar(s"), which is of the

order #(kgT) ‘2g.p2/vepe~f(ksT) !, so we replace q
Ar(s’)Ar(s") by its equal-time longitudinal average value —ImD_ , (q,w)~ 27771——“,72
15208 (kgT)%; see Appendix C. Within these approxima- PFw?+(g,9""7)

tions the correction to the width squared is Eq. (29), so the width squared is approximately

w
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52 , VEPE (29-1)I(1+ ) classical Iim_it,_ where the external fields are cqnsidered to be
— ~Ng 1+ ( oK T) smooth, so it is hard to define, yet measure, distances shorter
cl B than a transport mean-free-path length. This is necessary in a
3/(1+ 7) mass measurement, since the tinneust be comparable to or
X(UF—DF) 23/(1+7) Ecs 87 (79 smaller than the transport time to make the path reasonably
Zﬁg,,p,’:7+1 9 CZ(1+ 7) well defined. Having said this one might hope for an inter-
Here =1 corresponds to our prime example, the Coulombr.ne.di"’lte regime, \{vhere it is ppssiple to' at 'Ie.ast put some
interaction limits on the effective mass, while still maintaining the semi-

classical line of thought.
52 fivr V20 pe| 324 [ 434 One 12attempt at this is done by Willett, West, and
praiad re Y 5 (80) Pfeiffer;> who uses a surface acoustic wa\®AW) to gen-
B erate an external electric field with a wavelength comparable

OcL
to the mean free path. They then apply an external magnetic

We expect the Fermi energjvpg to be of the same )
order of magnitude as the energy scale set by the interactiofrleId and look for resonances between the cyclotron radius

. (a2 _and the wavelength of the SAW field. In order to observe
l.e., the average Coulomb energy=(e“/4me) Vn. The fac these resonances the cyclotron frequency cannot be orders of

tor (vepg/26c)¥%5 (4/m)¥*is thus of order 1 and the width is magnitude larger than frequency of the SAW wab¥&his
approximately given by the geometric mean of the Fermieads to an upper estimate of the elapsed time and thus the
wavelength and the de Broglie wavelength. effective mass.

In perturbative calculations of the self-energy the cutoffis e will denote this sort of experiment as a semiclassical
often formulated in terms of a frequency cutoff. The fre- mass determination, since the forward and backward paths
quency cutoff corresponding to E(BO0) is together perform the cyclotron motion. This is in contrast to

) 9 (7|5 2ec)2 g);}pirilfrllentsdprcl):)ing the single-par:icl? energr;]y spec.trum,tlike
- ~7-1 T ubnikov—de Haas measurements. In such experiments ac-
wour=Gue = ecksT 4<4) (UFpF) - 8D cording to the Bohr-Sommerfeld quantization s?:heme it is

We want to emphasize that this transverse cutoff is considi® phase of a single path that causes the resonance.
erably larger than the longitudinal cutoff, which in Appendix Below we show that in the semiclassical experiments the

C is found to bey3% kg T. In the next section we show that width between the two paths or in other words the enclosed
in the case of Coqume .interaction the effective mass ded’€@ acts as an effective cutoff on the contribution from the

pends logarithmically onwg,, so the temperature depen- magnetic field fluctuations to the effective mass. Int'he Bohr-
dence of wy, and thus the inverse width squared areSommerfeId resonance sch_eme th_e CUtOﬁ.'S Squ“e.d by the
JT|InTf?, which tends much slower to zero than the more2rea enclosed by the path its€ifThis area is much bigger
conventional linear temperature scalfhg. tsr:]?guge semiclassical area and the cutoff is correspondingly
In order to extract the semiclassical mass from the path
V. EFFECTIVE MASS integral description it is in principle necessary to analyze the

In the last section we calculated the width between the&oncrete experiment in detail. Luckily it turns out that in the
forward and backward pat/q., , Eq.(80), and we hinted Semiclassical limit it is possible to come up with an approxi-

at how this width might play the role of an effective cutoff in Mately local relation between the velocity and the momen-
the calculation of the effective mass. In this section wetum. This implies that the effective mass is almost indepen-
elaborate a bit more on this connection. dent of the concrete mass measuring experiment in the

Experimentally the effective mass of a particle is deter-Semiclassical limit. o _
mined by simultaneously measuring the momentum and the For a noninteracting system the derivative of the action
velocity. In a Fermi liquid the momentum is typically the With respect to the momentum yields the Hamilton equation
Fermi momentum. The velocity measurement typically in-for the velocity 6Sy,/6p(s)=r—dH/dp=0. For the two-
volves measuring how far the particle has propagated in @ath action it is the derivative with respect to the difference
known time spart. This is a little bit at odds with the semi- momentumAp(s):

2ec T

s 1 t o dq do
dAp(s) _R(S)_EP(S)_LdS f (2t y2) 27 @)

| . )
xexp{,'i—q-Ws')—R(s)]}exp[—iw<s'—s>]x > w'exp(%qumr(s')—m(s)])aq

wop' =+

X

1
P(S)+M§Ap(3) ] (82

1 1
P(s™)+nzAp(sT) mq®*

J |1
Xﬁ E_W

195327-14

. 1 .
R(s")+ E,U«'N(S')




SINGLE-PARTICLE PATH INTEGRAL FOR COMPOSIE . . . PHYSICAL REVIEW B 64 195327

which yields the relation between the velocity and the mo<|P|) is the Fermi momentunp-=prv¢ 've (see Appendix

mentum, at least in a stationary phase approximation wher€). At least for a noninteracting systefrp(s) is of the order

dSIdAp(s)=0. On average the stationary phase condition iof the typical wave vector of the external force field. Our

exact, i.e., interest is the semiclassical limit, so we will assutig(s)
-pr<kgT and neglect its contribution; i.e., we patp(s)
=0. The average velocityr is then

<’ 7S >—o (83

dAp(s) | 1 t d d

VF=—PF_J dS’J ] _wUFm_lpFDu(q,w)
m s (2mh)?) 27

Notice that after performing the integral ov&(s) and i

Ar(s) inside the average as defined in E§8) we have XeXF{—q-[R(s’)—R(s)])exp:—iw(s’—s)]

Ap(st)=Ap(s)—q and P(s")=P(s)—suq. The terms h

with u=u' in Eq. (82), i.e., those terms where the interac- 1

tion connects either the forward or backward path with itself, X < 2 sir{—q- Ar(s")

give rise to that part of the renormalization of the effective 2h

mass that is attributed to the self-energy in the usual pertur-

bative treatments. This renormalization mainly depends on x{sir{iq-m(s)

the local properties of a single path and it is thus independent 2h

of which pair of paths is relevant in the given experiment.

On the other hand, the terms with# w' in Eq. (82), which ) 1

are associated with the vertex corrections, depend on both T+l cos{EqAr(s) ‘>

the forward and backward paths. The renormalization due to

these terms thus depends on the exact experiment. For in- (85

stance in an interference experiment the two paths are almost o ) o

independent and the vertex contribution is expected to vanisWe are mainly interested n the long-wavelength limit, so we

due to destructive interference in the phases associated witMll neglect terms of ordeq compared to terms of qrde,:

each path individually. In the semiclassical limit, where theWe also assume that bofR(s)| and the corresponding ve-

forward and backward paths typically are close to each othetpcity |R(s)| are distributed evenly around the Fermi surface.

it is fortunately possible to derive a universal expression foin this approximation the second term inside the parentheses

the renormalization of the mass. Below it will be shown thatcan be neglected. We assume that the relative variation in the

the interaction modes with a wavelength longer than theselocity around the Fermi velocityg is small; i.e., the tem-

separation between the paths does not renormalize the maggrature is much smaller than the Fermi energy. It is thus

while the renormalization due to the interaction modes with gpossible to approximate the path locally by a straight line,

shorter wavelength is given by the usual self-energy contrit.e., R(s") —R(s)~vg(s’ —s). In the long-wavelength limit

bution. A possible interpretation is that the particle cannothe transverse part af- Ar is bigger than the longitudinal

distinguish between the field from a long-wavelength inter-part. The averaging procedure is approximated by indepen-

action and an external potential. dently carrying out the longitudinal and transverse averages.
For simplicity we neglect the extra terms arising from theln the longitudinal average we use the time-local approxima-

velocity dependence of the force; i.e., we treat the interactiotion outlined in Appendix C, so the longitudinal average of

as scalar. With this small neglect the average of the velocityx , - .. — (d/dP)w[ P(s) — uq] is approximately

denotedve=(|R|), is

d
2 GpWIP(S)~ ua]

d
2, 1 opWIP(9)~ual]

n==

1% * 1%
S, ~ gt -ual )= e 2t

1 t o dq do 1
VE= T PFm Jsdsf Eva PeD. 1 (g, )

(2mh)? x %fpw—uvp-q),
. n==

Xe‘i“’(s"s)< exp{%—q-[R(s’)—R(s)])Zi (86)

1 - where we _have used-=dep/JP. In the transverse average
Xsin =—q-Ar(s')| > ,uexr{ - —,u,—q-Ar(s)) we approximate

2h gt ht 2

J 1 11 N

X-5W P(5)+M§AP(S)_MQH>1 (84 2 S'r{ﬁq‘“(s )|sin 27 9-Ar(S)

]%

1 1 2,
~il-co %q.Ar(s) 1—-ex —50ad% |, (87

where in the first term it is used that the average momentum
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with the result that the effective mass*, defined aspr ~ where the estimate is valid at a temperature~d.13 K.

=m*vg, is given by The cutoff at this temperature happens at distarfangl
~6N~40 nm.
1 As expected the semiclassical effective mass,(B9), is
—~_{1+ ZUFJ ds’ f (2nh)? 5-ReD, (q,w) smaller than the mass deduced from the activation energy

and Shubnikov—de Haas measureméhtsctually about
i half as big. In the experiment by Wille¢t al'? the estimate,
X eXF{%Q'VF(S, - S)) Eg.(92), leads to a cyclotron frequency that at the secondary
resonance position is about twice as big as the used SAW
) frequency, 10.7 GHz. A naive argum&hteads to the ex-
xXexg —io(s' —S)]f de pectation that the secondary resonance can only be observed
o if the cyclotron frequency is much bigger than the SAW

1
X 1—exp< — 540

9 9 frequency. It is thus a matter of taste whether an “apparent
xa—fp(s)a—fp(s—vp-q) . (89 inconsistency” between the geometric resonance experi-
& & ments and the size of the effective mass arises. We here

NI T AP _ want to stress the word “apparent” since Mirlin and Ve’
Apart from the extra factor dfl —exp(=30,°q") ] this rela have shown that the secondary resonance can be observed

tion is identical to the usual relation derived from the self- -\ boo ihe cyclotron frequency equals the SAW fre-
energy. Thus the contribution from the short- Wavelengthquency
modes of the interaction to the renormalization of the mass is '

identical to the standard result, while the long-wave length

modes do not contribute. The cross over is at the widff* VI. CONCLUSION
and this is why we above have alluded to the width as an In thi h developed inal ficl th
effective cutoff. n this paper we have developed a single-particle pa

integral description of transport for composite fermions,
hereby extending the Caldeira-Leggett formalism for a
single particle interacting with an environment. Here the en-
vironment is the Chern-Simons gauge field. Our approach
is modeled over the work by Golubev and Zaikin on the

When the long-wavelength expression for the propagato
D,,, Eqg. (29, in the case of Coulomb interaction, is in-
serted into Eq(88) the integral is ultraviolet divergent. We
usepg as an approximative upper cutoff and get the effective

mass electron gas in zero magnetic field. As in the Caldeira-
2 2 Leggett formalism there is not one, but two paths in the path
m* ~m+ mi Pe i Pr (89) integral, one propagating forward in time and one backward.

n .

2 A new feature compared to the traditional Caldeira-Leggett

formalism is that the distribution function enters into the
For composite fermions the renormalization of the mass iseal part of the single-particle action. The imaginary part of

quite strong, so the effective mass the action is determined by the fluctuation spectrum, just as
in the Caldeira-Leggett formalism. Actually, the imaginary
2 pf: pf: part is so familiar that its effect previously has been in-
m*~———In (90 cluded by hand in calculations based on the use of gatffs.

3/2 2
T EC 205, In the second half of this work the formalism was applied to

the calculation of the effective mass, a quantity that de-
pends crucially on the real part of the action. This is a major
result, since previously it has not been possible to dis-
cuss effects related to the renormalization of the propaga-
Y T 19m (91) tion properties including the mass within a path integral
322m ' ' h.
. ec approac
Furthermore, for CF’s the effective mass turns out to de-
wheree = (€%/4m€)\/n is the average Coulomb energy and pend on the actual experiment. In a perturbative description
we as a typical valué$ have usedn=1.6x10"> m 2, ¢  of the CF's the nonuniversality of the effective mass is at-
=13¢,, andm~0.067,, wheree; andm, are the vacuum tributed to the fact that the long-wave length magnetic field
values of the permittivity and the electron mass, respectivelyfluctuations give rise to an infrared divergence of the self-
The argument of the logarithm is given by E§9), so  energy and the vertex corrections, separately. In a transport

is approximately independent of the bare mass
The prefactor

self-consistently the effective mass is measurement these divergences are known to cancel. In our
formalism the infrared divergence does not appear because
m* 4 PF 1 |1 779/4\/8\C the vertex a}nd self—er_1ergy contributions are never split. Not
— % 2m s_cl 2718 VigT qnly is the !nfrared Q|v¢rgence gpsent, but the renormallza—
tion in the infrared limit is negligible. Furthermore, in the
2 2 2 semiclassical limit the effective mass is universal, indepen-
4 pg 1 m - . ) - .
x(— - _) —| |=~6.3, (92)  dent of the actual semiclassical experiment, just as if there
w2 2mec) \m* were some underlying quasiparticles. Recently, various for-
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mulations based on dipolar quasiparticles have emetgéd. interacting systenti) and (i) no longer holds rigorously, but
Using such an approach Shankar and Murthy noticed that im some cases they still are expected to be a good starting
a particular approximation, where some of the constraints arpoint. The path integral formulation is then well suited to
neglected, the system is not compressible at half fiffifigis ~ study the lowest-order corrections due to the interactions. An
very cautiously phrased suggestion has been challenged Bxample of a system were this approach might be useful is a
Halperin and SterA®?* Our formulation naturally leads to a standard finite source drain measurement. For such a system
compressible system and thus supports the scenario put fdhe most important effect is presumably due to an out-of-
ward by Halperin and Stern. equilibrium stimulus. For a quantum point contact this has
By working in a real-space formulation our results arealready been explored using Green’s functidhsiowever,
obtained in a natural way, since the magnetic interaction acti¢ general for an interacting system the propagation proper-
via fluxes, i.e., areas in real space. In the path integral forties are expected to be renormalized too. Within the path
malism the size of the particle is defined as the separatiomtegral formalism this should be possible to treat, especially
between the forward and backward propagating paths. Onlif the nonequilibrium distribution function turns out, at least
those magnetic field fluctuations with a wavelength shorteapproximately, to be a translated Fermi distribution with an
than this particle size contribute noticeably to the renormalincreased temperature. To our knowledge nobody has at-
ization of the mass. In GaAs at~0.13 K we find the mass tempted this yet.
renormalization due to the magnetic field fluctuations to be The single-particle path integral technique is thus a prom-
roughly 6 times the bare mass. Furthermore, we have showiging technique for the description of interacting systems
that in the semiclassical limit the separation between the twoth in and out of equilibrium; especially, it may prove use-
paths, i.e., the size of the particle, scalesTas™{InT|"X.  ful for studying systems out of equilibrium not easily treated
This implies that the effective cutoff in frequency scales ashy other methods.
roughly T¥3In T|2. As usual the mass scales approximately
with the logarithm of the frequency cutoff.

Experimentally it is not very easy to measure the mass in ACKNOWLEDGMENT
the semiclassical limit. The best one can do is to put an upper
limit on the size of the mas$:2>Our result is well within the K.A.E. and H.B. both acknowledge support from the Dan-

limit derived from the experiments by Willett al*??* |n  ish Natural Science Research Council through OlenBo

standard Fermi liquid theory the mass in the semiclassicgpfrant No. 9600548.

regime is identical to the mass obtained from single-particle

probes like the Shubnikov—de Haas oscillations. For com-

posite fermions this is not the case, and furthermore the mass APPENDIX A: EQUATIONS OF MOTION

derived using standard Fermi liquid fitting formulas differs hi di . derive diff ial
from experiment to experimeht?6=28|n the path integral In this appendix we are going to derive differential equa-

formulation single-particle probes are associated with pair%'ons for the composite fermion contribution to the effective

of paths, where the forward and backward paths diffeIaCtiOn Serl &;t] and the density matrip,(Aer—a) in the
p 14,29 P e Presence of the Chern-Simons fiélgs—a by differentiating

ualitatively; e.g., one of them loops an extra tim ) -
d y d P sthe composite fermion part of Eq48) and(15). In order to

around a cyclotron orbit or the two paths pass through dif-". ) Lok s s
ferent slits in a double-slit experiment. The gauge field sin-differentiate quantities in a fixed gauge field background at

gular contribution to the effective mass is thus no longerfiMe Sitis necessary to let the Chern-Simons fialdnd the

determined by the semiclassical size of the particle, busrassmann fieldgy and ¢ be defined orC;, wheret>s.

rather the nonuniversal geometry of the particular singleThis is achieved by considering the generalized problem,

particle probe, e.g., the area of the extra cyclotron orbit. Thavhere the Hamiltonian is artificially put equal to zero for

effective mass thus depends on the particular geometry of tHémess’>s. All the steps leading to the effective action for

experiment. However, since the single-particle cutoff areagomposite fermionsSce, Eq. (10), can also be carried

are larger than the corresponding semiclassical area, tHBrough in this generalized setting. The only difference is

semiclassical mass is smaller than the one obtained from tat in all the terms that involve the Hamiltonian the contour

single-particle probe. Indeed in the experiments by Willetintegration is effectively limited taCs. We denote the ac-

et al'? it turns out to be a factor of 2 smaller. tions in this generalized case by their usual symbol, but with
The linear response regime around equilibrium is the mas;t as the temporal variable, so the effective action for the

jor focus of our work, but the formalism is still valid out of composite fermions is

equilibrium. In the noninteracting limit, as shown in Fig. 3,

the single-particle path integral technique possesses two im-

portant features(i) the effect of the nonequilibrium distribu- — , ,

tion function is gathered completely within the stimulus, and SCcA. ¥ w'a;S;t]:SCS[a;S;t]_eL do J drag(r,o’)n

(i) the propagation out of equilibrium is identical to the '

propagation in equilibrium. These features are shared with + Scompeel ¥, ;S ], (A1)

other out-of-equilibrium techniques, e.g., the Boltzmann

equation and the Landauer-fiker description of transport

through a noninteracting part of the system. In the case of awhere
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o . 9 Whens is varied both the numerator and denominator vary:
Scomd Butiisitl= | _do [ argiv.oin =" e,
t (o)

i7i0spac(F,1",8)=(((1))) "M ds{((h(r',9)(r,5))))
(1) B, 9)e(r,9)))

The terms that depend on the composite fermion Grassmann Xihag({{1))). (A8)

variables are gathered Bg;ompe[% Y,a;s;t] and it is its con-

tribution we are going to consider in this appendix. ) o )
Notice also that whers=t the generalized problem is N the above subsection, the derivative of the denominator

- fc do'Ho[ Agi—al. (A2)

identical to the original problem, so for all actions $¢t) indg{(1))) was calqulated. The contribution from the first
= S(s;)] oy term (the numeratoris
1. Effective action (((1)))*1%& (((E( ' S (r,9))) (A9)
i r',s)y(r,s
The composite fermion contribution to the effective action ®
Sel @;sit] is

= (1)) " H({(Ho[ Aei(s)—als, +)T(r' ) (r,s)

Seﬁ[a;s;t]—ch[a;s;t]JreJt ds’f drAag(r,s’)n _
— —(r',s)p(r,9)Ho[Ae(s) —als,—))))}.  (A10)

=iy, (A3

We here used
whereAay(s')=ag(s’,+)—ag(s’,—) is the difference field
and the shorthand notation

(((p(r' s+ AS) (1, 5+ A9)))) = ((((r',9)¢(r,9)))),
_ i _ (A11)
<<<X>>>:f D‘ﬂJ’ D‘ﬂexl{%SComFe[lﬂ"ﬂ:a;S;t] X

(A4) since without a Hamiltonian the system does not evolve. The
for the Grassmann integral has been introduced. The deriv@&CtON Scomrer IS quadratic in the Grassmann variablgs

tive of Eq. (A3) is an_d ¢, so Eq.(A10) can be evaluat_ed with the he_lp of
Wick's theorem. The Hartree disconnected diagram
I{EQ. (A3)} = —(((1))) "X ((Ho[ Aer(S) —a(s, +)] Iike_ pairings exactly cancels .the cont.ribution from the
variation 9‘ the  denominator in Eq. (A8),
—Ho[Aci(S)—a(s,—)])))- A () M 9 o(r,9)))ihas(((1))), so paying due

The right-hand side of EqA5) is equal to the expectation atténtion to the contour ordering
value of —{Hg[Ac(s)—a(s, +)]—Ho[Aex(s)—a(s,—)1}
in the presence of the contour gauge fidlgi—a. It can be

expressed in terms of the density matrix as i3 pac(r,r’ t):f drnf dr(S(r—r")
(?S{Eq.(A3)}=—J dr{eAay(r,s)pac(Asi—a;r,r;8) —pad I tDHE" 1"t + ) pad 1”5t
+Aa(r,s)-ja(Aeg—air,s)], (AB) —j dr”J dr” a1, rtH(r k"t —)
where the current in the presence of the gauge fheld o _—
—a, ja(Aeg—a;r,s), is defined in Eq.19). Equation(20) X(S(r"=r") = pad 1", r';tl). (A12)
then follows upon integration using the conventional as-
sumption of adiabatic turning on of the gauge field. This is Eq.(31) written out.

2. Density matrix
The density matrix in the presence of the Chern-Simons APPENDIX B: LINEARIZATION OF THE DENSITY

gauge fieldp,. is defined in Eq.(15). At a time s<t the MATRIX DIFFERENTIAL EQUATION
actionScd ¢, ,a;s] can be replaced bScomrel ¥, #.a;S;t]. The stimulus in the linearized equation of motion for
In terms of the above shorthand notation, Spac(Ae—a;r,r',t), Eq. (40), D=D;+ D, is split into two

parts. The explicit form foD,, which is independent af a,

Pac(r, 1", 9)=(((L)) "KW P(r" 9)y(r,9))). (A7) s
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. d (r 1A o
iAD(r,r',t)= _EJr,dr/,'Atot(r”)+Atot(r)}‘ m[l ar +eAg(r)—ealr) [padr,r’)
(9 r 14 n ! h a ! ! !
+ __,f dr”- Awtr") =Awlr') |+ —| = = —5 TeAu(r')—ealr’) | pac(r,r’)
ar’Jrr m o
Ao d . J
+padr,r )2|m ar f dr”- A r") = Al 1) | = padr 1 )2|m o
J ' 4 " ’ ' " d’tot
X[ = — [ dr"-Anr") =Awp(r') | = | dr’-| dAwet — | pac(rir’). (B1)
ar’ Jr' r’ ar”
The explicit form ofD,, which contains all the dependence upba, is
4 n B Aa(r”) (9 r” n n 4 n ’
iAD,(r,r t)—fdr (1= pad (11" —%——- mfr,dr Al I") + A1) | pacr”.r")
14 n B eA a( r ”) n " n !
+f dr'pad(rr") ————- f dr”- A1) + A1) | (1= pad) (r",r")
2m ar’ Jr"
i r " "
drllpac(r r//) f dr’”'Atot(r”,)_ f dr’”‘Atot(r”I)_ f dr,,,'Atot(r”’)
Zﬁ r! r’ !
—eda | 1 A i A A .
2m : 2m a A or" eff(r ) Qg Pac(r n )
i r " "
dr'pa(r" ") f dr'”- At - J dr'”- At - J dr'”- A(r"")
zﬁ r/ rI I,I
i Y LAY Y " B2
om | 2m2 TR o efi(r") | —Aag | pac(r.r’). (B2)
|
APPENDIX C: THE LONGITUDINAL SEPARATION t . p2
[odi-oE] e
In this appendix we are interested in the distribution of the 2m

longitudinal separation (P)P-Ar and its conjugate vari-
able, the size of the momentuf For simplicity we will
only consider the case of a scalar interaction.

The fi_rst step is to rewrite the fr_ee p_article action suc_h_that p,=p arcta%/—. (C3)
the longitudinal and transverse directions appear explicitly. K

To this end we use polar coordinates for the momentum:

The stationary phase approximation foy reads

There are two solutions to this equation corresponding to the
P momentum and the velocity being parallel or antiparallel.

p cOS— Here we only keep the parallel solution. The resulting sta-
p= , (C1) tionary phase action on the forward contour is

psin% J'tds B p_2
0 pU 2m 1]

Wherepﬂ/p is the angle with respect to an arbitrarily defined

x axis.p,,, loosely speaking the arc length along the Fermiwherev = Vx2+y? is the velocity. A similar result holds on
surface, has been chosen as our variable instead of the andle backward path, but with the opposite overall sign. We are
p,,/p in order to avoid a complicated Jacobian. In the scalainterested in discussing the separation between the two paths,
approximation the interaction is independentpf, which  so we change representation from the position and momen-
therefore can be integrated out. The free particle action otum along each path individually to the averag¥s)

the forward part of the contour is =1[r(s,+)+r(s,—)] and the differenceAr(s)=r(s,+)
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—r(s,—). In a translation-invariant system one has the it t
choice between using or R as the variables in the path Sint™ EJOdsAr(syF[R,s]«Ar(s)—fodsAr(s)-h[R,P,s],
integral. Here we choose and we parametrize it using the (C7)
velocity V(s) =|R(s)| and the polar angly 4(s)/V(s): where
V(s) h(R,P,s)=h(V(s),P,s)n(s), (CY
R(s)= =V(s)n(s). (Ca F(R,S)af(5a5—nanﬁ)FT[V(S)]JrnanBFL[V(s)],( )
C9
with
The unit vecton(s) points along the direction of the average t D
propagationn(s) can also be thought of as a unit vector on h(V(S)’P’s):j ds”ﬁ(V(s)(s—s”),s—s”)
0

the Fermi surface, since above in EG3) we only used the
stationary phase condition where the momentum is aligned

with the velocity. 1 , LAp(s™
Neglecting third-order terms in the difference variables XEH 5w\ P(s (=D 5 :
the free particle action is ©
(C10
‘ p(s,u)?
% J'Ods[p(s,u)v(s,u)— >m 3*Coo

t
FL[V(S)]=f0dS' (V(s)|s'—s|,s"—s) (C1)

. IR
- f ds{P(S)n(S)- AT(S)+ AP(S)V(S)]
’ F [V(s)]=ftds’; &)(V(s)|s’—s| s'—s)

- f GCLVE ! o V(s)|s'~s| 7IR| C

s (C12

As a further simplification we have above also approximated
(C5) the average path by a straight line inside the kernels. In fact
we will below treat bothF andF| as constants.

) o ) In this approximation the action separates into a longitu-
wherek is a Lagrange multiplier vector that has been intro-gina| and a transverse part. We define

duced in order to deal with the boundary condition in the
transition fromR to R. (1) |k|V 7 is @ small number, when Ar(s)=Ar||(s)n(s)+Arl(s)2>< n(s). (C13
the feeding-in and the pickup are not local in space. As an

illustration assume that the initial and final positions are disi" the Wigner variable basis of the propagator we use a polar

tributed according to isotropic Gaussians centered arénd coordinate representation of the initial and final momenta:

+k-[[R(t)=R(0)]— J:dsV(s)n(s)

andR{ , respectively. The sum of the variances is denoted by coS¢,
(h/AK)2. The termk - (R;—R;) in the action is then replaced P= Pi< sing ) (C19
by i
. COS¢
i k? P=P ( ) (C15
0_ RO o f flo. .
k-(Rfi—Ry)+ 7 A2 (Co) Sin ¢

In the full propagator we now split out all the factors related
after the integration with respect B andR; has been per- to the transverse direction into the so-called transverse
formed. The typical size df is now given by the smallest of propagator
the numbergi/(|R;—R;|) andAX. The last number is in the
semiclassical limit small. In the case of a periodic drivig ] :J' DV f DAY 27h _ Vg(D) | 27h
is the wave vector of the external field. Anyway, in the semi- T ¢ Py v | P
classical limit we will neglect the contribution froin

V4(0) 17t |1 5
X 0| ¢di— ex —%fd =F1Ar (S)
1. Interaction part: General formulation V(0) o (2
We first Taylor expand the interaction part of the action ) d Vy(s)
Sy, the scalar part of Eq$56) and(57), to second order in +HIAr, (S)P(s) 55 ok (C19

the difference variabldr. Furthermore, we use a time-local
approximation. That is, we approximate the quadratic termsn terms of J; the full propagator is, after integrating out
Ar(s)Ar(s’) asAr(s)?. Using this, Ar(0) andAr(t),
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hFL ksT

(% U|:.

J=JDPJ DApf va DVAr 2 (C20)
X O[P—P(t)]27h 5[ Pi—P(0)]Ir The last term in Eq(C18) is gauged away by the transfor-
mation ¢(P)(— df/dp) "2 and the propagation problem,
Eqg. (C18), is equivalent to

i [t 1
X ex %jod Ap(s)V(s)—EP(s)Ap(s)

22
1t |1 ) i _Zﬁa(ﬁ:_ﬁFL&z_(ﬁ
—gjod EArH(S) F,_+|ArH(s) a2 a? gP?
d ﬁFL J 1 VE =
X d—SP(s)+h[V(s),P,s]) ] (€17 T M T (PPe
To lowest order the transverse propagator is independent of +tani? 1 i(p_ pF)Hd,_ (C21)
the dynamics of the longitudinal variables, so we will treat 2 kgT

J; as a constant and absorb it in the overall normalization o
the path integral. The study of the remaining longitudinal
propagator is the topic of the next subsection.

II'he ground state of the quantum problem, EZR1), is the
derivative of the Fermi distribution function and the ground-
state energy is zero. The typical decay time of the excited
states is given byiF /a?. This can be identified as the
correlation time scale okr or P with themselves. It is also
In the propagator, Eq.C17), we will neglect the depen- the time scale it takes before the boundary conditions cannot
dence ofh uponAp. V(s) thus equalsn™*P(s). The propa- be felt anymore. For the Coulomb interaction this time scale
gation described by E4C17) is then equivalent to the quan- is approximately 7 (kgT) ‘2g,p2(vepe) ~*. The ground-
tum propagation problem state wave function of the original quantum propagation
117 42 P pr.oblem, Eq.(C;S),. is proportional to\/.—a.fF/ap. This im-
_MS:_<__ _) FL(P)—%—h(P). (C18 plies th:?\t the distribution of thg longitudinal momentum or
2\i 0P P energy is given by the derivative of the Fermi distribution

We neglect the momentum dependenceFof. In equilib- function, while the average of the width squared is

2. Interaction part: The longitudinal contribution

rium it is
de ( gfe)) 2 " o2\ 2 afe| L
1 [ ve P~ 5 | ar 2502 "
~ . = _ — o0 — o0 p p
h(P) aztam’{ZKBT(P Pe) |, (C19
2.2
where the constant in the high-temperature limit is related :1 il ) (C22
to the fluctuations through 3 (kgT)?
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