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We study carrier-interaction-induced many-body effects on the excitonic optical properties of highly photo-
excited one-dimensional semiconductor quantum wire systems by solving the dynamically screened Bethe-
Salpeter equation using realistic Coulomb interaction between carriers. Including dynamical screening effects
in the electron-hole self-energy and in the electron-hole interaction vertex function, we find that the excitonic
absorption is essentially peaked at a constant energy for a large range of photoexcitation den8iy6(
x10° cm 1), above which the absorption peak disappears without appreciable gaimoigxgiton to free
electron-hole plasma Mott transition is observed, in contrast to previous theoretical results but in agreement
with recent experimental findings. This absence of damthe nonexistence of a Mott transitioarises from
the strong inelastic scattering by one-dimensional plasmons or charge density excitations, closely related to the
non-Fermi-liquid nature of one-dimensional systems. Our theoretical work demonstrates a transition or a
crossover in one-dimensional photoexcited electron-hole systems from an effective Fermi liquid behavior
associated with a dilute gas of noninteracting excitons in the low-density regied® cm™?) to a non-

Fermi liquid in the high-density regiom(10° cm™1). The conventional quasistatic approximation for this
problem is also carried out to compare with the full dynamical results. Numerical results for exciton binding
energy and absorption spectra are given as functions of carrier density and temperature.
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[. INTRODUCTION tion and the valence-band energies as well as neglecting all

dynamical screening effects, the single-electron and single-

Excitons in low-dimensional semiconductor systems havéiole problem in forming the exciton can be exactly solved as

been extensively studied in the recent past. Present interegtquasi-1D hydrogeni¢WNannier excitop atom with an ex-

has focused on one-dimensional excitons in artificially strucciton radius of about 100 A for GaAs-based QWR systems.
tured semiconductor quantum wif@WR) systems where This _single-lD-exciton problem, .wh(.are an electron and a
spectacular improvements in growth and nanofabricatiodiole in @ QWR form a bound excitonic state, has been stud-
techniques have led to very narrow wires of nanostructuré®d extensively in the recent literature in the context of un-
size (<100 A in GaA$ with rather deep conduction band dérstanding QWR excitonic optical properties. Such a non-
electron confinement energy ~(L50 meV) and large interacting exciton picture, based on a simple s_lngle-pz_;lrtlcle
conduction-subband spacing-@0 meV) (Refs. 1-4 so electron-hole hydrogenic bound-state scenario, obviously

. . nly applies in the dilute low-carrier-density limit when the
that th.e electrons in the cond_ucuon_ band of such a QWngcitons or the bound electron-hole pairs are effectively very
most likely form a pure one-dimensionélD) system. For

i ' far from each other, forming a noninteracting exciton gas.
the holes in the QWR valence band, the bare confinemeng i refer to this situation as a Fermi liquibecause in

potential (for example, in the GaAs-AlGaAs systgns 1 only an effectively noninteracting system may behave as
known to be too shallow+ 10 meV) for a hole to be one 5 Ferm liquig or a noninteracting exciton gas. In the high-
dimensionally confined in these QWR structures. Includingcayrier-density situation the excitons must overlap with each
the Coulomb interaction between electrons and holes alongiher a great deal, and the simple Fermi liquid picture of a
the transverséi.e., perpendicular to the 1D free motion di- noninteracting exciton gas would not apply. Our main goal in
rection) directions of the wire, however, Glutseft al” find  this paper is to theoretically study this transition between the
that even the holes in the valence band of QWR’s can béw-density(Fermi-liquid-like) exciton gas and the high den-
strongly localized in the transverse plane, leading to botfsity system of interactinéand strongly overlappingxcitons
electrons and holes being effectively 18 rather quasi-1P  in quasi-1D semiconductqiGaAs QWR systems. This ex-

in the dynamical sense. Therefore an exciton in such ultraeiton gas to a strongly overlapping and highly correlated
narrow QWR nanostructures can be effectively thought of aglectron-hole system crossover with increasing electron-hole
a bound pair of a 1D electron and a 1D hole with the carriedensity can be thought of as a transition from an insulating
dynamics being free along the 1D wire direction as long asgxciton gas to a conducting electron-hole plagiEP), the

one is interested in low enerdiower than confinement en- Mott transition. A typical feature of this Mott transition, ob-
ergy ~20-100 meV) excitonic optical properties. Such served in higher-dimensionéD,3D) optical experiments, is
strong confinement for both electrons and holes also substathe development of optical gain in the absorption spectra
tially enhances the excitonic binding energy, leading to noveivhere the absorption coefficient becomes negdijeen re-
optical phenomena. In the lowelectron-holg density limit  gion) in some frequency range. One of the questions ad-
without considering the self-energy correction to the conducdressed in this paper is whether such an optical gain region
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exists in 1D photoexcited QWR systems. In this paper weion densities. One must be able to answer the question as to
consider the formation, stability, and optical properties ofwhere the Mott transition has gone. On this issue, an impor-
one-dimensional excitons from low to high carrier densitiestant and unresolved problem for the photoluminescence ex-
in semiconductor QWR'’s under photoexcitation conditionsperiment is that there is no reliable and direct way of esti-
(i.e., equal electron and hole densijiess problem which has mating the photoexcited electron-hole density in such highly
attracted a great deal of both theoreicd and pumped QWR systems. The theoretical basis of the density
experimentd* attention in these years. Consistent with re-estimation methods in the literatutesuch as from the line
cent interest one of the central issues we focus on is thehape analysis of the spectrum, is usually not self-consistent
density-induced exciton gas to EHP Mott transition in 1Dand not appropriate in such high-density strongly laser-
QWR systems and its experimental signature. pumped systems. Although we feel that the precise carrier
The motivation of our work arises from recent experimen-density of the photoexcited QWR systems may not be known
tal studies of the photoluminescence spectra of 1Daccurately, this issue does not pose any fundamental problem
GaAs/Al,_,GaAs semiconductor QWR systeris! The ex-  for our theory where the EHP density=n.=n;, is an input
perimentalists use strong lasers to pump photons into thparameter. The problem arises only in trying a direct quanti-
QWR systems, exciting electrons from the filled valencetative comparison with experiments®
band into the empty conduction band and/or the exciton lev- From the theoretical point of view, the full many-body
els, and observe the spectrum of the subsequently emittezhlculation in a high-electron-hole-density semiconductor
light coming from the eventual recombination of the excitedsystem is complicated and has not been attempted before
electrons and the holes created in the valence band. The phexcept for our own short Letter published last y®ahe
toluminescence spectrum is proportional to the exciton-EHRXciton mode is a solution of the Bethe-Salpeter equation
optical oscillator strength, which, at first sigfite., without  (BSE) for the interaction vertex which, in the many-particle
incorporating the Sommerfeld factor effect associated withsituation of interest to us, should include self-energy and
the electron-hole Coulomb interactipnis expected to have dynamical screening correlations. A complete or exact solu-
an ™~ Y2 singularity at the band-gap energy due to Ehe*?  tion of the BSE is only possible in the dilute exciton limit
divergence of the 1D electron density of stdfeat band  when it reduces to a simple hydrogenic electron-hole bound-
edge. However, this 1D plasma band-edge singularity istate Schrdinger equation. Our interest in this paper is in the
known to be strongly suppressed by the excitonic Coulomlmany-particle “exciton” state in the photoexcited semicon-
correlation effec® so that the main peak observed in the ductor QWR system where self-energy correlations of simple
experimental photoluminescence spectra should result froralectron or hole states and dynamical screening of the
the excitonic effect rather than the band-edge singularity otlectron-hole Coulomb interaction vertex are important. A
the noninteracting electron-hole plasma. The most strikingnodel of an electron gas with a single hole in a Wirie not
experimental observation in the recktftexperimental stud- appropriate in our problem because a bound state always
ies of photoexcited QWR systems has been the fildittiat ~ exists in any attractive potential in 1D systems, which will
the exciton peak seems to be at an almost constant energfyvially provide an overestimate of the Mott density. We
independent of the carrier density, i.e., independent of themphasize that both the quasiparticle self-energy and the dy-
laser pumping power. Thus the exciton peak seems to remaimamical screening of the electron-hole interaction vertex
well defined(and unshifted in energyall the way from very  should be included properl§.e., consistent with each other
low to very high photoexcitation density<(3x 10° cm ')  in a conserving approximatiorin the BSE to obtain the
without any distinct signature of the expected insulator-correct description of the Mott transition. With the exception
(exciton) to-metal(EHP) Mott transition and the associated of our own short earlier repdrtnost other theoretical calcu-
optical gain. The constancy of the exciton energy could, inations use the statiCHartree-Fock approximation or the
principle, arise from an almost exact cancellation betweerguasistatic approximatidfito the self-energy and a statically
the exchange-correlation induced shrinking of the nominabkcreened interaction vertex to solve the many-particle BSE
band gap, the so-called band gap renormalizatB6R), and obtain the optical absorption-gain spectra. In these sim-
and the reduction of the exciton binding enefgjth respect  pler approximations, where dynamical screening effects are
to the bottom of the renormalized band ejiglie to the neglected in an uncontrolled way, the dominant excitonic
screening induced softening of the Coulomb interaction. peak has a weak redshift few meV decreagavith increas-
Such an accidental cancellation between two distinct physiing density up to a Mott densityi,, above which the exci-
cal mechanisménamely, BGR and screening suppression oftonic peak completely disappears and the spectrum shows a
exciton energyover a wide range of photoexcitation density shallow (and weak gain region very similar to the behavior
needs to be theoretically established in a compellingStay.  of the noninteracting EHP***7Including the many-body
addition, combining this accidental cancelation explanatiordynamical screenirfgn the Coulomb interaction, the exciton
with the experimental fact of a very high Mott densityot = peak stays essentially constant in enetfyr n<n.) and
yet seen experimentajlyone may conclude that the BGR of exhibits a pronounced gain spectrufior n>n.), stronger
a 1D electron-holed-h) system should be very weak in the than the quasistatic results. But the predicted Mott densities
high-density situation, which is not consistent with theoreti-in the above theoriesn(~8x10*~8x10° cm 1) are all
cal calculations up to no*>®In particular, one must un- below the experimentally estimated valuen %3
derstand why there is no characteristic signature of the EHX10° cm™') — in fact, it is not clear if experimentally the
in the luminescence spectra even at very high photoexcitaransition to the EHP has ever been observed even at the
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highest photoexcitation densities. It is in general hard to inimore details later in this paper.
clude the many-body effects appropriately in a calculation- This paper is organized as follows: In Sec. Il we present
ally tractable model over such a wide range of den@ter  and discuss the theory we use in various parts of our calcu-
at least four orders of magnitude m), from the weak- lations, e.g., the realistic Coulomb interaction in the 1D
coupling dilute exciton gas system to the strong-couplingl-shaped QWR system, the single-particle self-energy calcu-
EHP regime. lation in the single-loop PPA-GW approximation, the differ-
In this paper, starting with the realistic Coulomb interac-€nt approximation schemes used for screening the long-
tion in 1D T-shaped QWR systems, we first evaluate thdanged Coulomb interaction, the dynamical Bethe-Salpeter
single-particle self-energy for both electrons and holes in th&duation approximations in our theory, and the effective ex-
dynamical plasmon pole approximatiéRPA) within the so-  citon Hamiltonian used in the variational calculation. In Sec.
called GW schemdi.e., in the leading-order dynamically Il we show our results for the density-dependent exciton
screened interactiorto obtain the electron and hole renor- €nergy in the variational method and for the excitonic optical
malized Green’s function. This self-energy calculation,Properties from the solution of BSE. In Sec. IV we conclude
which by itself does not contain any direct excitonic effects,With a discussion and a summary of our results.
gives us the BGR or the reduction of the nominal band gap
due to exchange correlation. For comparison, we also calcu- Il. THEORY
late the BGR obtained by the quasistatic calculation in both
static random phase approximatitRPA) and static PPA in
this paper. We then derive analytically the effective electron
hole (e-h) interaction verteX/q¢¢(k, ), which includes con-
sistently the electron-hole-plasmon coupling with the exter

nal hotons within our dynamical GW-RPA-PPA . oY
P y 5|me) so that the Hamiltonian of such a 1D electron-hole

approximation scheme. We use two different methods t b d (irs the effect )
study the excitonic properties: one is a variational approxiSYStem can be expressed (@s the effective mass approxi-

mation on an effective exciton Hamiltonidhwhich depends mation and assuming purely parabolic band dispersion; we
on the carrier density; the other technique is to solve thé@ke?=1 throughou

We use the two-bandone-conduction-band and one-
valence-bandmodel to study the 1D electron-hole system,
neglecting higher subbands and the degenerate valence
bands. We also consider the photoexcited quasiequilibrium
regime where the-h density is assumed to be a constént

dynamical BSE by treating both self-energy renormalization K2 K2

and vertex correctiofarising from the Coulomb interaction H=> | ES+ =—clc+=—d]d,

on an equal footingwithin our plasmon pole approximation k 9 2me 2m,

schemeg, obtaining the optical absorption spectra. Both cal- 1

culations are carried out over a wide rangeesti density F o D [Veed@)C o€l ClrCit Ve nn(Q)
from n=10 cm ! to n=10° cm ! at finite temperatures 2L Gy of SEEALRE R

under the quasiequilibrium condition; i.e., teeh density is P T T
assumed to be a constant parameter for each density calcu- ><dk—qdk’+qdk’dk_2\/01'9h(‘31)CI<—qudk'+qdk’]’

lation (andn=n,=n;). While our dynamical BSE calcula- (1)

tion includes exciton and EHP effects equivalently and is

directly capable of providing the Mott density through the ~ Whereci(c{) andd(d}) are the annihilatioricreation op-
analysis of the absorption spectra, the variational exciton erfrators for conduction-band electrons and valence-band
ergy has to be compared with the BGR calculation in ordefholes, respectivelywe will not explicitly show the spin in-

to ascertain the Mott transition — in particular, the mergingdex in summations throughout this paper although spin is
of the effective variational exciton with the renormalized included in our calculationsandmg, are the electron-hole
band edge is taken to be the signal for a Mott transition. Weeffective massefg is the direct band gap between the top
find that the absorption peak obtained from solving the dy-of the valence band and the bottom of the conduction band,
namical BSE survives with very large broadening well abovetaken to be 1550 meV for the GaAsiALGaAs QWR sys-

the critical densityn, estimated from the variational approxi- tem in all our calculations. There are three different Coulomb
mation, and no optical gairinegative absorptionregime  interactions entering the Hamiltonian: electron-electron
shows up in the spectra even at the higleektdensity. This  [Vcedd)], hole-hole [V.nn(q)], and electron-hole
implies thenonexistencef Mott transition in 1D electron- [V, ()] interactions. The first two give rise to the electron
hole systems. This striking result may be physically underand hole quasiparticle self-energies and the other one, the
stood as arising from the fact that the quasiparticle pictureelectron-hole interaction, produces the exciton bound state.
underlying the conventional Fermi liquid model fails in high- One should note that if we neglect the self-energy correction
density 1D systems due to strong inelastic scattering by plasand also dynamical screening effe@te., the low-density
mons, associated with the generic non-Fermi-liquid behaviolimit of a Wannier excitop, the Hamiltonian of Eq(1) leads

in 1D systems. In fact, in 1D systems there is no convento a 1D hydrogen atom probléthfor the Wannier exciton,
tional EHP because there are no single-particle excitations iwhich in 1D always has a bound excitonic state even for an
an interacting 1D systems. This nonexistence of singlearbitrarily weak electron-holé¢attractive interaction. Using
particle excitations or quasiparticles also leads to a breaka model of an electron gas with a single hole therefore gives
down of the conventional exciton pickir— a quasielectron rises a very high Mott density estimai@ven ifV ¢y, is stati-

and a quasihole bound pair. We will discuss this point incally screened which is a reflection of this 1D bound-state
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ing two approximations in evaluating the wave function
¢i(y,2): (i) we assume the confinement potential for both
electrons and holes to be infinitely deep—i.e., both electrons
and holes are completely confined by the 2D T-shaped po-
tential well—so that the wave functions of electrons and
holes are of the same form, independent of their effective
mass difference. Consequently the three different interactions
(Vceer Veonn, andVe o) become the same, denoted Wy
throughout this paper. This simplifying approximation is jus-
tified by the detailed work of Ref. 5, as mentioned in the
Introduction.(ii) Instead of numerically solving the compli-
cated 2D Schrmdinger equation to get the ground-state
single-particle wave functiort?*3(which is not the focus of

Momentum, (10%7/2 cm™") our interesy, we simply approximate(y,z) to be the prod-

uct of two single-variable functiong(y) and ¢(z) [i.e.,

FIG. 1. Theoretically calculateffrom Egs.(2)—(4)] 1D Cou-  ¢(y,z)~&(y)#(z)] and assunfé a simple and reasonable
lomb interaction in a T-shaped QWR system in momentum spaceapproximate model form fo£(y) and (z) through the fol-
Results of different wire widths are calculated and shown togethedowing exponential formulas:
In the inset we show the T-shaped intersection of two quantum
wells in cross section. 23/4

Coulomb interaction (e?/¢,)

&ly)= Tmef(zylwy)z, ()
property. We address both the many-body self-energy effect Wy

and the electron-hole excitonic binding effect on an equal

footing in the theory, which we accomplish by using the 2512, ,
dynamical Bethe-Salpeter equation as described below. W(2)= —;e 7N, (4)
WZ
A. Coulomb interaction in QWR'’s whereW, andW, are the full-plane X-y plang QW width

The realistic(baré Coulomb interaction in 1D QWR's is and the half-plane X~z plang QW width, respectively.
obtained by taking the expectation value of the 3D CoulompEduations(3) and(4) have the maximum electron-hole den-
interaction over the electron wave function along the transSity aty=0, z=W,/2, with three branches of exponentially
verse directionsy( andz axes; see the inset of Fig) af the ~ decaying density along-y and +z directions(see the inset
wire. After Fourier transformation along the 1D wire direc- ©f Fig. 1). The exponential decaying lengths or confinement

tion (x), we havé252for the Coulomb interaction matrix Sizes aréw,/2 andW,/2 in y and z directions, respectively,
element and thus in our model of the T-shaped QWR the effect of

wire geometry on the Coulomb interaction is entirely con-
@2 o % % tained in the effective “wire sizesW, andW,, which are
Veij(a)= —f dy dy’f dz dif dx the confinement parameters of our model. This approxima-
g0/~ ’°° w tion greatly simplifies the calculation of the realistic Cou-
lomb interaction in Eq(2) and makes our BSE calculations

—igx| 4. 21 1 (! 91)|2
Xe |¢i(y.2) |¢>,(y 2| tractable. We believe our QWR confinement model, as de-

N+ (y—y')2+(z—2")? fined in Egs.(3) and (4), to be quite reasonabfé.For ex-
2 .. . ample, the exciton binding energy calculated in this approxi-
= Zif dy dy’f dz dZ|#i(y,2)|? mation is 18.2 meV foW,=W,=7 nm wire, very close to
&0 J - — the quoted experimental value, 17 meV, for the same wire

e — — size? The small overestimat@bout 7% is expected because
X|#i(y" .2 )[*Kolav(y—y")?+(z=2')?], of the assumption of infinite confinement energy and the

(2 stronge*y2 localization ofé(y). In more accurate numerical
. . ) treatments the confinement is weaker than in our model,
where ¢;(y,z) is the QWR confinement wave function for |e5ding to a lower binding energy in the QWR system. In
the lowest eigenstate of electrons=(e) or holes {=h). Fig. 1 we show the calculated.(q) from Egs.(2)—(4) for
Their exact forms depend on the geometry and the detailegifrerent wire sizes. We assume only ofibe groundl elec-

nature of confinement for the QWR systelo(x) is the  ron and hole subband in the conduction and valence band,
zeroth-order modified Bessel function of the second ¥ind respectively.

which diverges logarithmically wher goes to zerdi.e., in
the long-wavelength limjt

Following the experimental system of Ref. 2, we use
T-shaped QWR parameters to numerically calculate the 1D In order to study the excitonic effect on optical properties
Coulomb interaction via Eq(2). To simplify calculations of 1D photoexcited electron-hole systems in semiconductor
(and also to have some analytical conknok use the follow- QWR structures, we calculate the dynamicgdhoton-

B. Absorption spectra
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frequency-dependentabsorption coefficientv(w) and re- .
fractive index n(w), which are related to the long- I - g §§ -:
wavelength dielectric function(q— 0,), by the following
formula: (@)
. CC(((U) 12 e — — + %
n(w)+i =e(w)™s, 6) e,h
2w ’
(b)

wherec is the vacuum light velocity. The dynamical refrac-

tive indexn(w) is therefore given in terms of(w) by AAAR = + Nv©w
\%

n(w)=\/%{Res(w)-i-[Res(w)z-i-lm s(a))z]llz}, (6) (©)
and the absorption coefficient(w) is given by FIG. 2. Many-body Feynman diagrams used in the paper with
the single(double solid line representing the barfdressey elec-
olme(w) tron or hole Green’s function and the singl@double wavy line
a(w)= ———— (7) representing the bar@resseyl Coulomb interaction(a) the exci-

tonic Bethe-Salpeter equatiai) the single-loop self-energyn the
Using the linear response thedfy?? the dielectric function ~So-called GW approximationdefining the dressed Green's func-
of the 1De-h system is expressed as tion, and(c) the RPA dressing of the Coulomb interactitireated
in the plasmon-pole approximation in our calculajion

4oé?
AL

e(w)=e., Foc(K)rie(k") Gy o(k,k", @), (8) C. Bethe-Salpeter equations

K.k’ L
For the results to be presented in this paper, the many-

where the retarded pair Green’s functiG(k,k’, ) is body exciton is given by the so-called Bethe-Salpeter
equatior® for the two-particle Green’s function shown dia-
grammatically in Fig. 2a), which corresponds to a rather
complex set of two-componefglectrons and holesoupled
nonlinear integral equations which must be solved self-
t t : . . ) . :
Crr+q(0)d_, (0)])odt, (9)  consistently with the bare interaction being the Coulomb in-
) ) teraction in the QWR geometry. These equations are notori-
and A=W, W, is the cross-sectional area of the QWR. Ingqly difficult to solve without making drastic
these equations is the center of mass momentum of the gn5roximations and, in fact, have never before been solved
exciton which is set to zer@nd hence not shown explicilly i the literaturein any dimensiongexcept for our own short
in all our calculations belowr,(k) is the dipole matrix report earlie?). In carrying out the full many-body dynami-
element, which can be simplified in the effective masscy| calculations for the BSE we are forced to make some

Gq(k K, w)=—i f:e‘wt<[d_k(t>ck+q<t>.

approximation’® approximations. Our most sophisticated approximation uses
the fully frequency-dependent dynamically screened
M (k) electron-hole Coulomb interaction in the single-plasmon-
Irue(k)|= \/ﬁ (10 pole approximation, which has been shown to be an excel-

lent approximatioff to the full RPA[see Fig. 2c)] for the
where the reduced mass=mgm,,/(m.+m,) and 1D QWR system. For the self-energy correction we use the

single-loop GW diagram shown in Fig.(t8 with the
K2\t screened interaction given by the PPA. Ward identities then

M(k)=| 1+ (11)  fix the vertex correction, entering Fig(a}, to be the appro-
szg priate ladder integral equation.

For convenience, we use the finite-temperature
imaginary-time Matsubara frequency Green’s function for-
malism in our analysis. The bare electron-hole two-patrticle

By introducing a new function

Q(k,w)=2 M(K)G(kk',®), (12 Green's function without ang-h interaction is

k!
the dielectric function in Eq(8) can be expressed as GOk,k',2,0)=Ge(k,Q~2)Gp(—K,2) s, (14)

re? and it corresponds to the two separate Green'’s function lines

e(w)=&,— 2 M(K)Q(k,w), (13 of electron and hole in Fig.(2). For each particle line, we
ALmEg k have

and the dynamical functio®(k,w), which is essentially a
two-particle Green’s function, satisfies the Bethe-Salpeter Gi(k,z)= (i=e,h), (15
equation described below. z—s&i—2i(k,2)+u;
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where g, =k%2me+Eg and e, =k%2m, are the bare  G(k,k',z,Q)
(noninteracting band energies for electrons in the conduc-

tion band and for holes in the valence band, respectiyely; _ Ge(k,Q=2)+Gp(—k,2) G(k.k',Q)

is the chemical potential anl;(k,z) is the self-energyfor a 1 o
complex frequency), which we will calculate later within B EZ [Ge(k,Q=2)+Ch(—k,2)]

the GW approximation. In order to avoid the multipéénd

any possible branch dustructure inG;(k,z), we approxi- (19

mate,;(k,z) by the momentum-dependent band-gap renor-

malizationA;(k), which is related to the self-energy through Where

the self-consistent Dyson's equation;(k)=2;(K,&; «

+A;(kK)—pu); i.e., Aj(k) is the so-called quasiparticle on-

shell self-energy. However, A;j(k) can be well G(k,k",Q)=~—
approximatetf by truncating this equation at the first non-

trivial order, i.e.,Ai(k)=2X;(k,&; x—u;), which should be

reasonably valid in our calculations below. Therefore weand
have the following electron-hole single-pole Green’s func-
tion:

> G(k,k',z,Q) (20)

-

z

1
-3 > [Ge(k,Q—2)+Gp(—k,2)]

~ 1 =1—Ng(£e1) —Nn(€n, 1) (21)
Gitk2) z—ej = Ai(K) + (18 T

Here & (=¢; (+Ai(k) andn;(&; ) is the fermion momen-
for later calculations in this paper. The details of calculatingtum distribution function ¢°¢¢ix=#)+1)~%, which keeps
the self-energy®i(k,z) within the GW approximation are the electron and hole density constant by adjusting the

discussed in the Sec. 11D below. chemical potentia; to satisfy the correct density constraint
The Bethe-Salter equation in Fig(a@ could be read as J(dK/m)ni(&; ) =n. Note that the approximation defined by
(with 8= 1/kgT, whereT is the temperatuje Eq. (19 follows from the exact BSE in a statically screened

Coulomb interactior® i.e., if the frequency dependence of
the effective dynamically screened interaction is neglected.
G(k,k',z,Q) We expect the Shindo approximation to be a reasonable ap-
_GOkK'\2,0) proximation in our dynamical calculation below, because the
- S dynamical screening effect contributes mostly to the correla-
1 tion energy, whose real part is dominated by {lséatig
1+= > Vo(k—K',z—=2)G(K" k',z',Q) |. Hartree-Fock exchange energy in the high-density rédion
Bz (while the imaginary part of the correlation energy plays an
(17) important role in our calculations belowwWe have not been
able to find a tractable way of solving the dynamical BSE
) ) without making the Shindo approximation.
Putting Eqs(14)—(16) into Eq. (17) we get Using Egs.(15) and (19)—(21) in Eq. (18), we then have
the following effective Bethe-Salpeter equation for the pair
. _ A Green’s functionG(k,k’,w) (after the analytical continua-
[Q—eek—en -k Aelk)—Ap(—k) tion O — -+ 0 g pir):
+lu’e+ /.Lh]G(k,k,,Z,Q)

~[Ge(k.2—2)+ Gy(—k,2)] 5 Gk k', 0)=Gokk', @)
1 "o "o
x| 1+ = 2 Vs(k_k”,Z_ZI)G(k”,k,,Z,,Q) ) X 1—%; Veff(k ,k ,(,())G(k ,k 1(‘))553" s
k//’z/
(18) (22

. . , . whereG° and the dynamically screened effective electron-
This equation, however, is not of closed form and is difficult, o interactiorV,; are expressed as

to evaluate since it is a rather complex multidimensional
singular integral equation. We therefore have to use an addi-

tional simplifying approximation first introduced by GOk K’ o) = 1-ne(€e k) = Nh(én,—k) 5
Shindo®%>2% where the two-particle Green’s function o w+id—eer—en _k—Akw) ©K
G(k,k',z,Q) is replaced by a simple pair Green’s function (23
G(k,k’,Q) [whose retarded function yields via E@) di-

rectly the optical dielectric functign and
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Verf(K K, @) screening calculation. For convenience, we first discuss the
self-energy part and then the screening effect.
1\? Gu(k,QQ—2)+Gp(—k,2) In the GW approximation, which is the leading-order self-
= E) E 1—Ng(€er)—Mn(&n 1) energy in the screened interaction expansion, the self-energy
»z ' ’ is calculated in the single-loop diagram composed of a non-
XVy(k—k',z—2") interacting particle line and a screened interaction [ifg.

2(b)]. Using static screening in the interaction lifiee.,
Ge(k',Q=2")+GL(—k',Z2") V4(k,z)=V4(k,0)], we get a screened exchange self-energy
X 1—Ny(£a ) —Np(€ ) ' term only, and all higher-order screening effects to the cor-
eLsekt ) TMSh kT =0 e pptis relation energy are neglected. This approximatioamed
(24) the static approximatignis therefore too simplistic to give
correct result§,although it has been extensively employed in
The effective BGRA(k, ) is given by excitonic calculations because of its simplicity. An improve-
ment to thﬁls static approximation is the quasistatic
_ _ _ approximatiorr,” which neglects the recoil energy during the
A(k’w)_%: {17 Ne(beic +a) =Nl &h,—1c)] scattering process so that no dynamical frequency inside the
screened interaction potential shows up. This approximation
XVer(K,K',0,@) =V (k=K")} produces an extra constant Coulomb-hole téte second
term of Eqg. (27)] in the self-energy in addition to the
=—> [Ne( ek +q) F M€ —k) IVer(k.K' o) screened exchange self-energy of the static approximation,
K’ so that the full expression for the BGR in this quasistatic
approximation becomes

+ 2 [Vert(k,K',q,0) = Ve(k—k')]. (25)
kl

1
Ai() =2 | = Vo(k=K)nj(ei )+ S [Vs(k)=Ve(k) ]},
In Eq. (25) the self-energy termn+ ny,) Vs and the vertex K’
correction Vg—V,. are treated on an equal footing. (27)
GO(k,k",w) in Eq. (23 is the electron-hole pair Green’s where V¢(k)=V(k,0=0)=V(k)/e(k,w=0) is the stati-
function with self-energy correction but without electron- cajly screened Coulomb interaction, which could be analyti-
hole attractive interaction, which is now replaced by the dy—ca"y derived either from the RPAusing Eq.(29) below]
namica”y screened effective interactimff(k,k,,a)) in the (Ref 15 or PPA[us|ng Eq(go) be'ovv]_23 In our paper, the
BSE, Eq.(22). If we neglect dynamical effects My(k,z) (as  former is named the quasistatic RPA and the latter named the
in the static or the quasistatic approximation described beguasistatic PPA. Note that; (k) in Eq. (27) is pure real, i.e.,
low), thenVe(k,k', ) =Vy(K) according to Eqs(24) and  without any imaginary part of the self-energy or inelastic
(21). In the following section, we will discuss the use of proadening effect, so that the quasiparticle assumption for
different screening models to evalua(k,k’,w) [and  the Landau-Fermi liquid is completely satisfied in this ap-
BGR Agp(k) through the screened GW approximaian  proximation with an infinite quasiparticle lifetime. It is well
calculating the absorption spectrum by solving the BSE.  known, however, that the quasiparticle assumption breaks
Combining the Bethe-Salpeter equatiof22) for  down in 1D (unlike in 2D or 3D electronic systems, with a
G(k,k",w) with Eq.(12), we have the following equation for generic non-Fermi-liquid behaviéf. For the purpose of
Q(k,w): comparison we still use this approximation to calculate the
1 1D optical properties in order to compare with the full dy-
_ -~ , , namical calculation results and to study the quantitative va-
Qk,@)=Qo(k @)} 1 M (k) kz Veri(k.k',©)Q(k 'w))’ lidity of this widely used quasistatic approximation both in
(26)  the higher-dimensional systeffid?and in the 1D systefrt°
in the literature. In Fig. @) we show the conduction-band
for Qq(k,w)=2y M (k')G%(k,k’,w). OnceQ(k,w) is ob-  energy &2, Eg=eox+Ae(k)—EJ in the quasistatic PPA
tained by solving the integral equati¢®6), which is also a  for different electron densities. The band-gap renormaliza-

BSE, it is straightforward to calculate the absorption andjon is almost a wave-vector-independent rigid shift in the
gain spectra from the dielectric functiar(w) through Eq.  quasistatic approximation.

(13. For the self-energy(k,») calculated in the one-loop
GW approximation with dynamically screened interaction,
D. Self-energy, BGR, and screening in QWR'’s we have
In order to solve Eqs(22)—(26) for the Bethe-Salpeter 1
equation, we have to use a screened interactigik,z) in 2ik,2)=—— E Vyk—k",z—2")G;(k',z")
Eq. (24) to getVess and also to get the single-particle self- B
energy2;(k,z) in the Green’s function of Eq16). In this 1 Vo(k—k')
section, we discuss and compare both the quasistatic ap- S — - Gi(K,Z), (298
proximation and the dynamic&PPA) approximation in the B\ e(k—k',z—2")
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60[ () ' ' ' g(k,0)=1—V (KK 0)— V(K Tk, o)
I n=0 cm™’ ] 2 2 2
40F n=10* =1V, (k) 2 ﬂln w®—[(k2m;) —kvE ] ,
A n=10° iZen K| w?—[(k?2m;) + kug ;]2
\i R n=5.62X10° (29)
o wherevg ¢, is the (Fermi velocity of electrons or holes at
5 L ] Fermi momentum in the conduction and valence bands. In
o) - - this paper we will use the RPA only in calculating the qua-
. P ’ ] sistatic screening via Eq27) by settingw=0 in Eq. (29),
S ] not in the full dynamical BSEE(g. (26)], because the pole
—20 ' ' ' structure(and branch cut propertigsf the screened interac-
0.0 Mgﬁientum, (11'8%/2 Cm1_'?) 2.0 tion, V.(k)/e(k,w), in the full dynamical RPA is too com-
plicated to deal with in the frequency summation of Ef)
60 and in the integral equatiof26). In the dynamical PPA,
I however, the dielectric functior(k,w) is defined by the
following expression where screening is induced by a single
40 (plasmon pole satisfying the correspondirigsum rule?®

e
e(k,) (0+16)%—w?’

wherewp,(q)=\/nvc(q)q2/m is the 1D plasmon oscillator
strength ando, is the effective plasmon frequency given by

a simple formul4*18:23
~20 . . . ,

(30

Energy (meV)
N
o

4
0.0 0.5 1.0 1.5 2.0 2 2 nq q
Momenturn, (10%r/2 cm™) wq_wp|(Q)+m+ am?’ (31)
SO (c) ' ' ' ] where k is the inverse screening length. It has been shown
F - -1 i 3 that the PPA is a very good approximation to the RPA in 1D
: n=0 cm it ] pp
40F n=10% ¥ i 3 systems, where plasmon excitations dominate the single-
P n=10° R ] particle excitation$®?® The great virtue of the single-pole
> E n=5.62x10°> |} [ E PPA for our theory is that it makes our calculation in
30F P | . Yy ff
£ Eo n=10° P : 3 ] Eq. (24) tractable because the integral equation in frequency
5 A A E becomes simple. In the PPA the self-energy of the electron
g 20F o x "-.\ E (i=¢€) or hole (=h) can be expressed as a sum of the usual
w ’,f' \\ " N exchange or Hartree-Fock energy’(k) and the correlation
10f N % RN energy> °'(k,w):
F // S~ . /,/ "'/ \\\‘ \E
0 i.,,,...__*.;#'_”::.'::-:';n-—-..?,-,-_ _m_._».:_'ff_}«‘f.:-**('—';/____‘_ _:-_\:‘:'_"‘_'E Ei(k! (1)) = EFX( k) + EiCOr(kr w)y
0.0 0.5 1.0 1.5 2.0
6 -1 !
Momentum, (10°7/2 cm™") Eiex(k):_E V(K )Ni(gi ),
k/

FIG. 3. (8 Conduction-band energ&evk—Eg calculated in the
GW approximation with screened interaction approximated by the
quasistatic PPA(b) and(c) are, respectively, the real and imaginary ~ 27°'(k,w) = 2
parts of the band energy calculated in the dynamically screened GW K’
approximation(within PPA) for the same system &a). The calcu-
lation is carried out in the symmetric T-shaped QWR system with 4 Np(wi) +1—Ni(&j k1)
W, =W,=7 nm including finite-temperaturel& 10 K) and finite 0— o —& oty
(phenomenologicalimpurity scattering §=0.5 meV) effects. . o o
where ng(w,) is the bosonic momentum distribution func-
i o tion (ef“x— 1)1 for the plasmonsy is a small phenomeno-
where we can use either the RPA or Flich is an excel-  |qgical damping term incorporating impurity scattering and
lent approximation to the RPARef. 23] to calculate the g other possible broadening procesésse the discussion in
dynamical dielectric functione(k,w). For the zero- sec. |1l B). From Eq.(32) we see that the dynamical effect as
temperature RPAg (k,w) is obtained by including the non- ell as the imaginary part of;(k,) arises entirely from
interacting polarizabilities of electroriglg(k,w)] and holes  the correlation energjand is absent in the stati¢fartree-
[TI12(k,w)] (Ref. 15: FocK or quasistatic theoily This will play an important role

Ng( @y ) +Ni(&j ki)

w+ wk'_si,k’+k_i')’

Ve(k ) wh (k')

20)kr

: (32)
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(which is crucial in 1D in our following calculations. Fig- turbative effect of interaction and happens in 1D even for an
ures 3b) and 3c) show the real and imaginary parts of the arbitrarily weak electron-electron interaction. We therefore
electron energyte — Egzge'kJrge(k,Seyk_Me) — Eg, tak- ~ cannot get a true Luttinger liquid within our perturbative GW
ing into account the dynamical PPA self-energy renormaliza@PProximation, but the opening of the gap in the real part of
tion. the self—(tan(::-rtg;h)(or erfwwalegnjlyﬂt}he d|\{erge?ce in thet|mag|f-
- _ nary part of the self-energys the perturbative signature o
Defining t_he on-shell_self-_energy to km(k)z_zi(k’sﬁk the breakdown of the Fermi liquid picture. At finite tempera-
— fre) Wherei =g,h, the imaginary part ol ¢(k) is propor- e and for finite impurity scattering, the single-particle
tional to the electron inelastic-scattering ratarising from properties calculated in the 1D Fermi liquid model via the
electron-electron interaction, which is very small wHeis  dynamical GW approximation are similar to the results cal-
below some threshold momentuRy. For k>k, a new culated in the Luttinger liquid theory. Therefore we believe
collective-mode scattering channel opens up in which electhat the strong inelastic scattering shown in Fi¢e) 3juali-
trons lose energy by emitting plasmons. At zero temperaturtatively reflects the LL character of 1D systems, and our
and for zero impurity scatteringclean system limjt it can ~ Self-energy calculation is qualitatively correct for our pur-
be shown that the inelastic-scattering rate divergeskas (POS€ of calculating excitonic optical properties. Our inclu-
—k.) Y2 when k approaches, from above in 1D Note sion of the strong inelastic scattering by plasmons cat_ch_es
thatc this divergence in Im(K) also exists in the RPA some essential aspects of the 1D phase-space restriction,
T ger e/h o . which eventually leads to the nonperturbative formation of a
calculation,” and is therefore a characteristic of the interact-

. . i C .~ 1D Luttinger liquid, which is beyond the scope of this work.
ing 1D system in the dynamical GW approximation, causing We evaluate the effective interactiafy; in Eq. (24) by

a gap to open up &=K. in the real part of the self-energy as using the same PPA approximation and obtain

shown in Fig. 8b). The existence of this gap in the BGBr

the divergence in Im (k)] reflects the breakdown of the  VegdK K w) =V (k—K")

quasiparticle picture in the 1D electron systémwithin the

perturbative GW approximation. An interacting 1D electron w1+ 1 (kK o)
system is known to be better described by the Luttinger lig- Nen(K) Nop(k) Xenl 8@,
uid (LL) model than the Fermi liquid model due to the strong

plasmon scattering effect arising from the limited phase (33)

space in 1D. A Luttinger liquid, in contrast to a Fermi liquid, where Ngp(K)=1—ne(&e k) —Nn(énk) and xen is given by
does not have any discontinuity in its momentum distributionthe the following complicated formulas containing eight dif-
function, and does not, therefore, have any true quasipartterent terms associated with various dynamical processes in
cles. The existence of a Luttinger liquid is a purely nonper-the 1De-h system:

_ op(k=K") | —[1+ ng(ok—) INe( £e) + Na( @k )Nl o) + Nel Ee ) Nel Eok)
2wg—kr Eek Sk~ Wk—k!
- Ne(wk—k )Ne( e k) +[1+Ng(wk—k ) INe(Ee k) —Nel e k) Nel Ee k)
Ee k™ Eek T @k—ks
N —[1+ng(@g—k) INp(&h,— k) + Ne(@k—k ) NK(En, —kr) + NH(En k) Nh(En,—k)
En—k—&n —k — Ok-k’
- Ne(@k—k ) Nh(En,—k) T[1+N(@k—k ) INK(En,—k) = NR(En, — 1) NR(En, k)
En—k—&n —k T ok
+ne(§e,k)nh(§h,—k')+[1+ Ne(@y—k)I[1—Ne(Ee k) = Nh(En,—kr)]
w+iy+ pet pupn— ek &h—k — Ok’
N —Ne( e i) Nh(En,—kr) +Ne(@k—k)[ 1= Ne(Ee k) —Nn(En,—k) ]
o+iytpetpun—Eex—&n -kt Ok-k
+ne(§e,k’)nh(§h,fk)+[1+ Ne(@y—k)I[1=Ne(Ee k) —Nn(€n,—1)]
w1yt pet pupn— ek — &h -k~ Ok’
N —Ne( e k)N €n,—1) T Na(@k—k)[ 1= Ne(Ee k) —Np(&n, — k)]
o+iytpetpun—Eex — & -kt ok-k

Xeh(k,k’,(u)

, (39
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where we use the same phenomenological damping pararfied Bessel function of the second kind. This variational
eter v to broaden the resonant threshold energies in the dédsound-state wave function has the following form in real
nominators. The first two terms in the brackets of E2d)  space:

describe the coupling of electron excitations with the plas-

mon, having the corresponding particle filling factors in the exd — V(x/\)?+ a?]
tor and th inthe d inator. Th X)= ; (38)
numerator and the resonance energy in the denominator. The éol 20NK.(20)

third and the fourth terms describe the same plasmon cou-

pling process for the holes. The first four terms are static an(?\/here one can see that the variational parametepresents

w independent in our approximation. The last four terms argy,, oy citon radius and smoothes or broadens the center-of-
dynamical and depend explicitly o@. These last four dy- mass wave function ak=0. We do not study the first
namical terms descr_ibe processes which couple both electrcilécited_State wave functios(p) in this paper because it is
gnd hole systems with the plasmon modes,. and are extremeg t particularly relevant to the Mott transition process we are
important in the dynamics of the photoexcited system. Notg, o esteq in, although the variational technique can be

that we take the real part Q‘f.eh (_)nly in-our nur_nencal cal- adapted to study excited excitonic staftes.
culation because the Hermitianity W+ is required for the

effective Hamiltonian shown below in E36).
lll. RESULTS

E. Effective Hamiltonian and variational method We first show the variational results because conceptually

Before solving the full dynamical Bethe-Salpeter equa-this is the simplest approach since it is based on an effective
tion, it is instructive to study the excitonic and the EHP ef- Single-particle Hamiltonian. We obtain the BGR and the ex-
fectsseparatelyby treating the influence of the EHP on the Citon binding energy by the variational method in both the
excitonic states as a perturbatitit® Using an effective guasistatic approximation and the dynamically screened GW
Hamiltonian derived from the Bethe-Salpeter equation, weaPproximationgwithin PPA) for various photoexcited carrier
can variationally obtain the exciton ground-state energy by€-h) densities. The crossover between the exciton energy
m|n|m|z|ng the energy expectation value throughaekci_ and the BGR gives us an estimated Mott transition critical

ton trial wave function. The effective Hamiltonian treats thedensityn., where the exciton bound state ceases to exist and
EHP as a perturbative effect and is written ldg, (w,) a0 insulator-to-metal transition occurs. The idea here is that

=H° +H’ (), where at n. the exciton merges with th_eh continuum and is no

PP PP longer a stable bound state. Finally we carry out the full

p? Bethe-Salpeter integral equation solution by a matrix inver-
E%+ ——|8,,,—V.(p—p') (35  sion method and obtain the absorption spectra and refractive
9 2m/ PP ; ; .
index in a large range ofe-h density (from 10 to

is the Hamiltonian for the single electron-hole pair with an10° c¢cm™1) to compare with the variational effective Hamil-
unscreened Coulomb interactigsimilar to a 1D hydrogen tonian results. Details are described below.
atom and the perturbatiofl’ is

0 _
HPP'

, A. Effective Hamiltonian result
pr/(wn)zA(pawn)‘spp’+Vc(p_p,) . .
In Fig. 4a), we show the calculated density dependence
—[1—fe(éep) = Fn(én —p)IVeti(Pp", @n), of the exciton ground-state energy variationally obtained
(36) from the effective Hamlltpn|an method gnd . the BGR
[Ac(0)+AR(0)] calculated in both the quasistatic approxi-
for the nth eigenstate of energy,. Here we can explicitly mation and the dynamically screened GW approximation as
see the physical meaning Af(p,w) andVes(p,p’,w) ana-  described in Sec. Il D. Both the RPA and PPA are used in the
lytically derived in Egs.(24) and (25). We expect that the quasistatic calculatiofEq. (27)] for comparison whereas the
wave function of the exciton satisfies the correspondingull dynamical calculations are done only in the PPA. The
Schralinger’s equation in the low-density limit, where the intersection between the exciton energiashed linesand
screening effect is negligible. Thus this exciton effectivethe BGR(solid lineg indicates the Mott transition, where the
Hamiltonian approach may be a reasonable approximation texciton merges with the band continuum and the system has
calculate exciton energies and wave functions. a phase transition from an insulating exciton gas to a con-
For the exciton trial wave functiog,(p) in momentum  ducting EHP. Note that the variational method introduced in
space, we use the two-parameter variational wave functioSec. Il E loses its accuracy near the Mott densigpd be-
first introduced by Nojim4® to express the 1D exciton comes essentially meaningless forn.), because the varia-

ground state as tional energy expectation valu€(\,c)={¢(\,c)|H°
+H'(E(N,0))| ¢o(N,0)) has a very flat minimum region in
\/ 20N Ky(oW\%p2+1) the \-o space around~n_; i.e., the exciton wave function
bo(P)= Ki2o)  \%p2+1 @7 s highly broadened, so that its minimum energy is hard to

determine in such a perturbation-based variational method.
where A and o are two independentpositive) variational In Fig. 4b) we show the variationally calculated trial exciton
parameters in our calculatioK(x) is the first-order modi- 1s (ground-statewave functiongq(x) for different exciton
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shift in the quasistatic RPA/PPA approximations and almost
no shift (less than 0.5 me\in the dynamical screening ap-
proximation. This shows the almost complete cancellation
between the exchange-correlation-induced B@Rlensity-
dependent shiftand the blueshift of the exciton ener(gue
to screening over a wide range of density. On the other
hand, using the static screenifige., exchange energy only
approximation in the same calculation does not lead to this
cancellatiorf, showing that the experimentally observed con-
stancy of the exciton energy as a function of the photoexcited
—405 . . . ] g—h dgnsity is a dynamigal e.ffectfl which may not maﬂifest
0.0001 0.0010  0.0100  0.1000  1.0000 |t§elf in simpler aPErommatpns(n) For an e-h den_5|ty.
Density (10° cm™) higher than 16 cm™?, the exciton energy in the quasistatic
RPA has a rather large redshift until it merges with the BGR
1-5[1b) ] line smoothly ain.~6x10* cm™?, indicating a rather low-
L 1 density Mott transition in this system. On the other hand, the
SF Exciton ; 1 exciton energies calculated in both the quasistatic PPA and
the full dynamical PPA are almost constant upnte n.~3
x10° cm 1, where the band continuum meets the exciton
energy.(iii) In the full dynamical results obtained by solving
/ g the dynamical BSE directly, the excitonic absorption peak
0.5 -_n=1oz - e;gsde;].sgéﬁ%t-,) 2><105- (dotted ling seems to survive even for densities higher than
- 1.78X10° em™'1 the “critical density,” n., at which the calculated exciton
T energy crosses the band continuum BGR line. This shows
| ] that there must be reasonably strong hybridization between
0.0 | - the exciton and the EHP in the dynamical BBbte that the
0 10 20 30 40 50 dotted line in Fig. 4a) is not from the variational calculation,
Exciton size (10° cm) but is obtained from the BSE solutifrso that the effective
FIG. 4. (3) Separately variationally calculated exciton energy BGR, including excitonic effects in the BSE, is acf[ually less
o S . than the result we calculate from E(B2) by adding the
(dashed lingsand BGR of the EHRsolid lineg as a function of . . . . .
electron and hole self-energies without incorporating exciton

photoexcitation density, in three different approximations as indi- - S .
cated in the plot by different linewidths. Note that when the densityeﬁeCts' This also demonstrates the limitation of the quasi-

is larger than x 10° cm !, the variational methodintroduced in static a}pproximation and.com"irms the. necessit'y of the full
Sec. 11 B fails to give a good exciton energgee the teytand the ~dynamical BSE calculation in the high-density 1&h
dotted lines are the exciton peak positions of the correspondin§YSt€m-
absorption spectra by solving the B8Eg. 5). (b) The 1s exciton
ground-state wave function obtained in the variational method
through effective HamiltoniafEgs.(35) and(36)] in the dynamical
(PPA) screening calculation for various electron-hole densities. In- In Fig. 5, we show our calculated absorption and gain
set: the variational parametexsand o for the 1s exciton ground-  spectra by solving the full Bethe-Salpetertegra) equation
state trial wave function with respect to the photoexcitation densityin the quasistatic and the full dynamical screening approxi-
in logarithm scale. When the density is near the Mott density ( mations forW,=W,=7 nm wire at a low temperature of
~3X10° cm™?), both A and o increase sharply and the wave T—10 K. The integral equation for the two-particle Green’s
function becomes totally broadened. function, Eq.(26) [or equivalently Eq(22)], is solved by the
matrix inversion method with maximum momentum up to
densities. The exciton density dependences of the variation&l,,,,= (7/2)x 18 cm (=10 for n=10° cm™1). The
parametera. and o are also shown in the inset of Figibd.  poles of the dynamical screened interactitn; in Egs.(33)
The sharp divergences afando atn,~2x10° cm tin-  and(34), together with the logarithmic singularity of the 1D
dicate the delocalization of the exciton ground-state waveCoulomb interaction in the long-wavelength limit, produce a
function, a signal of an exciton-to-EHP Mott transition. In multisingular kernel with multiple momentum-dependent
Fig. 4@ we terminate the variationally calculated exciton singularities which have never been solved before in the lit-
line (dashedlatn=2x 10> cm ! and use the dotted line to erature (except for our earlier worR) because the usual
represent the peak position of the absorption spectra obtainaihgularity-removal method is ineffective heéfe?? In our
from solving the full dynamically screened BSHiscussed calculations presented in this paper, we use a rather large
below) to continue the exciton line to higher densities up tomatrix (1500<1500 in a Gaussian quadrature fok|
6x10° cm L. <Kkma in the matrix inversion method in order to get good
We can make the following comments about the result®verall accuracy; i.e., the same calculations using even larger
shown in Fig. 4a): (i) For a density below f0cm™ the (2000 2000) matrix sizewhich is extremely time consum-
exciton energy has only a few-meV density-dependent reding and not shown heyado not show any significant differ-

o
E-E, (meV)

1.0

10° 104 109 108

Ipo(:)* (em™)

B. Dynamical Bethe-Salpeter equation result
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FIG. 5. Calculated absorption and gain spectra for various photoexcitation densities by solving the Bethe-Salpeter equation in three
different approximations for screenin@) the quasistatic RPAp) the quasistatic PPA, ar{d) and(d) the full dynamicalPPA) calculation.
The system parameters @&)—(d) are the same as used in Fig. 3, except for the smaller0.2 me\j used in(d).

ence (within 10%) in the whole absorptiorfand refractive  other one the exciton first excited states) at, for example,
indeX spectrum from the results we present in Figs. 5-71547.5 meV fom=10° cm ! [this peak is off the plot re-
The broadeningy used in our calculation is a phenomeno- gion in Fig. 5a)]. Note that this low-density spectrum is
logical parameter which simulates in a simple manner thalmost the same in all three different approximations, show-
effects of all possible scattering and broadening processdag that the dynamical effect is not important in the low-
not explicitly included in our theory. These are, for example,density region(ii) When the density increases but is still less
impurity and defect scattering, inhomogeneities in the systhan 1¢ cm™!, the exciton peak does not shift much
tem (e.g., fluctuations in the wire widthbroadening associ- (<2 meV) with increasing carrier density in all approxima-
ated with optical excitation process itself, and phonon scattions, indicating the constancy of the exciton enefgi) At
tering. We mention that inelastic plasmon scattering lifetimehigher densities (focm™! <n<10° cm™1), however, the
effects are explicitly included in our theory. Note that quasistatic RPA resulFig. 5a)] shows some additional red-
should be small compared with the bare excitonic bindingshift in the excitonic peak, consistent with the result shown
energy (~10-20 meV in GaAs semiconductor QWR sys- in Fig. 4(a) which is obtained from the variational method.
temg, and as long ag is small, its precise value has no On the other hand, the excitonic peak positions in the quasi-
qualitative effect on our conclusions and results. We typi-static PPA and in the full dynamical approximation are al-
cally choosey=0.5 meV in our calculations. most (density independentconstants in this region. A sig-

In Figs. 5c) and §d) we show the absorption spectra in nificant difference between the quasistatic PPA and the
the dynamical PPA for two different values of impurity scat- dynamical calculation results, however, is that the exciton
tering y (different by a factor of 2.6to show thaty does not  peak of the quasistatic PPA resulfsg. 5b)] has an almost
affect the qualitative behavior of the spectra, but does contratonstant oscillator strength, while the oscillator strength of
the linewidths of the absorption peaks as one would expecthe peak in the full dynamical calculation resulEg. 5(c)]
Some important features of the optical spec¢ta@culated by decays at high density to about one-third of its low-density
solving the full BSE shown in Fig. 5 are the followingi)  value.(iv) Forn>10° cm !, both quasistatic RPA and qua-
there are generally two absorption peaks in the low-densitgistatic PPA results show negative absorptigain for the
(n<10* cm™ 1) spectra of all three approximations, one thephoton frequency below some critical valug, while the
exciton ground-state §) peak at about 1532 meV and the full dynamical result is still positivgi.e., no gain with a
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FIG. 7. Absorption and gain spectra obtained by solving the

FIG. 6. Calculated refractive index for various photoexcitation Bethe-Salpeter equation @) the quasistatic PPA ang) the full
densities in both(a) the quasistatic PPA antb) the dynamical  dynamical(PPA) approximation for screening at high temperature
(PPA approximation for interaction screening. (T=100 K). Other system parameters are the same as used in

Fig. 3.

weaker broadened peak upte-6x10° c¢cm ™! or higher. In
other words, we do not explicitly find the expected excitonsmaller redshift in energy with a much larger broadening
(insulatop to plasma(meta) Mott transition when both the than the quasistatic PPA result. The quasistatic RPA result at
self-energy and the screened interaction are included dysuch high temperaturéot shown herehas an even larger
namically in the full BSE theory up to a rather highh redshift and broadening. We mention that the gain in the
density. We believe that this behavior arises from the strong@bsorption spectra of the quasistatic calculation at the lower
plasmon scattering effects in 1D as discussed in Sec. IV ofemperaturgFig. 5b)] is flattened and almost disappears in
this paper(Such strong inelastic scattering was not includedthe higher-temperaturl00 K) calculation results.
in our earlier short repoft,leading to the appearance of a
gain in the high-density spectra above the Mott density.
Fig. 6, we show the refractive indeX w) calculated by solv-
ing the Bethe-Salpeter equation in both the quasistatic PPA In this paper, we theoretically study, using a reasonably
and the full dynamical approximation for different photoex- realistic Coulomb interaction, the excitonic optical properties
citation densities. The calculated refractive indices in thesef a 1D QWR system by solving the many-body Bethe-
two approximations are similar in structure. Salpeter equation using a number of approximations, the

In Fig. 7, we show the calculated absorption-gain spectranost sophisticated one being a treatment of both the self-
obtained in both the quasistatic PPRig. 7(a)] and the full  energy and the vertex function in the dynamically screened
dynamical calculation§Fig. 7(b)] for the same wire width GW approximation. Our calculation is applied to the experi-
W,=W,=7 nm, but at a higher temperaturg {100 K)  mentally studied T-shaped GaAs;8a, _,As 1D QWR sys-
for various densities. We find that the higher-temperatureaems for various densities and temperatures. We calculate the
(100 K) low-density a<10* cm™1) absorption spectrum is electron and hole self-energies in the one-loop GW approxi-
almost the same as the corresponding lower-temperalure (mation diagram using different screening approximations:
=10 K) spectra in Figs. ®) and 5c), while in the higher- the quasistatic RPA, the quasistatic PPA, and the dynamical
density region (>10* cm™ ) the high-temperature exciton (PPA approximation. The quasistatic approximations give
absorption peak of the full dynamical calculation has aan almost rigid shiftthe BGR effeckto the band energjsee

IV. CONCLUSION

195313-13



D. W. WANG AND S. DAS SARMA PHYSICAL REVIEW B64 195313

Fig. 3(@], and there is no imaginary part of the self-energy;This result is consistent with the well-known non-Fermi-
i.e., the quasiparticle lifetime is infinite. This approximation liquid properties of 1D electronic systems, where the quasi-
may work well in 2D and 3D systems but fails completely in particle (and hence the excitgmpicture fails. The quasistatic

1D systems, because unlike in the higher-dimensional syspproximation, which ignores any plasmon effect and works
tems, the electrons in 1D system suffer a very strongvell in 2D and 3D system& does not work in 1D systems
inelastic-scattering effect by virtue of restricted phase spacdecause the 1D excitation spectrum is completely dominated
Therefore the validity of the quasistatic approximation ap-by plasmons.

plied to 1D systems, which has been extensively used in Another clue in support of the importance of plasmons in
many theoretical work§2%1428:23s doubtful. In the dynami-  such a high-density 1B-h system comes from the tempera-
cal calculation we find that the electron and hole band-gapure dependence of the absorption spectra shown in Fig. 7.
renormalization has a gap opening up in its real part and &ur results show that the high-temperatufe=(100 K) ab-
consequent divergent singularity in its imaginary parkat sorption peak in the dynamical calculatigffig. 7(b)] is sup-

=k, [Figs. 3b) and 3c)], where the quasiparticle energy is pressed and broadened so greatly that there is almost no
transferred to the plasmon excitations due to very strong inspectral structure observed far=10° cm!, while the
elastic scattering by 1D plasmons. Although this perturbativehigh-temperature quasistatic PPA red#lig. 7(a)] still has a

GW self-energy is “unphysical” due to the failure of the rather strong peak at the same density. This is because the
Fermi liquid model in the 1D systef,it still gives a rather plasmon excitation occupancy, whose energy distribution
good qualitative description of the single-particle and thefunction ng(w,) follows the Bose-Einstein statistics, de-
collective-mode propertiescompared to the correct Lut- pends strongly on temperature, leading to a qualitative dif-
tinger liquid model, particularly at finite temperatures and ference between th€=10 K andT=100 K results in the

for finite impurity scattering® Our results in Figs. ®) and  dynamical calculation, while such plasmon dynamics is not
3(c) reflect an important generic feature of 1D systems: thancluded in the quasistatic calculation. This characteristic
guasiparticle excitation has a very short lifetirtie fact, it  strong temperature dependence is also consistent with very
does not existif the excitation momentum is higher than recent experimental resufts.

some valuek, . This 1D feature associated with the Luttinger  Based on our results and the discussion above, we pro-
liquid properties of 1D systems strongly affects the stabilitypose that a crossover from a low-dendiggsentially nonin-

of 1D excitons and the bound quasielectron and quasiholteracting Fermi liquid to a high-density interacting non-
pairs, as we can see from the calculated absorption and gakermi liquid is occurring in the optical spectra of the &
spectra(Fig. 5). system as the photoexcitation density increasee Fig.

In Fig. 5 we find that the quasistatic approximation, which5(c)]. In the low-density limit, sayn<10°* cm !, we have a
excludes inelastic scattering, gives rise to a negative absorphlute and noninteracting exciton system, whose absorption
tion (gain region in the highly photoexcited system. The spectrum is independent of the many-body screening ap-
existence of gain means that the exciton state is saturatgmfoximations we use — plasmons are just not that important
(fully occupied, and therefore manifests a spontaneousn this regime. This shows that excitons in this situation are
emission, rather than absorption. On the other hand, the oveisolated quasielectron and quasihole pairs, reflecting the va-
all positive absorptior{no gain spectrum found in the dy- lidity of the quasipatrticle picture in the effective noninteract-
namical calculatior{Fig. 5(c)] up to the highest density is ing Fermi liquid model in the low density limit. In the
caused by the large imaginary part of the electron-hole onhigher-density region, however, the plasmon effect on the
shell self-energy, Imh (k) [see Fig. &) and Eq.(32)], quasiparticle self-energy becomes important, because the
which is proportional to the inelastic-scattering rate and reband curvature ak=kg is less for higherkg (i.e., higher
sults from the energy scattering through plasmon channel. Idensity and the relative importance of collective-mode ex-
other words, the excitons, composed of bound pairs otitations(plasmongis then strongly enhanced as in the Lut-
quasielectrons and quasiholes, are unstable due to strong itiager liquid model. Therefore the oscillator strength of the
elastic scattering by 1D plasmon excitations in the high-exciton absorption peak is then reduced and broadened in our
density region. Consequently, in the dynamical calculationdynamical calculation[Fig. 5(c)]. When the density is
the exciton absorption peak is suppressed in strength andughly the nominal “Mott transition” critical densityn,.,
broadened in width as the photoexcitation density increasesyhere the band continuum energy equals the exciton energy
leading to stronger plasmon scattering. The absorption spegsee Fig. 4a)], the plasmon excitation becomes so dominant
trum does not exhibit a negativgain region even in the that both exciton and band continuu@HP) states become
high-density regime because the quasiparticle EHP band comnstable, showing a crossover to effectively non-Fermi-
tinuum is so strongly inelastically scattered by plasmons thaliquid properties. We therefore do not expect to see the real
it is not a proper eigenstat@.e., it decays and is never Mott transition from an excitonic insulator to an EHP metal
saturated. The disappearance of the exciton line and the noim 1D highly photoexcited systems, in contrast to the results
negativity in the absorption spectfat the same timein our  of previous theories. For an electron-hole plasma without
dynamical calculation suggest that theren@insulator(ex-  any backward scattering in the usual Luttinger liquid model
citon) to the metal(EHP) Mott transition in 1D systems, (no band curvature at all, which is unrealistic in our gase
since both excitons and quasiparticles are strongly inelastinve can prove that gain in the optical spectra does exist below
cally scattered by plasmons, leading to neither of them beinghe Fermi energy at all densities with a complicated power-
well-defined coherent states of the high-density 1D systemaw singularity at the Fermi surface. Including the electron-
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hole attractive backward interactiofassuming a short- tive 1D exciton problem by appropriately integrating over
ranged interaction as in the so-callg@dlogy formalisn), the  the transverse dimensions of the quantum wire — a more
electron-hole system most likely undergoes a charge densitgomplete theory should take into account the full 3D nature
wave ground state transition with a mass gap in the elemeref the quantum wire structuréij) we treat dynamical screen-
tary plasmon excitatiof® While this scenario is consistent ing in the plasmon-pole approximation for the purpose of
with our results, further work for the excitonic effect at en- simplification; (i) we treat many-body effects in the single
ergy far belowthe Fermi energy is still needed, because thd®0P GW approximation along with the corresponding ladder
regular Luttinger liquid model cannot include band curvatureVertéx correction. _ _ o
in an appropriate way in order to study the Mott transition at N Summary, our main accomplishments reported in this
an energy level around the band edge. paper are thg followingi) thefirst fully dyna_lmlcal theory of

In reference to the experimental data, we note that ouft .photOEXCIted electron-hole system. n semlconduct.ors

which treats self-energy, vertex corrections, and dynamical

results from solving the dynamically screened Bethe- Lo if ; h ithi listic C
Salpeter equation are in excellent qualitative and quantitativi creening in a self-consistent scheme within a realistic Cou-
omb interaction-based Bethe-Salpeter thediiy; a reason-

agreement with recent experimental findifddn particular, e e ;
: : f:\ble qualitative and quantitative agreement with the recent

experimental observations of a constaphotoexcitation
density-independehtexcitonic absorption peak in energy,
which in our dynamical theory arises from an approximate
cancellation between the self-energy and the vertex correc-
tions in the Bethe-Salpeter equatiofij) inclusion of the

the photoexcited carrier density and the possibility of exci-
tonic absorption well into the high-density regirteven for

n>6x10° cm 1) turn out to be characteristic features of
the full dynamical theorybut not of the static and the qua-

sistatic approximations A full dynamical self-consistent | ffect in th inarticl it lculation i
theory as developed in this paper is thus needed for an ury@smon efect in the quasiparticie seli-energy caicuiation in

derstanding of the recent experimental results. Moreover, waur dynamical_ Fheory, leading to our theo_retical proposal that
find that in our theory, the plasmon effect is crucial in theNO Mott transition should be observed in 1D electron-hole

high-density regime, leading to the nonexistence of any Ob_systems(at least in optical experimenteven at very high

servable Mott transition in our calculation. This is consistentpho.toe_)(.(:'t"’.Itlon density—i.e., there shou.ld be no optical gain
with recent experimental resuft$,which do not observe an region;(iv) instead, we suggest an experimentally observable

actual Mott transition in the semiconductor QWR Systemcros_soverfr(_)m a low-density noninteracting Fermi liquid be-
even in the high-photoexcitation-density- 8 X 10° cm™1) ha\_/lor(quaS|part|§:I_e-e_XC|ton fav_orézdb a hlgh-dens!ty Inter-
regime. We emphasize that only our dynamical theory, angcting non-Ferml-Iqu|d bghawo(no stable qua.5|part|cles-
not the static or quasistatic approximation, is in agreemen‘?‘fmd excitonk A more precise and nonperturbative theoret|_-
with the experimental results. We point out that the physicaf:a‘I model for the high-density 1D electron-hole system is
reason for the failure of static screening theory in the excito eeded for future study — such a study shou]d .somehow
calculation is that static screening strongly overestimates thificorporate bOth band curvature a’?d Luttinger liquid be_hav-
screening strength by not allowing dynamical antiscreenin or I analyz_lng_ the optical properties, although we believe
effects. The constancy of the exciton energy in this proble hf"‘t thg qualitative features of such a theory are already con-
arises from an approximate cancelation between the selffj“ned in our work.
energy correctionlthe band-gap renormalizatiprand the ACKNOWLEDGMENTS
vertex correction in the problem.
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