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We study thev=1/2 Chern-Simons system and consider a self-consistent field theory of the Singwi-
Sjolander type which goes beyond the random phase approximé®BA). By considering the Heisenberg
equation of motion for the longitudinal momentum operator, we are able to show that the zero-frequency
density-density response function vanishes linearly in the long-wavelength limit independent of any approxi-
mation. From this analysis, we derive a consistency condition for a decoupling of the equal-time density-
density and density-momentum correlation functions. By using the Heisenberg equation of motion of the
Wigner distribution function with a decoupling of the correlation functions which respects this consistency
condition, we calculate the response functions of itkel/2 system. In our scheme, we get a density-density
response function which vanishes linearly in the Coulomb case for zero frequency in the long-wavelength
limit. Furthermore, we derive the compressibility, and the Landau energy as well as the Coulomb energy. These
energies are in better agreement with numerical and exact results, respectively, than the energies calculated in
the RPA.
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I. INTRODUCTION proved the calculation of the Coulomb energy by taking into
account dynamical correlations through the formalism of
The combination of an electronic interaction and a strongSingwi, Tosi, Land, and Sjander? (STLS), known as the
magnetic field in a two-dimensional electron system yields &Singwi-Sjdander theory and established first in the calcula-
rich variety of phases. These are best classified by the fillingion of the structure factor of the Coulomb theory. This
factor v, which is the electron density divided by the density method is a generalization of the RPA. In comparison to the
of a completely filled Landau level. In the caseraf 1/2, the  RPA this method results in a Coulomb energy which is a
behavior of the system resembles that of a Fermi liquid in théoetter approximation to the Coulomb energy obtained earlier
absence of a magnetic field or at small magnetic fields. Thiby numerical simulations of interacting electrons in the low-
effect can be explained with a new sort of quasiparticles: aest Landau level by Morf and d’Ambrumetil and by
v=1/2, each electron combines with two flux quanta of theGirlich.}* CC did not calculate the Landau energy of the
magnetic field to form a composite fermion; these composite= 1/2 system which would also be a very interesting quantity
fermions then move in an effective magnetic field which isto be compared with the RPA as well as the true resul?,
zero on the average. The interpretation of many experimenthie Landau energy per electron. In their theory the resulting
supports this picture. We mention transport experiments witlzero-frequency density-density response function vanishes as
antidots, in which features of the resistivity are related tothe square of the wave vector in the long-wavelength limit.
closed loops of the composite fermions around the Hatsj ~ This is in contradiction to the RPA result where it vanishes
also focusing experimenfsAn overview over further experi- linearly for the Coulomb interactioh.In their paper, CC
ments can be found in Ref. 3. A field theoretical formulationmentioned that the behavior of the zero-frequency response
of this composite fermion picture was first established byfunction of their theory is similar to the zero-frequency re-
Halperin, Lee, and Re4dHLR) as well as Kalmeyer and sponse functions of the alternative formulations of the CS
Zhang® They formulated the Hamiltonian in terms of Chern- theory cited above. But later on, Halperin and co-workers
Simons (C9) transformed electrons and studied within theshowed that the zero-frequency response function of these
random phase approximatidiRPA) many physical quanti- theories also vanishes linearly in the wave vector for the
ties. Besides the theory of HLR there are other alternativiCoulomb interaction if one expands the approximation to
formulations of the composite fermionic picture which arethe RPA.
mainly based on a gauge transformation of the CS In this paper, we will show that the quadratic behavior of
Hamiltonian® the zero-frequency response function in the theory of CC
We used in Ref. 7 the theory of HLR for a determination results from the decoupling of the equal-time density-density
of the ground-state energy of the=1/2 system in the RPA. and density-momentum correlation functions. In CS theories,
There we found an infrared diverging Landau energy. Thighis needs a careful treatment as will be shown by consider-
problem was solved in Refs. 8—10 by taking into account théng the Heisenberg equation of motion for the longitudinal
correct normal ordering of the operators. We obtained a Lanmomentum operator. With the help of this equation, we will
dau as well as a Coulomb energy in the RPA which is inget a zero-frequency response function of thel/2 system
satisfactory agreement with the exact and numerical resultsyhich vanishes linearly for the Coulomb interaction in the
respectively''® In Ref. 11, Conti and ChakrabortZC) im- long-wavelength limit. It can be also learned from this pro-
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cedure which relation in the decoupling approximations of 1 R . R
density-density and density-momentum correlation functions Hkin:mf dre (N[ —iV+sANT*(r), (2
in CS theories should be fulfilled. In the STLS theory it is the b

Heisenberg equation of motion of the Wigner distribution _

function which is used to get the response functions of th&vherem, is the electron band mass and

system. In CS theories, one has to decouple simultaneously a

density-density correlation function and a density-

momentum correlation function. We will show that the con- 5Ai(F):f dr’ ¢i(r—r")[p(r')—po] (3)
sistency relation for the decoupling of these two functions

are not fulfilled in the theory of CC. This is the reason for the

quadratic behavior of the long-wavelength zero-frequencys the fluctuation of the CS vector potential is the mean
density-density response function in their theory. We will gensity of the v=1/2 system andé(r)=2Varg()= 2,
suggest a STLS-type theory of the CS system, in which th%< r/r2. We used the conventigh=1 andc=1 in the above
decouplings respect the consistency condition. With the hel?ormulla (2). By expanding the Hamiltonian in Eq2) and

of this decoupling, we wil calcqlat_e the density-qlensity re'keeping only terms up to second order in the density fluctua-
sponse function, the compressibility, the dynamic structur%ons one gets in the momentum space

factor, the static structure factor, and the Coulomb energy, as
well as the Landau energy.

The paper is organized as follows: We will introduce in K2 ik [ (K
Sec. Il the CS Hamiltonian and calculate the Heisenberg H=> _—_ala.+ > =2 {Z(—X%(E))p(—ﬁ):
equation of motion for the longitudinal momentum. Then we © 2m, K kzo M k
get from this equation the static density-density response
function in the long-wavelength limit and discuss the consis-
tency relation for a decoupling of the equal-time density-
density and density-momentum correlation functions. We

will study in Sec. Ill the equation of motion of the Wigner

distribution function and suggest a decoupling that respectge[e W(k_) 'Sﬁthe» FOLi”er Ttransformed momer.1tum .operator
this relation. m(r)=—iv(r)"V¥(r), a, creates a CS fermion with mo-

mentumk, andvq(k)=2me?/k is the Coulomb interaction
wheree’=e?/¢. eis the charge of the electron agrdis the
dielectric constant of the background,(k)=4=/k and
v,(K)=(47)%po/(myk?) are CS potentials. We denote by
At first, we review the main steps of the HLR approach of:A: the normal ordering of the operatér With the help of
the v=1/2 system. Here, we follow in the main the notation the CS transformation of the electronic Hamiltonian, we thus
of CC!! The CS transformation for spinless fermions is de-get a CS Hamiltonian which does not contain a magnetic
fined by* field.
First, we will discuss the asymptotics for small wave vec-
R R R o R tors of the zero-frequency density-density response function
\If*(r)=\I'e+(r)ex;{2if driargr—r')p(r')|, (1) by a method which allows us to study the decoupling of
R _ correlation functions in a Singwi-S@nder theory of the
whereW _ (r) is the electron creation operatdr,” (r) is the  half-filled lowest Landau level. Singwi and Tosi used in Ref.

transformed fermion operatqs(r) is the density operator of 16 @ method to obtain the compressibility sum rule for the
the fermions, and ar@ﬁ is the angle that forms with thex Coulomb system from the Heisenberg equation of motion of

axis. The kinetic part of the Hamiltonian is given after thethe longitudinal momentum operatoyq- 7(q). The com-

1 > S
+E[vo(k)+vz(k)]ip(k)p(—k)i}- 4

Il. STATIC RESPONSE FUNCTION OF THE »=1/2 CS
SYSTEM

transformation as mutator CH ofg/q- 7(q) with the Hamiltonian(4) is
. 1 (kg)? Lo~ . [dqg
CH(q,H) =2 m——aE+a,2(t)aﬁ_axz(t)+E [vo(q’)+vz(q’)]:p(q’,t)p(q—q’,t):(—
Kk Mp Q q'#0 q
< vi@) (q - . . . [d'q vi@)| [q' - . ., [d'q
+id —Xm(q',t) | p(q—q ,t):(— —i Y = —Xm(q+q",t) | p(=q", )| —
q’ my q q 40 my q q

-

q - - -
= m(q+q’,t
qw(qq)

-

!

- q -
+: p(—q’,t): ?Xq . 5)
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We consider in addition a coupling to an external potentialgq. (9) is of orderO(q°)(p(q)). Thus, the third term of Eq.
Ve(q,t). Since we want to study the adiabatic limit we ne- (7) is given (q— 0)by the noncumulant part
glect the time derivative in the Heisenberg equation of mo-

ti ] - - .
lon ipov:r(]bq) gx<77(q,t)>>:_Povz(Q)<P(qvt)>

Zvm(&.t)p(d—&',t)(%)=—CH<d,t>. (6) +0(a%{(p(q,t)). (10
q!

. . , . By inserting this equation into Eq7) we get for the static
We take the expectation value of this equation of motionjjear response in the limij— 0

with respect to the ground state of the syst@round state
for V®'=0) and get the following equation which is valid to R 1 _
linear order inveX: ))=————V(q,1). 11
(p(q,1)) 2@+ O {a,0) (11
Thus the static density-density response function vanishes as
vo(q) 1, i.e., linearly forg—0.
. The above results are rigorous consequences of the equa-
s - tion of motion in the limitg— 0. We consider this result as a
a X(m(q,1) |- (7) consistency condition for an approximative calculation of the
correlation functions: An approximative density-density cor-
(+)¢ is the cumulant part of the expectation val(#®B),  relation function and the corresponding density-momentum
=(AB)—(A)(B), whereA, B are the operatorg. or p. correlation function have to satisfy the above analysis. Espe-
In the following we will discuss the leading order n  cially we have seen that thedf/ singularity of the noncu-
of the terms in Eq(7). By considering only the linear order mulant part of the commutator in E(/), due to the commu-
in V&' we get forq—O0 the following relation(compare tation with thev, term of H [second term in Eq(5)], is
Ref. 16: canceled by the & singularity of the noncumulant part, due
to the commutation with the,; term ofH [third term in Eq.
J Ver_o (5)]. Thus there is no & singularity in the denominator of
(9—p0<0> (p(q,t)), (8  Eq.(11). It is clear from the structure of the operators and
from the derivation above that the first term gets thig?1/
for an operatoO. Here<'>Vexgo is given by the expectation singularity by averaging v_vith respect to every state not only
alue for V=0 We obtain that(CH(* 0))./q has the the CS grt_)und state. This is no anger true for the s_econd
v ] . o R q.17c/q . term. In this term one gets thegf/singularity by averaging
asymptotic behaviolO(q”){p(d)) for g—0. For deriving  gyer the CS ground state. This ground state is reached by the

this asymptotics we take thg—0 limit in every cumulant  gynamics of the CS system. Thus the consistency relation is
expectation value in E(5). Every additive term in Eq(5)  \yritten forg—0 as

contains either a term proportional ¢por has a term linear
in g’ -q/q (the terms with a quadratiq’ in the numerator , >, - o, 'q
cancel. We now discuss the leading terms in Hg). We E v2(q')(:p(a",)p(d—0 f‘”(?)
begin with the third term of the right-hand side of €@ and ¢ 70

- - 1 -
Ve(a,t) po= —<CH(q.t)>ca—Po(vo(Q)Jrvz(Q))(P(q,t))

v1(q)
m

—ipg

(0)=

v

retransform it with the help of Eq1) from the CS fermions < v1(9) q - - . q'q
to the electronsCS retransformation Denoting the expec- +i - = x7(q",t) [p(d—=q",b): e
tation value with respect to the electronic ground state by a’ b

(-)e We obtain g
;m(qw',t))p(— ',t>:>

. 2 Ul(q,)<:

: m
.. - . - q’'#0 b
(m(a,)=my(J(a,D)e=i 2 €, o
q'#0 q'q
a, X T =0(q). (12
X—(p(q"+Pp(—q"):e.
q’2< pla’+ap(=a")e © Here, the third term cancels the cumulant part of the second

term to orderO(q).
J(g,t) is the electron current operatorJ(q,t) We add a remark concerning the Hamiltoni&h. The
Sk LI - SR - Hamiltonian (4) is truncated by keeping only terms up to
Zr(k/my)a, t) ae i_gr(t) + (1/my) Z5/A
(/o) B, g (1) e k-g2(t) + (1/My) 2 ALA) p(q second order in the quadratic density fluctuations. We can

—_q’,t). Here A(q') is the external vector potential of the g,y by the same methods as above that an analysis of the
v=1/2 system. Now we use E(f) to calculate the firstterm | hroplem with the Hamiltoniar(2) leads to the same re-

of the right-hand side of Eq9). Since(J(r,t))Y"" "=0 for  sults.
all electron densities of the system, one gets zero for this In the next section we formulate a Singwi-Bjoder
term. The cumulant expectation value of the second term ofheory of the half-filled Landau level, where we make an
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approxmauon of the momentum-density anq den5|ty-den§|ty f(z)(F,ﬁ;F’ ’5/ ;t)mf(l)(ﬁﬁ;t)f(l)('?/’5/;;[)9('?_ F’).
correlation functions that respects the consistency condition (17)
(12) derived above. o
If one uses the decoupling functigrfr —r’)=1 in Eq.(17),
. CS RESPONSE FUNCTION WHICH INCLUDES it is easily seen that with the help of this decoupling one gets
DYNAMICAL CORRELATIONS the density-density response function in the RPA from the
equation of motior(15). Such a decoupling does not respect

In this section, we will calculate response functions of thethe small-distance correlations. STLS take into account these
1 U2 Gy e e coeitons ey e R bonaatons by aing o) e el st
: ;o o pair correlation function. This could also be motivated as
electrons in a magnetic field to a CS Hamiltonidn at zero PR .
magnetic field. Thus one can calculate response functions (S?IIOV!S' Onf can determing(r —r') by summing Eq/(17)
the v=1/2 system with approximative methods that wereoverp andp’ such that both sides of the approximatid?)
developed for the Coulomb system earlier. In this section, weoincide forvVe'= A$'=0:
will apply the theory of STLSRef. 12 to the CS system in .
the spirit of CC! The response function matrjxrelates the ~ {tp(r)p(r'):)
(p(r)){p(r'))

density p(k,w) and transverse momentum response
The ansatZ17), (18) is a decoupling, specific for the Cou-

(K, ) =k/kx (K, ») to an external perturbation a scalar
H ext Xt . -
potential v and a transverse vector potenti” via lomb theory because the interaction of the Coulomb Hamil-

=

g(r—r") (18)

K VEK. ) tonian consists only of a density-density vertex. In the CS
p(k,w) — [y (K.o)] @ (13  theory the Hamiltoniar(4) has in addition to the density-
7TT(|Z,(L,) ' /.\$Xt(|2,w) ' density vertex a density-momentum vertex. The effect of this

] o o is given by the first term in the square brackets on the right-
Following the original derivation of STLE;, we start from a4 side of Eq(15). It is not clear whether the decoupling
the e.quat|on of motion for the one-body Wigner distribution (17), (18) is a good approximation for this term. In their
function, approximation CQRef. 11 used the decouplingl?), (18)

. for the CS theory.
f(l)(Flﬁ;t):E eik‘r<agf|2/z(t)a5+'z’2(t)>’ (14) In the following, we want to check if this decoupling
k respects the consistency conditic®). For this, we have to
. . L (1), o determine the density-density correlation function and the
which deterrp@es the (ilerlsm}([,t)—ipf( )(r.,p,t) and the density-momentum correlation function from the decoupled
momentumr(r,t) = =;pfY(r,p;t). The Heisenberg equa- o hody Wigner distribution function. By a summation over

tion of motion forfM(r,p;t) is 5. B’ we get from Eq(17)

%fm(;,ﬁ;t):pr'n_Vr’fm(;,F;;t) (p(r Dp(F,D)=(p(r" D)(p(r,t)g(r' 1), (19
b

= Ga(r' p(r,t)y~(m(r’,t)){p(r,t))g(r'—r). (20
+fd2r'z [M(V qS)(F—F')V , . . . .

5 mp ri pii By inserting these decoupllpgs into Ed.2) we get for the

first summandpgv,(q)g{p(q,t))+0O(q). The third sum-

- - mand is zero. The second summand of @) is given by a

+[Vr,i("0+02)](r_r')vp,i} similar discussion as in the last sectisee especially the

discussion below Eq9)]:
X T, p;r’,p’ 1) + Vi f OV, Ve(r 1)

| v1<d+|2>((a+12> .
P . ipo =X (m(q,1)) | (S(k)~ 1)
* i Vet VAT, (15) < M Lg+k|
.= . _)+|Z q -
whereVy,;=/dp; and @0, @
fOTpr.pi=2, e“""r'e”"'r'<:a:;,g,z(t)agmz(t) where S(k)—1 is the Fourier transformation aj(r)—1.

kK’ With the help of = S(k)—1]=—1 we get for Eq.(21)

xag,7§,,2(t)a,;,+l;,,2(t):) (16)  —(1/2)pov2(a)a(p(q,t))+0O(q). Thus we obtain that the
. o . decoupling of CC does not fulfill the consistency condition
is the two-body distribution function. (12). That is the reason why CC obtained in the scheme of

Now we have to decouple the correlation functiontheir decoupling a zero-frequency density-density response
f)(r,p;r’,p’;t) in Eq. (15). For the Coulomb theory STLS function which vanishes as the square of the wave vector in
uses the following decoupling: the long-wavelength limit.
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To get a better insight into the violation of the consistencyquadratic density fluctuation part after a CS retransformation
condition(12), we calculate the Fourier transformation of the of these two terms we get that the first term is canceled by

first two terms in Eq(12) multiplied by g. This is given by  the first term in Eq.(22) [with the help ofV,, X &(r' —r)
) ) =25(r" —r)]. The term withV,, acting ong(r’ —r) is the

- f d?r' Vv, {GLp(r',t)—polp(r,t):) reason for the violation of the consistency condition. In other

words, doing the CS retransformation first and then the de-

coupling of the correlation function, or vice versa, leads to
XV, vo(r —F)}—J' d2r’Vr‘i{ C:[V, different results. We require that these two actions commute
and that fixes the density-momentum decoupling in the case
) V. 0,(F' —1) of a given decoupling of the density-density correlation func-
X w(F’,t)],;(F,t):) riz2 ] (22) tion. For the given density-density decoupling of STLS, Eq.
4mpo (19), we get by this requirement the decoupling

Because of the appearance of thén the second term in Eq.

(22), we proceed similarly as in the discussion below . Ve xa(r’ Hp(r,))=g(r’ = (VX a(r',H)])
by retransforming to the electronic system. Then, the term of x( (F 0) 23
quadratic density fluctuations cancels the first term in Eq. PRt

(22). This is no longer true by using the decouplinds), 1,5 we get thay(f’—r) should not be differentiated. In

(20) in Eq. (22). The operatoi . in the second term in Eq.  the decoupling of the equation of moti¢h5), we get for the
(22) acts in this decoupling ofwr(r’)){p(r)) as well as on second term in the square brackets after a Fourier transfor-

g(r'—r). This results in two summands. When we take themation with respect to

[ dro S, €T (T8, O 550
p/

~f d2rd?r’ S €TV, (=) ]V, f OO (T, B =), (24
p/
wherev =vy+uv,. The first term in the square brackets should be decoupled by

[ e e R, -7V O B B
p’

_ 2 12, ldF . > > 1 > - o S, s >  fQ) T R 2
d?rd?r' > €TV, wo(r—r e (V<P H Ve Xp Higx )V (T i p'3)
P’ 0

e I 1 . - . . .
~f derd?r 3 eIV, oo =) 1z g(F =) (VX pt VX! 4G X p) Vs f O pity (O, pst),
P’ 0

(29

whereg(F— F’) is not differentiated. X,?p is the ideal gas density-density response ﬁﬁds the
With the help of the Heisenberg equation of motidb) corresponding transversal momentum-momentum response.
and the approximation&@4) and (25) it is possible to calcu- These response functions are known analyticallpe ma-
late the response matri@d3) [similar to the calculations of trix of the effective potentials is
CC (Ref. 11)]. By doing this we get
Wo(K) +wa(k) iwy(k)

x=x[1-Ux"T1, (26) 1 —iwg(k) o/

wherew,(k)=[1—-G,(K)]v (k) and the local field factors
G, (k) are given by

(28
where

[K: (K= p)]@be)®
ke[ k—p|«

(29

1
(27) Ga(k)=— > [1-S(p)]
Po p
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TPo S(kaw)

-0.015 i
-0.0175

2 3 4
(w2m)/ k%,

FIG. 1. The dynamic structure fact&®(k,w) times mp, for k
=0.6kg andrg=6, as a function oiu2m/k§ for the RPA, CC, and
our decoupling(solid line). The §-function peak corresponding to

the inter-Landau-level mode has been artificially broadened for clar-

ity and contains most of the spectral strength.

Hereag=by=1, a;=0, b;=2 anda,=0, b,=2.

In the following, we denote the quantities which are cal-
culated by the means of CC with an upper index CC, for

comparison. The structure fact(k) can be calculated with
the help of the fluctuation-dissipation theorém

l ©
S(k)z—po—wjo do Im[x,,(k,®)], (30)

wherey,, is density-density part of the response majyiin
Eq. (13):

X2, (k, o)
1= X3, [wo(k) +w,(K) +wi (k)23

Xpp(K, @)= (31
By using their decoupling, CC calculated a similar respons
as in Egs.(28) and (29) with a5®=b5°=1, a{°=1, b$°
=1 anda5“=0, bS®=2. Using the rotational invariance of
S(k) it is easy to show thaGy(k)=G5(k) is linear ink.
Further G;(k)=GS%k)=G,(k) is quadratic ink and
G$¢(0)=1/2. Thus we obtain for our decoupling a zero-

frequency density-density response function which vanishes

linearly in the long-wavelength limit. For the CC decoupling

it vanishes as the square of the wave vector in the long-

wavelength limit. Since the only difference in tleterms of
our decoupling and the decoupling of CC is given(y, we
will compareG; for these two decouplings. One gets from
the integral(29) that G,(k) approaches taG$(k) for k
=kg. Both functions are equal fok—o. As mentioned
above this is not the case f&r~0.

In the following, we will calculate a solution of thignte-
gral) equations(29)—(31) by a numerical iteration method.
As a starting point we us@ ,=0 for all «, corresponding to

the RPA. For doing this one has to choose the dimensionless

coupling strengthr .= 1/(agy/mp,), Wherea, is the Bohr ra-
dius ag=€?m,. Since the results show little variation with
this coupling strengthin the region r <10), we will
choose for definiteness=6 in the following figures. This
special choice of ¢ could be motivated through calculations
of the effective mass of the= 1/2 systent? In the following

e
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7
e
6.5
e
°‘£‘ 6 e
0 RPA.”
S 5.5 e
3 e
5 P A
S cc
4.5 ///
0.2 0.4 0.6 0.8 1
k/kp

FIG. 2. The cyclotron peak of the RPA, CC, and our decoupling
(solid line) for rg=6. It is determined through the singularity of

Im[x,,]-

we present and discuss our results for various quantities de-
rived from the density-density response functjgyy . In Fig.
1 we show ¢rpg) S(k,w), where

1
S(k,w)=— ﬂ_—polm[)(pp(k,w)] (32
is the dynamical structure factor. With the help Qﬁp
= pok?/ (Myw?) andx$=27pak?/ (m3w?) which is valid for
k/ke<1, kke /m,<w, we get from Eq(31) that S(k,w) has
a pole at the cyclotron frequeney= kﬁ/mb describing the
inter-Landau-level excitation, which is unaffecteckat0 by
correlations and is in agreement with Kohn’s theorem. For
finite values ofk we get from Fig. 2 that the cyclotron mode
[the pole ofS(k,w) ] of CC and our decoupling are given by
a smaller frequency than in the RPA. From Fig. 1 we obtain
that S(k, w) ~ S*“(k, ) for w>kkg /my,. This can be under-
Stood by the asymptotic form gf? , andx{ in this range and
the similarity of Gy(k) and G,(k) for CC and our decou-
pling for k<kg. It is also seen from Fig. 1 thel(k,w)
~SRPAk, w) for small values ofw2m/k2 . This can be also
seen in Fig. 3, where we show the functigp,(k,0). One
sees from this figure that,,(k,0)~ x}"(k,0) fork=<k and

o
Xop(K,0)~x55(k,0) for k=ke. This is understandable by

0
-0.025
-0.05

= -0.075

*  -0.1

S

< -0.125

-0.15

-0.175

FIG. 3. Static density-density response functigp,(k,0) as
a-function ofk/kg for the RPA, CC, and ou(solid line) decoupling
scheme for =6. The discontinuity in the derivative &t=2k¢ is
due to the Fermi surface.
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TABLE I. The Coulomb interaction energye®®\(ry)) per
particle.

rg This work CcC RPA 0.

—0  —1.00%/(agry) —1.00%/(agry) —1.19%/(agry)
6 —1.04%/(agrs) —1.046%/(agry) —1.76€%/(agrg)

S(k)

the asymptotic forms of the5(k)’s (see the discussion
above. One also obtains from this figure that(k,0) has
the asymptoticO(k?) for k—0.

By using the compressibility sum rdfet® 0.5 1 1.5

2.5 3 3.5 4

2
k/kr

prgk,O) (33 FIG. 4. Static structure factd(k) as a function ok/kg in the

1
K=——lim o
2 RPA, CC, and oufsolid line) scheme for ;=6.

€
Pok—0 l+217r)(pp(k,0)

thermore, we find for our method that themomenta of the
we can calculate the compressibilkyof the v=1/2 system. dynamical structure factd(k,») for smallk (excluding the
The denominator is due to the fact that by changing the aregyclotron contribution coincides with that of the RPfRefs.

of the system the positive background has to be changed aldpand 18 because for smak our effective potentials coin-

to conserve neutrality. With the help of° (k,0)=—m,/  ¢ide with that of the RPA. .
(2m), x2(k,0)=—po/my,, and Eq.(29) thisfuieads to At last we calculate the Landau energy. As in the case of
»y XT\K, V)= 0 y .

the calculation of the Landau energy in the RPAne ob-

tains with the help of a coupling constant integration for the
_ (34) _Landau energy in our decoupling sc_hemg an inf(ared di_verg-
21”,3 16 my, o ing energy. This is caused by the simplification in consider-

§+m<e (rs) ing only quadratic density fluctuations in the derivation of

the Hamiltonian(4) from the exact CS Hamiltoniar2)

We call (€°°U(rg))=1/25w(K)[ S(k) — 1] the Coulomb in-  (compare the remark at the end of Seg. The Hamiltonian
teraction energy per particle following Ref. 19. For a com-(4) has two defects(i) The restriction to the quadratic den-
parison of the compressibility with the other theories wesity fluctuations leads to an ultraviolet divergen¢e). The
mention thatk R™A=(3/4) (mb/ZWPS) for the RPA andK©C  order of the operators in the product of the twds changed
=0 for CC. Now we calculatée®(r,)) for the RPA, CC, to normal order which eliminates the ultraviolet divergence

and our decoupling. The Coulomb interaction energies foPUt results in an infrared divergenté.solution of this prob-
r—0 andr.=6 are shown in Table I. We see from this table [€M for the energy in the RPA was given in Ref. 9 by con-

that the Coulomb interaction energies of our theory and ccSidering for the energy calculation all maximal divergent dia-
are equal. By calculating the full Coulomb energy per par_gram_s (R.P A together_ with all first-order dlag_rams of the
ticle via coupling constant integration, uc®{r.) Hamllton_lan (.2). Thezglrst;n(;rder energyper pgrtlcle) of the

B 2N (Teqns T/ Coulr . 1 CS Hamiltonian(2) is™ uf™2%=4.00[ my,(agrs)“]. In the fol-
=1(aors)J drs(aors)(e=*(rs)), we get for CC and our |5ying, we make a similar calculation for our decoupling
theory u®®(r )~ — 1.026%/(aor s). The Coulomb energy of scheme. Thus, we have to calculate the Landau energy per
electrons in the lowest Landau level was calculated earlier byparticle, u™%= ud™% uf™9 of the Hamiltonian(4) but to

Morf and d’Ambrumenit® and by GirlicH* by numerical extend the first-order terms to those of the Hamiltonian
diagonalization methods. Within this method the Coulombwith the full three-particle interaction. To this end we have to
energy per electron is given hy-%%(r )~ —0.88¢%/(apry).  multiply v1(k) andv,(k) in Eq.(28) by a parametek. Then

This energy has to be compared with the-0 Coulomb  the solution fory of the (integra) equations(29)—(31) de-
energy of the RPA, CC, and our method. We obtain that thé€nds om. From the Hamiltoniari4) we get that for deter-
r<—0 energy of the STLS-type methods is in better agreemining ud™ one has to calculate two termisne contains
ment with the numerical results than the Coulomb energy othe density-density response functign,(k,»;\), and the

the RPA.(The formula for the coupling constant integration other contains the density-momentum reponse function
leads for smalf to the equality of the Coulomb interaction X,~(K,@;\)]. After some algebra one gets fod™through
energy with the Coulomb energyurthermore, we see from coupling constant integration
Table | that in the STLS-type theories the Coulomb energy of 1 (1 "
the lowest Landau level is a very good approximation to the udmag— — _—_ de f do

Kmb 1

total Coulomb energy including higher Landau levels. This is PoTJo kK J0

not the case for the RPA. To get the reason for the equality of 1

the Coloumb energies of our method and CC we show in Fig. X[ Zv(K)IM[ x,, (K, @:N) = x° (K, 0)]
4 forr =6 thatS(k) = S°°(k) for almost allk/kg . We verify 272 ”” e

that all curves in the figure obey the leadinkg/Kg)?/2 be-
havior for smallk/kg, required by the Kohn theorem. Fur- +vl(k)Wl(k)Im[X-?-(k,w))(pp(k,w;)\)] . (35
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With the help of a numerical integration of E(R5) we get  numerical iterations and get the response functions of the
ud™a%= —2.16[ my(aors)?]. The total Landau energy per theory. In contrast to the theory of CC, we obtain a density-
particleu™®is then given by density response function which vanishes linearly in the
long-wavelength limit for zero frequency. We get agreement
for the density-density response function with the theory of
CC for momentak=kg. For k<kgr we get agreement with
the density-density response function of CC for frequencies
w=kke/m, and to the RPA foro<kkg/m,. Further, we
By doing a similar calculation for the total Landau energy calculate the compressibility of the theory by using the com-
per particle within the RPA, we get ub33=1.60/ pressibility sum rule. We obtain a Coulomb correction to the
[mp(aors)?]. The Landau energy can be compared to thecompressibility not contained in the RPA. With the help of
exact Landau energw./2 of the v=1/2 system. This is the response functions, we calculate the static structure fac-
given by uli?%=2.00[ m,(aors)?]. Thus we obtain that, in tor, the excitation spectrum, and the Landau as well as the
comparison with the RPA, the Landau energy and the CouCoulomb energies. As in the theory of CC, we get density
lomb energy of the STLS-type theories are in better agreeexcitations which are lower in their frequencies as a function
ment with the exact Landau energy and the Coulomb energgf the wave vector than the excitations calculated with the
(from numerical diagonalization help of the RPA. The obtained excitation spectrum is almost
identical to the spectrum of CC. The same holds for the static
structure factor. This is the reason for the agreement of the
IV. CONCLUSION lowest-Landau-level Coulomb energy as well as the full
Coulomb energy to the energies calculated by CC. The
In this paper, we consider an approximation of the reqowest-Landau-level Coulomb energy fits better to the Cou-
sponse function of the= 1/2 system which goes beyond the jomb energy calculated by numerical methj&dé(~114%
RPA. The method we used is the STLS theory, first estabpf the numerical lowest-Landau-level Coulomb engripan
lished for the Coulomb systef.Recently this theory was the RPA. We remark that the relative part of the Coulomb
applied to the CS system by CE€In their theory, CC obtain  energy in the lowest Landau level, i.e., linearef is much
a density-density response function which vanishes as thénhanced as compared to the RPA. Finally, we calculate the
square of the wave vector in the long-wavelength limit. Welandau energy of the system. We obtain a much better ap-
show in this paper that the zero-frequency density-densityroximation of the exact Landau energy 92% of the exact
response function vanishes linearly in the long-wavelength andau energy of the= 1/2 systemthan the RPA.
limit independent of any approximation. We obtain this result In summary, a consistent decoup“ng of the Wigner func-
by considering the Heisenberg equation of motion for thejon in the Heisenberg equation of motion leads to results
longitudinal momentum operator. From this equation of mo-which are in better agreement with known numerical and
tion, we derive a consistency condition for a decoupling ofexact results, respectively, than the RPA.
the equal-time density-density and density-momentum corre-
lation functions. We show that this consistency condition is
not fulfilled in the theory of CC and that is the reason for the
guadratic behavior of the zero-frequency long-wavelength
limit of the density-density response. Based on the functional We would like to thank S. Conti, M. Hellmund, and W.
form of the Heisenberg equation of motion of the WignerApel for many helpful discussions during the course of this
distribution function(with external potentials we suggest a work. Further we acknowledge the support of the Gra-
decoupling of the correlation functions in this equationduiertenkolleg “Quantenfeldtheorie” at the University of
which respects the consistency condition. Leipzig and the DFG Schwerpunktprogramm “Quanten-
We solve the decoupled Heisenberg equation of motion bydall-Systeme.”

1
umad=y fmad4 ydmad= 1.84——. (36)
mb( aOr s)
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