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Beyond the random phase approximation in the Singwi-Sjo¨lander theory
of the half-filled Landau level

J. Dietel* and W. Weller
Institut für Theoretische Physik, Universita¨t Leipzig, Augustusplatz 10, D 04109 Leipzig, Germany

~Received 3 May 2001; published 15 October 2001!

We study then51/2 Chern-Simons system and consider a self-consistent field theory of the Singwi-
Sjölander type which goes beyond the random phase approximation~RPA!. By considering the Heisenberg
equation of motion for the longitudinal momentum operator, we are able to show that the zero-frequency
density-density response function vanishes linearly in the long-wavelength limit independent of any approxi-
mation. From this analysis, we derive a consistency condition for a decoupling of the equal-time density-
density and density-momentum correlation functions. By using the Heisenberg equation of motion of the
Wigner distribution function with a decoupling of the correlation functions which respects this consistency
condition, we calculate the response functions of then51/2 system. In our scheme, we get a density-density
response function which vanishes linearly in the Coulomb case for zero frequency in the long-wavelength
limit. Furthermore, we derive the compressibility, and the Landau energy as well as the Coulomb energy. These
energies are in better agreement with numerical and exact results, respectively, than the energies calculated in
the RPA.

DOI: 10.1103/PhysRevB.64.195307 PACS number~s!: 71.10.Pm, 73.43.2f, 71.27.1a
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I. INTRODUCTION

The combination of an electronic interaction and a stro
magnetic field in a two-dimensional electron system yield
rich variety of phases. These are best classified by the fil
factorn, which is the electron density divided by the dens
of a completely filled Landau level. In the case ofn>1/2, the
behavior of the system resembles that of a Fermi liquid in
absence of a magnetic field or at small magnetic fields. T
effect can be explained with a new sort of quasiparticles
n51/2, each electron combines with two flux quanta of t
magnetic field to form a composite fermion; these compo
fermions then move in an effective magnetic field which
zero on the average. The interpretation of many experim
supports this picture. We mention transport experiments w
antidots, in which features of the resistivity are related
closed loops of the composite fermions around the dots,1 and
also focusing experiments.2 An overview over further experi-
ments can be found in Ref. 3. A field theoretical formulati
of this composite fermion picture was first established
Halperin, Lee, and Read4 ~HLR! as well as Kalmeyer and
Zhang.5 They formulated the Hamiltonian in terms of Cher
Simons ~CS! transformed electrons and studied within t
random phase approximation~RPA! many physical quanti-
ties. Besides the theory of HLR there are other alterna
formulations of the composite fermionic picture which a
mainly based on a gauge transformation of the
Hamiltonian.6

We used in Ref. 7 the theory of HLR for a determinati
of the ground-state energy of then51/2 system in the RPA
There we found an infrared diverging Landau energy. T
problem was solved in Refs. 8–10 by taking into account
correct normal ordering of the operators. We obtained a L
dau as well as a Coulomb energy in the RPA which is
satisfactory agreement with the exact and numerical res
respectively.9,10 In Ref. 11, Conti and Chakraborty~CC! im-
0163-1829/2001/64~19!/195307~9!/$20.00 64 1953
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proved the calculation of the Coulomb energy by taking in
account dynamical correlations through the formalism
Singwi, Tosi, Land, and Sjo¨lander12 ~STLS!, known as the
Singwi-Sjölander theory and established first in the calcu
tion of the structure factor of the Coulomb theory. Th
method is a generalization of the RPA. In comparison to
RPA this method results in a Coulomb energy which is
better approximation to the Coulomb energy obtained ear
by numerical simulations of interacting electrons in the lo
est Landau level by Morf and d’Ambrumenil13 and by
Girlich.14 CC did not calculate the Landau energy of then
51/2 system which would also be a very interesting quan
to be compared with the RPA as well as the true resultvc/2,
the Landau energy per electron. In their theory the result
zero-frequency density-density response function vanishe
the square of the wave vector in the long-wavelength lim
This is in contradiction to the RPA result where it vanish
linearly for the Coulomb interaction.4 In their paper, CC
mentioned that the behavior of the zero-frequency respo
function of their theory is similar to the zero-frequency r
sponse functions of the alternative formulations of the
theory6 cited above. But later on, Halperin and co-workers15

showed that the zero-frequency response function of th
theories also vanishes linearly in the wave vector for
Coulomb interaction if one expands the approximation
the RPA.

In this paper, we will show that the quadratic behavior
the zero-frequency response function in the theory of
results from the decoupling of the equal-time density-den
and density-momentum correlation functions. In CS theor
this needs a careful treatment as will be shown by consid
ing the Heisenberg equation of motion for the longitudin
momentum operator. With the help of this equation, we w
get a zero-frequency response function of then51/2 system
which vanishes linearly for the Coulomb interaction in t
long-wavelength limit. It can be also learned from this pr
©2001 The American Physical Society07-1



o
on
he
on
th
sl
ty
n
n
he
nc
il
th
e
e
ur
,

in
er
e

ns
is
ty
W
r

ec

o
on
e

f

he

ua-

tor
-

y

us
tic

c-
tion
of

ef.
he
of

J. DIETEL AND W. WELLER PHYSICAL REVIEW B64 195307
cedure which relation in the decoupling approximations
density-density and density-momentum correlation functi
in CS theories should be fulfilled. In the STLS theory it is t
Heisenberg equation of motion of the Wigner distributi
function which is used to get the response functions of
system. In CS theories, one has to decouple simultaneou
density-density correlation function and a densi
momentum correlation function. We will show that the co
sistency relation for the decoupling of these two functio
are not fulfilled in the theory of CC. This is the reason for t
quadratic behavior of the long-wavelength zero-freque
density-density response function in their theory. We w
suggest a STLS-type theory of the CS system, in which
decouplings respect the consistency condition. With the h
of this decoupling, we will calculate the density-density r
sponse function, the compressibility, the dynamic struct
factor, the static structure factor, and the Coulomb energy
well as the Landau energy.

The paper is organized as follows: We will introduce
Sec. II the CS Hamiltonian and calculate the Heisenb
equation of motion for the longitudinal momentum. Then w
get from this equation the static density-density respo
function in the long-wavelength limit and discuss the cons
tency relation for a decoupling of the equal-time densi
density and density-momentum correlation functions.
will study in Sec. III the equation of motion of the Wigne
distribution function and suggest a decoupling that resp
this relation.

II. STATIC RESPONSE FUNCTION OF THE nÄ1Õ2 CS
SYSTEM

At first, we review the main steps of the HLR approach
the n51/2 system. Here, we follow in the main the notati
of CC.11 The CS transformation for spinless fermions is d
fined by4

C1~rW !5Ce
1~rW !expF2i E drW8arg~rW2rW8!r~rW8!G , ~1!

whereCe
1(rW) is the electron creation operator,C1(rW) is the

transformed fermion operator,r(rW) is the density operator o
the fermions, and arg(rW) is the angle thatrW forms with thex
axis. The kinetic part of the Hamiltonian is given after t
transformation as
19530
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Hkin5
1

2mb
E d2rC1~rW !@2 i¹W 1dAW ~rW !#2C~rW !, ~2!

wheremb is the electron band mass and

dAi~rW !5E drW8f i~rW2rW8!@r~rW8!2r0# ~3!

is the fluctuation of the CS vector potential.r0 is the mean
density of then51/2 system andfW (rW)52¹W arg(rW)52eW z

3rW/r 2. We used the convention\51 andc51 in the above
formula ~2!. By expanding the Hamiltonian in Eq.~2! and
keeping only terms up to second order in the density fluct
tions, one gets in the momentum space

H5(
kW

k2

2mb
akW

†
akW1 (

kWÞ0

i
v1~k!

mb
F :S kW

k
3pW ~kW ! D r~2kW !:

1
1

2
@v0~k!1v2~k!#:r~kW !r~2kW !:G . ~4!

Here pW (kW ) is the Fourier transformed momentum opera
pW (rW)52 iC(rW)1¹W C(rW), akW

† creates a CS fermion with mo

mentumkW , and v0(k)52pe2/k is the Coulomb interaction
wheree25e2/«. e is the charge of the electron and« is the
dielectric constant of the background.v1(k)54p/k and
v2(k)5(4p)2r0 /(mbk2) are CS potentials. We denote b
:A: the normal ordering of the operatorA. With the help of
the CS transformation of the electronic Hamiltonian, we th
get a CS Hamiltonian which does not contain a magne
field.

First, we will discuss the asymptotics for small wave ve
tors of the zero-frequency density-density response func
by a method which allows us to study the decoupling
correlation functions in a Singwi-Sjo¨lander theory of the
half-filled lowest Landau level. Singwi and Tosi used in R
16 a method to obtain the compressibility sum rule for t
Coulomb system from the Heisenberg equation of motion
the longitudinal momentum operatorqW /q•pW (qW ). The com-
mutator CH ofqW /q•pW (qW ) with the Hamiltonian~4! is
CH~qW ,t !5(
kW8

1

mb

~kWqW !2

q
akW1qW /2

†
~ t !akW2qW /2~ t !1 (

qW 8Þ0
@v0~q8!1v2~q8!#:r~qW 8,t !r~qW 2qW 8,t !:S qW 8qW

q
D

1 i(
qW 8

v1~q8!

mb
:S qW 8

q8
3pW ~qW 8,t !D r~qW 2qW 8,t !:S qW 8qW

q
D 2 i (

qW 8Þ0

v1~q8!

mb
F :S qW 8

q8
3pW ~qW 1qW 8,t !D r~2qW 8,t !:S qW 8qW

q
D

1:S qW

q
•pW ~qW 1qW 8,t ! D r~2qW 8,t !:S qW 8

q8
3qW D G . ~5!
7-2
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We consider in addition a coupling to an external poten
Vext(qW ,t). Since we want to study the adiabatic limit we n
glect the time derivative in the Heisenberg equation of m
tion

(
qW 8

Vext~qW ,t !r~qW 2qW 8,t !S qW 8qW

q
D 52CH~qW ,t !. ~6!

We take the expectation value of this equation of mot
with respect to the ground state of the system~ground state
for Vext50) and get the following equation which is valid t
linear order inVext:

Vext~qW ,t !r052^CH~qW ,t !&c

1

q
2r0~v0~q!1v2~q!!^r~qW ,t !&

2 ir0

v1~q!

mb
S qW

q
3^pW ~qW ,t !& D . ~7!

^•&c is the cumulant part of the expectation value^AB&c

5^AB&2^A&^B&, whereA, B are the operatorspW or r.
In the following we will discuss the leading order inq

of the terms in Eq.~7!. By considering only the linear orde
in Vext we get for q→0 the following relation~compare
Ref. 16!:

^O&5F ]

]r0
^O&Vext50G^r~q,t !&, ~8!

for an operatorO. Here^•&Vext50 is given by the expectation
value for Vext50. We obtain that̂ CH(qW ,t)&c /q has the
asymptotic behaviorO(q0)^r(qW )& for q→0. For deriving
this asymptotics we take theq→0 limit in every cumulant
expectation value in Eq.~5!. Every additive term in Eq.~5!
contains either a term proportional toq or has a term linear
in qW 8•qW /q ~the terms with a quadraticq8 in the numerator
cancel!. We now discuss the leading terms in Eq.~7!. We
begin with the third term of the right-hand side of Eq.~7! and
retransform it with the help of Eq.~1! from the CS fermions
to the electrons~CS retransformation!. Denoting the expec-
tation value with respect to the electronic ground state
^•&e we obtain

^pW ~qW ,t !&5mb^JW~q,t !&e2 i (
qW 8Þ0

eW z

3
qW 8

q82
^:r~qW 81qW !r~2qW 8!:&e . ~9!

J(qW ,t) is the electron current operatorJ(qW ,t)
5(kW (kW / mb) ae,kW1qW /2

† (t) ae,kW2qW /2(t) 1 (1/mb) (qW 8A
W ( qW 8) r (qW

2qW 8,t). Here AW (qW 8) is the external vector potential of th
n51/2 system. Now we use Eq.~8! to calculate the first term

of the right-hand side of Eq.~9!. Since^JW (rW,t)&e
Vext50

50 for
all electron densities of the system, one gets zero for
term. The cumulant expectation value of the second term
19530
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Eq. ~9! is of orderO(q0)^r(qW )&. Thus, the third term of Eq.
~7! is given (q→0)by the noncumulant part

ir0

v1~q!

mb
S qW

q
3^pW ~qW ,t !& D 52r0v2~q!^r~qW ,t !&

1O~q0!^r~qW ,t !&. ~10!

By inserting this equation into Eq.~7! we get for the static
linear response in the limitq→0

^r~qW ,t !&52
1

v0~q!1O~q0!
Vext~qW ,t !. ~11!

Thus the static density-density response function vanishe
v0(q)21, i.e., linearly forq→0.

The above results are rigorous consequences of the e
tion of motion in the limitq→0. We consider this result as
consistency condition for an approximative calculation of t
correlation functions: An approximative density-density co
relation function and the corresponding density-moment
correlation function have to satisfy the above analysis. Es
cially we have seen that the 1/q2 singularity of the noncu-
mulant part of the commutator in Eq.~7!, due to the commu-
tation with thev2 term of H @second term in Eq.~5!#, is
canceled by the 1/q2 singularity of the noncumulant part, du
to the commutation with thev1 term of H @third term in Eq.
~5!#. Thus there is no 1/q2 singularity in the denominator o
Eq. ~11!. It is clear from the structure of the operators a
from the derivation above that the first term gets this 1q2

singularity by averaging with respect to every state not o
the CS ground state. This is no longer true for the sec
term. In this term one gets the 1/q2 singularity by averaging
over the CS ground state. This ground state is reached by
dynamics of the CS system. Thus the consistency relatio
written for q→0 as

(
qW 8Þ0

v2~q8!^:r~qW 8,t !r~qW 2qW 8,t !:&S qW 8qW

q
D

1 i(
qW 8

v1~q8!

mb
K :S qW 8

q8
3pW ~qW 8,t !D r~qW 2qW 8,t !:L S qW 8qW

q
D

2 i (
qW 8Þ0

v1~q8!

mb
K :S qW 8

q8
3pW ~qW 1qW 8,t !D r~2qW 8,t !:L

3S qW 8qW

q
D 5O~q!. ~12!

Here, the third term cancels the cumulant part of the sec
term to orderO(q).

We add a remark concerning the Hamiltonian~4!. The
Hamiltonian ~4! is truncated by keeping only terms up
second order in the quadratic density fluctuations. We
show by the same methods as above that an analysis o
full problem with the Hamiltonian~2! leads to the same re
sults.

In the next section we formulate a Singwi-Sjo¨lander
theory of the half-filled Landau level, where we make
7-3
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approximation of the momentum-density and density-den
correlation functions that respects the consistency condi
~12! derived above.

III. CS RESPONSE FUNCTION WHICH INCLUDES
DYNAMICAL CORRELATIONS

In this section, we will calculate response functions of t
n51/2 CS system that include correlations beyond the R
As mentioned earlier, one transforms the Hamiltonian
electrons in a magnetic field to a CS Hamiltonian~4! at zero
magnetic field. Thus one can calculate response function
the n51/2 system with approximative methods that we
developed for the Coulomb system earlier. In this section,
will apply the theory of STLS~Ref. 12! to the CS system in
the spirit of CC.11 The response function matrixx relates the
density r(kW ,v) and transverse momentum respon
pT(kW ,v)5kW /k3pW (kW ,v) to an external perturbation a scal
potentialVext and a transverse vector potentialAT

ext via

S r~kW ,v!

pT~kW ,v!
D 5@x~kW ,v!#S Vext~kW ,v!

AT
ext~kW ,v!

D . ~13!

Following the original derivation of STLS,12 we start from
the equation of motion for the one-body Wigner distributi
function,

f (1)~rW,pW ;t !5(
kW

eikW•rW^apW 2kW /2
†

~ t !apW 1kW /2~ t !&, ~14!

which determines the densityr(rW,t)5(pW f (1)(rW,pW ;t) and the
momentumpW (rW,t)5(pW pW f (1)(rW,pW ;t). The Heisenberg equa
tion of motion for f (1)(rW,pW ;t) is

]

]t
f (1)~rW,pW ;t !5

pW •¹W rW

mb
f (1)~rW,pW ;t !

1E d2r 8(
pW 8

F ~pW 2pW 8! j

mb
~¹ r ,if j !~rW2rW8!¹p,i

1@¹ r ,i~v01v2!#~rW2rW8!¹p,i G
3 f (2)~rW,pW ;rW8,pW 8;t !1¹p,i f

(1)¹ r ,iV
ext~rW,t !

1
pj

mb
¹p,i f

(1)¹ r ,iAj
ext~rW,t !, ~15!

where¹p,i5]/]pi and

f (2)~rW,pW ;rW8,pW 8;t !5(
kW ,kW8

eikW8•rW8eikW•rW^:apW 2kW /2
†

~ t !apW 1kW /2~ t !

3apW 82kW8/2
†

~ t !apW 81kW8/2~ t !:& ~16!

is the two-body distribution function.
Now we have to decouple the correlation functi

f (2)(rW,pW ;rW8,pW 8;t) in Eq. ~15!. For the Coulomb theory STLS
uses the following decoupling:
19530
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f (2)~rW,pW ;rW8,pW 8;t !' f (1)~rW,pW ;t ! f (1)~rW8,pW 8;t !g~rW2rW8!.
~17!

If one uses the decoupling functiong(rW2rW8)51 in Eq.~17!,
it is easily seen that with the help of this decoupling one g
the density-density response function in the RPA from
equation of motion~15!. Such a decoupling does not respe
the small-distance correlations. STLS take into account th
correlations by taking forg(rW2rW8) the equilibrium, static
pair correlation function. This could also be motivated
follows. One can determineg(rW2rW8) by summing Eq.~17!

overpW andpW 8 such that both sides of the approximation~17!
coincide forVext5AT

ext50:

g~rW2rW8!5
^:r~rW !r~rW8!:&

^r~rW !&^r~rW8!&
. ~18!

The ansatz~17!, ~18! is a decoupling, specific for the Cou
lomb theory because the interaction of the Coulomb Ham
tonian consists only of a density-density vertex. In the
theory the Hamiltonian~4! has in addition to the density
density vertex a density-momentum vertex. The effect of t
is given by the first term in the square brackets on the rig
hand side of Eq.~15!. It is not clear whether the decouplin
~17!, ~18! is a good approximation for this term. In the
approximation CC~Ref. 11! used the decoupling~17!, ~18!
for the CS theory.

In the following, we want to check if this decouplin
respects the consistency condition~12!. For this, we have to
determine the density-density correlation function and
density-momentum correlation function from the decoup
two-body Wigner distribution function. By a summation ov
pW , pW 8 we get from Eq.~17!

^:r~rW8,t !r~rW,t !:&'^r~rW8,t !&^r~rW,t !&g~rW82rW !, ~19!

^:pW ~rW8,t !r~rW,t !:&'^pW ~rW8,t !&^r~rW,t !&g~rW82rW !. ~20!

By inserting these decouplings into Eq.~12! we get for the
first summandr0v2(q)q^r(qW ,t)&1O(q). The third sum-
mand is zero. The second summand of Eq.~12! is given by a
similar discussion as in the last section@see especially the
discussion below Eq.~9!#:

ir0(
kW

v1~qW 1kW !

mb
S ~qW 1kW !

uqW 1kW u
3^pW ~qW ,t !& D ~S~k!21!

3
~qW 1kW !qW

q
2r0v2~q!q^r~qW ,t !&1O~q!, ~21!

where S(k)21 is the Fourier transformation ofg(r )21.
With the help of(kW@S(k)21#521 we get for Eq.~21!

2(1/2)r0v2(q)q^r(qW ,t)&1O(q). Thus we obtain that the
decoupling of CC does not fulfill the consistency conditi
~12!. That is the reason why CC obtained in the scheme
their decoupling a zero-frequency density-density respo
function which vanishes as the square of the wave vecto
the long-wavelength limit.
7-4
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To get a better insight into the violation of the consisten
condition~12!, we calculate the Fourier transformation of th
first two terms in Eq.~12! multiplied by q. This is given by

2E d2r 8¹ r ,i$^:@r~rW8,t !2r0#r~rW,t !:&

3¹ r ,iv2~rW82rW !%2E d2r 8¹ r ,i H ^:@¹W r 8

3pW ~rW8,t !#r~rW,t !:&
¹ r ,iv2~rW82rW !

4pr0
J . ~22!

Because of the appearance of thepW in the second term in Eq
~22!, we proceed similarly as in the discussion below Eq.~9!
by retransforming to the electronic system. Then, the term
quadratic density fluctuations cancels the first term in
~22!. This is no longer true by using the decouplings~19!,
~20! in Eq. ~22!. The operator¹W r 8 in the second term in Eq
~22! acts in this decoupling on̂p(rW8)&^r(rW)& as well as on
g(rW82rW). This results in two summands. When we take
f

19530
y

f
.

e

quadratic density fluctuation part after a CS retransforma
of these two terms we get that the first term is canceled
the first term in Eq.~22! @with the help of¹W r 83fW (rW82rW)
52d(rW82rW)#. The term with¹W r 8 acting ong(rW82rW) is the
reason for the violation of the consistency condition. In oth
words, doing the CS retransformation first and then the
coupling of the correlation function, or vice versa, leads
different results. We require that these two actions comm
and that fixes the density-momentum decoupling in the c
of a given decoupling of the density-density correlation fun
tion. For the given density-density decoupling of STLS, E
~19!, we get by this requirement the decoupling

^:¹W r 83p~rW8,t !r~rW,t !:&'g~rW82rW !^@¹W r 83pW ~rW8,t !#&

3^r~rW,t !&. ~23!

Thus we get thatg(rW82rW) should not be differentiated. In
the decoupling of the equation of motion~15!, we get for the
second term in the square brackets after a Fourier trans
mation with respect torW
E d2rd2r 8(
pW 8

eiqW •rW@¹ r ,iv~rW2rW8!#¹p,i f
(2)~rW,pW ;rW8,pW 8;t !

'E d2rd2r 8(
pW 8

eiqW •rW@¹ r ,iv~rW2rW8!#¹p,i f
(1)~rW,pW ;t ! f 1~rW8,pW 8;t !g~rW2rW8!, ~24!

wherev5v01v2. The first term in the square brackets should be decoupled by

E d2rd2r 8(
pW 8

eiqW •rW
~pW 2pW 8! j

mb
~¹ r ,if j !~rW2rW8!¹pW ,i f

(2)~rW,pW ;rW8,pW 8;t !

5E d2rd2r 8(
pW 8

eiqW •rW@¹ r ,iv2~rW2rW8!#
1

4pr0
~¹W r3pW 1¹W r 83pW 81 iqW 3pW !¹pW ,i f

(2)~rW,pW ;rW8,pW 8;t !

'E d2rd2r 8(
pW 8

eiqW •rW@¹ r ,iv2~rW2rW8!#
1

4pr0
g~rW2rW8!~¹W r3pW 1¹W r 83pW 81 iqW 3pW !¹pW ,i f

(1)~rW,pW ;t ! f (1)~rW8,pW 8;t !,

~25!
nse.

whereg(rW2rW8) is not differentiated.

With the help of the Heisenberg equation of motion~15!
and the approximations~24! and~25! it is possible to calcu-
late the response matrix~13! @similar to the calculations o
CC ~Ref. 11!#. By doing this we get

x5x0@12Ux0#21, ~26!

where

x05S xrr
0 0

0 xT
0D . ~27!
xrr
0 is the ideal gas density-density response andxT

0 is the
corresponding transversal momentum-momentum respo
These response functions are known analytically.7 The ma-
trix of the effective potentials is

U5S w0~k!1w2~k! iw1~k!

2 iw1~k! 0 D , ~28!

wherewa(k)5@12Ga(k)#va(k) and the local field factors
Ga(k) are given by

Ga~k!5
1

r0
(

pW
@12S~p!#

@kW•~kW2pW !# (aa1ba)/2

kaaukW2pW uba
. ~29!
7-5
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Herea05b051, a150, b152 anda250, b252.
In the following, we denote the quantities which are c

culated by the means of CC with an upper index CC,
comparison. The structure factorS(k) can be calculated with
the help of the fluctuation-dissipation theorem19

S~k!52
1

r0pE0

`

dv Im@xrr~k,v!#, ~30!

wherexrr is density-density part of the response matrixx in
Eq. ~13!:

xrr~k,v!5
xrr

0 ~k,v!

12xrr
0 @w0~k!1w2~k!1w1~k!2xT

0#
. ~31!

By using their decoupling, CC calculated a similar respo
as in Eqs.~28! and ~29! with a0

CC5b0
CC51, a1

CC51, b1
CC

51 anda2
CC50, b2

CC52. Using the rotational invariance o
S(k) it is easy to show thatG0(k)5G0

CC(k) is linear in k.
Further G1(k)5G2

CC(k)5G2(k) is quadratic in k and
G1

CC(0)51/2. Thus we obtain for our decoupling a zer
frequency density-density response function which vanis
linearly in the long-wavelength limit. For the CC decouplin
it vanishes as the square of the wave vector in the lo
wavelength limit. Since the only difference in theG terms of
our decoupling and the decoupling of CC is given byG1, we
will compareG1 for these two decouplings. One gets fro
the integral ~29! that G1(k) approaches toG1

CC(k) for k
*kF . Both functions are equal fork→`. As mentioned
above this is not the case fork→0.

In the following, we will calculate a solution of the~inte-
gral! equations~29!–~31! by a numerical iteration method
As a starting point we useGa50 for all a, corresponding to
the RPA. For doing this one has to choose the dimension
coupling strengthr s51/(a0Apr0), wherea0 is the Bohr ra-
dius a05e2mb . Since the results show little variation wit
this coupling strength~in the region 1&r s<10!, we will
choose for definitenessr s56 in the following figures. This
special choice ofr s could be motivated through calculation
of the effective mass of then51/2 system.11 In the following

FIG. 1. The dynamic structure factorS(k,v) times pr0 for k
50.6kF andr S56, as a function ofv2m/kF

2 for the RPA, CC, and
our decoupling~solid line!. The d-function peak corresponding t
the inter-Landau-level mode has been artificially broadened for c
ity and contains most of the spectral strength.
19530
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we present and discuss our results for various quantities
rived from the density-density response functionxrr . In Fig.
1 we show (pr0)S(k,v), where

S~k,v!52
1

pr0
Im@xrr~k,v!# ~32!

is the dynamical structure factor. With the help ofxrr
0

5r0k2/(mbv2) andxT
052pr0

2k2/(mb
3v2) which is valid for

k/kF!1, kkF /mb!v, we get from Eq.~31! thatS(k,v) has
a pole at the cyclotron frequencyv5kF

2/mb describing the
inter-Landau-level excitation, which is unaffected atk50 by
correlations and is in agreement with Kohn’s theorem. F
finite values ofk we get from Fig. 2 that the cyclotron mod
@the pole ofS(k,v)# of CC and our decoupling are given b
a smaller frequency than in the RPA. From Fig. 1 we obt
thatS(k,v)'SCC(k,v) for v@kkF /mb . This can be under-
stood by the asymptotic form ofxrr

0 andxT
0 in this range and

the similarity of G0(k) and G2(k) for CC and our decou-
pling for k!kF . It is also seen from Fig. 1 thatS(k,v)
'SRPA(k,v) for small values ofv2m/kF

2 . This can be also
seen in Fig. 3, where we show the functionxrr(k,0). One
sees from this figure thatxrr(k,0)'xrr

RPA(k,0) for k&kF and
xrr(k,0)'xrr

CC(k,0) for k*kF . This is understandable b

r-

FIG. 2. The cyclotron peak of the RPA, CC, and our decoupl
~solid line! for r s56. It is determined through the singularity o
Im@xrr#.

FIG. 3. Static density-density response functionxrr(k,0) as
a-function ofk/kF for the RPA, CC, and our~solid line! decoupling
scheme forr s56. The discontinuity in the derivative atk52kF is
due to the Fermi surface.
7-6
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the asymptotic forms of theG(k)’s ~see the discussion
above!. One also obtains from this figure thatxCC(k,0) has
the asymptoticO(k2) for k→0.

By using the compressibility sum rule17,19

K52
1

r0
2
lim
k→0S xrr~k,0!

112p
e2

k
xrr~k,0!D , ~33!

we can calculate the compressibilityK of then51/2 system.
The denominator is due to the fact that by changing the a
of the system the positive background has to be changed
to conserve neutrality. With the help ofxrr

0 (k,0)52mb /
(2p), xT

0(k,0)52r0 /mb , and Eq.~29! this leads to

K5
mb

2pr0
2

1

16

3
1

mb

2pr0
^eCoul~r s!&

. ~34!

We call ^eCoul(r s)&51/2(kWv0(k)@S(k)21# the Coulomb in-
teraction energy per particle following Ref. 19. For a co
parison of the compressibility with the other theories
mention thatKRPA5(3/4)(mb/2pr0

2) for the RPA andKCC

50 for CC. Now we calculatêeCoul(r s)& for the RPA, CC,
and our decoupling. The Coulomb interaction energies
r s→0 andr s56 are shown in Table I. We see from this tab
that the Coulomb interaction energies of our theory and
are equal. By calculating the full Coulomb energy per p
ticle via coupling constant integration, uCoul(r s)
51/(a0r s

2)*0
r sdrs8(a0r s8)^e

Coul(r s8)&, we get for CC and our
theory uCoul(r s)'21.02e2/(a0r s). The Coulomb energy o
electrons in the lowest Landau level was calculated earlie
Morf and d’Ambrumenil13 and by Girlich14 by numerical
diagonalization methods. Within this method the Coulom
energy per electron is given byunum

Coul(r s)'20.88e2/(a0r s).
This energy has to be compared with ther s→0 Coulomb
energy of the RPA, CC, and our method. We obtain that
r s→0 energy of the STLS-type methods is in better agr
ment with the numerical results than the Coulomb energy
the RPA.~The formula for the coupling constant integratio
leads for smallr s to the equality of the Coulomb interactio
energy with the Coulomb energy.! Furthermore, we see from
Table I that in the STLS-type theories the Coulomb energy
the lowest Landau level is a very good approximation to
total Coulomb energy including higher Landau levels. This
not the case for the RPA. To get the reason for the equalit
the Coloumb energies of our method and CC we show in F
4 for r s56 thatS(k)5SCC(k) for almost allk/kF . We verify
that all curves in the figure obey the leading (k/kF)2/2 be-
havior for smallk/kF , required by the Kohn theorem. Fu

TABLE I. The Coulomb interaction energŷeCoul(r s)& per
particle.

r s This work CC RPA

→0 21.00e2/(a0r s) 21.00e2/(a0r s) 21.19e2/(a0r s)
6 21.04e2/(a0r s) 21.04e2/(a0r s) 21.76e2/(a0r s)
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thermore, we find for our method that thev momenta of the
dynamical structure factorS(k,v) for smallk ~excluding the
cyclotron contribution! coincides with that of the RPA~Refs.
4 and 18! because for smallk our effective potentials coin-
cide with that of the RPA.

At last we calculate the Landau energy. As in the case
the calculation of the Landau energy in the RPA,7 one ob-
tains with the help of a coupling constant integration for t
Landau energy in our decoupling scheme an infrared dive
ing energy. This is caused by the simplification in consid
ing only quadratic density fluctuations in the derivation
the Hamiltonian ~4! from the exact CS Hamiltonian~2!
~compare the remark at the end of Sec. II!. The Hamiltonian
~4! has two defects:~i! The restriction to the quadratic den
sity fluctuations leads to an ultraviolet divergence.~ii ! The
order of the operators in the product of the twor is changed
to normal order which eliminates the ultraviolet divergen
but results in an infrared divergence.8 A solution of this prob-
lem for the energy in the RPA was given in Ref. 9 by co
sidering for the energy calculation all maximal divergent d
grams ~RPA! together with all first-order diagrams of th
Hamiltonian~2!. The first-order energy~per particle! of the
CS Hamiltonian~2! is20 u fmag54.00/@mb(a0r s)

2#. In the fol-
lowing, we make a similar calculation for our decouplin
scheme. Thus, we have to calculate the Landau energy
particle,umag5udmag1u fmag, of the Hamiltonian~4! but to
extend the first-order terms to those of the Hamiltonian~2!
with the full three-particle interaction. To this end we have
multiply v1(k) andv2(k) in Eq. ~28! by a parameterl. Then
the solution forx of the ~integral! equations~29!–~31! de-
pends onl. From the Hamiltonian~4! we get that for deter-
mining udmag one has to calculate two terms@one contains
the density-density response functionxrr(k,v;l), and the
other contains the density-momentum reponse func
xrp(k,v;l)#. After some algebra one gets forudmag through
coupling constant integration

udmag52
1

r0pE0

1

dl(
kW
E

0

`

dv

3F1

2
v2~k!Im@xrr~k,v;l!2xrr

0 ~k,v!#

1v1~k!w1~k!Im@xT
0~k,v!xrr~k,v;l!#G . ~35!

FIG. 4. Static structure factorS(k) as a function ofk/kF in the
RPA, CC, and our~solid line! scheme forr s56.
7-7
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With the help of a numerical integration of Eq.~35! we get
udmag522.16/@mb(a0r s)

2#. The total Landau energy pe
particleumag is then given by

umag5u fmag1udmag51.84
1

mb~a0r s!
2

. ~36!

By doing a similar calculation for the total Landau ener
per particle within the RPA,9 we get uRPA

mag51.60/
@mb(a0r s)

2#. The Landau energy can be compared to
exact Landau energyvc/2 of the n51/2 system. This is
given by uex

mag52.00/@mb(a0r s)
2#. Thus we obtain that, in

comparison with the RPA, the Landau energy and the C
lomb energy of the STLS-type theories are in better agr
ment with the exact Landau energy and the Coulomb ene
~from numerical diagonalization!.

IV. CONCLUSION

In this paper, we consider an approximation of the
sponse function of then51/2 system which goes beyond th
RPA. The method we used is the STLS theory, first est
lished for the Coulomb system.12 Recently this theory was
applied to the CS system by CC.11 In their theory, CC obtain
a density-density response function which vanishes as
square of the wave vector in the long-wavelength limit. W
show in this paper that the zero-frequency density-den
response function vanishes linearly in the long-wavelen
limit independent of any approximation. We obtain this res
by considering the Heisenberg equation of motion for
longitudinal momentum operator. From this equation of m
tion, we derive a consistency condition for a decoupling
the equal-time density-density and density-momentum co
lation functions. We show that this consistency condition
not fulfilled in the theory of CC and that is the reason for t
quadratic behavior of the zero-frequency long-wavelen
limit of the density-density response. Based on the functio
form of the Heisenberg equation of motion of the Wign
distribution function~with external potentials!, we suggest a
decoupling of the correlation functions in this equati
which respects the consistency condition.

We solve the decoupled Heisenberg equation of motion
.
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numerical iterations and get the response functions of
theory. In contrast to the theory of CC, we obtain a dens
density response function which vanishes linearly in
long-wavelength limit for zero frequency. We get agreem
for the density-density response function with the theory
CC for momentak*kF . For k&kF we get agreement with
the density-density response function of CC for frequenc
v*kkF /mb and to the RPA forv&kkF /mb . Further, we
calculate the compressibility of the theory by using the co
pressibility sum rule. We obtain a Coulomb correction to t
compressibility not contained in the RPA. With the help
the response functions, we calculate the static structure
tor, the excitation spectrum, and the Landau as well as
Coulomb energies. As in the theory of CC, we get dens
excitations which are lower in their frequencies as a funct
of the wave vector than the excitations calculated with
help of the RPA. The obtained excitation spectrum is alm
identical to the spectrum of CC. The same holds for the st
structure factor. This is the reason for the agreement of
lowest-Landau-level Coulomb energy as well as the
Coulomb energy to the energies calculated by CC. T
lowest-Landau-level Coulomb energy fits better to the C
lomb energy calculated by numerical methods13,14 ('114%
of the numerical lowest-Landau-level Coulomb energy! than
the RPA. We remark that the relative part of the Coulom
energy in the lowest Landau level, i.e., linear ine2, is much
enhanced as compared to the RPA. Finally, we calculate
Landau energy of the system. We obtain a much better
proximation of the exact Landau energy ('92% of the exact
Landau energy of then51/2 system! than the RPA.

In summary, a consistent decoupling of the Wigner fun
tion in the Heisenberg equation of motion leads to res
which are in better agreement with known numerical a
exact results, respectively, than the RPA.
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