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Efficient linearization of the augmented plane-wave method
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We present a detailed analysis of the APW1 lo basis set for band-structure calculations. This basis set
consists of energy independent augmented plane-wave~APW! functions. The linearization is introduced
through local orbitals evaluated at the same linearization energy as the APW functions. It is shown that results
obtained with the APW1 lo basis set converge much faster and often more systematically towards the final
value. The APW1 lo thereby allows accurate treatment of systems that were previously unaccessible to lin-
earized APW. Furthermore, it is shown that APW1 lo converges to the same total energy as LAPW provided
the higher angular momental are linearized, either by adding extra local orbitals or treating them by LAPW. It
is illustrated that the APW basis functions are much closer to the true form of the eigenfunctions than the
LAPW basis functions. This is especially true for basis functions that have a strong energy dependence inside
the sphere.
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I. INTRODUCTION

A natural basis for calculating thek-dependent one
electron wave functions in periodic solids are plane wa
~PW’s!. They are, however, a very inefficient basis set
describing the rapidly varying wave function close to t
nuclei. In order to overcome this difficulty one can eith
eliminate these oscillations, due to the presence of the
electrons, as done in pseudo potential calculations or one
use a mixed basis set. One example of the latter appro
was introduced by Slater who suggested the augme
plane waves~APW’s! ~Refs. 1 and 2! as basis functions fo
solving the one electron equations, which now correspon
the Kohn-Sham equations within density functional theo
In the APW scheme the unit cell is divided into two region
~i!, The muffin-tin ~MT! region which consists of sphere
centered at the atomic position, inside which the APW’s s
isfy the atomic Schro¨dinger equation, and~ii ! the interstitial
region I, where the APW’s consist of PW’s,

fK~r !5H (
L

aL
aKul

a~r 8,e!YL~ r̂ 8! r 8,RMT
a

V21/2 exp@ i ~k1K !•r # r PI

. ~1!

V is the unit-cell volume,r 85r2ra wherera is the atomic
position within the unit cell,RMT

a is the radius of the MT
sphere,L is the reduced angular momentum index$ lm%, k is
a wave vector in the irreducible Brillouin zone~IBZ! andK
is a reciprocal-lattice vector.ul

a is the numerical solution to
the radial Schro¨dinger equation at the energye. The coeffi-
cientsaL

aK are chosen such that the atomic functions, for
L components, match the PW withk1K at the MT sphere
boundary. Inside the MT sphere a Kohn-Sham orbitalc i(r )
can only be accurately described ife is equal to the eigenen
ergy « i of c i(r ). Therefore a different energy dependent
of APW basis functions must be found for each eigenene
This is the main drawback of the APW method, since
energy dependent basis set leads to a nonlinear eigenv
problem which computationally is very demanding.
0163-1829/2001/64~19!/195134~9!/$20.00 64 1951
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Linearizing APW

1. LAPW

There were several attempts to improve the energy dep
dance of the secular equations but the first really succes
one was the linearization by Andersen.3 This work led to the
first implementation of the linearized augmented plane-w
~LAPW! method.4 In the LAPW method the energy depen
dence of the radial functions inside each sphere is linear
by adding a second term to the radial part of the basis fu
tions,

fK~r !

5H (
L

@aL
aKu1l

a ~r 8!1bL
aKu̇1l

a ~r 8!#YL~ r̂ 8! r 8,RMT
a

V21/2exp@ i ~k1K !•r # r PI

.

~2!

u1l is the solution to the radial Schro¨dinger equation at a

fixed linearization energye1l andu̇1l is its energy derivative
computed at the same energy. The LAPW’s provide a su
ciently flexible basis to properly describe eigenfunctio
with eigen-energies around the linearization energy. This
the important consequence that thee1l values can be kep
fixed and all eigenenergies can be obtained with a sin
diagonalization.

LAPW’s, however, are not suited for treating states th
lie far from the linearization energy, such as so-called se
core states that have a principal quantum number one
than the corresponding valence state. Furthermore, the
earization is not sufficiently accurate for broad valence ba
if the partial wave shows a large energy variation inside
MT sphere~such asd or f states!. To improve the lineariza-
tion Singh introduced local orbitals~LO’s! to augment the
LAPW basis set for certainl values,5
©2001 The American Physical Society34-1
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fLO~r !5H @aL
a,LOu1l

a ~r 8!1bL
a,LOu̇1l

a ~r 8!1cL
a,LOu2l

a ~r 8!#YL~ r̂ 8! r 8,RMT
a

0 r PI
. ~3!
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An LO is constructed by the LAPW radial functions at th
energye1l and a third radial functionu2l(r 8) at a second
energye2l , chosen to most efficiently improve the lineariz
tion. The three coefficients are determined by the requ
ments that the LO’s should have zero value and slope at
MT sphere boundary and the normalization. LO’s we
found to be more efficient in improving the linearization th
alternative methods with APW’s having continuous seco
and third derivatives.5

2. APW¿ lo

Recently Sjo¨stedtet al. suggested an important modifica
tion of the LAPW method.6 They introduced an APW1 lo
basis, where the APW’s, Eq.~1!, are evaluated at a fixe
energy and flexibility is added by including another type
local orbitals~denoted as lo’s! combining au and u̇,

f lo~r !5H @aL
a,lou1l

a ~r 8!1bL
a,lou̇1l

a ~r 8!#YL~ r̂ 8! r 8,RMT
a

0 r PI
.

~4!

The lo’s are evaluated at the same fixed energy as the c
sponding APW’s. The two coefficients are determined by
normalization and the condition thatf lo(RMT) has zero
value. In this version theu̇l is independent from the PW’
and only included for a chosen set of ‘‘physically importan
l-quantum numbers.

Already Koelling and Arbman pointed out that LAPW
converges somewhat slower than the APW method with
spect to the number of basis functions.4 The LAPW basis
functions are required to be differentiable at the MT boun
ary and are therefore not optimally suited for describing
orbitals inside the sphere. Such constraints are not introdu
on the APW basis set when the energy derivatives are
cluded in form of local orbitals.6

In the APW1 lo method the energy derivative term
only included in a few lo’s and not in every PW, as
LAPW. It is therefore not obvious that the linearization of t
APW1 lo basis is as accurate as the LAPW scheme in
cases. We therefore aim to demonstrate that APW1 lo not
only converges faster towards the basis set limit, but can
reach the same accuracy as LAPW. We have impleme
the APW1 lo method into theWIEN97 code.7 This has been
done in a flexible manner so that LAPW and APW1 lo basis
functions can be mixed, meaning that somel-quantum num-
bers in the expansion inside a sphere can include en
derivatives, Eq.~2!, while others may be treated as APW
Eq. ~1!, at fixed energy with added lo’s, Eq.~4!. We test
different systems and explore the possibility of mixin
LAPW and APW1 lo basis sets. The main objective of th
paper is to compare the APW1 lo basis set with the LAPW
basis set, but not with experimental results as such comp
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sons will be influenced by inadequacies in the applied d
sity functional. Neither the APW’s, the lo’s, nor the LO’s a
required to be continuous in slope at the MT-sphere bou
ary. This complication makes it necessary to include surf
terms in the calculation of the Hamiltonian and the forces,
described in detail in the appendixes.

II. RESULTS AND DISCUSSION

In the following we will present a study of the conve
gence of the total energy and the electric-field gradi
~EFG! in Cu2O. By varying the unit-cell volumes of GaA
and body-centered cubic~bcc! Fe we explore the influence o
the basis set on the total energy further. The resulting t
energies are fitted to the Birch-Murnaghan equation fr
which the equilibrium unit-cell volumes and bulk moduli a
derived. Optimization of structures with atoms placed at f
fractional coordinates is greatly simplified by using force8

instead of numerically calculated energy derivatives. T
implementation of analytically calculated forces within th
APW1 lo method is described in the appendixes. In the fi
subsection we apply this to sodium electrosodalite.

Several combinations of augmentations within the sphe
will be tested and are summarized in Table I together wit
‘‘label’’ to introduce a shorthand notation used later on. R
sults will be reported in terms ofRkmax ~calculated as the
largest PWuK1ku times the smallest MT sphere radius!,
which is a reasonably transferable indicator of basis set q
ity, and in terms of the number of PW’s used in the calcu
tion which determines the actual computational effort. In
calculations the linearization energies of the APW’s and l
and the LAPW’s were set in the valence region. The energ
of the semicore LO were set to the mean of the energiesEtop
~where ul changes sign in value! and Ebottom ~where ul

TABLE I. Different basis sets employed in the present calcu
tions. The number of LO’s depends on the system studied~see Table
II !.

Label Basis set inside spheres

LAPW LAPW’s for all l
APW1 lo APW’s for all l

1 lo’s for all physically importantl
APW1 lop APW’s for all l

1 lo’s for all physically importantl
and the first polarizationl.

L/APW1 lo APW’s for all l
1 lo’s for all physically importantl
LAPW’s for all polarizationl

LAPW/dAPW LAPW’s for all l
exceptl 52 for which APW1 lo is used
4-2
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EFFICIENT LINEARIZATION OF THE AUGMENTED . . . PHYSICAL REVIEW B64 195134
changes sign in slope!, as is standard in theWIEN97 code.7

The energies were always set to the same in the comp
APW1 lo and LAPW calculations.

A. Cu2O

Cuprite, Cu2O, forms a highly symmetric~simple cubic!
relatively open crystal structure. The oxygen atoms form
bcc sublattice and each oxygen atom is tetrahedrally coo
nated to four copper atoms each of which is twofold coor
nated to two oxygen atoms. All calculations in this secti
have been carried out with LOs added for the Cu 3p, 3d,
and the O 2s states. The IBZ was sampled on a tetrahed
mesh with six intervals in each direction.9 The muffin-tin
sphere radius was set to 1.85 a.u. and 1.6 a.u. for Cu an
respectively.

Figure 1 shows the total energy of Cu2O as a function of
Rkmax for four different types of basis sets. The cur
marked LAPW corresponds to a pure LAPW basis set
the curve marked APW1 lo corresponds to a pure APW bas
set with lo’s added forl<2 on Cu andl<1 on O. The
APW1 lo method thus contains 44 additional lo’s compar
to the LAPW basis set, Table II. Both basis sets contain
LO’s mentioned above. In agreement with the original stu6

it can be seen that APW1 lo converges much faster tha
LAPW. The APW1 lo total energy is converged to within 1
mRy of the final value atRkmax58 corresponding to ap
proximately 1100 PW’s while the LAPW basis set need
cutoff defined byRkmax58.5, corresponding to approx
mately 1330 PW’s, to reach the same precision.

However, it should also be pointed out that at very hi
PW cutoffs the LAPW basis set gives a lower energy th
the APW1 lo, see inset in Fig. 1. Although the energy d
ference is small, this is worth investigating. There seems
be three possible reasons for this deviation:~i! there are re-
maining kinks in the APW eigenfunctions which will rais
the kinetic energy, see Eq.~A1! in Appendix A, ~ii ! the
bL

a,lou̇1l
a (r 8) term is only included in a few lo’s which could

mean that the linearization of the APW1 lo basis set is less
accurate than the LAPW scheme, or~iii ! in the APW1 lo
method only thel-quantum numbers with added lo’s are li

FIG. 1. Total electronic energy per formula unit in Cu2O. The
curves are marked as explained in Table I. The number of PW
for k52p/a(1/12,1/12,1/12).
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earized in energy and the behavior in Fig. 1 could mean
the orbitals of higher angular momenta than the ‘‘physica
important’’ need to be linearized as well.

If ~iii ! is valid, a basis set containing lo’s for polarizatio
quantum numbers~in this context we call higherl values that
are not present in the atomic calculation polarization qu
tum numbers! should converge to the same total energy
LAPW. The curve marked APW1 lop, which corresponds to
an APW basis set with lo’s added up to the first set of pol
ization quantum numbers~for Cu l<3 and for O l<2),
shows that this is indeed the case. Though the inclusion
lo’s for the first polarization quantum number adds 38 ba
functions, the APW1 lop basis still needs significant fewe
basis functions than the LAPW basis set.

A different solution to~iii ! could be a hybrid basis se
namely to treat the physically important orbitals as AP
with added lo’s but the polarizationl-quantum numbers with
LAPW. Such a basis set, marked L/APW1 lo in Fig. 1, con-
verges to the same total energy as the LAPW basis set. It
also be seen that the mixed L/APW1 lo basis set converge
as fast as the APW1 lo basis set which means that LAPW
are as efficient as APW basis functions for describing po
ization orbitals. The APW radial functions are optimal
suited for describing the atomiclike behavior of the wa
function close to the atomic positions.6 However, the polar-
ization functions on an atom are mainly needed to desc
the tails of the wave functions from surrounding atom
reaching into its MT sphere and therefore are not better
scribed by APW’s than LAPW’s. The importance of pola
ization orbitals will thus depend on the local symmetry. Th
explains why in the original work,6 where only results for
two closed packed fcc systems were presented, APW1 lo
was found to converge to the same total energy as LA
despite lo’s only being added for physically importa
l-quantum numbers.6

The EFG tensor is sensitive to the anisotropy of t
charge distribution close to the nucleus and can be calcul

is

TABLE II. Number of basis functions used in calculation. Th
quoted number of PW corresponds to what has been judged
converged calculation. See text for details.

LAPW APW1 lo APW1 lop
L/APW1 lo

Cu2O LO 18 18 18
lo 44 82

PW 750 350 350
GaAs LO 11 11

lo 18
PW 330 160

SES LO 92 92
lo 176

PW 6490 2941
LAPW APW1 lo LAPW/dAPW

Fe LO 8 8 8
lo 9 5

PW 52 43 43
4-3
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MADSEN, BLAHA, SCHWARZ, SJÖSTEDT, AND NORDSTRO¨ M PHYSICAL REVIEW B 64 195134
from first principles.10 The EFG serves as a critical test f
the quality of the wave function or corresponding density.
Cu2O the copper atoms are located on the threefold a
which means that the EFG tensor is diagonal and descr
by its principal component. In Fig. 2 the calculated EFG
the Cu site is plotted as a function of basis set converge
When employing an LAPW basis set the EFG at the cop
site is converged to within 2% of the final value at a P
cutoff defined byRkmax57 corresponding to about 75
PW’s. With an APW1 lo basis set a similar precision i
reached at a PW cutoff defined byRkmax55.5, i.e., about
350 PW’s, which is a very significant reduction in basis
size. It should be pointed out that the present calculated E
value differs significantly from the earlier LAPW stud
where a value of 8.2631021 V/m2 was reported.11 The old
calculation was performed without LO’s and the Cu 3p state
was treated in an energy window separate from the vale
states. In this approximation the 3p states were not strictly
orthogonal to the valence states.

B. GaAs

The discussion above showed that the two basis
APW1 lop and L/APW1 lo behave similarly and conse
quently we just present results for the latter in the followi
two examples. GaAs is a semiconductor and forms a non
trosymmetric diamond lattice. The calculations on Ga
were carried out with LO’s added for the Ga 3d and As 3d
and 3s states. The IBZ was sampled on a tetrahedral m
with ten intervals in each direction. The MT sphere radii f
both Ga and As were set to 2.0 a.u.

Figure 3~a! shows that the equilibrium volume converg
much faster with APW1 lo than with LAPW. Interestingly,
the fastest convergence is with the L/APW1 lo basis set
which means that the equilibrium volume is converged
ready at a PW cutoff defined byRkmax56.5, corresponding
to approximately 160 PW’s, whereas LAPW requir
Rkmax58, i.e. about 330 PW’s, to reach similar precisio
Furthermore the APW1 lo and the L/APW1 lo give equilib-
rium volumes within 3% of the final result even at a poo
cutoff definedRkmax56. The calculated bulk modulus o

FIG. 2. Calculated EFG at the Cu site in Cu2O at experimental
unit-cell volume. The number of PW’s is for k
52p/a(1/12,1/12,1/12).
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GaAs, Fig. 3~b!, shows a similar behavior as the equilibriu
volume. With the L/APW1 lo basis it is converged to within
3% of the final value withRkmax56.5 ~160 PW’s! whereas
LAPW requiresRkmax57.5 ~285 PW’s!, to reach similar
precision. The insets in Figs. 3~a! and 3~b! show that the
hybrid L/APW1 lo converges to exactly the same values
LAPW whereas the pure APW1 lo values slightly deviates.

C. bcc Fe

The calculations on bcc Fe were carried out with a M
radius of 2.0 a.u. and with LO’s added for the 3d and 3p
states. The IBZ was sampled on a tetrahedral mesh with
intervals in each direction.

Figure 4 shows a behavior similar to GaAs: The AP
1 lo and L/APW1 lo methods converge faster than the pu
LAPW basis set and only L/APW1 lo converges to the sam
unit-cell volume as the LAPW basis set. The actual num
of basis functions saved when going from LAPW to APW
very small as could be expected for this relatively dens
packed structure. The calculated bulk modulus does not c
verge smoothly, Fig. 4~b!. This is because the actual numb
of PW’s in a series of calculations can vary strongly w
unit-cell volume at low PW cutoff. For example a unit ce
volume of 68 a.u.3 at Rkmax56 gives 19 PW’s , while a
unit-cell volume of 84 a.u.3 gives 40 PW’s. The bulk modu
lus calculated atRkmax56 with APW1 lo and L/APW1 lo

FIG. 3. ~a! Calculated equilibrium lattice constants and~b! bulk
moduli of GaAs. The number of PW’s is for theG point and the
experimental volume.
4-4
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EFFICIENT LINEARIZATION OF THE AUGMENTED . . . PHYSICAL REVIEW B64 195134
agree much better with the final value than LAPW. This
dicates that APW is less sensitive to the number of PW’s
the basis set. It is well known that systems such as Fe w
d-orbitals close to the Fermi level need high PW cutoffs
LAPW. To illustrate this we have constructed a basis
which treats all l-quantum numbers as LAPW’s exceptl
52 which is treated as APW1 lo. As seen in Fig. 4 the
LAPW/dAPW performs just as well as the APW1 lo and
L/APW1 lo basis sets.

The above LAPW/dAPW basis set underlines that thes
and p orbitals converge much faster in LAPW than thed
orbitals and that the main improvement in the APW basis
is a better description of thed part of the basis functions. A
PW cutoff defined byRkmax55.5 at primitive unit-cell vol-
ume 75.7 a.u.3 corresponds to 19 PW’s. The basis set th
consists of only the~000! PW, the 12 PW’s in the~110! star,
and 6 PW’s in the~200! star. At theG point the~000! PW
and the~200! star of PW’s do not contribute to thed orbitals
of t2g symmetry, which thus are described by only one sta
PW’s. When nod-LOs are added this correponds to a min
mal PW basis set and the calculated valence electron de
will therefore be extremely sensitive to the shape of the b
functions. Figure 5~a! shows how close to the converge
density the minimum APW basis set gets while the LAP
basis set is clearly far off. The improved description of t
d-part of the basis functions is explained in Fig. 5~b!. The
radial componentsu and u̇ of the d partial wave in Fe are

FIG. 4. ~a! Calculated equilibrium lattice constants and~b! bulk
moduli of bcc Fe. The number of PW’s is for thek
52p/a(1/19,1/19,1/19) and experimental volume.
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isshown. It can be seen that the strong energy dependenc
thed radial function leads to a relative largeu̇, while theu̇ of
the p radial function is only a small correction. Figure 5~c!
shows the radial part of thed andp parts of af (110) APW/
LAPW basis functions. The APW’s have kinks atRMT ,
while the LAPW’s have continuous first derivatives. Th

FIG. 5. ~a! The spin-up valence electron density of thet2g or-
bitals along the@111# direction calculated at theG point. The den-
sity for APW1 lo and LAPW are both calculated with the minima
basis set~described in text! using the potential from the converge
density.~b! shows the radial part of thep andd functions in Fe~full
lines: APW; dashed lines: LAPW! matched to the 110 star PW’s i

the interstitial. ~c! u(r 8) and u̇(r 8) for the Fe p and d orbitals
evaluated at the energiesep50.400 Ry anded50.468 Ry.
4-5



r-

iv

s
y
e
e
t

ol
is

un

ov

a
m
do
e

n
na
re
te
s
fo

h

of
e

a

b

ax
is

he
r

ad
-

is
th
th
W

m
ce

for
sec-
out
ed.
the

n-

the
t of
ally
o-
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largeu̇ of thed radial function leads to a considerable defo
mation of the d-LAPW basis function. Thep-LAPW is much
less affected, despite the discontinuity in the first derivat
being larger than in thed part.

D. Sodium electro sodalite

As a further test case we have calculated the force
sodium electro sodalite~SES! at the structure published b
Madsenet al.12 SES is an interesting structure in which th
alumina-silicate sodalite framework supports a paramagn
Na4

31 cluster inside each cage. It has been chosen as a
case because the structure contains large interstitial h
Furthermore, due to the short Si–O and Al–O bond d
tances, rather small Si~1.55 a.u.!, Al ~1.70 a.u.!, and O~1.5
a.u.! sphere radii must be used. The sodium is weakly bo
to the framework and thus a MT sphere withRMT
52.0 a.u. was used. Semicore LO were added to impr
the description of the silicon and aluminum 2p, the oxygen
2s orbitals, and the sodium 2s and 2p states. The IBZ was
sampled on a tetrahedral mesh with three intervals in e
direction. Again, as the main purpose of this work is to co
pare computational methods, the calculations have been
in a hypothetical nonmagnetic phase and not in the exp
mental antiferromagnetic ground state.

The space group isP4̄3n and the oxygens are placed o
general crystallographic positions with three free positio
parameters. The sodiums are found on the threefold sc
axis and its position is described by only one parame
Figure 6 shows the calculated forces on the oxygen and
dium atoms as a function of PW cutoff. As was also seen
the O2 molecule,13 the forces calculated with APW1 lo con-
verge much faster than the force calculated with LAPW. T
APW forces converge to within 4 mRy/a.u. atRkmax55
~2941 PW’s! while an LAPW basis set need a PW cutoff
Rkmax56.5 ~6490 PW’s!. It is also important to note that th
forces calculated with the APW1 lo method converge much
smoother towards the final values. This means that even
PW cutoff corresponding toRkmax54.5 ~2124 PW’s! the
forces point in the right direction whereas the smallest usa
LAPW basis set needs a PW cutoff ofRkmax56 ~5088
PW’s!. This means that the first steps of a structure rel
ation in APW1 lo can be carried out with a rather small bas
set.

Figure 6~b! shows the force on the sodium atom. As t
sodium MT sphere is bigger than the oxygen sphere the fo
is more converged at a lower PW cutoff. However, the
vantage of APW1 lo is still evident as the force is com
pletely converged already at a cut-off defined byRkmax54
while LAPW needs a cutoff ofRkmax56.5 to reach a similar
accuracy.

III. COMPUTATIONAL CONSIDERATIONS

The scaling of the computationally dominant parts
given in Table III. Both the number of valence bands and
number of basis functions needed scale linearly with
number of atoms. The overall scaling of LAPW and AP
1 lo is thereforeNat

3 . The improved efficiency APW1 lo has
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two origins: ~i! fewer basis functions are needed per ato
and~ii !, the form of the APW basis functions is simpler sin
the bL

au̇1l
a (r 8) term appears only in a few lo’s.

The lower number of basis functions per atom needed
the same accuracy has been documented in the previous
tions. For covalently bonded open systems savings ab
50% in the number of basis functions has been achiev
This means a speed up by a factor 4 in the setup of
secular matrices and the iterative diagonalization14 and by a
factor 8 for a full diagonalization which are the computatio
ally dominant parts of the SCF cycle, Table III.

The simpler form of the basis functions does not affect
diagonalization but can significantly decrease the amoun
time needed for the setup of the matrices. This is especi
evident in the setup of the nonspherical part of the full p

FIG. 6. Atomic forces on~a! oxygen and~b! Na in the NM SES.
The number of PW’s is for thek52p/a(1/6,1/6,1/6) point.

TABLE III. Scaling perk point. Nat is the number of atoms.Nb

is the number of valence bands,nL is the number of$ lm% pairs in
Eq. ~1! or Eq. ~2!. M is the number of basis functions.

Task Scaling

Matrix setup nL
2NatM

2

Full diagonalization M3

Iterative diag. NbM2

Calculation ofr nLNbNatM
4-6
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tential Hamilton matrix,15 which involves calculating the
sums

HK ,K8
NS,a

5(
L8

S aL8
a,K8(

L
@aL

a,K* ^ul
auVNSuul 8

a &

1bL
a,K* ^u̇l

auVNSuul 8
a &#

1bL8
a,K8(

L
@aL

a,K* ^ul
auVNSuu̇l 8

a &

1bL
a,K* ^u̇l

auVNSuu̇l 8
a &# D ^YL* uYL8&Ka , ~5!

whereVNS is the nonspherical part of the potential andKa
are the lattice harmonics combatible with the local site sy
metry.

With an APW basis set this reduces to a double sum o
only one term, thereby reducing the time for setup of
Hamilton matrix by a factor 4. For cases such as the soda
and Cu2O, where only half the number of basis functions a
needed compared to LAPW, this leads to a reduction in se
time of the nonspherical part by a factor 16.

If one performs a calculation with linearized polarizatio
l-quantum numbers one has to choose between APW1 lop
and L/APW1 lo basis sets. The APW1 lop basis set adds
polarization lo’s which increases both the number of ba
functions and, as the lo’s contain abL

a,lou̇1l
a (r 8) term, reduces

the advantage of the simpler basis set form in the nonsph
cal part of the Hamilton setup. Thus the APW1 lop basis is
potentially expensive in, e.g., closed-packed structures c
taining heavy elements. Treating the polarizationl with
LAPW means that hardly any speed-up due to the sim
form of the basis functions is gained. The most elegant
lution seems to be to treat all physically importantl as APW
with added lo’s, the first polarizationl as an LAPW and the
rest as APW. The difference between the pure APW1 lo and
the APW basis sets with linearized polarization orbitals
only significant for highly accurate calculations. A pu
APW1 lo basis set should therefore be adequate at nor
PW cutoffs. It should still be kept in mind that the diffe
ences in computational time between the different AP
1 lo, APW1 lop and L/APW1 lo basis sets are small com
pared to the considerable reduction in computational t
compared to a pure LAPW basis set.

IV. CONCLUSION

The total-energy convergence of Cu2O has been analyze
and it has been found that when the energy dependence
l components are linearized, as they are automatically
LAPW, the APW1 lo basis set converges to the same to
energy as LAPW. Thereby it has been demonstrated tha
linearization used in APW1 lo is as efficient as in LAPW.

Through an analysis of a minimal basis set calculation
bcc Fe it was shown that the requirement in LAPW of co
tinuous derivatives at the MT border deformes the rad
functions away from their optimal form. This is especia
19513
-

er
e
te
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n-

r
o-
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al

e

all
in
l
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n
-
l

true for basis functions that have a strong energy depend
inside the sphere.

Generally we have found that considerable computatio
savings can be achieved by employing an APW1 lo basis
set. It has been shown that results obtained with the A
1 lo converges faster and often more systematically towa
the final value. Thereby accurate calculations can be
formed at a much lower cost than with the LAPW basis s
There is no doubt that the APW1 lo method promises very
large savings for larger structures and allows reliable tre
ment of systems that were previously unaccessible to LA
due to computational limitations.
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APPENDIX A: HAMILTON MATRIX ELEMENTS

As APW’s are not constrained to have continuous deri
tives at the MT boundaries and according to Green’s theo
a surface integral over the sphere of discontinuity must
added16 to the kinetic energy contribution of the Hamilto
matrix,

TK ,K85E
VI

~¹fK !* •¹fK8dr

1(
a

S E
VMT

a
fK* ~2¹2!fK8dr1 R

SMT
a

fK* ¹fK8dSD ,

~A1!

whereSMT
a is the boundary surface,VI is the volume of the

interstitial region,VMT
a is the volume of the MT sphere

around atoma. The surface elementdS is directed outwards
from the enclosed volume. The one electron wave functi
can retain the discontinuity in slope of the basis functions
the MT surface. However, it has only little effect on obser
able properties and disappears as variational freedom is
proved with increasing basis set size.17

The contribution of the extra surface term to the Hamilt
matrix can be shown to be~dropping the indexa)

R
SMT

fK* ¹fK8dS5RMT
2 (

L
@aL

Ku1l~RMT!1bL
Ku̇1l~RMT!

1cL
Ku2l~RMT!#* @aL

K8u1l8 ~RMT!

1bL
K8u̇1l8 ~RMT!1cL

K8u2l8 ~RMT!#,

~A2!
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where the prime indicates the radial derivative. Depend
on whetherfK andfK8 are LAPW’s, APW’s, or LO some of
the terms in Eq.~A2! will be zero. As LO are zero at the MT
boundary, the surface terms will be zero iffK is a lo or a
LO. It will also be zero iffK8 is a LO of the form defined in
Eq. ~3! as the derivative is zero at the MT boundary.

APPENDIX B: FORCES WITHIN THE APW ¿ lo METHOD

In the force expression implemented intoWIEN97 the force
on an atom is calculated as a sum of five contributions.8 The
Hellman-Feynmann and core contributions are purely e
trostatic and are therefore unchanged between APW
LAPW basis sets. Furthermore the contribution from t
nonspherical potential can still be calculated as given by
et al.8 The differences occur only in the contributions due
the surface terms contribution to the kinetic energy in
spherical Hamiltonian inside the MT sphereFsph

a , and the
surface termFsur

a .
Using the2¹2 operator for the kinetic energy densi

within the sphere one gets~dropping the indexa)

Fsph5(
k,i

vk,i(
l ,m

Im~AL
i @2AL

i ~e1l2« i !1BL
i 1CL

i Nl ,12~e1l

1e2l22« i !#* 1BL
i $2BL

i ~e1l2« i !Ṅl1AL
i

1CL
i @Ṅl ,12~e1l1e2l22« i !1Nl ,12#%*

1CL
i @2CL

i ~e2l2« i !1BL
i Nl ,121~AL

i Nl ,121BL
i Ṅl ,12

a !

3~e1l1e2l22« i !#* !, ~B1!

where

Nl ,125^u1l uu2l&, Ṅl5^u̇1l uu̇1l&, Ṅl ,125^u̇1l uu2l&
~B2!

and

AL
i 5(

K
cK ,iaL

K , AL
i 5(

K
KcK ,iaL

K ~B3!

and equivalently forB and C. cK ,i denotes the variationa
coefficients of the ith eigenstate. Furthermore, a contribu
from the surface term, Eq.~A1!, must be added toFsph,

(
k,i

vk,i(
l ,m

Im@RMT
2 $@AL

i u1l~RMT!1BL
i u̇1l~RMT!

1CL
i u2l~RMT!#* @AL

i u1l8 ~RMT
a !1BL

i u̇1l8 ~RMT!

1CL
i u2l8 ~RMT!#2@AL

i u1l~RMT!1BL
i u̇1l~RMT!

1CL
i u2l~RMT!#* @AL

i u1l8 ~RMT!1BL
i u̇1l8 ~RMT!

1CL
i u2l8 ~RMT!#%#. ~B4!

The choice of representing a movement of an atom
moving the corresponding MT sphere, as done in Ref
yields a surface term in the force expression.13 This surface
19513
g

c-
nd
e
u

e

n

y
,

term involves the kinetic energy operator, defined by
¹•¹ operator, and is given as

Fsur
a 5(

k,i
vk,i R

SMT
a

c i* ~ T̂2« i !c i u IdS

5(
k,i

vk,i (
K ,K8

~cK ,i* cK8,i !@~K1k!

•~K 81k!2« i # R
SMT

a
fK* fK8IdS. ~B5!

Where theI indicates that the integral should be evaluat
using the interstitial wave functions. OriginallyFsur

a was
evaluated using the MT wave functions.8 With APW basis
functions this procedure is no longer valid because the
rivatives of the basis functions are no longer required to
continuous on the MT border.

However, in the interstitial region, a kinetic energy de
sity, defined by aT̂2« i operator, can be expressed as
single sum over symmetrized Fourier coefficients, equi
lently to the expression of the electron density in the int
stitial region,

T~r !5(
G

TGeiG•r, ~B6!

whereG runs over all uniqueK 82K . The Fourier expansion
of the charge density in the interstitial region can be eva
ated by series of fast Fourier transforms~FFT’s!,18 and the
coefficientsTG can be evaluated by a similar procedure:

~Kx1kx!cK ,i→FFTTi ,x~r !, ~Ky1ky!cK ,i→FFTTi ,y~r !,

~Kz1kz!cK ,i→FFTTi ,z~r !,

cK ,i→FFTc i~r !(
k,i

vk,i@Ti ,x* ~r !Ti ,x~r !1Ti ,y* ~r !Ti ,y~r !

1Ti ,z* ~r !Ti ,z~r !2« ic i* ~r !c i~r !#5T~r !→FFTTG.

~B7!

The force can then be evaluated as a sum over the sym
trized kinetic energy coefficients,

Fsur
a 5(

G
TG R

SMT
a

eiG•rdS. ~B8!

By expanding the PW’s into spherical Bessel functions
surface integral can be shown to be

R
Sa

eiG•rdSa5 iGH 4p

3
RMT

3 G50

4p

uGu
RMT

2 j 1~ uGuRMT!eiG•ra GÞ0

.

~B9!

It should be pointed out that the use of the¹•¹ operator
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changesFsph and Fsur also for LAPW basis sets. Howeve
as the LAPW’s are differentiable the differences cancel o
Hence the total force calculated on an atom with LAPW
n.

tin

c

19513
t.
exactly the same as when using the expressions in Re
The expressions forFsph, Eqs.~B1! and~B4!, andFsur , Eqs.
~B8! and ~B9!, are therefore completely general.
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