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Efficient linearization of the augmented plane-wave method
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We present a detailed analysis of the ARV basis set for band-structure calculations. This basis set
consists of energy independent augmented plane-wA®) functions. The linearization is introduced
through local orbitals evaluated at the same linearization energy as the APW functions. It is shown that results
obtained with the APW lo basis set converge much faster and often more systematically towards the final
value. The APW-lo thereby allows accurate treatment of systems that were previously unaccessible to lin-
earized APW. Furthermore, it is shown that ARW converges to the same total energy as LAPW provided
the higher angular momentare linearized, either by adding extra local orbitals or treating them by LAPW. It
is illustrated that the APW basis functions are much closer to the true form of the eigenfunctions than the
LAPW basis functions. This is especially true for basis functions that have a strong energy dependence inside

the sphere.
DOI: 10.1103/PhysRevB.64.195134 PACS nunifer71.15.Ap, 71.20-b, 71.15.Nc, 31.15.Ew
I. INTRODUCTION Linearizing APW

. . 1. LAPW
A natural basis for calculating th&-dependent one-

electron wave functions in periodic solids are plane waves
(PW'’s). They are, however, a very inefficient basis set forda

describing the rapidly varying wave function close to theone was the linearization by Anders&fihis work led to the

nuclei. In order to overcome this difficulty one can eitherfirst implementation of the linearized augmented plane-wave
eliminate these oscillations, due to the presence of the co%‘e P 9 P

There were several attempts to improve the energy depen-
nce of the secular equations but the first really successful

electrons, as done in pseudo potential calculations or one ¢ APW) method‘% In the !‘AP\.N method the energy qepeh'
use a mixed basis set. One example of the latter approadffnce of the radial functions inside each sphere is linearized

was introduced by Slater who suggested the augmente@y adding a second term to the radial part of the basis func-

plane wavegAPW'’s) (Refs. 1 and Ras basis functions for tions,
solving the one electron equations, which now correspond to

the Kohn-Sham equations within density functional theory.

In the APW scheme the unit cell is divided into two regions: ¢ ()
(i), The muffin-tin (MT) region which consists of spheres

centered at the atomic position, inside which the APW's sat- > [a®™ug (r')+bXug (r’)yJY (r') r'<R&;
isfy the atomic Schrdinger equation, andi) the interstitial =1 L .
regionl, where the APW'’s consist of PW’s, O Y2exdi(k+K)-r] rel
S e ) 2)
alu(r’e)Y (r') r'<Ryr
dr(r)=9 t @ _ _ _ o .
QO 2 exdi(k+K)-r] rel uy, is the solution to the radial Schiimger equation at a

fixed linearization energy,, anduy, is its energy derivative
Q is the unit-cell volumer’=r—r_, wherer, is the atomic computed at the same energy. The LAPW'’s provide a suffi-
position within the unit cell Ry is the radius of the MT ciently flexible basis to properly describe eigenfunctions
spherel is the reduced angular momentum indém}, k is  with eigen-energies around the linearization energy. This has
a wave vector in the irreducible Brillouin zoBZ) andK the important consequence that tbg values can be kept
is a reciprocal-lattice vectou{® is the numerical solution to fixed and all eigenenergies can be obtained with a single
the radial Schrdinger equation at the energy The coeffi-  diagonalization.
cientsafK are chosen such that the atomic functions, for all LAPW'’s, however, are not suited for treating states that
L components, match the PW wittt-K at the MT sphere lie far from the linearization energy, such as so-called semi-
boundary. Inside the MT sphere a Kohn-Sham orhjtgl) core states that have a principal quantum number one less
can only be accurately describedeifs equal to the eigenen- than the corresponding valence state. Furthermore, the lin-
ergy g; of ¢;(r). Therefore a different energy dependent setearization is not sufficiently accurate for broad valence bands
of APW basis functions must be found for each eigenenergyif the partial wave shows a large energy variation inside the
This is the main drawback of the APW method, since theMT sphere(such asd or f state$. To improve the lineariza-
energy dependent basis set leads to a nonlinear eigenvaltien Singh introduced local orbitald.O’s) to augment the
problem which computationally is very demanding. LAPW basis set for certaihvalues’
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a®toug (r)+b®toug (r') +ctOug (rH1YL(r’) <Ryt

dLo(r)= 0 e

)

An LO is constructed by the LAPW radial functions at the sons will be influenced by inadequacies in the applied den-
energy e;,; and a third radial functioru, (r’) at a second sity functional. Neither the APW's, the lo’s, nor the LO’s are
energye,; , chosen to most efficiently improve the lineariza- required to be continuous in slope at the MT-sphere bound-
tion. The three coefficients are determined by the requireary. This complication makes it necessary to include surface
ments that the LO’s should have zero value and slope at thierms in the calculation of the Hamiltonian and the forces, as
MT sphere boundary and the normalization. LO’s weredescribed in detail in the appendixes.

found to be more efficient in improving the linearization than

alternative methods with APW'’s having continuous second
and third derivative&. II. RESULTS AND DISCUSSION

In the following we will present a study of the conver-
gence of the total energy and the electric-field gradient
Recently Sjstedtet al. suggested an important modifica- (EFG) in Cu,O. By varying the unit-cell volumes of GaAs

tion of the LAPW method. They introduced an APWIlo  and body-centered cubibco Fe we explore the influence of
basis, where the APW’s, Eq1l), are evaluated at a fixed the basis set on the total energy further. The resulting total
energy and flexibility is added by including another type ofenergies are fitted to the Birch-Murnaghan equation from

2. APW+lo

derived. Optimization of structures with atoms placed at free

[aﬁ"°uf|(r’)+bf"°iji’|(r’)]YL(F’) r'<R%: fractional coordinates is greatly simplified by qsin_g fofces
dio(r)= _ instead of numerically calculated energy derivatives. The
0 rel implementation of analytically calculated forces within the

(4 APW+lo method is described in the appendixes. In the final

The lo's are evaluated at the same fixed energy as the corr§UPSection we apply this to sodium electrosodalite.

sponding APW’s. The two coefficients are determined by the _S€Veral combinations of augmentations within the spheres
normalization and the condition that,,(Rys) has zero will be tested and are summarized in Table | together with a
(o]

. . - “label” to introduce a shorthand notation used later on. Re-
value. In this version thel, is independent from the PW's

. ) . . , sults will be reported in terms dRk., (calculated as the
and only included for a chosen set of “physically important largest PW|K +k| times the smallest MT sphere radiuis
[-quantum numbers.

Already Koelling and Arbman pointed out that LAPW which is a reasonably transferable indicator of basis set qual-

) ity, and in terms of the number of PW’s used in the calcula-
converges somewhat slower than the APW method with re, Y

. . . tion which determines the actual computational effort. In all
spect to the numper of ba3|s. functu.fn?.'he LAPW basis calculations the linearization energiespof the APW’s and lo’s
functions are required to be c_hfferenUa_bIe at the MT t.’ound'and the LAPW’s were set in the valence region. The energies
orbials insice the Sphere. Such constraints are ot introducdy (e Semicore LO were set o the mean of the eneiigs
on the APW basis set when the energy derivatives are in- here u; changes sign in valyeand Eyorom (Where u
cluded in form of local orbital§. ] ] )

In the APWAlo method the energy derivative term is TABLE |. Different ba}3|s sets employed in the pregent calcula-
only included in a few lo's and not in every PW, as in tions. The number of LO’s depends on the system studieed Table
LAPW. It is therefore not obvious that the linearization of the ).
APW+lo basis is as accurate as the LAPW scheme in all_abel

cases. We therefore aim to demonstrate that AR@/not

Basis set inside spheres

only converges faster towards the basis set limit, but can alspaPw LAPW's for all |

reach the same accuracy as LAPW. We have implementedpPw+ lo APW's for all |

the APWHlo method into thewiEN97 code! This has been + lo’s for all physically important
done in a flexible manner so that LAPW and ARW basis  APW-+lop APW's for all |

functions can be mixed, meaning that solrgiantum num- + lo’s for all physically important
bers in the expansion inside a sphere can include energy and the first polarizatioh
derivatives, Eq(2), while others may be treated as APWSs, L/APW+lo APW's for all |

Eq. (1), at fixed energy with added lo's, Eg¢4). We test + lo’s for all physically important
different systems and explore the possibility of mixing LAPW's for all polarizationl
LAPW and APWA-lo basis sets. The main objective of this LaApw/dAPW LAPW's for all |

paper is to compare the APWo basis set with the LAPW exceptl =2 for which APW lo is used

basis set, but not with experimental results as such compari
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T T T T ——— TABLE Il. Number of basis functions used in calculation. The
—s— LAPW quoted number of PW corresponds to what has been judged as a
+18517.0 --e--- APW+lo converged calculation. See text for details.
<o LIAPWl0
Z 105175+ —v— APW+lop LAPW APW-+lo APW- lop
3 L/APW+lo
o -1351804  x M  18618.960T I N®veeell
T NN B = Cu,0 LO 18 18 18
85 & w0 | s lo 44 82
PW 750 350 350
+13519.0 GaAs LO 11 11
2é7 4‘:(3; 1 7%18 1 0é9 1 5I72 211 :?5 lo 18
RK,,, / # of PW's PW 330 160
SES LO 92 92
FIG. 1. Total electronic energy per formula unit in £u The lo 176
curves are marked as explained in Table I. The number of PW's is PW 6490 2941
for k=2m/a(1/12,1/12,1/12). LAPW APW+lo LAPW/dAPW
Fe LO 8 8 8
changes sign in slopeas is standard in thenieng7 code’ lo 9 5
The energies were always set to the same in the compared PW 52 43 43

APW+lo and LAPW calculations.

earized in energy and the behavior in Fig. 1 could mean that

) ) o . the orbitals of higher angular momenta than the “physically
Cuprite, CyO, forms a highly symmetri¢simple cubi¢  jmnortant” need to be linearized as well.

relatively open crystal structure. The oxygen atoms form a ' () is valid, a basis set containing lo's for polarization
bee sublattice and each oxygen atom is tetrahedrally coordiyantym numberéin this context we call highdrvalues that
nated to four copper atoms each of which is twofold coordi-yre not present in the atomic calculation polarization quan-
nated to two oxygen atoms. All calculations in this sectiony,m nymbers should converge to the same total energy as
have been carried out with LOs added for the Qu 3d, | Apw. The curve marked APWlop, which corresponds to
and the O 2 states. The IBZ was sampled on a tetrahedrabny Apw basis set with lo’s added up to the first set of polar-
mesh with six intervals in each directi@riThe muffin-tin ization quantum number§for Cu I<3 and for Ol<2)

sphere radius was set to 1.85 a.u. and 1.6 a.u. for Cu and Qs that this is indeed the case. Though the inclusion of

respectively. _ lo’s for the first polarization quantum number adds 38 basis
Figure 1 shows the total energy of fias a function of  nctions, the APWlop basis still needs significant fewer
Rknax for four different types of basis sets. The CUIVe pasis functions than the LAPW basis set.
marked LAPW corresponds to a pure LAPW basis set and A different solution to(iii) could be a hybrid basis set,
the curve marked APW lo corresponds to a pure APW basis namely to treat the physically important orbitals as APW
set with lo's added fol<2 on Cu andi<1 on O. The  yjth added lo’s but the polarizatidrquantum numbers with
APW-+lo method thus contains 44 additional lo’s compared| Ap\w Such a basis set, marked L/APMb in Fig. 1, con-
to the LAPW basis set, Table II. Both basis sets contain thgerges to the same total energy as the LAPW basis set. It can
LO’s mentioned above. In agreement with the original study also be seen that the mixed L/APWb basis set converges
it can be seen that APWlo converges much faster than g fast as the APWIo basis set which means that LAPW
LAPW. The APW lo total energy is converged to within 10 gre as efficient as APW basis functions for describing polar-
mRy of the final value aRky,,=8 corresponding to ap- jzation orbitals. The APW radial functions are optimally
proximately 1100 PW's while the LAPW basis set needs &syjted for describing the atomiclike behavior of the wave
cutoff defined byRkqy,.=8.5, corresponding to approxi- fynction close to the atomic positiofisdowever, the polar-
mately 1330 PWs, to reach the same precision. _ization functions on an atom are mainly needed to describe
However, it should also be pointed out that at very highthe tails of the wave functions from surrounding atoms
PW cutoffs the LAPW basis set gives a lower energy thaneaching into its MT sphere and therefore are not better de-
the APWH o, see inset in Fig. 1. Although the energy dif- scribed by APW's than LAPW's. The importance of polar-
ference is small, this is worth investigating. There seems tg;ation orbitals will thus depend on the local symmetry. This
be three possible reasons for this deviatiGnthere are re- explains why in the original work,where only results for
maining kinks in the APW eigenfunctions which will raise g closed packed fcc systems were presented, ARW
the kinetic energy, see EdAL) in Appendix A, (i) the  \as found to converge to the same total energy as LAPW
b'°ug (r') term is only included in a few lo’s which could despite lo's only being added for physically important
mean that the linearization of the APWo basis set is less |-quantum numberS.
accurate than the LAPW scheme, @r) in the APW+Ilo The EFG tensor is sensitive to the anisotropy of the
method only thd-quantum numbers with added lo’s are lin- charge distribution close to the nucleus and can be calculated

A. Cu,0
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—s—LAPW —
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E L. odo UAPWHo ) ] £ -~ LUAPW+lo | 1
B --v-~ APW-lop o 204 crodees APWelO 1
2 E 1 S e ]
o 484 1 S 2024 & [ wra oA -
i 3
-5.0 1 - € 200 4
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T T —— -? --------- T _________ ’ T T T T - T ‘:
R7 & 748 1099 1872 2% 187 2bo o 4B o 8bb
Rk, /#of PW's (@) RK,,./# of PW's
FIG. 2. Calculated EFG at the Cu site in Quat experimental 86 T T T T T T
unit-cell volume. The number of PW's is fork 0 A GaAs —a— LAPW ]
=277/a(1/12,1/12,1/12). = 1 746 --e---L/APW+lo
& 824 ' <o-dee APWetlo 8
from first principles® The EFG serves as a critical test for - 50 S ]
the quality of the wave function or corresponding density. In 3
Cu,O the copper atoms are located on the threefold axesé 78 4 .
which means that the EFG tensor is diagonal and describec <
by its principal component. In Fig. 2 the calculated EFG at @ 75'_ T
the Cu site is plotted as a function of basis set convergence ., | 4
When employing an LAPW basis set the EFG at the copper

site is converged to within 2% of the final value at a PW 72 T T T T 7
cutoff defined byRk,,=7 corresponding to about 750 187 229 331 459 645 869
PW's. With an APWlo basis set a similar precision is ® RKya/ # 0f PW's

reached at a PW cutoff defined Bk, ,,=5.5, i.e., about
350 PW'’s, which is a very significant reduction in basis se
size. It should be pointed out that the present calculated EFE‘
value differs significantly from the earlier LAPW study
where a value of 8.2610"! \,//mz was,reported.l The old  Gaas, Fig. 3b), shows a similar behavior as the equilibrium
calculation was performed without LO’s and the CuState \,olyme. With the L/APW lo basis it is converged to within

was treated in an energy window separate from the valencgo, f the final value WithRK .= 6.5 (160 PW's whereas
states. In this approximation thep3tates were not strictly | Apyy requires Rky..= 7.5 (285 PW'9, to reach similar

FIG. 3. (a) Calculated equilibrium lattice constants affl bulk
oduli of GaAs. The number of PW’s is for tHé point and the
xperimental volume.

orthogonal to the valence states. precision. The insets in Figs.(& and 3b) show that the
hybrid L/APW+lo converges to exactly the same values as
B. GaAs LAPW whereas the pure APWlo values slightly deviates.

The discussion above showed that the two basis sets
APW+lop and L/APWtIlo behave similarly and conse-
guently we just present results for the latter in the following The calculations on bcc Fe were carried out with a MT
two examples. GaAs is a semiconductor and forms a noncemadius of 2.0 a.u. and with LO’s added for thel &nd 3
trosymmetric diamond lattice. The calculations on GaAsstates. The IBZ was sampled on a tetrahedral mesh with 19
were carried out with LO’s added for the Ga &and As 3 intervals in each direction.
and 3 states. The IBZ was sampled on a tetrahedral mesh Figure 4 shows a behavior similar to GaAs: The APW
with ten intervals in each direction. The MT sphere radii for +lo and L/APW4lo methods converge faster than the pure
both Ga and As were set to 2.0 a.u. LAPW basis set and only L/APW/Io converges to the same

Figure 3a) shows that the equilibrium volume converges unit-cell volume as the LAPW basis set. The actual number
much faster with APW-lo than with LAPW. Interestingly, of basis functions saved when going from LAPW to APW is
the fastest convergence is with the L/ARW6 basis set very small as could be expected for this relatively densely
which means that the equilibrium volume is converged alpacked structure. The calculated bulk modulus does not con-
ready at a PW cutoff defined byk,,.,=6.5, corresponding verge smoothly, Fig. @). This is because the actual number
to approximately 160 PW's, whereas LAPW requiresof PW’'s in a series of calculations can vary strongly with
Rknax=8, i.e. about 330 PW's, to reach similar precision. unit-cell volume at low PW cutoff. For example a unit cell
Furthermore the APW lo and the L/APW lo give equilib-  volume of 68 a.&. at Rk,,,=6 gives 19 PW’s , while a
rium volumes within 3% of the final result even at a poorerunit-cell volume of 84 a.d.gives 40 PW’s. The bulk modu-
cutoff definedRKky,,=6. The calculated bulk modulus of lus calculated aRky =6 with APW+lo and L/APWH lo

C. bcc Fe
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FIG. 4. (a) Calculated equilibrium lattice constants afiml bulk
moduli of bcc Fe. The number of PW’'s is for th& 3.0 : 1 1
=2m/a(1/19,1/19,1/19) and experimental volume. 1

agree much better with the final value than LAPW. This in-
dicates that APW is less sensitive to the number of PW'’s in &
the basis set. It is well known that systems such as Fe witl
d-orbitals close to the Fermi level need high PW cutoffs in
LAPW. To illustrate this we have constructed a basis set ..
which treats alll-quantum numbers as LAPW'’s except 054/ L
=2 which is treated as APWIo. As seen in Fig. 4 the e S
LAPW/dAPW performs just as well as the APWo and o] 2
L/APW+lo basis sets. 051 L

The above LAPWAAPW basis set underlines that tise — T
and p orbitals converge much faster in LAPW than tde (¢ *° o b r [1aif|] “ e >
orbitals and that the main improvement in the APW basis set
is a better description of theé part of the basis functions. A FIG. 5. (&) The spin-up valence electron density of thg or-
PW cutoff defined byRky,,=5.5 at primitive unit-cell vol- bjtals along thd 111] direction calculated at thE po?nt. The (.1e.n-
ume 75.7 a.@.corresponds to 19 PW's. The basis set thenslty_for APW+ Ip anql LAPW are both calcqlated with the minimal
consists of only thé000) PW, the 12 PW's in thé110) star, ba5|s_ sefdescribed in te>)_tusmg the potential from the_ converged
and 6 PW's in the(200) star. At thel' point the (000) PW Qensny.(b) shows the_radlal part of theandd functions in Fe(full _

\ " . lines: APW; dashed lines: LAPWmatched to the 110 star PW’s in

and the(200) star of PW’s do not contribute to thieorbitals i O , S )
of t,g symmetry, which thus are described by only one star ofhe interstitial. () u(r ) aid u(r’) for the Eep and d orbitals
PW's. When nod-LOs are added this correponds to a mini- €valuated at the energieg=0.400 Ry andeq=0.468 Ry.
mal PW basis set and the calculated valence electron density
will therefore be extremely sensitive to the shape of the basishown. It can be seen that the strong energy dependence of
functions. Figure &) shows how close to the converged thed radial function leads to a relative largewhile theu of
density the minimum APW basis set gets while the LAPWthe p radial function is only a small correction. Figuréch
basis set is clearly far off. The improved description of theshows the radial part of the andp parts of ac(110) APW/
d-part of the basis functions is explained in Figbp The | APW basis functions. The APW’s have kinks By,
radial componentsi and u of the d partial wave in Fe are Wwhile the LAPW’s have continuous first derivatives. The

radial part of
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40 T v T T T T T L T L I T I

X —8— L/APW.lo -+~ LAPW
Y —e— L/APW.lo -0+ LAPW
2. | Z—A— LAPW«lo-a- LAPW

largeu of thed radial function leads to a considerable defor-
mation of the d-LAPW basis function. TheeLAPW is much 307

less affected, despite the discontinuity in the first derivative — 2
being larger than in thd part.

04

D. Sodium electro sodalite

As a further test case we have calculated the forces in € 197

sodium electro sodalit€SES at the structure published by
Madsenet al? SES is an interesting structure in which the
alumina-silicate sodalite framework supports a paramagnetic
Na:" cluster inside each cage. It has been chosen as a tes -4
case because the structure contains large interstitial holes(a) s
Furthermore, due to the short Si—-O and AI-O bond dis- max

tances, rather small $1.55 a.u), Al (1.70 a.u), and O(1.5 22 ———r7— 77—
a.u) sphere radii must be used. The sodium is weakly bound ]
to the framework and thus a MT sphere witRy
=2.0 a.u. was used. Semicore LO were added to improve
the description of the silicon and aluminunp,2the oxygen

2s orbitals, and the sodiums2and 2o states. The IBZ was
sampled on a tetrahedral mesh with three intervals in eacl
direction. Again, as the main purpose of this work is to com-
pare computational methods, the calculations have been don
in a hypothetical nonmagnetic phase and not in the experi-
mental antiferromagnetic ground state.

The space group iB43n and the oxygens are placed on 8 — T — y
. . . s 4.0 4.5 5.0 5.5 6.0 8.5 7.0

general crystallographic positions with three free positional 1490 2124 2941 3920 5088 8490 7727
parameters. The sodiums are found on the threefold screw ®) Rhpg / # 0f PW's
axis and its position is described by only one parameter.
Figure 6 shows the calculated forces on the oxygen and SG+,
dium atoms as a function of PW cutoff. As was also seen for
the O, molecule®® the forces calculated with APWIo con-
verge much faster than the force calculated with LAPW. Thewo origins: (i) fewer basis functions are needed per atom
APW forces converge to within 4 mRy/a.u. Bkyq,=5 and(ii), the form of the APW basis functions is simpler since
(2941 PW’3 while an LAPW basis set need a PW cutoff of the bu¢(r’) term appears only in a few lo's.
Rknax=6.5(6490 PW’. It is also important to note that the ~ The lower number of basis functions per atom needed for
forces calculated with the APWIlo method converge much the same accuracy has been documented in the previous sec-
smoother towards the final values. This means that even attins. For covalently bonded open systems savings about
PW cutoff corresponding tdRk,,x=4.5 (2124 PW'g the  50% in the number of basis functions has been achieved.
forces point in the right direction whereas the smallest usabl&his means a speed up by a factor 4 in the setup of the
LAPW basis set needs a PW cutoff &k,,,=6 (5088 secular matrices and the iterative diagonalizadft@nd by a
PW's). This means that the first steps of a structure relaxfactor 8 for a full diagonalization which are the computation-
ation in APW+-lo can be carried out with a rather small basisally dominant parts of the SCF cycle, Table III.
set. The simpler form of the basis functions does not affect the

Figure 6b) shows the force on the sodium atom. As thediagonalization but can significantly decrease the amount of
sodium MT sphere is bigger than the oxygen sphere the forcéme needed for the setup of the matrices. This is especially
is more converged at a lower PW cutoff. However, the ad-evident in the setup of the nonspherical part of the full po-
vantage of APW-lo is still evident as the force is com-
pletely converged already at a cut-off defined Ri,,,,= 4
while LAPW needs a cutoff oRk,,,,= 6.5 to reach a similar

Force on O [mRy/au

-20 B ’ /.\E——— ' """""" B u] 4

-30

204 A SES —a— L/APW+lo 1
1 o LAPW 1

Force on Na [mRy/au]

1 — =

FIG. 6. Atomic forces orfa) oxygen andb) Na in the NM SES.
e number of PW’s is for the=2m/a(1/6,1/6,1/6) point.

TABLE lll. Scaling perk point. N; is the number of atom$\,
is the number of valence bands, is the number ofIm} pairs in

accuracy. Eq. (1) or Eq.(2). M is the number of basis functions.
Ill. COMPUTATIONAL CONSIDERATIONS Task Scaling
The scaling of the computationally dominant parts iSMatrix setup NZN,M?
given in Table IlI. Both the number of valence bands and thery| diagonalization M3
number of basis functions needed scale linearly with theierative diag. NpM2
number of atoms. The overall scaling of LAPW and APW cgjculation ofp n NNz M

+1o is thereforeN3, . The improved efficiency APW lo has
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tential Hamilton matrix® which involves calculating the true for basis functions that have a strong energy dependence
sums inside the sphere.

Generally we have found that considerable computational
savings can be achieved by employing an APW basis

Hy = a® > [af** (uf|Vadu®) set. It has been shown that results obtained with the APW
L’ L +1lo converges faster and often more systematically towards
P - @ the final value. Thereby accurate calculations can be per-

+b (Ui Vnduh)] Y P

formed at a much lower cost than with the LAPW basis set.

, . There is no doubt that the APWo method promises very
+bf’,K > [af *(uf|Vndup) large savings for larger structures and allows reliable treat-
L ment of systems that were previously unaccessible to LAPW

o - due to computational limitations.
+b *<uIa|VNS|u|'>]><Yt|YL’>Ka= )
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If one performs a calculation with linearized polarization Project F1108 We thank David J. Singh and Stefan Bél
l-quantum numbers one has to choose between ARy  for interesting discussions.
and L/APW+lo basis sets. The APWIlop basis set adds
polarization lo’s which increases both the number of basis APPENDIX A:  HAMILTON MATRIX ELEMENTS

functions and, as the lo’s contairbd'°us(r’) term, reduces As APW's are not constrained to have continuous deriva-
the advantage of the simpler basis set form in the nonspheriives at the MT boundaries and according to Green’s theorem
cal part of the Hamilton setup. Thus the APWVIbp basis is  a surface integral over the sphere of discontinuity must be
potentially expensive in, e.g., closed-packed structures coradded® to the kinetic energy contribution of the Hamilton
taining heavy elements. Treating the polarizatiborwith ~ matrix,

LAPW means that hardly any speed-up due to the simpler

form of the basis functions is gained. The most elegant SOT, = | (Vp)* - Ve dr

lution seems to be to treat all physically importmats APW ' v

with added lo’s, the first polarizationas an LAPW and the

rest as APW. The difference between the pure APM/and +>
the APW basis sets with linearized polarization orbitals are @
only significant for highly accurate calculations. A pure (A1)
APW+lo basis set should therefore be adequate at normal

PW cutoffs. It should still be kept in mind that the differ- whereSy is the boundary surfac&/, is the volume of the
ences in computational time between the different APWinterstitial region,Vy is the volume of the MT sphere
+lo, APW+Ilop and L/APWH lo basis sets are small com- around atomx. The surface elementS is directed outwards
pared to the considerable reduction in computational timérom the enclosed volume. The one electron wave functions
compared to a pure LAPW basis set. can retain the discontinuity in slope of the basis functions at
the MT surface. However, it has only little effect on observ-
able properties and disappears as variational freedom is im-
proved with increasing basis set siZe.

The total-energy convergence of £uhas been analyzed The contribution of the extra surface term to the Hamilton
and it has been found that when the energy dependence of &latrix can be shown to bropping the index)
| components are linearized, as they are automatically in _
LAPW, the APWAlo basis set converges to the same total LV g dS=RZ >, [aluy(Ryr) +buy(Ryt)
energy as LAPW. Thereby it has been demonstrated that the * Sut L
linearization used in APW o is as efficient as in LAPW. +cua(R 1ok ul (R

Through an analysis of a minimal basis set calculation on cLuz(Rwr) I*[ag ug(Rur)
bcc Fe it was shown that the requirement in LAPW of con- K"y K’
tinuous derivatives at the MT border deformes the radial +bp uy(Ryr)+cp uy(Rur)l,
functions away from their optimal form. This is especially (A2)

fa B (—V?) ey dr+ %H ¢§V¢K/d5),
Vvt Syt

IV. CONCLUSION
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where the prime indicates the radial derivative. Dependinderm involves the kinetic energy operator, defined by the
on whetherp, and ¢y, are LAPW’s, APW'’s, or LO some of V-V operator, and is given as
the terms in Eq(A2) will be zero. As LO are zero at the MT
boundary, the surface terms will be zerodif is a lo or a o s
LO. It will also be zero if¢y. is a LO of the form defined in Fsur—kzi @k, S&T’ﬁi (T—s&i)i|,dS
Eq. (3) as the derivative is zero at the MT boundary.

= - * e D[(K+k
APPENDIX B: FORCES WITHIN THE APW +Ilo METHOD ; w""g‘, (G, )

In the force expression implemented inttEN97 the force ) .

on an atom is calculated as a sum of five contributfofike (K" +k)—&] Eﬁs“ bk Pk dS. (BS)
Hellman-Feynmann and core contributions are purely elec- MT
trostatic and are therefore unchanged between APW angjhere thel indicates that the integral should be evaluated
LAPW basis sets. Furthermore the contribution from thesing the interstitial wave functions. Originallj,, was
nonspherical potential can still be calculated as given by Y 41uated using the MT wave functiohaVith APW basis
et al® The differences occur only in the contributions due t0gnctions this procedure is no longer valid because the de-
the surface terms contribution to the kinetic energy in th&jyatives of the basis functions are no longer required to be
spherical Hamiltonian inside the MT sphefg,,, and the  continuous on the MT border.

surfac_:e term:gur.2 o _ However, in the interstitial region, a kinetic energy den-
_Using the —V* operator for the kinetic energy density gjry defined by aT—e&; operator, can be expressed as a
within the sphere one getsropping the index) single sum over symmetrized Fourier coefficients, equiva-

lently to the expression of the electron density in the inter-

Fopr= 2 @i 2 IM(AL[2A (€= i) +BL+CLN| ey Stitial region,

+62|_28i)]*+B:_{ZBiL(€1|_8i)N|+A:_ T(r):%: TGeiG'ra (B6)

.-
+CLIN; 1 €11+ €2—28)) + N 1o]}* whereG runs over all uniqué&’ — K. The Fourier expansion
of the charge density in the interstitial region can be evalu-

ifoei (o i i N
+C[2C (€21 i) + BLNi 1o (AN 15+ BL NP, )) ated by series of fast Fourier transforiti&=Ts),*® and the

X (€14 €x—2€1) %), (B1)  coefficientsTg can be evaluated by a similar procedure:
where (Kx+kx)CK,i_>FFTTi,x(r)v (Ky+ky)CK,i_’FFTTi,y(r):
Nia2=(Upluz),  Ni=(uyluy), Nyo=(uy|uz) (Kt ke i— T o(1),
and ST X o[ T TN+ TH (N Tiy(r)
AL=2 cial, A=) Kegal  (BY) F TN TN = et (N(N]=T()—FFTTe,
(B7)

and equivalently folB and C. ¢y ; denotes the variational
coefficients of the ith eigenstate. Furthermore, a contributiohe force can then be evaluated as a sum over the symme-

from the surface term, EqA1), must be added t&;pp, trized kinetic energy coefficients,
; wk,i;n IM[RY{[ AL uzi(Ru) + B Uy (Ryr) F;m;% T fﬁs“ e'¢rds. (B8)
! ! MT
+Cl Uy (Ryp) T*[ALuj (RG )+ BLul (Rur) By expanding the PW’s into spherical Bessel functions the

) , . surface integral can be shown to be
+Crug (Rut)1-[ALuy(Ryt) +BLugy (RyT)
4 3
R G=0

+ CLUa (Rym) I* [ALU (Ryr) + BLUj (Ry) =3 Rur

. iG-r i

+Cluy (RunTH. (B4) fﬂf 91O 4y |

@RMT11(|G|RMT)9 « G#0
The choice of representing a movement of an atom by (B9)

moving the corresponding MT sphere, as done in Ref. 8,

yields a surface term in the force expressidithis surface It should be pointed out that the use of tReV operator
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changesF,, andFg,, also for LAPW basis sets. However, exactly the same as when using the expressions in Ref. 8.
as the LAPW's are differentiable the differences cancel outThe expressions fdfs,,, Egs.(B1) and(B4), andF,,, Egs.
Hence the total force calculated on an atom with LAPW is(B8) and(B9), are therefore completely general.

1J.c. Slater, Phys. Re&1, 151 (1937. 126, 389(2000.
2T.L. Loucks, Augmented Plane Wave Meth¢d/.A. Benjamin, P, Blaha and K. Schwarz, Hyperfine Inter&& 153 (1989.

Inc., New York, 1967. 2G.K.H. Madsen, C. Gatti, B.B. Iversen, L. Damjanovic, G.D.
°0.K. Andersen, Phys. Rev. B2, 3060(1975. Stucky, and V.I. Srdanov, Phys. Rev. B9, 12 359 (1999;
“D.D. Koelling and G.O. Arbman, J. Phys. F: Met. Ph§s2041 G.K.H. Madsen, B.B. Iversen, P. Blaha, and K. Schwarz, Phys.
] (1973- Rev. B(to be publishef

D. Singh, Phys. Rev. B3, 6388(1991. 13E. Sjostedt, Licentiate thesis, Uppsala University, Sweden, 1999.

SE. Sjostedt, L. Nordsfrm, and D.J. Singh, Solid State Commun. 1D, Singh, Phys. Rev. B0, 5428(1989.
114, 15 (2000.

7P, Blaha, K. Schwarz, and J. Luit®ylIEN97, A Full Potential
Linearized Augmented Plane Wave Package for Calculatings
Crystal PropertiegTech. UniversitaWien, Austria, 19989

8R. Yu, D. Singh, and H. Krakauer, Phys. Rev4B 6411(1991).

9P.E. Blahl, O. Jepsen, and O.K. Andersen, Phys. Rev®
16 223(1994.

10p, Blaha, K. Schwarz, W. Faber, and J. Luitz, Hyperfine Interact.

15E. Wimmer, H. Krakauer, M. Weinert, and A.J. Freeman, Phys.

Rev. B 24, 864 (1981).

P.M. Marcus, Int. J. Quantum CherbS, 567 (1967).

17B.N. Harmon, D.D. Koelling, and A.J. Freeman, J. Phys6,C
2294(1973.

18p.J. Singh,Planewaves, Pseudopotential and the LAPW Method

(Kluwer Academic, Boston, Dordrecht, London, 1994

195134-9



