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We present the algorithmic details of the dynamical cluster approximéb@s), with a quantum Monte
Carlo (QMC) method used to solve the effective cluster problem. The DCA is a fully causal approach which
systematically restores nonlocal correlations to the dynamical mean field approxirt@kistA) while pre-
serving the lattice symmetries. The DCA becomes exact for an infinite cluster size, while reducing to the
DMFA for a cluster size of unity. We present a generalization of the Hirsch-Fye QMC algorithm for the
solution of the embedded cluster problem. We use the two-dimensional Hubbard model to illustrate the
performance of the DCA technique. At half filling, we show that the DCA drives the spurious finite-
temperature antiferromagnetic transition found in the DMFA slowly towards zero temperature as the cluster
size increases, in conformity with the Mermin-Wagner theorem. Moreover, we find that there is a finite-
temperature metal to insulator transition which persists into the weak-coupling regime. This suggests that the
magnetism of the model is Heisenberg-like for all nonzero interactions. Away from half filling, we find that the
sign problem that arises in QMC simulations is significantly less severe in the context of DCA. Hence, we were
able to obtain good statistics for small clusters. For these clusters, the DCA results show evidence of non-
Fermi-liquid behavior and superconductivity near half filling.
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[. INTRODUCTION consistent way, become exact in the limit of large cluster
sizes, and recover the DMFA when the cluster size equals 1.
One of the most active subfields in condensed mattelt must be easily implementable numerically and preserve
theory is the development of new algorithms to simulate théhe translational and point-group symmetries of the lattice.
many-body problem. This interest is motivated by variousFinally, it should be fully causal so that the single-particle
physical phenomena, including high-temperature supercorf>reen function and self-energy are analytic in the upper half
ductivity, magnetism, heavy fermions and the rich phenomPlane. There have been several attempts to formulate theories
enology occurring in quasi-one-dimensional compounds. iyvhich satisfy these requirements, but all fail in some signifi-
the last few years, important progress has been made. Weffant way’ g , ,
controlled results have been obtained by exact diagonaliza- In recent publication$,” the dynamical cluster approxi-
fon and uantum onte Caro methotguC). However, TN D, 165 beeh probose 2 2 Sxnsr o e
these algorithms suffer from a common limitation in that theclose analogy with the DMFA. In the DCA, the lattice prob-

n.umber of degrees of freedom grows rapidly W'th.the Iatt|ce|em is mapped to a self-consistently embedded finite-sized
size. As a consequence, the calculations are restricted to rel

. o . uster, instead of a single impurity as in the DMFA. The key
tively small §ystems. In most cases, the limited size of the?dea of the DCA is to use the irreducible quantitieelf-
system prohibits the study of the low-energy physics of thesgargy irreducible verticesf the embedded cluster as an
models. _ _ approximation for the corresponding lattice quantities. These
Recently, another route to quantum simulations has beegpreducible quantities are then applied to construct the lattice
proposed.  Following Metzner and \Vollhatdt and  reducible quantities such as the Green function or suscepti-
Miiller-Hartmanri who showed that in the limit of infinite pjlities in the different channels. The cluster problem gener-
dimensions, the many-body problem becomes purely local, ated by the DCA may be solved by using a variety of tech-
mapping to a self-consistent Anderson impurity problem wasiques including the quantum Monte CaffMC) method®
performed:® The availability of many techniques to solve the fluctuation exchangéFLEX) approximation® or the
the Anderson impurity Hamiltonian has led to a dramaticnoncrossing approximatiofNCA).*?
burst of activity. However, when applied to systems in two or  The QMC method, and the Hirsch-Fye algoritfrim par-
three dimensions this self-consistent approximation, referreticular, is the most reliable of these techniques. The Hirsch-
to as the dynamical mean field approximati@MFA), dis-  Fye algorithm was originally designed for the treatment of
plays some limitations. Due to its local nature, the DMFAfew-impurity problems. Hence, it has been widely applied to
neglects spatial fluctuations which are essential when the othe Kondo problertf and also to solve the impurity problem
der parameter is nonlocal, or when short-ranged spin corresf the DMFA. For embedded cluster problems, this algorithm
lations are present. shows a mild sign problem, compared to that encountered in
An acceptable theory which systematically incorporategrevious finite-sized simulations, presumably due to the cou-
nonlocal corrections to the DMFA is needed. It must be ableling to the host. Thus, we are able to perform simulations at
to account for fluctuations in the local environment in a self-significantly lower temperatures than with other available
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techniques. However, in order to study a meaningful set ofers for which the negative sign problem is mild so that good

clusters of different sizes, it is necessary to use massivelgtatistics can be obtained at low temperatures. Finally, in Sec.

parallel computers. VII, we draw the conclusions on the present work and dis-
Throughout this paper, we will use the two-dimensionalcuss future applications of the DCA to various physical prob-

Hubbard model on a simple square lattice as an example. l{ems.

Hamiltonian is

II. THE DYNAMICAL MEAN-FIELD APPROXIMATION

HI—Z tij(CiT(er(r"' H-C-)+EZ Niy The DCA algorithm is constructed in analogy with the
! ' DMFA. The DMFA is a local approximation which was used
by various authors in perturbative calculations as a simplifi-
+UY (= 1/2)(ny —1/2), (1)  cation of the k summations which render the problem
' intractable!”*® But it was after the work of Metzner and
Vollhard? and Miller-Hartmanri who showed that this ap-
proximation becomes exact in the limit of infinite dimension
sin 7, and U he irsstom repulson, We wil taks. 75 L CCENED extensve atenton duing e et decace Iy
=0 and vary the orbital energyto fix the filling. The model h Fl’fp t" . Gll it ; t'p ith t'p Pl
has a long history and is still the subject of an intensive € seli-energy, retaining only 1ts variation with ime. Flease

. 4 5
research in relation with the high-temperature superconducs—ee the reviews by Pruschkeal. and Georgest al” for a

tivity, the non-Fermi-liquid phenomenon, the metal to ir]Su_more extensive treatment. In this section, we will show that

lator transition and magnetism in various physical systemgl ISrggisniftliﬁntoarr?(;n:ﬁ(ra[rjwr?é\jik:e?/vljit?I(:jpe\ri/seu?oﬁourse graining
dominated by strong correlations. Some short accditts PP ’ :

of the DCA applied to this model have been recently pub—I rr-l”:e DMFI'? co:silsttsnctafirr:aprpi?ng :hgl orrT;glzaI ill?ttl(t:re tpr(;)ti)r;
lished but without a full description of the details of the em 10 a sefi-consiste purity probiem. As riustrate

algorithm and numerical subtleties. It is the purpose of thisF'g' 1 for a two-dimensional lattice, this is equivalent to

paper to present the full account of the DCA-QMC teCh_averaging the Green functions used to calculate the irreduc-

nique. A typical DCA algorithm using the QMC technique as|bIe diagrammatic msertlor!s over th_e B(lllOUln zone. An im-
the cluster solver is made of three main blocks: the seh‘—portant consequence of this averaging is that the self-energy

consistent loop, the analysis block and the analytical continu"fmd the irreducible vertices of the lattice are independent of

ation block. The self-consistent loop is the most important oIIhe momentum. H%nce, they are tho_se of the Impurity.
the three blocks; it is devoted to the mapping of the lattice to Muller-Hartmann showed that this coarse-graining be-
the cluster(coarse grainingand to the solution of the cluster comes exact in the limit .Of infinite-dimensions. For Hubbard-
problem by the QMC method. In the analysis block, clusteIJ'ke mode]s, the properties of the. bare \{ertex are completely
Green functions obtained from the QMC method are transgharactenzed by the I__aue functiah which expresses the
formed to lattice Green functions following the procedurem.Omentum conservation at each vertex. In a conventional
described in Sec. lll. The last block is devoted to the com-d'agr"jlmm"’ItIC approach
putation of the lattice real frequency quantities from the ana-
lytical continuation of the corresponding QMC imaginary- A(klik21k3ik4):2 exfir- (k;+ky—ks—Kkg)]
time quantities by the maximum entropy meth@®dEM).1° T

This paper is organized as follows. In the next section, we
review the dynamical mean field approximation. In Sec. IIl,

we review the DCA formalism in which the lattice problem wherek, andk, (ks andk,) are the momenta enteririigav-
is mapped to a self-consistently embedded periodic clusterng) each vertex through its legs &. However as the di-

and discuss the relationship between the cluster and the laftﬁensionalityDHoo Miiller-Hartmann showed that the Laue
tice. In this section we describe how different lattice Greenfunction reduces b

functions can be obtained from the cluster quantities. In Sec.

IV, we derive a modified form of the Hirsch-Fye QMC algo- Ap_.(ky, Ky, kg,ky)=14+0O(1/D). (3
rithm, which may be used to solve the effective cluster prob-

lem. We also discuss the conditioning and optimization of aThe DMFA assumes the same Laue function
variety of one and two-particle measurements. In Sec. V, wé\ pyea(kq,Ko, k3, k) =1, even in the context of finite di-
discuss the DCA algorithm. In Sec. VI, we will show our mensions. Thus, the conservation of momentum at internal
results for the two-dimensional Hubbard model. Compari-vertices is neglected. Therefore we may freely sum over the
sons between the DCA and the results of finite-sized simulainternal momentum labels of each Green function leg. This
tions will be made in order to outline the complementarity ofleads to a collapse of the momentum dependent contributions
the two techniques which has been discussed in earliGand only local terms remain.

publications>*16At half filling we discuss the occurrence  This argument may then be applied to the free energy
of antiferromagnetism and the metal to insulator transitionfunctional. As discussed in many-body tekighe additional
Away from half filling, we show the signature of a non- free energy due to an interaction may be described by a sum
Fermi-liquid behavior and superconductivity for small clus-over all closed connected graphs. These graphs may be fur-

wheret; is the matrix of hopping integrals{!’ is the anni-
hilation (creation) operator for electrons on lattice sitevith

=Ny, +k, kytky 2
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k following. (i) An initial guess for2 (i w,,) is chosen(usually
from perturbation theony (ii) X (i w,) is used to calculate the
corresponding local Green function

yi

Q0000000000000 0OO
0000000000000 00®
000000000000000®
0000000000000 00®
0000000000000 00®
0000000000000 0®
0000000000000 00Y

54
Q000000 POOOOO0OOO
0000000 POOOOOO0O®
0000000PO0O0000®
0000000POOOO000O®
0000000POOOOO0OO®
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0000000 POOOOO0O0OY
ACRTATIS IO LORCRRCRTIS AT {ORORCRY)

p°(n)
io,—7—e—2(iow,)’

G(iwn>=f dn @

wherep? is the noninteracting density of statéii.) Starting
from G(iw,) and(iw,) used in the second step, the host
Green functiorg(i w,) " *=G(iw,) "1+ (iw,) is calculated
which serves as bare Green function of the impurity model.
(iv) Starting withG(i w,,), the local Green functio® (i w,) is
______________________________ H obtained using the Quantum Monte Carlo metk@danother
First BZ technique. (v) Using the QMC output for the cluster Green
function G(i w,)) and the host Green functiof(i w,) from
the third step, a nel (i w,) =G(iw,) 1—G(iw,) ! is cal-
L PEETES FEETEEEEE P E culated, which is then used in stép) to reinitialize the
process. Stepsii)—(v) are repeated until convergence is
reached. In stefiv) the QMC algorithm of Hirsch and Fye
may be used to compute the local Green funct@®gr) or
other physical quantities in imaginary time. Local dynamical
quantities are then calculated by analytically continuing the
corresponding imaginary-time quantities using the
maximum-entropy methoMEM).®

0000000 @

|~

Ill. THE DYNAMICAL CLUSTER APPROXIMATION

) ) ) o In this section, we will review the formalism which leads

FIG. 1. A single step illustration of coarse graining in the 4 the dynamical cluster approximation. Here, we first moti-
DMFA: all lattice propagators used to calculate the self-energy arg e the fundamental idea of the DCA which is coarse grain-
averaged over the points in the first Brillouin zofiep). This ef- ing, we then describe the mapping to an effective cluster

fectively maps th_e lattice problem fo a single point in reciprocal roblem and discuss the relationship between the cluster and
space (bottom). Since the real space and reciprocal space of . -
eatt|ce at the one and two-particle level.

single-site cluster are equivalent, this mapping takes the lattic
problem to one of an impurity embedded within a host.
A. Coarse graining

ther separated into compact and noncompact graphs. The As in the DMFA, the DCA may be intuitively motivated
compact graphs, which comprise the generating functionalith a coarse-graining transformation. In the DMFA, the
®, consist of the sum over all single-particle irreducible propagators used to calculate and its derivatives were
graphs. The remaining graphs, comprise the noncompact pasbarse-grained over the entire Brillouin zone, leading to local
of the free energy. In the infinite-dimensional lindit con-  (momentum independenitreducible quantities. In the DCA,
sists of only local graphs, with nonlocal corrections of orderwe wish to relax this condition, and systematically restore
1/D. However, for the noncompact parts of the free energymomentum conservation and nonlocal corrections. Thus, in
nonlocal corrections are of order 1, so the local approximathe DCA, the reciprocal space of the lattidéig. 2) which
tion applies only to®. Thus, whereas irreducible quantities containsN points is divided intoN. cells of identical linear
such as the self-energy are momentum independent, the caize Ak. The coarse-graining transformation is set by aver-
responding reducible quantities such as the lattice Greeaging the Green function within each cellNf=1 the origi-
function are momentum dependent. nal lattice problem is mapped to an impurity problem
The perturbative series f& in the local approximationis (DMFA). If N, is larger than 1, then nonlocal corrections of
identical to that of the corresponding impurity model. How- length ~ 7/Ak to the DMFA are introduced. Provided that
ever in order to avoid overcounting the local self-energythe propagators are sufficiently weakly momentum depen-
S(iwy,), it is necessary to exclud&(iw,), iw,=(2n  dent, this is a good approximation. N is chosen to be
+1)#T is the Matsubara frequency, from the bare localsmall, the cluster problem can be solved using conventional
propagator G. G(iw,) '=G(iw,) '+3(iw,) Wwhere techniques such as QMC, NCA, or FLEX. This averaging
G(iw,) is the full local Green function. Hence, in the local process also establishes a relationship between the systems
approximation, the Hubbard model has the same diagranmef sizeN andN.. A simple and unique choice which will be
matic expansion as an Anderson impurity with a bare localiscussed in Sec. Ill B is to equate the irreducible quantities
propagatoii(i w, ;%) which is determined self-consistently. (self-energy, irreducible vertice®f the cluster to those in
An algorithm constructed from this approximation is the the lattice.
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FIG. 3. Coarse-graining cells fdt.= 8 (differentiated by alter-
nating fill patterng that partition the first Brillouin Zonddashed
line). Each cell is centered on a cluster momentkm (filled
circles. To construct the DCA cluster, we map a generic momen-
tum in the zone such dsto the nearest cluster poit=M (k) so
thatk=k—K remains in the cell arount.

This is illustrated for the second-order term in the gener-
ating functional in Fig. 4. Each internal leg(k) in a dia-
@ gram is replaced by the coarse-grained Green function

©| O

G[M(K)], defined by

_ N ~
. o . G(K)= 1 2 G(K+K), (6)
FIG. 2. Asingle step illustration of coarse graining in the DCA: N X

all lattice propagators used to calculate the self-energy are first av-
eraged over the points within each cell in the Brillouin zétwp),  where N is the number of points of the latticéy. is the

mapping the lattice problgm' to a small cluster defined by the Cemerﬁumber of clusteK points, and th&k summation runs over
of the cells embedded within a hatotton. the momenta of the cell about the cluster momenkiisee,
Fig. 3). The diagrammatic sequences for the generating func-
tional and its derivatives are unchanged; however, the com-
This coarse graining procedure and the relationship of th@lexity of the problem is greatly reduced sinNg<N.
DCA to the DMFA is illustrated by a microscopic diagram-  As with the DMFA, the coarse-graining approximation
matic derivation of the DCA. The DCA systematically re- will be applied to only the compact part of the free enedgy
stores the momentum conservation at internal vertices relirand its derivatives. This is justified by the fact that there is no
quished by the DMFA. The Brillouin zone is divided into need to coarse grain the remaining terms in the free energy.
N.=LP cells of sizeAk=27/L (see Fig. 3foN,=8). Each  Formally, we have justified this elsewhere by exploring the
cell is represented by a cluster momentkinin the center of Ak dependence of the compact and noncompact parts of the
the cell. We require that momentum conservationdar-  free energy® The generating functional is the sum over all
tially) observed for momentum transfers between cells, i.e.,
for momentum transfers larger thaxk, but neglected for
momentum transfers within a cell, i.e., less thak. This
requirement can be established by using the Laue furfction

B. A diagrammatic derivation

A= Apca

| > = N3 GR+K) = GK)
K

Apca(ky ka,k3,Ke)=Neomk,)+Mky) Mkg) +M(ky) (D) K’+Q

. . . FIG. 4. A second-order term in the generating functional of the
whereM (k) is a function which mapk onto the momentum Hubbard model. Here the undulating line represents the interaction

labelK of the C.:e” Conta'n'n9< (seg, Fig. ® This choice for  {y and on the left-hand sidé HS) (RHS) the solid line the lattice

the Laue function systematically interpolates between the €Xtoarse-grainedsingle-particle Green functions. When the DCA
act result, Eq(2), which it recovers whemM.—N and the | aue function is used to describe momentum conservation at the
DMFA result, Eq.(3), which it recovers whemN.=1. With  internal vertices, the momenta collapse onto the cluster momenta
this choice of the Laue function the momenta of each interand each lattice Green function is replaced by the coarse-grained
nal leg may be freely summed over the cell. result.
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of the closed connected compact diagrams, such as the ofiéis algorithm is fully causal as shown by Hettleral®.
shown in Fig. 4. The corresponding DCA estimate for theThey analyze the different steps of the self-consistent loop
free energy is and found that none of them breaks the causality of the
Green functions. Starting from the QMC block, one can see
Foca= —kgT(P—t2,G,]=trin[=G,1), ()  that if the inputG is causal, since the QMC algorithm is
whered, is the cluster generating functional. The trace in-€ssentially exact, the outp@. will also be causal. Then the
dicates summation over frequency, momentum and spircorresponding:c(K.iwy) is causal. This in turn ensures that

Fpca is stationary with respect t6,,, the coarse-grained Green functitﬁ(K,iwn) also fulfills
1 sE causality. The only nontrivial operation which may break

4t DCA B _ causality is the calculation @f(K,i w,). Hettleret al. used a
kgT 6G,(k) =2e[M(K)]=2,(k) =0, ®) geometric proof to show that even this part of the loop re-

. B . . spects causality.
which means thak ,(k) =3¢,[M (k)] is the proper approxi- In the remainder of this section, we will give further de-

mation for t.he Iatt!ce s_elf-energ)_/ correspondmgfhg. The_ tails about the DCA formalism, and discuss the relationship
corresponding lattice single-particle propagator is then 9VeIhetween the cluster and the lattice problems. Below, we will

by discuss the steps necessary to choose the coarse-graining
1 cells and ensure that symmetries of the lattice are preserved.

e S IM(K),Z]’ ©

G(k,z)= -

C. Selecting the coarse-graining cells

A variety of techniques may be used to sum the cluster
diagrams in order to calculatg, and the vertex functions
I'.. In the past, we have used QM€ the noncrossing

As we will see in Sec. IV the solution of the cluster prob-
lem using the quantum Monte Carlo method, though a great
L . .2 simplification over the original lattice problem, is still a for-
approximatiofl or the fluctuation-exchange approximation. > . . .
: . . . .. midable task. The reason is that the self-consistent nature of
Here, we will use the QMC technique which we will detail in ;
the cluster problem forces us to adopt the Hirsch-Fye algo-

Sec. IV. Since QMC is systematically exact; i.e., it effec- rithm. While this algorithm is very efficient for few impurity
tively sums all diagrams to all orders, care must be taken roblems. it becomes slow even for a cluster of a modest
when defining the initial Green functiofthe solid lines in P '

Fig. 4 to avoid overcounting diagrams on the cluster. For> 28 Therefore, in order to study the size dependence of

. . . hysical quantities we adopt various cluster tilings of the
example, to fourth Ordef gnd higher in perturb_atlon theo.ry{Dattice instead of confining ourselves to only the usual square
for the self-energy, nontrivial self-energy corrections enter in

the diagrammatic expansion for the cluster self-energy of th IIIr]\ii]/ié\lnc:eAIr,elc?i,r?Giﬁi.éo.a.rse- raining cells, it is important to
Hubbard model. To avoid overcounting these contributions 9 graining ’ mp

i . reserve the point group symmetries of the lattice. For ex-
we must first subtract off the self-energy corrections on thé)

N ample, in this study, we will choose a simple square lattice.
cluster from the Green function line used to calculateand Both it and its reciprocal lattice sha@, svmmetry with
its functional derivatives. This cluster-excluded Green func-_. ; proc: 4o SY y
S on eight point group operations. We must choose a set of coarse-
tion is given by - . : :
graining cells which preserve the lattice symmetry. This may
be done by tiling the real lattice with squares, and using the
1 1 X . -
= +34(K,2) (10) K points that correspond to the reciprocal space of the tiling
g(K.2)  G(K,2) centers. We also will only consider tilings which contain an

which is the coarse-grained Green function with correlations /o number of sites, to avoid frustrating the magnetic cor-

on the cluster excluded. Sind,(K,z) is not knowna pri- relations on the cluster. Square tilings with an even number

. ; 4 . of sites includeN,=4,8,10,16,18,20,26,32,34,36 . . The
ori, it must be determined self-consistently, starting from Ak o+ few are illustrated in Fig. 5. The relation between the
initial guess, usually from perturbation theory. This guess isprinciple lattice vectors of the.lat.tice centerganda,, and

< . -
used to calculat& from Eq. (6). G(K,2) is then calculated  he reciprocal lattice takes the usual forg=2ma; /(3
with Eqg. (10), and it is used to initialize the QMC calcula- X &), with K .= ng, + mg, for integern andm. For tilings

tion. The QMC estimate for the gluster self-energy is then,;i either a;,=a,, (corresponding tN.=1,8,18,32. . .)
used to calculate a new estimate @fK) using Eq.(6). The  or one of ajx or a, zero (corresponding to N,
correspondingG(K) is used to reinitialize the procedure =1,4,16,36...), theprinciple reciprocal lattice vectors of
which continues untilG.,=G and the self-energy converges the coarse-grained system either point along the same direc-
to the desired accuracy. tions as the principle reciprocal lattice vectors of the real
One of the difficulties encountered in earlier attempts tosystem or are rotated from them k4. As a result, equiva-
include nonlocal corrections to the DMFA was that theselent momentak are always mapped to equivalent coarse-
methods were not causat?” The spectral weight was not grained moment& . An example foN.= 8 is shown in Fig.
conserved and the imaginary parts of the one-particle re6. However, forN.=10,20,26,34. . ., theprinciple recipro-
tarded Green functions and self-energies were not negativeal lattice vectors of the coarse-grained system do not point
definite as required by causality. The DCA algorithm pre-along a high symmetry direction of the real lattice. Since all
sented in this subsection does not present these problemmoints within a coarse-grained cell are mapped to its center

195130-5



M. JARRELL, TH. MAIER, C. HUSCROFT, AND S. MOUKOURI PHYSICAL REVIEW B4 195130

from the irreducible. This procedure was justified formally in
Sec. Il B. To obtain a physical understanding, one must first
understand why reducible and irreducible quantities must be
treated differently. Consider a quasiparticle propagating
through the system. The screening cloud is described by the
single-particle self-energ¥, (k,w) which itself may be con-
sidered a functional of the interaction strendthand the
single-particle propagatds(k,w), % =3[U,G]. The differ-
ent screening processes are described perturbatively by a
sum of self-energy diagrams. If the size of the screening
cloudrg is short, the propagators which describe these pro-
cesses need only be accurate for distanceg. From the
Fourier uncertainty principle, we know that the propagators
at short distances may be accurately described by a coarse
FIG. 5. Different tile sizes and orientations in real space. Thesampling of the reciprocal space, with sampling ratke
tiling principle translation vectora; anda, form two sides of each =/rg. Hence, in this caseX[U,G] may be quite well
tiling square(illustrated for theN.= 20 tiling). For square tile ge-  approximated by [U ’6]_
ometriesa,, = —a;y andaz,=ayy. On the other hand, the phase accumulated as the particle
. . , ) propagates through the system is described by the Fourier
K, this means that these coarse-graining choices violate thesnsform of the single-particle Green function. Since this
point group symmetry of the real system. This is illustrated,ccymuylated phase is crucial in the description of the quan-
for Nc=10 in Fig. 6, where the two open dots resting aty,n dynamics it is important thas(r) remains accurate at
equivalent points in the real lattice, fall in inequivalent long distances, so it should not be coarse-grained as de-
coarse-graining cells and so are mapped to inequivdlent gqrihed above. However, it may be constructed from the ap-
points. ~ Thus the tilings corresponding tON:  proximate self-energy. Hence, the approximate lattice Green
=10,20_,26,3,4. - violate t_he point-group symmetry of the fynction is given by Eqg.9). Thus, as in the DMFA, the
real lattice and will be avoided in this study. lattice Green function is generally more strongly momentum
One should note that the coarse-graining scheme also d8Ependent than the corresponding self-energy.
pends strongly on dimensionality. For example, in one di- | the case of the 2D Hubbard model, nonlocal correla-
mension, any cell with an even number of sites will preservgjons are the most important in the parameter regime close to
the Igttlce symmetry and avoid frustrating the magnetic corpe quantum critical point at half filling. Away from this pa-
relations. rameter regime g is thus expected to be short. Here, the
above construction scheme for the approximate lattice Green
D. One-particle Green functions function is likely to yield accurate results even for clusters of

In the DMFA, after convergence, the local Green functionModest size. However, as the quantum critical point is ap-
of the lattice is identical to that of the impurity model. proached, longer range correlations are important. As a con-

Though in the DCA, the coarse-grained Green functionsequence one will need to evaluatU,G] on larger clus-

G(K,iw,) is equal to the cluster Green functiy(K,iw,), €S-

this quantity is not, however, used as an approximation to the

true lattice Green functio®(K ,i w,). The correct procedure E. Two-particle Green functions

to calculate the lattice phySical quantities within the DCA is A similar procedure is used to construct the tWO_partide

to apprOXimate the lattice irreducible quantities with those quuantities needed to determine the phase diagram or the na-

the cluster. The lattice reducible quantities are then deducq@lre of the dominant fluctuations that can eventua”y destroy
the quasiparticle. This procedure is a generalization of the

N j Ne=8,” 1 method of calculating response functions in the DMRA?

[ ]
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In the DCA, the introduction of the momentum dependence
o . o in the self-energy will allow one to detect some precursor
K . effects which are absent in the DMFA; but for the actual
o k, determination of the nature of the instability, one needs to
° . . compute the response functions. These susceptibilities are
. thermodynamically defined as second derivatives of the free
— energy with respect to external fieldb,(G) and2.,, and
henceFpca depend on these fields only throuGhy anng.
Following Baynf® it is easy to verify that, the approximation

FIG. 6. The coarse graining cells ftif.=8 and 10 each cen-
tered on a coarse-grained momeitarepresented as black filled
dots. ForN.=8 equivalent moment& are always mapped to T ~T =5 16G 11
equivalent coarse-grained momektaHowever, this is not true for 0.0~ Too01=0%cs o' (11)

N.= 10 where, for example, the two equivalent momenta shown byyields the same estimate that would be obtained from the
open dots are mapped to inequivalent coarse-grained momenta. second derivative oF ., With respect to the applied field.
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For example, the first derivative of the free energy with re-

spect to a spatially homogeneous external magnetic Higdd
the magnetization
m=tr{ocG,]. (12

The susceptibility is given by the second derivative

am JG,, 13
a7 (13
We substitutes = (Gg_l—Ecg)‘l, and evaluate the deriva-
tive
am_t iG, ol e[ 14 9%, IG, »
e A R R Rk

If we identify x, ,»=a(dG, /dh), and)(r G,z,, collect all

PHYSICAL REVIEW B 64 195130

We now make the DCA substitutiod’, ,/(q,k,k")
— Tl [A:M(k),M(k")] in Eq. (16) (where frequency la-
bels have been suppresgetlote that only the bare and
dressed two-particle Green functiogglepend upon the mo-
mentak within a cell. Sincey and x° in the product on the
right-hand sidéRHS) of Eq. (16) share no common momen-

tum labels, we may freely sum over the momektaithin a
cell, yielding

Yoo (ALK KD =X (A KK +XD (0K K"

K™) X om0 (9, K" K").
(17)

By coarse graining the Bethe-Salpeter equation, we have
greatly reduced its complexity; each of the matrices above is
sufficiently small that they may be easily manipulated using

>< l—‘co.//'a./ll(q,K",

of the terms within both traces, and sum over the cell Motangard techniques.

mentak, we obtain the two-particle Dyson’s equation

2(Xo.0— Xor—0) = 2X0+ 2X9 Ty o= Loy — o)

(;0' 0'_;0 70') (15)

In contrast with the single-particle case where the coarse-
grained quantities are identical to those of the cluster,
Xco.o'(0,K,K") is not equal toy,, ,(q,K,K"). This is be-
cause the self-consistency is made only at the single-particle
level. Unlike the single particle case where b&K) and

We see that again it is the irreducible quantity, i.e., the vertesS(K) are directly calculated, neithér, ,(q,K,K") nor the

function, for which cluster and lattice correspond.

1. Particle-hole

coarse-grained susceptlblht,yag (g,K,K") are calculated
during the self-consistency. Instead, the coarse-grained non-

interacting susceptibility;g’g,(q,K,K’) is calculated in a

In this subsection we will provide more details about theseparate program after the DCA converges using the follow-
relationship between the lattice and cluster two-particleng relation:
Green functions and describe how a particle-hole susceptibil-

ity may be calculated efficiently. As a specific example, we
will describe the calculation of the two-particle Green func-

tion

Xo,o' (0, K,K")

f J' J' j dTldedT3d7'4

X ei[(wn+ V)71~ wnTo+ g 73— (wnr + v) 74]

.
X(T,C8 4 4o T1) o T2) Cr o1 (T3)Ckr 1 gor (T4)),

where we adopt the conventional notafidk= (k,iw,), k’
=(k,0;), 9=(q,v,), andT is the time ordering operator.

Xo.or(Q,kK") andl", ,/(q,k,k") are related to each other
through the Bethe-Salpeter equation

Xoo (AKK)=X0 (0K )+ X0 n(aKK")
X Fo./r’o.m(q,k”,k’”)Xo.H/’a.r(q,km,k,),
(16)

whereI', ,(q,k,k") is the two-particle irreducible vertex
which is the analogue of the seIf—energffZ, (q,k,K") is the

noninteracting susceptibility constructed from a pair of fully ==

Xo o [(@ivn)i (Kiiwn)i (K iw))]

= 50’,0”5K,K'6

N -
o0 2 Go(K+K,iwp)
n’ nN E

X G (K+k+q,iw,+vy). (18

The corresponding cluster susceptibility is calculated in the
QMC process, as discussed in Sec. IV D and the vertex func-
tion is extracted by inverting the cluster two-particle Bethe-

Salpeter equation

Xeo,o (@K K = xoo (A, KK )+ xeo (0K K”)
X FCO’",O’"'(q'K”’K”/)XCO"”,O"(q'Km’ K,)
(19

If we combine Eqs(19) and (17), then the coarse-grained
susceptibility may be obtained after elimination of
I'(q,K,K") between the two equations. It reads

o1

X =t (20)

where, for example; is the matrix formed from

dressed single-particle Green functions. As usual, a summats,.'(d,K,K") for fixed g. The charge(ch) and spin(sp

tion is to be made for repeated indices.

susceptibilitiesyq, s{d,T) are deduced frony(
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(kgT)? — We define
Xensf == 2 NporXo,or(AKK), (21)
Ne  kK'oo’ g g(a.k,k")=g(k)x(a.k,k")g(k"), (26)
where\ =1 for the charge channel and,, = oad’ for 0 , 0 ) )
the spin channel. g 4(a,k, k") =g(k)x"(q,k,k")g(k"), (27)
2. Particle-particle Hg(q,k,k’)=g(k))(0(q,k,k’). (28

The calculation of susceptibilities in the particle-particle The remaining steps of the calculation are similar to the
channel is essentially identical to the above. The exception tparticle-hole case. We invert the cluster particle-particle
this rule occurs when we calculate susceptibilities for transiBethe-Salpeter equation with=1 for the cluster, in order to
tions to states of lower symmetry than the lattice symmetryextractT';. We then coarse grain E425), and usel', to
For example, in order to obtain the pair function of the de'calculate the coarse—grainé_'qzzFc(l—?l“c)*l. We then

sired symmetry §,p,d), the two-particle Green function . .
must be multiplied by the corresponding form factg&) ~ CCarse grain Eqi24), and use the coarse-graingd to cal-

andg(k’). In the study of the Hubbard model below, we will culate the coarse-grainddi,

be particularly interested ing(k)=1 (s wave, g(k) — =0 B ,
=cos(ky) +cos(,) (extendeds wave), and g(k) =cos(,) Ig4(a,K,K")=I1g 4(q,K,K") +114(q,K,K")
—cos k,) (d,2_,2 wave. These symmetries have been — 0 o
evoked as possible candidates for the superconducting XTo(q,K", K")g(q,K",K"). (29

ground state. _ _ The pairing susceptibility of a desired symmetry is given by
These factors modify the Bethe-Salpeter equations

’ ’ 0 ’ ’ (kBT)Z T ’
c KK’
+g(k))(0(q,k,k")XF(q,k",k"’)

X x(q,k”, k" )g(k"), (22 F. Local quantities
where We will also need to evaluate a number of local quantities
on the lattice. They include the magnetic moment, the local
x(q,k,k") magnetic susceptibility, the local Green function, etc. The
local cluster quantities are identical to the local lattice ones.
_ P[P (* This may be seen for example on the one-particle Green

dTldedngT4

oJoJoJo function. The coarse-grained Green function is related to the

o illont 71— ot o 73— (0 4 1) 7] lattice Green function as follows:

J— 1 . ’ T ’
><<TTCl+qg(Tl)Cik7¢7(TZ)ka’fa'(T3)Ck’+qa'(7-4)>! G(r,w)= N Z > @K ek X+ G(X 41/ w).
K,k X,r’

(23 (31)

On the LHS, we have dropped the spin indices since we wil
consider only opposite-spin pairing. Equati@2) cannot be
easily solved if it is coarse grained, since this will convolve
x(9,k,k") with two factors ofg on the LHS ancbne factor IV. THE QUANTUM MONTE CARLO ALGORITHM
on th(_a RHS. Hence f(_)r_the pairing susceptibilities, or forany |, this section we will derive a generalization of the
situation where nontrivial form factors must be used, we US§jrsch_Fye Anderson impurity algorithm suitable to simulate
the equivalent equation involving the reducible verlex 5 pypbard cluster embedded in a self-consistently deter-
(instead of the irreducible vertelx) mined host. We will then discuss the differences between this
, N 0 , , algorithm and the more familiar Blanckenbecler-Sugar-
g(k)x(a,k,k")g(k")=g(k) x"(q,k,k")g(k") Scalapino(BSS algorithnf® used to simulate finite-sized

ltis easy to see from this relation tha(0,0)=G(0,w).

+9(k)x°(q,k,k") systems. Finally, we will discuss how different quantities
om0 L ) mentioned above may be measured efficiently and how the
XTa(q,k", k") x"(q,k",K")g(k’), code can be optimized.
(24)

A. Formalism
where

The Hirsch-Fye algorithm is an action-based technique.

To(a,k,k")=T(q,k,k") Therefore, knowledge of the underlying Hamiltonian is not
0 . w0 "o required provided that we know the Green function for the
X kKT KLK) X K™ k) noninteracting cluster coupled to the host, and the interacting

(25 part of the action or Hamiltonian. The interacting part is
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unchanged by the coarse graining since it is purely local. It

may be written in the real space as follows: +A7k 2 Heoustel Br 1,00 Bk =10 Vit s Vil = 1.0)
NC
3
Hi=U> (n;—1/2)(n;, —1/2), (32) @7
=1 whereH os, Hsier@re the Hamiltonian for the host, and the
and the bare cluster Green functionGéK ,i w,,). noninteracting degrees of freedom on the cluster including

Given this information, the most direct way to derive this the coupling to the host, respectively. The detailed form of
algorithm is to express the partition function as path integral®0thHpes:andHg,qe.are unknown, due to the self-consistent
over Grassmann variables. The first step is to disentangle tHenormalization of the host. However, both are purely bilin-
interacting H, and noninteractingH, parts of the Hamil- €ar, and may be integrated out of the actiithout further
tonian using a Trotter-Suzuki decomposition for the partition@Pproximation
function. We divide the interva0,3] into N, sufficiently We will first integrate out the host degrees of freedom.
small subintervala 7= B/N, such thatA 72[H,,H,] may be ~ The partition function becomes
neglected. This leads to

fD[J’]DM]e*SC[ 39

N N VAS
Z=Tre P=Tr[] e 2H=Tr[] e 2Hoe 27
=1 i1

kH de(gy )t

wheregy ., is the Green function of the host. It remains fixed
(33 during the QMC process, and it may be disregarded since, as
The interacting part of the Hamiltonian may be further de-we show below, we only require knowledge of the ratio of
coupled by mapping it to an auxiliary Ising field via a dis- the partition functions for two different configurations of the
crete Hirsch-Hubbard-Stratonovi¢hlHS) transformatiorf! ~ HHS fields. Other fixed prefactorgdepending upon
U, B, ...) have also been disregarded in E88). S. is the

e—ATHIZe—ATuE (i~ 1/2) (|~ 1/2) cluster action. It takes the form
i
mmH S estun) (34 Slvl= 2 A0 ) v+ S,
e o (39)
— ATU2
where coshg)=e*™" whereg(i,|;i’,1") is the cluster excluded.e., noninteracting

We now introduce coherent states of the operators on th
cluster and in the host as the basis states and express
partition function as path integrals over the correspondingl-h
Grassmann variableg; | , and ¢y | , defined over eaci\,
time slicesr; =1 A 7 of the interval[0,3].28 After substituting

. -1
the Grassmann variables one obtains the following approxi- ZxTrg ,|}H detGeys ) 7 (40
mation for the partition function which becomes exact as 7

A7—0: where again factors which are fixed during the QMC process
have been ignored.G(w;S“)‘l is the inverse cluster Green

~f D[ y]D[ ple Sol7:Hle=SIlV, (35 function matrix with elements

n the cluster Green function, defined previously. Now we
| integrate out the remaining cluster Grassmann variables.
e partition function then becomes

whereD[ - - - ] symbols denote the measures of path integra- (Geo, s||)|] |11 =001 1- 1C¥(TS(T|)+QIl e (4D

tion over the corresponding Grassmann fields gl is the

(noniinteracting part of the action. The interacting part of the If we reexponentiate the first term in the RHS of the

action, becomes above formula by defining,(i,l)=as; o, we can write Eq.
(41) in a simple matrix notation as

c |
SYI== 2 2 2 aXlioosuYi-ae (30 Gg, ' =G t+T(e—1), (42)
The noninteracting parts are whereT is 5i,j5l—1,l’ . The matrix producthgle’V" de-
pends upon the HHS fields only along its diagonal elements.
_ 2 + [ Plo Pri-10 As can be seen from E§37), each diagonal element of the
Sl v, ¢]_A7k‘, Phl.o A7 matricesG ~! and henceG., ' is 1. Therefore, the inverse

Green functions for two different field configuratiofs;}
and{s;}, are related by

T Hposl Pk 1.0 PRl -1.0)
G. e Vo=G,.

Co Co

- leVo—e Vote Vo, (43)
+ATE ’)’, | U( Yil,o A%,Il,o)

Lo T Or, after multiplying berfr, and collecting terms
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1=1_~-1_(~-1_ “VeaVh_ Ve random number between zero and one and update the Green
Ger = Ger =(Gep —1)e (et —em). “49 function according to Eq49). After twenty to one hundred
Multiplying from the left byG. and from the right byG., we ~ warm-up sweeps through the space-time lattice of the cluster,
find the system generally comes into equilibrium and we begin to
make measurements. A few lattice updates are used between
(45) each measurement step to reduce the correlations between

Gly=Gept (Gey—1)(€% Yr—1)G/
measurements. This improves the efficiency of the algorithm,

Co

or since as we will see below, the measurements are numeri-
4 oy cally expensive. After many iterations of lattice updates, nu-
G,Ger =1+(1-Ge,)(ee Yo—1). (46)  merical round-off error begins to accumulate in the Green
function update, Eq49). To compensate for this round-off
B. The QMC algorithm error, the Green functions must be refreshed by again setting

Geoij=Gij » and then using Eq49) to recalculate the Green

We will now proceed to derive the Monte Carlo algo- function corresponding to the present field configuration.

rithm. The QMC algorithm involves changes in the Hubbard-
Stratonovich field configuratiods; |} —{s/ |}, and accepts
these changes with the transition probabikty . . Thus, to C. Differences with the BSS algorithm
define the algorithm, we ned®_,,, and a relation between
the cluster Green functions and G’ for the two different
auxiliary field configurations. To simplify the notation, we
introduce a combined space-time index (i,l), and will
consider only local changes in the fielslg—s/,= —sn. As

The Hirsch-Fye(HF) algorithm differs in several ways
from the more familiar Blanckenbecler-Sugar-Scalapino
(BSS algorithnf® used to simulate finite-sized systems. The
BSS algorithm is more efficient. HF simulations can be com-
. . i utationally quite expensive since the memory and the CPU
can be mferred from E(i(AO), the _plrobablhty of a configu- Eme requiyrgd by tﬂis algorithm scale a3\|}c/@\||)2 and
ration {si} is Ps=det(G(s))det(Gcs)); on the other hand  (\ N )3, whereN, and N, are, respectively, the number of
detailed balance requirdy, Py, _,;=PsPs .o foralls’. We  cluster sites and the number of time slices. The BSS algo-
may satisfy this requirement either by defining the transitionithm scales aN.N§ for the memory andN,Ng for the CPU
probability Ps, _s=R/(1+R), where time. In order to study a meaningful set of cluster sizes using
the Hirsch-Fye algorithm, it is necessary to use massively
parallel computers. The maximum size we studied\is
=64 for the two-dimensional Hubbard model. This maxi-
mum size is indeed smaller than what can be reached with
is the relative weight of two configurations, or by letting the BSS algorithm applied for finite system simulations
Ps_s=minimum(R,1) (the first choice is called the *heat (FSS. But, one should bear in mind that, in the DCA, the
bath” algorithm, and the second the “Metropolis” algo- system is in the thermodynamic limit, it is the range of spa-
rithm). If the difference between two configuration is due totja| correlations which is restricted to the cluster size. Cluster
a flip of a single Hubbard Stratonovich field at th loca-  sijze effects are of different nature than that occurring in FSS.

_ Py de(Gg))detGy))
Psr de(GcT)de(Gcl)

1)

tion in the cluster space tinié,then from Eq.(46) Therefore, the DCA as discussed in previous studies, can
provide information which cannot be obtained from the FSS.

R=H [14 (1= Geyrm m)(efazr(smfsr’n)_l)]*l. (48) The Hi(sch—l?ye alg_orithm is action-based, whereas the

o ’ BSS algorithm is Hamiltonian based. Therefore, the BSS al-

. . . . gorithm cannot be employed to solve the DCA cluster prob-
For either the Metropolis or the heat bath algorithm, if th?lem, since the cluster problem has no Hamiltonian formula-

@dn with known parameters, and its action is highly nonlocal
in time. The BSS algorithm requires that the action be local
in time. The cluster action, Eq39), is long ranged in time
~ ao(sy—sH) due to the term involving. Thus, the Hirsch-Fye algorithm
(Geoim— dim)(e mmw—1) ' is the most appropriate QMC algorithm to solve the DCA
1+ (1= Gy ) (e~ @ Gn=s — 1) <™ embedded cluster problem.
' (49) In addition to the differences mentioned abddetailed
knowledge of the Hamiltonian is not needed for the HF al-
The QMC procedure is initialized by settifg.,i; =Gj; gorithm so long as we have an initial Green funcjiathere
where G;; is the (clustey Fourier transform ofG(K) [Eq.  are other advantages to the HF algorithm. Whereas in the
(10)], and choosing the corresponding field configurationBSS algorithm, all degrees of freedom must appear explic-
with all s;=0. Then we use Eq49) to create a Green func- itly, in the HF algorithm, any noninteracting degrees of free-
tion corresponding to a meaningful field configuratigee., dom may be integrated out without loss of any information.
s;i=*1, for eachi=(i,l) or the{s;} from a previous run or At the end of the calculation, the irreducible diagrams on the
iteration. We proceed by sequentially stepping through theinteracting orbitals may be used to calculate any relevant
space-time of the cluster, proposing local changgs quantity. Therefore, the HF algorithm may be used, for ex-
——5;. We accept the change Py _ ¢ is greater than a ample, to simulate the periodic Anderson modeith only

accordingly. The relationship betwe&hand G’ is defined
by Eq. (45)

‘ Geoij T

coij —
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the f-orbital correlategl with the same computational cost angular approximation to the integral in EGO) yields a
required to simulate a single-band model. One may also inG(K,iw,) that is periodic inw,. This presents a difficulty
corporate adynamical mean field coupling to an environ- since the causality requires that

ment, or between an infinite set of coupled Hubbard pl&hes,

at no additional computational cost. In these cases, the infor- 1
mation about the mean field coupling to the environment or lim G(K,iw,)~—. (51
. © lwn
the other planes is reflected éh ©n—
For clusters, the Hirsch-Fye algorithm is very stable at _ _
low temperatures. In particular, the matricg€ which are A straightforward way to cure this problem may be to

generated in the algorithm are well conditioned, the costlyincrease the size of the set of points where the Green
stabilization steps required at low temperatéitésfor the  function is evaluated. But, this renders the QMC simulation
more popular BSS algorithm are avoided. rapidly intractable as seen in the previous section. A more

Finally, the Hirsch-Fye algorithm is easily adapted to€&conomic way to avoid the problem is to use the high fre-
making measurements which are nonlocal in time, such aguency information provided by an approximate method that
those required to calculate the irreducible vertex functionsis asymptotically exact.
This will be discussed in the next section. It is very difficult ~ Second-order perturbation theory is enough to obtain the
to measure quantities which are nonlocal in time with thecorrect asymptotic behavior, E€61). To use this high fre-
BSS algorithm. In fact, such measurements require signifiquency information, we compute the Matsubara-frequency
cantly more CPU time than is required to average over théreen function from the imaginary-time QMC Green func-
HHS field configurations, since the CPU time required bytion as follows®*
these measurements scales lsN;)? for both the BSS and
Hirsch-Fye algorithms. Thus, when these measurements . ) B
which are nonlocal in time are required, both algorithms Gc(Kv'wn):cht(Kv'wn)+fo dre“n”
scale as K.N))°.

X[Gc(KaT)_cht(KrT)]- (52
D. Making and conditioning measurements . . . o .
) ) N The integral is computed by first splining the difference

In the_QMC technique, all thg physical quantities are eX-G(K,)— Gep(K,7) Using an Akima spliné® and then in-

pressed in terms of Green functions. Standard dlagrammatt@grating the splinéa technique often called oversampling

techniques are applied to evaluate these quantities. In doing As another example, consider the local magnetic suscep-
so one must remember that the Hubbard-Stratonovich trangpijity (used to calculate the screened local moment

formation reduces the problem to one of free electrons mov-
ing in a time-dependent field. Thus for each field configura- 1
tion, any diagram may be formed by summing all allowed ~— > g + -
n, ; by XM~y 2 | (ST (1S (0)
Wick’s contractions. The full quantity is recovered by aver- c 1 Jo
aging this over all field configurations. Connected as well as 1 2
disconnected configurations must be used during the evalua- T 2 J dr(cL(r)cli(r)cL(O)c“(O»
tion. It is important to average over all equivalent time and c 1 Jo
space differences and all the symmetries of the Hamiltonian T
in order to produce the lowest variance measurement. -~ ﬁdeBdT'<GC(,(i,T+ i)
One difficulty encountered with the DCA algorithm is that 2N. 5 Jo Jo
a reliable transform from imaginary-time quantities, in the
QMC part, to Matsubara frequencies, for the coarse-graining
part is needed. A careful treatment of the frequency summa- o
tion or the imaginary-time integration is crucial in order to where the{s; } subscript indicates that the Monte Carlo av-
ensure the accuracy and the stability of the algorithm and térage over the Hirsch-Hubbard-Stratonovich fields is still to

maintain the correct high-frequency behavior of the Greerbe performed, and in the last step in E§3) we form all
functions. We need to evaluate allowed Wick’s contractions and average over all equivalent

time and spatial differences to reduce the variance of this

XGeo(i, 751,74+ 7)) )5, (53)

_ 8 estimator. This measurement is best accomplished by split-
Gc(K,iwy)= fo dre'“n"G(K, 7). (50) ting it in two parts. First, we measupg 7)
But from the QMC, we know the functio@.(K,7) only at a _ T B, . P
discrete subset of the intervgd,3]. As it may be readily X(7) 2N, ; 0 d7'(Gey(i, 7+ 751, 7')

seen by discretizing the above equation, the estimation of o

G.(K,iw,) becomes inaccurate at high-frequencies. This is XGeo (i, 751, 7+ 7"))s) (54)
formalized by Nyquist's theorem which tells us that above

the frequencyw.= 7/A 7 unpredictable results are produced by approximating the integral as a sum using a rectangular
by conventional quadrature techniques. For example, a recgpproximation. Forr>0
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1 Green function matrixy.(q,K,K") [K=(K,iw,)] which is

X(1)~ 55N 2 (G Lhind(1+17);i,1"] used in Sec. Ill E 2 to calculate the lattice pair-field suscep-
e ail” tibilities. The first step is to form the corresponding quantity
X Ge_ [i,1";i,ind(l +|')]>{SH}, (55) in the cluster space-time
whereind(l) is the smaller nonnegative value of eithesr - i T
| —N,. For =0 the fact that we always sto@,(i,1’;i,l") XelX1: Xz X5, Xe) <TTCT(X1)CL(X2)01(XS)CT(X4)>&58)
=G,(i,n,+0%;i,7,) requires us to modify the measure-
ment Here X; is in the spacdimaginarytime notation X;
=(X;,7;), where the point; are on the corresponding re-
Y(7=0)~ 1 2 (G131 ciprocal cluster oK in real space, andT - - -) denotes the
2N|Ng 7 e time ordered averaging process. The two-particle Green

R functions are difficult to measure efficiently. For a particular
X[Ge—o(i,1"31,1") = )5y - (56)  configuration of the auxiliary Hubbard-Stratonovich fields,
the fermions are noninteracting, thus the expectation value
indicated above may be evaluated in two steps. First, using
B Wick’s theorem, its value is tabulated for each field configu-
X(T)=f dTX(T)”Z f(HATx(7), (57 ration {s;} and then transformed into the cluster Fourier
0 space. Second, we Monte Carlo average over these configu-
where the Simpson factof(l)=2A7/3 (4A7/3) for odd rations. After the first step, the expression for the above two-
(even | is used to reduce the systematic error of the integralparticle Green function in the cluster momentum-frequency
As a final example, consider the cluster particle-particlespace becomes

Finally

xe(Qivn K iwn K Jiwy)= XEX e‘K'XlecT<xl,x4>e—iKX4X2X e KDXG  (X,,Xg)e 1Q70%s) 1 (59)
1M 2173 {Si}

whereK is the momentum-frequency poikt= (K,iw,). The  three matrices in each set of parenthesis is tabulated as two
average over Hubbard-Stratonovich fielgs '>{Si} can be sequential matrix-matrix products and stored before the di-

evaluated through the QMC sweeps along with the measurd€ct product between the terms in parenthesis is calculated.
ments ofG.; andG,, . However, the suméntegral$ over 7 When done this way, the calculation time required for this
in Eq. (59) require special consideration. Since the GreerProcess scales likeNcN,)® rather than KIcN))* as would
functions change discontinuously when the two time argufesult from a straight-forward evaluation of the sums implicit
ments intersect, the best applicable integral approximation g Ed. (60). _

the trapezoidal approximation. Using this, we will run into  For the reasons discussed above, @) becomes unre-
Green functionsG (X, 7;X,7) with both time and space ar- liable at high frequenciefw,|>m/A 7. The high frequency
guments the same. In the QMC algorithm, this is stored abehavior of the two particle Green function can be recovered
Ge(X,77;X,7) (i.e., it is assumed that the first time argu- PY using a method similar to that developed for the one
ment is slightly greater than the secontiowever, if we particle Green functiof? The first term of its perturbation

replaced the equal time Green function to be the average €xpansion, the bubble diagram, is used for the conditioning.
It is calculated in two ways: First it is formed from the

{G(X, 77X, 1)+ Ge(X, 7, X, 7 )H2=G (X, 77; X, 7) — 1/2 square of the properly conditioned cluster Green function.
Second, it is calculated using the same approximation to the

then a trapezoidal approximation of the integrals results. lfgurier transform employed in E@60). The difference of
we call the matrixG., with 1/2 subtracted from its diagonal the two may be used to condition the estimate

elements, as’:;C (note that we can treat one of the three
independent momenta involved jn as a variabl& outside + oA + A .
the matrix structurg then we can write the two-particle Xcu‘(Q):<(FQ:06CTFQ:0)U(FQGCLFQ)IJ>{si}

Green function in a matrix form " R i A .
_(FQ:0<GCT>{si}FQ:0)|J(FQ<GCl>{Si}FQ)U

_ T A TA *
XCI_](Q)_<(FQ:OGCTFQ:O)U(FQGClFQ)I]>{Si}! (60) +GC(KI)G:(KI_Q)5IJ' (61)

where Fq),=Are (K~ QXi1e;7 where we have chosen

I andj to index the cluster momentum-frequency space. ThigVloreover, this appends the right asymptotic behavior of the
measurement may be performed efficiently if the product ofperturbation result to the two-particle Green function at high
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frequencies where QMC results are dominated by statisticatision arithmetic and storage will not improve the accuracy
errors. of the two-particle measurements.
The required CPU time may be reduced by optimizing the
E. Optimizing the code inner loops. The two numerically most expensive parts of the
. : T Lo MC code are the Green function update, , and the
In th_ls s_ubsectlon, we will discuss the optlm_lzatlon andSvo-particle measurements, E6.). Thpese caﬁ)e written in
parallelization of the QMC code. We generally find that theterms of highly optimized BLAS cal® DGER and

heat bath algorithm is more efficient, presumably becguse GEMM, respectively. To see that E@9) can be calculated
has a lower acceptance rate and therefore deemphasizes € an outer product, we define

expensive step of updating the Green function.

We may greatly reduce the statistical error in many of the ,
measured Green functions by employing the translational B (e @7(om™sm —1)
and point-group symmetries of the cluster. The QMC aver- am_1+(1_G )(e—au(sm—sr’n)_l)' (64)
aging over the HHS fields systematically restores the trans- com.m
lational invariance of the system in time and space. So W&hen Eq.(49) takes the form
may reduce the statistical error in the measured Green func-
tions by averaging over all equivalent differences in spatial

r_
and temporal cluster coordinates. To reduce the statistical coij = Ceaij T (Geaim ™ 8i,m)@mGeam; - (69
error further, we then average over all the lattice point group_ . . ) )
operations. For example, f@.(K,w,) This is a vector outer product and matrix update, with vec-

tors am(Gegim— 6i,m) and G, for fixed m.
1 Additional speedup of the calculation is possible by writ-
Ge(Kiiwn) =5 > GIR(K)iw,], (62)  ing parallel codes. The DCA-QMC codes are extremely well
R R suited for massively parallel supercomputers because of their

where R is one of the symmetry Operations in the point efficient use of the roating-point capabilities of such ma-
group of the lattice andli is the total number of such sym- chines and the highly parallel nature of the codes and the
metry operations. underlying algorithm. With the current relative decline in the

The two-particle Green functions typically have more Sta_gvallablllty of vector supercomputers and the concomitant
tistical noise than their single-particle counterparts, and theitncrease in the number of massively parallel supercomputers,
matrices can be quite |arge_ To reduce both the Storag@ls IS an |mp0rtant feature of the algorithm. In the remainder
needed for these measurements and their statistical noise, tAkthis subsection, we discuss first the general parallel nature
point group symmetry of the lattice may again be used. Wef the algorithm.

first average the two-particle cluster Green functions over the There is a high degree of parallelism in the DCA-QMC
different point-group operations algorithm, which one may exploit. This parallelism exists on

two levels. First, QMC is itself inherently parallel because it
1 consists of a number of stochastic random walks. One may
Xo.o(QKK') = % Xo,o'[AR(K),R(K")]. think of QMC as one long Markov-chain walk. Measure-
® (63) ments are made periodically along this walk. At the end of
the walk, these measurements are averaged and the final re-
We should also average over the symmetries of the diagramsult, with error bars, is obtained.
For example, for the particle-particle channel there are addi- However, there is no reason why this Markov-chain walk
tional symmetries of the diagrams which include horizontalhas to be continuous. It has been known for years that one
(Kiiw, ;K jiop)— (Ko, Kiw,) and vertical can perform several independent, shorter Markov-chain
(Kjiwg; K iwy)— (=K, —iw,;—K',—w,) reflections. walks and average the results of each walk to obtain the final
After these symmetries have been imposed, we will lose noesult of the calculation. The result can be an almost perfect
information and significantly reduce the storage requireparallel speedup as an increasing number of processors is
ments if we storey, ,(q,K,K") for eitherK or K’ within applied to a problem. This arises because only an extremely
the irreducible wedgdwe may not take bottK and K’ small amount of communication between processors is
within the irreducible wedge though required—first to initialize the Markov-chain walks and then
The memory required for these calculations may be furto collect the data for averaging at the end of the Markov
ther minimized by limiting the use of the double precision process(even this averaging can be done in parallel using
arithmetic. The Green functions and all of the equations asMPI calls). We call this the “perfectly parallel” algorithm.
sociated with the calculation of the initial Green function and The second degree of parallelism exists in the linear alge-
the Green function update, E@49), are computed with bra problem itself. That is, one can distribute the vectors and
double precisiornt8 byte real to minimize the problems with matrices which comprise the linear algebra problem across
the accumulation of numerical error discussed in Sec. IV Bseveral processor6lhe matrix in our case is the Green func-
However, to save memory, it is convenient to both calculatdion discussed aboveSuch a break-up of the data becomes
and store the two-particle cluster Green functions with singleof paramount importance when the size of a matrix is so
precision(8 byte complex Since these measurements typi- large that it cannot possibly fit within all of the memory
cally have a fraction of a percent statistical error, higher preavailable on a single processor of a computer.
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QMC puter, and the cluster self energy and the various two-particle
cluster Green functions are written into files. In the second
’—> G, %™ —l part various one-particle and two-particle lattice Green func-
o ot - - tions are calculated from the cluster Green functions ob-
G=G +X 2=G -G, tained from the self-consistent loop. This part of the code is
generally run on a workstation and it requires the data gen-
GK)=3 GK +Kk) J erated by the first part of the code. The third is devoted to the
K analytical continuation of the imaginary-time Green func-
tions to real frequencies using the Maximum Entropy
! } Method (MEM).
MEM Analysis Code
N(w), x(®) ‘ X(D), n(k)

A. Part 1: The self-consistent loop

FIG. 7._Sketch of the DCA algorithm: the self-consistent loop, (1) The DCA iteration procedure is started by setting the
the analysis part, and the MEM part. initial self-energy2 .(K,iw,)=0, or to a perturbation theory
result.

The issue of interprocessor communication now becomes (2) 3 is then used to compute the coarse-grained Green
paramount as one performs linear algebra. However, W nction G(K i
nction G(K,i wy),

things work in our favor here. First, the main linear algebra
operation of the QMC is a vector outer product—which is in
itself inherently parallel. Second, this is a well-studied prob- G(K,iwy) =2, -
lem and again an efficient library package, the parallel k|
PBLAS,* exists to solve it. When we divide the Green func-
tion over all of the processors that we use in a run on a (3) The next step of the iteration is to uS(K,iw,) to
parallel machine, we call this the “truly parallel” method. compute the host Green function G(K,iw,) *

The truly parallel method can be used to efficiently fill all =€(K iw,) " 1+3(K,iw,) which must be introduced to

available processors of a parallel machine with one DCA~, 4iqg over-counting diagrams(K ,i ) serves as the input

QMC problem. Often, however, the problem of interest is N0, the QMC simulation to yield a new estimate for the cluster

so big as to require the entire machine for one Green f“ncéelf-energy.

tion, but is too big to fit within the RAM available on a (4) G(K,iw,) must be Fourier transformed from the
’ n

single processor and hence too big for the perfectly para”%omentum-frequency variables to space-imaginary-time
code. To efficiently use available hardware for these proby 4 iaples before being introduced in the QMC part of the

lems, one can employ a “hybrid” cod_e, which is both truly program as the initial Green functioBg;=G(X;—X; 7,

parallel in part and perfectly parallel in part. — ;) corresponding to alk;=0. Equation(49) is used to
The hybrid c_od_e may be though_t of as using blocks Ofgenerate the cluster Green function corresponding #al,

processors to distribute Green functions and in turn performg . J the{s;} from a previous run

ing a perfectly parallel QMC with many such blocks. For ' X

. (5) The QMC step is next and is the most time consuming
example, say that the Green function for the problem at hanBart of the algorithm. Each QMC step is warmed up before
will not fit in the memory of a single processor, but will fit

one starts to perform measurements. While making measure-

within the memory of 4 processors. Assume also that ther?nent, we average over the differences in space and time and

are 100 processors available for a run. The hybrid code thefhe point group operations, as described above, to reduce the

allocates all 100 processors, divides these 100 ProcessoLs ictical error. This together with the QMC averaging re-

Into .25 blocks of 4, distributes copies of the initial Green stores the translational invariance of the system in time and
function onto each of the 25 blocks, and then does a Pelshace 4G Yoy =Go(X;— X; 17— 7))
fectly parallel QMC using these 25 blocks. This makes the ’ cii/{s} = Bl A A

most use of the resources of a machine and is especially well (& Gc(Xi—Xj,7i—7)) is then Fourier-transformed to

suited for a symmetric multiprocessor machine, where man{Pc(K.i@n). We calculétle anew 9St'T?te for the self-energy
nodes exist and each node comprises several processors wi (K i0n) =G(K,iwn) "= Ge(K,iwp) 7. _
a shared, relatively large, pool of RAM. (7) .Startlng with step -2, thg procedure |s.repeated until
3 .(K,iw,) converges. This typically happens in less than ten
iterations. The number of iterations decreases wNgrin-
creases since the coupling to the host is smalfe1/N,)]°

In this section, we will discuss how the QMC and DCA for larger clusters. The convergence test is made on the ratio
formalism are combined into a DCA algorithm for simulat- p.
ing lattice problems. The complete DCA program is made of
three completely separate parts as illustrated in Fig. 7. The
first part is the self-consistent loop which is the main part of
the algorithm. It includes the DCA self-consistency loop P
composed of the QMC block and the coarse-graining of the ‘Z 2 cod( K, i wg)
lattice. This program is usually run on a parallel supercom- K

1

(66)

wn— €~ ek~ So(K,iwg)

V. THE DCA ALGORITHM

‘; [3 enenl K i @0) = 2 coa( K, o) ]
= . (67)
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wherewg= 7T the corresponding coarse-grained two-particle reducible ver-
(8) Once convergence is reached to the desired accuraciex, and then use Ed29) to calculate the coarse-grained
the remaining one and two-particle measurements are madattice pair-field susceptibility matrix.
in a final QMC iteration. As in a usual QMC simulation, bins  In the two-particle calculations, it is tempting to interpo-
of measurements are accumulated and error estimates dede the cluster vertex functions to the lattice momenta. How-
made from the fluctuations of the binned measurementsver, this would increase the size of the matrices which must
These error estimates are accurate provided that the bins colpe inverted in Eq(20) dramatically, making the calculation
tain enough measurements so that the bin averages are wi-the lattice susceptibilities numerically much more expen-
correlated. The statistical error may be reduced by averagingive.
over the different symmetries as discussed above.
Once the cluster Green functions are obtained, the deter- C. Part 3: Analytic continuation
mination of the lattice quantities requires additional steps

which are done in separate programs. Unfortunately, there is no reliable way to perform the di-

rect analytic continuation at .(K,iw,). Padeapproximants
lead to very unstable spectra because of the QMC statistical
noise contained i (K,iw,). The binned imaginary-time
The self-consistent loop yields cluster Green functionsGreen function data accumulated from the cluster calculation
G(K,iwy), 2K, im,), and susceptibilities must be used to obtain lattice spectra from whiti{K,w)
Xcoo' (Kjiwn ;K jion), Hg(K,iw, K’ ioy) which may be  may be deduced. To obtain the self-energy and spectral-
used to construct the equivalent lattice quantities. This isveight functionA(k, ) of the lattice in real frequencies, we
done in a separate computer program in which the irreductirst compute the cluster spectral-weightK,w). This is

Ib|equantItIeS of the cluster which c’?ll’e in the DCA apprOXi- done using the maximum entropy metﬁ%ﬁ) invert the fol-
mation identical to those of the lattice are used to comput§owing integral equation:

the corresponding reducible lattice quantities.

To calculate the single-particle quantities, an interpolated _ _
self-energy2 (k,i w,) may be used. This is especially impor- G(K,T)=f do —— AK,0), (70
tant for the calculation ofvVn(k)|, and other quantities such 1+e
as band structure, where continuity of the self-energy is im
portant. We often use bilinear interpolatic_)n for this PUrPOSeyainad from the QMC simulation of the cluster.
since it is guaranteed to preserve the sign of functian, . — -
the bilinear interpolation of a positive-definite function re-  >iNc€ A(K,w)=—=1/mImG(K,®), the full frequency-
mains everywhere positiyeWe also use a multidimensional dependent coarse-grained Green functi®(K,w) is ob-
spline interpolant, similar to some Akima splines, which tained using Kramers-Kronig relations. Then, the equation
does not overshoot. However, it is important to note that this
interpolated self-energy should not be used in the self-
consistent loop as this can lead to violation of causility.

The interpolated self-energy(k,i w,,) is then used to cal-

culate the Fermi surface. For this we use the discrete form g solved for the real-frequency self-ene@y(K, ) using a
vn(k) complex root findef® This self-energy may then be interpo-

lated onto the latticé points using a high-level interpolant

which also preserves the sign of the imaginary part.

An, The above steps are unnecessary if the local quantities are
K AK (68) tp be computed since the local lattice and cluster Green func-

tions correspond one-to-one. For example, we may directly

which, in a Fermi liquidor a marginal Fermi liquigis maxi- analytically continue the local cluster Green function to ob-

mum at the Fermi surface. The quasiparticle weight may béain the lattice density of states.

approximated with

B. Part 2: Numerical calculation of lattice quantities

—wT

where E(K,r) is the imaginary-time Green function ob-

_ N, 1
G(K,0)= 2 (71)

k o—e—exiik—2(K,o)

T G(k+Ak,iw,)—G(K,iw,)

VI. APPLICATION TO THE 2D HUBBARD MODEL

Im 2 (k,iw,—q)
Zy=1- T e (69 We will now show the results of the application of the
n=0 DCA to the two-dimensional Hubbard model. The Hubbard
which becomes exact as—0. model has a long history and is believed to contain the

The calculation of the lattice susceptibilities in the mechanism of various physical phenomena such as magne-
particle-hole channel and in the particle-particle channel igism, metal-insulator transitions and more recently supercon-
also made in this code. The stored QMC cluster susceptibiliductivity and non-Fermi-liquid behavior. Our intent in this
ties are used for this purpose as prescribed in Sec. Il Esection is not to exhaustively study this model’s properties,
Here, we first form the corresponding coarse-grained anéiut rather to use it to illustrate the power and limitations of
bare cluster susceptibilities, and then we use(E6@). to cal- the DCA and to survey what can be done.
culate the corresponding coarse-grained lattice susceptibility. Since the two-dimensional model is not expected to have
To calculate the pair field susceptibilities, we first calculatea finite-temperature magnetic or perhaps even superconduct-
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ing transition, we will add a hopping, (Ref. 37 into the
third dimension between an infinite set of weakly coupled
Hubbard planes

t, (Ky,ky ko) =—2t, (cosk,—cosk,)? cosk,. (72

We taket, <t, and treat the additional coupling at the DMFA
level, so the self-energy is independenkgf This is accom-
plished by modifying the coarse-graining cells into rectangu-

173 41D

N,=1 T, =0.094 y=1.04 |
7/ 0 N.=8T=0.0877=1.06

lar solids of dimensiondk, Ak, and 27 in thek,, k,, and o N=16 T, =0.078 y=1.08 7
k, directions, respectively. After coarse graining, the problem 0.1k i E:;i ;»::gg;;‘ti'ﬁ—
) . . ; =32 T, =0.073 y=1.

is reduced to a two-dimensional cluster. Information relevant L x N=36T =0.068 y=1.14

to the mean-field coupling between the planes is contained , . N T
within G. 0 005 0.1 0.15 0.2 0.25

T
A. Results at half filling FIG. 8. The inverse antiferromagnetic susceptibility versus tem-

eperature for various cluster sizes. The lines are fits to the function
(T—Ty)?. In the inset, the corresponding Néemperatures, deter-
mined by the divergence of the susceptibility, are plotted. The line
iés a polynomial fit to the data, excluding,=4.

The physics of the half filled model is a severe test of th
DCA as well as finite-sized simulation&S9 due to the
guantum critical point at zero doping. As this point is ap-
proached, both the dynamical and spatial correlation length

diverge, and both the DCA and FSS are expected to fail. o o N
DCA to indicate a finite temperature transition ongex-

ceeds the linear cluster size. Since correlations build expo-
. ) _  2a39 i nentially, large increases in the cluster size will only reduce
Earlier finite size simulatioi&*® employing the QMC  the DCA transition temperature logarithmically.
method have led to the conclusion that the ground state is an note that the data foy(N,) falls on a smooth curve
antiferromagnetic insulator at half filling. Since the model isexcept forTy(N.=4). This behavior was seen previously in
two dimensional, we know from the Mermin-Wagner theo- e transition temperature of the Falicov-Kimball model, cal-
rem that the transition temperature is necessarily zero. But §;jated with DCA’*8 TheN, =4 data falls well off the curve
found in infinite dimensions? the DMFA predicts a finite produced by the other data, and has a much larger exponent
temperature transition even in two dimensions. This spurioug,gicating that fluctuation effects are more pronounced. Pres-
t_Jeha\(lor may be attributed to the_ lack of nonlocal c.orrela—enﬂy this behavior is not completely understood but may be
tions in the DMFA. These correlations are known to induceg|ated to the fact that the maximum coordination number for

strong fluctuations particularly in reduced dimensions andy —4 is two, whereas it is greater than two for cluster sizes
are responsible for the suppression of the finite temperatur%rger tharnN..= 4
=4.

transit_ion. The DCA which includes .these npnlocal corrt_ala- An interplanar coupling can significantly alter the phase
tions is thus expected to progressively drive the SpurioUgiagram. However, since the superexchange coupling varies
finite temperature transition found in the DMFA towards Zeroroughly like the square of the hopping, it is necessary to
temperature as the cluster size increases. _ maket, a significant fraction of the intraplanar couplinin
This behavior is illustrated in Fig. 8, where the inverse ;o 1 see an effect. For exampletiflt=0.4, the ratio of
antiferromagnetic susceptibility is plotted versus temperaturg, . interplanar to intraplanar exchanges is roughilyJ
for §=0 gnd various vaIue; ™ which preserve the lattice ~0.16. In Fig. 9 the antiferromagnetic transition temperature
symmetries as discussed in Sec. IIl C. At high temperatures, plotted versusN, whent, /t=0,0.4,1.0 wherl=W=2
R L /t=0,0.4,1. —W=
the susceptibility is independent of;, due to the lack of anys5_0 For botfnllt=0.4 andt, /t=1.0, the transition
nonlocal correlations. In contrast to FSS calculations, thqemperatures foN.= 16 and 32 are the sa’me to within the
low temperature susceptibility divergesTat Ty, indicating — , merical error. CThus, the finite-temperature transitions

an instability to an antiferromagnetic phase.sincreases found for small clusters, can be preserved\as- by in-
N.>1, the nonlocal dynamical fluctuations included in thetroducing the interplana’r coupling

DCA suppress the antiferromagnetism. For example, when
N.=1, the susceptibility diverges with an exponenrt1, as
expected for a mean-field theory; whereas the susceptibilities
for larger N. values diverge at lower temperatures with In the strong coupling limit, a Mott Hubbard gap is ex-
larger exponents indicative of fluctuation effettsAt first,  pected to open in the charge excitation spectra. In the weak
these effects are pronounced; howeverNasncreasesT coupling limit, the situation is less clear. Since the ground
falls andy rises more slowly with increasiny.. This can  state of the half filled model is always an antiferromagnet,
be understood from the singular nature of the spin correlatiothe system remains insulating, but the nature of the insulat-
length, which at least in the lardé limit is expected to vary ing state in weak coupling is less clear, and depends upon the
as¢oeMT whereA s a constant of the order of the exchangedimensionality. In one dimension, Lieb and ¥showed
coupling. For this quantum critical transition, we expect thelong ago that a charge gap opens as sooda9. There is

1. Antiferromagnetism

2. Mott transition at half filling
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U=1, andt, =0.

FIG. 9. Ty versusN, for different values ot /t.

) . . This does not occur whed >W because the Mott gap opens

a spin-charge separation and there is no long range ordefe|| pefore the magnetic correlations set in. It is thus fair to
even atT=0. Hence, the Slater scenario is not responsibleysk to what extent the conclusion reached with the DCA
for the metal-insulator transition and the low energy spingpove may be more reliable. For this it is necessary to com-
excitations are described by the Heisenberg model. In inﬁnit%are the DCA to FSS.
dimension, the model can be mapped to a self-consistent |, Figs. 12 and 13, we show the imaginary-time Green
Anderson impurity problem. The solution of the self- f,nction G(7) at the Fermi pointX=(,0). This quantity
consistent equations have been obtained numerically by varas a more rapid decay from its maximumG(s/2) when
ous authors. For small <W, the antiferromagnetic transi- the effects of the correlations are stronger. In finite systems,
tion temperaturd is higher than any temperature at which the decay is sharper for smaller lattices while in the DCA it is
there is a metal-insulator transition in the paramagnetighe opposite. This behavior marks the fundamental difference
phase. Hence, the metal-insulator transition in infinite dimenpenyveen the ESS and the DCA. At low temperatures, in FSS,
sion is due to the Slater mechanism. In two dimensions, thghe correlation length is greater than the lattice size. Thus,
Mermin-Wagner theorem prohibits long range order for anythe effects of the correlations are overestimated for smaller
T>0, and we find that the weak coupling transition is similar c|ysters because these systems are artificially closer to criti-
to what is found in one dimension. _ cality than a system in the thermodynamic limit. This ten-

The density of statep(w) (shown in Fig. 10 confirms  dency is reduced by increasing the cluster size, which moves
the destruction of the Fermi-liquid quasiparticle peak bythe system in the direction of the thermodynamic limit. The
short-range antiferromagnetic correlations. With increasingsituation is radically different in the DCA where the system
N, the gap opens fully, and the Hubbard side bands becomg ajready in the thermodynamic limit. The DCA approxima-
more pronounced. tion consist in restricting correlations to within the cluster

In Fig. 11 the behavior of y is compared to the tempera- |ength in the infinite system. As the cluster size increases,

ture T where the gap opens. In contrasfltQ, T increases possible longer-range correlations are progressively in-
with the size of the cluster. This confirms the conclusion that

a gap, which is not due to antiferromagnetism alone, opens at : : ; ,
finite temperatures in the 2D Hubbard model.

3. Comparisons with finite system simulations

A great number of simulations have been performed in the 0.1
half-filing regime of the two-dimensional Hubbard model
over the last decade. Most of them are based on QMC with
imaginary-time data analytically continued by the maximum
entropy method. While these studies all agreeldor W, for
U<W they have led to conflicting result8.The reason is
that the metal-insulator transition is related to the antiferro-
magnetic transition so that it is difficult to distinguish be-
tween the two physical processes. As a consequence various
conflicting scenarios for the disappearance of the quasiparti- e [ Y e—
cle peak at low temperatures have been proposed. These con- N
troversies are inherent to the limitations of the finite system
simulations. There are artificially introduced finite size gaps FIG. 11. The Nel Ty and gapT, temperatures versié, when
when the correlations become comparable to the system size =w=2, §=0, andt, =0.

0.05
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0.0 ' ' ‘ P({s})=def{Gl({s})]1xdefG\({s]})] can be negative so
that it can no longer be interpreted as a probability distribu-
04 L | tion. The solution is to reinterpréP ({s;})| as the probability
of the configuration{s;} and associate its sign with the
measuremer For any operato©, this becomes
=02 - 4
O
© * N=16, FSS '
03 N6 : 2 P(shodsh 3 sgn{s}o(s}
- c=64 <O>: i _ i ’
04 | f N f > Pdsh) > sonfsi)
et (73)
-05 : : : :
0 0.2 0.4 0.6 0.8 1
B where sgn{s;}) is the sign ofP({s;}), O({s;}) is the value

of the operator for the field configuratiofs;}, and the
FIG. 12. The imaginary-time Green function at the poit primed sums are over configurations generated by impor-
=(,0) on the Fermi surface from finite size QMfllled symbol$  tance sampling. In finite system simulations, as the tempera-
and from DCA (open symbolswith U=1.1, =16, t, =0, and  tyre is lowered, the average sign becomes exponentially
l\!c:_16,36,64. The size increases from top to bottom for FSS. Theym 41230 5o that it is no longer possible to obtain good sta-
size increases from bottom to top for DCA. tistics. This sign problem has posed a formidable challenge
] ] ) in the field of numerical simulations for nearly two decades.
cluded. Thus, the effects of the correlations increase with the gome recent works have brought some hope. Gubernatis
cluster size. o and Zhan@® and Zhan$* have shown that by putting a con-
The density of states shown in Fig. 13 supports thesgraint on the fermion determinant, one can construct an ap-
conclusions. The finite size gap in the FSS decreases Whefyoximate algorithm which shows some improvement on this
the cluster size goes frol.=16 to 64. While, in the DCA  proplem. While the resulting algorithm seems to be free from
for Nc=16 there is a pseudogap that turns into a true gaghe sign problem, it is possible that the constraint introduced
when the cluster size is increased to 64. Since by construgnay affect the ergodicity of the algorithm. The ergodicity
tiOI’l, the DCA undereStimateS the gap, we can afﬁrm that aéuestion iS Suggested by the Work Of SOI%L_“HhO emp|0y a
this temperature, the gap exists in the thermodynamic limitsjmilar idea as the former authors but who arrived at differ-
Its actual value is bracketed by the FSS and the DCA. Thignt results. The most promising new direction seems to be
behavior is characteristic of the DCA. It has been extensivelyhat of Chandrasekharan and Wet8ahey proposed a new

verified on the one-dimensional Hubbard motfel. algorithm which is rigorously free from a sign problem for
certain classes of models. The basic idea is to decompose a
B. Results away from half filling configuration of fermion world lines into clusters that con-
_ tribute independently to the sign. There are two type of clus-
1. Sign problem ters: clusters whose flip changes the sign called meron and

The most serious limitation of QMC calculations at low others that do not modify the sign after a flip. Configurations

temperatures is the sign problem. Off half filling, the sign ofcontaining meron clusters contribute O to the partition func-
tion, while all other configurations contribute 1. Hence, this

12T ' ] cluster representation describes the partition function as a gas
1L / i of clusters in the zero-meron sector.
08 | 1 The sign problem remains in DCA simulations, as illus-
06 L ] trated in Fig. 14 where the average sign is plotted versus
04| ] inverse temperature for various valued.bfvhen5=0.1 and
~ o2l ] N.=8. In the inset, the average sign is plotted versus doping
= o whenU=W=2, 8=54, andN.=8. As in FSS, the sign is
08 | i worst just off half filling. However, the DCA sign problem is
significantly less severe than that encountered in FSS. This is
06 | ] illustrated in Fig. 15, where the average sign for the DCA
04| ] and the BSS simulations of Whitet al>® are compared
whenU/W=1/2, §=0.2, andt, =0. Whent, is finite, the
02| il average sign increases furth@ot illustrated. We attribute
0 > > this strange behavior to the action of the host on the cluster,

but its actual mathematical justification is still mysterious.
Nevertheless, due to the large reduction in the severity of the

FIG. 13. The density of statgg w) from finite size QMC(top) ~ Sign problem, we are able to study the physics at signifi-
and from DCA(bottom) atU=1, =32, t, =0, andNc=16,64. cantly lower temperatures than is possible with FSS.
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FIG. 14. The average sign as function of the inverse temperature2.7
B for N.=8 at §=0.1 forU=1.0,1.5,2.0. In the inset, the average
sign is plotted versus doping when U=W=2, t, =0, and 8 1.4
=54, 0.7
0.0

2. Single-particle properties

Much can be learned about the single-particle properties
of the system, especially Fermi-liquid formation, from study-
ing the momentum distribution function(k), the single- T
particle spectréA(k,») and the single-particle self-energy
3 (k,w). For a Fermi liquid, the self-energ¥ (kg ,w)~(1
—1/Z)w—ibw? whereb>0, 1/Z>1, andkg is a point on
the Fermi surface. The correspondiAdke ,w) is expected A N =16
to display a sharp Lorentzian-like peak, aivth(k)| is also /
expected to become sharply peaked at the Fermi surface. 1>
each case, these quantities are calculated by first interpolal-’
ing the cluster self energy onto the lattikepoints. L1

0.6
0.0

FIG. 16.|Vn(k)| versusk whenU=1, g=44,t, =0, andd
=0.05 forN.=1, 8, and 16.

0 " L " L L L " For example, the gradient of the momentum distribution
0 0.1 0.2 03 function is plotted in Fig. 16 whebd=1,8=44,6=0.05 for
different values oN. (this temperature would correspond to
I oo0romo—ooon 4 roughly room temperature for the cuprates in units where the
bare bandwidtiW=2 eV). Apparently, at this temperature,
there are two Fermi surface features, one centeredl at
=(0,0) and one centered 8 =(,7). The Fermi surface
centered afl’=(0,0) has roughly the volume expected of
i non-interacting electrons, so we will call it the electronlike
surface and the other holelike. Note that the holelike Fermi
O @ sg surface becomes more prevalent, and the peak near
B (7/2,712) diminishes, adl; increases. We therefore attribute
this behavior to short-ranged correlations.
FIG. 15. A comparison of the average sign for the DCAand FS We can further resolve the different surface features, by
simulations® whenU/W=1/2,6=0.2t, =0. investigating the single-particle spectruitk,) as shown

N=16 U/W=0.5 8=0.2
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FIG. 17. (a)—(c) The single-particle spectrum(k,w) for U
=1, B=44, 6=0.05,t, =0, andN.=16 along certain high sym-
metry directions. The arrows and bold lines(a and (c) indicate
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FIG. 18. The single-particle density of statpéw) when U
=1, §=0.05,t, =0, andN.= 16 for several different values of the
inverse temperaturg. As the temperature is loweregd(w) devel-
ops a pseudogap due to the short-ranged antiferromagnetic order.

Fermi surface along the direction framto M, looks roughly
Fermi-liquid-like. However, the self-energy on the parts of
the Fermi surface closest ¥ have pronounced non-Fermi-
liquid character, especially &= (,0.48) where the real
part displays a minimum and the imaginary part crosses the
Fermi energy almost linearly. At=(2.571,0), the real part

the spectra which cross the Fermi energy with a peak cIo_sest 10 again displays a minimum, but the imaginary part has an
=0. In (b), no such peak is found which crosses the Fermi energyg|most Fermi-liquid-like maximum at the Fermi energy, and

(d) the maxima of thdVn(k)| data illustrated in Fig. 16 plotted
versusk.

in Fig. 17 forU=1, B=44, §=0.05, andN.=16. The

graph(d) on the upper left of Fig. 17 plots the corresponding

location of the maxima ofV n(k)|. Along the direction from

I' to M, A(k,w) shows a relatively well defined and sym-
metric peak atv=0 at the location as indicated by the maxi-
mum of |Vn(k)|. The only notable feature is that the peak is

a bit better defined fok closer to the zone centét. Along
the direction fromM to X, the part of the holelike Fermi

surface closest to th¥ point is resolved. Here the peak in

A(k,w) crosses the Fermi surface at roughly the sdme

where the peak ilVn(k)| is seen; however, the peak in
A(k,w) is broader and is heavily skewed to higher frequen-

cies. Finally, along the direction frord to I', we find very
sharp peaks i\(k,w); however, none occur ab=0 indi-

then once again the scattering rate increases dramatically at
higher energies. All of the points close ¥oshare this dra-

0.1 — T T
b k=(2.571,0)
0 - -
-0.1F A
02— -
0.1 F————F——
b k=(m,0.480)
3 — ReX 4
N ImX/ |

0.1 f

cating that there are well defined quasiparticle excitations
along this direction, with a small pseudogap, presumably due
to the short-ranged order. This pseudogap behavior becomes
more pronounced as the temperature is lowered.

This can be seen in the density of states, shown in Fig. 18
where the gap is more pronounced. At high temperatures,
B=4 the Hubbard side bands are apparenbat=1/2. As
the temperature is lowered, a central peak begins to develop.
At low temperaturesp3=24 a pseudogap begins to develop.

" . Il
T+
I k=(1.518,1.518)

0F i
-0.1F E
[~
0.2 B
I [ ! !
-2 -1 0 1 2
®

More can be learned by investigating the self energy di- FIG. 19. The low-frequency self-energy, plotted versufor the
rectly. In Fig. 19, both the real and imaginary parts of thethree k points denoted by filled circles in Fig. 4@ where the

self-energy are plotted for the three valueskahdicated by

Fermi surface defined by the maxima|&n(k)| crosses the high

filled circles in Fig. 17d). The self-energy on the part of the symmetry directions.
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FIG. 20. Various pair field susceptibilities calculated at the ZON€,4 ues ofN. whenU =1 g 5=0.05 andp /t—)(/) 0. In the inset the
c — 1.9, —VU. y 1 — U.U.

Conter and pIotFe_d versus temperatgreLﬂoﬁl,a 0=0.056=0, 4 ave pair field susceptibility is plotted versiswhen N.= 16,
and N.=8. Pairing is found only in the even-frequency=0 U=15 ands=0.05 fort. /t=0.2
d-wave channel. 9, . fl 2.

) o ] cluster dynamically coupled to an infinite host. The cluster
matic asymmetry_; that excitations below the Fermi energyhroblem may be solved by a variety of techniques that in-
are much longer lived than those above. Thus, we expect thafyde the QMC method, the FLEX approximation or the
the transport from these parts of the Fermi surface would bgjca,.
predominantly holelike. _ . o An extensive account of a QMC method used to solve the

The non-Fermi-liquid features, including the holelike dis- cjyster problem was given. Though this algorithm requires
t_ort|_on of the Fermi surface, the anisotropy and non-Fgrmlsigniﬁcanﬂy greater computer power than the
liquid features of the self-energy, and the pseudogap in thgjanckenbecler-Sugar-Scalapino algorithm which is often
density of states, become more pronounceflamcreases. ysed for finite systems, it has some advantages. First, it does
T_hus, it is reasonable to assume that these features will pefpt show any numerical instability at low temperature; thus,
sist asNg— . it avoids the time costly matrix factorization step that slows
down the BSS algorithm. Second, the algorithm is quite gen-
eral and can be applied to problems that do not have any

We searched for many different types of superconductivexplicit Hamiltonian formulation with known parameters.
ity, including s, extendeds, p, andd wave, of both odd and Third, a mean-field coupling to other degrees of freedom
even frequency and we looked for pairing at both the zonénay be easily incorporated. Fourth, the minus sign problem
center and corner. Only the pairing channels with zero centdf far less severe in DCA simulations. This allows us to study
of mass momentunizone centerare enhanced as the tem- Systems at significantly lower temperatures, with stronger in-
perature falls. Of these, only the even-frequedayave pair  teractions, or with larger clusters than can be studied with the
field susceptibility diverges. This is illustrated in Fig. 20 BSS algorithm when the sign problem is apparent.
where all of the zone center susceptibilities are plotted versus The full DCA algorithm is made of three separate units. In
temperature fotJ=1.5, N.=8, and5=0.05. the first unit the coarse graining of the lattice is performed

In contrast to the antiferromagnetic susceptibility whichand the resulting self-consistent cluster problem is solved by
falls asN, increases, theé-wave pair field susceptibility gen- the QMC technique. This unit requires the formidable com-
erally rises withN.., except at very low temperatures. This is puter power available on massively parallel computers. The
illustrated in Fig. 21. However, foN,=16 at lowT, it falls second part deals with the calculation of the lattice one and
abruptly whenT=0.03. This behavior is consistent with the two-particle Green functions from those of the embedded
lack of superconductivity in the purely two-dimensional cluster. In the last part the analytical continuation of the
model. However, in the inset, we see that a very small interimaginary-time Green functions to real frequency Green
planar couplingt, /t=0.2 causes the susceptibility to con- functions is performed.
tinue to rise with decreasing temperature. Thus, perhaps a In order to illustrate the originality of the DCA technique,
very small interplanar coupling is able to stabilize the meanWe have applied it to the two-dimensional Hubbard model

3. Superconductivity

field superconductivity seen in smaller clust&4’ with a small interplanar mean-field coupling. The DCA
method was developed to address some of the shortcomings
VIl SUMMARY encountered in the dynamical mean-field theory. The lack of

nonlocal fluctuations in the DMFA leads to incorrect predic-

We have presented the algorithmic details of the dynamitions when this method is applied to systems in finite dimen-
cal cluster approximation. The technique consists of mappingion. In particular, we have seen that in violation of the
the original lattice problem to a problem involving a finite Mermin-Wagner theorem, the DMFA predicts a finite-

195130-21



M. JARRELL, TH. MAIER, C. HUSCROFT, AND S. MOUKOURI PHYSICAL REVIEW B4 195130

temperature transition in the two-dimensional Hubbardserved in the self energy, single particle spectra, and density
model. We have shown that in the DCA, this transition isof states. We also find that tltewave pair-field susceptibil-
progressively suppressed as the range of the fluctuafiens ity is divergent for small clusters. A trend that is not present
the cluster sizeis increased. in the DMFA because the method cannot treat nonlocal order

We also find that a finite-temperature gap persists welparameters.
into the weak coupling regime of the half filled model. As  Finally, the DCA is a very versatile technique that may be
the DCA systematically underestimates the gap formationapplied to a variety of problems. A straightforward generali-
these conclusions are valid in the limit,—cc. Since the zation of this algorithm to the periodic Anderson model in
temperature where the gap opens increases Mjthwhile  two dimensions will allow us to study the physics of the
Ty decreases, the Slater mechanism is likely not responsibiecently discovered two-dimensional heavy fermion systems.
for the metal-insulator transition in the two-dimensionalln its present form, we have incorporated diagonal disorder
Hubbard model. The resulting phase diagram is consisteni the 2D Hubbard model which will allow us to address the
with Anderson’s view that the effective Hamiltonian for the interesting problem of disorder and interaction in two dimen-
2D Hubbard model at half filling for alu>0 andA>T  sions. A future improvement of the DCA algorithm itself is to
(where A is the gap energyis the 2D Heisenberg insert long range fluctuations in the algorithm which would
Hamiltonian?® be treated perturbatively.

We find no evidence for a Kondo peak, or the associated
Fermi liquid behavior for the unfrustrated model near half
filling. Since this is an essential feature of the DMFA solu-
tion of the doped model or the half filled model with We wish to thank H. Akhlaghpour, N. Btoer, A. Gonis,
=W, we conclude that the DMFA is a very poor approxima- M. Hettler, H.R. Krishnamurthy, E. Mler-Hartmann, Th.
tion for the two-dimensional model, especially for behaviorPruschke, A.N. Tahvildarzadeh, and Y. Wang. The QMC
such as the Mott transition, observed near or at half filling. code described in this manuscript was developed by M.J. and

When the model is doped, the sign problem becomes sige.H. in collaboration with A.N. Tahvildarzadeh. We thank Y.
nificant and will certainly affect the quality of the results. Wang for assistance with MPI. This work was supported by
However, the sign problem is significantly less severe thaiNSF Grant No. DMR-0073308 and by the Ohio Supercom-
that found in finite size systems, allowing us to explore thesg@uter Center. This research was supported in part by NSF
model systems at significantly lower temperatures, largecooperative Agreement No. ACI-9619020 through comput-
coupling or larger clusters than heretofore possible. In théng resources provided by the National Partnership for Ad-
doped model, we find evidence of non-Fermi-liquid behaviorvanced Computational Infrastructure at the Pittsburgh and
even for relatively small values df/W. This has been ob- San Diego Supercomputer Centers.
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