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Analytical results of the one-dimensional Hubbard model in the high-temperature limit
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We investigate the grand potential of the one-dimensional Hubbard model in the high-temperature limit,
calculating the coefficients of the high-temperature expangisexpansioh of this function up to ordeg* by
an alternative method. The results derived are analytical and do not involve any perturbation expansion in the
hopping constant, being valid for arbitrary density of electrons in the one-dimensional model. In the half-filled
case, we compare our analytical results for the specific heat and the magnetic susceptibility, in the high-
temperature limit, with the ones obtained by Benhal.[Phys. Rev. B3, 3329(1973] and Takahashi’s integral
equations, showing that the latter result does not take into account the complete energy spectrum of the
one-dimensional Hubbard model. The exact integral solution tipelet al. [Nucl. Phys. B522 471(1998]
is applied to the determination of the range of validity of our expansigs iimthe half-filled case, for several
different values olU.
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[. INTRODUCTION constantt) to derive the grand potential of the one-
dimensional Hubbard model up to order The literature
The Hubbard model has been an important candidate toffers many examples of high temperature expansions of the
explain distinct physical phenomena such as itinerant maggrand canonical partition function for the Hubbard model in
netism in 4 metals! quasi-one-dimensiorfabrganic salts, d-dimensions ford=2, some of them up to ordes® (B8
and superconductivity in highT, for two-dimensional =1/kT).}°"12However, all these works refer to some pertur-
materials® bative scheme where one of the characteristic constants of
Since the earliest papers on what today is known as ththe model(i.e., its parameteysmust be much larger than the
Hubbard modet, perturbation theory has been used due toother ones.
the absence of exact solutions in dimensions higher than one. More recently, the interest on theoretical aspects of the
For the special case of the one-dimensional Hubbard modebne-dimensional Hubbard model returned when Shistry
Lieb and W applied the Bethe ansatz in order to get theproved its integrability. A very interesting approach was de-
analytical expression of the ground-state wave function ofeloped where al-dimensional quantum system at finite
the model with periodic space conditions in the half-filled temperature is mapped onto d+ 1)-dimensional classical
case. The wave functions of the excited states of the Bethmodel. In this method, the calculation of the grand potential
ansatz and their corresponding energies were derived byf the quantum system reduces to obtaining the largest eigen-
Ovchinnikov from Lieb and Wu ground-state wave func- value of the quantum transfer matrix of the
tion. That was the situation of the one-dimensional Hubbardd+ 1)-dimensional classical model. This was successfully
model atT=0 in the early 1970s. applied to many quantum systems and, in particular, to the
At that time, Takahash derived an integral equation for one-dimensional Hubbard model by Khper and Bariev in
the grand potential of the one-dimensional Hubbard model1996 for the half-filled cast In 1998, Martins and Ramds
based on the known energy spectrum of the Bethe ansagnd Jatneret al8 fully performed the study of this model at
solutions besides the string hypothesis. The functions thédtnite temperature. In both references, the largest eigenvalue
appear in such integral equation satisfy an infinite set obf the appropriate quantum matrix transfer was obtained
coupled equations. At the same time, Shiba and Pfhous  through the Bethe ansatz approach. In Ref. 1&néuet al.
merically studied the exact thermodynamics of the Hubbaraxtended the results obtained by Kiper and Bariev to any
model of a one-dimensional model with a finite number ofparticle density. Differently from Takahashi’s integral solu-
space sites. The longest chain included six sites with a pertion, the solution obtained by the quantum-transfer matrix
odic space boundary condition. Based on these results, the@pproach includes the solutions with @Dsymmetry for the
extended their conclusions on the behavior of the specifione-dimensional Hubbard modél.
heat and the magnetic susceptibility to the thermodynamic Charretet al?® developed a method to calculate the ana-
limit. Later, Beni etal® applied the standard high- lytical expression of the exact coefficient of the high-
temperature expansida perturbation theory in the hopping temperature expansion of the grand canonical partition func-
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tion at each order inB, applying this method to the terms a}gaog and aLUaNH’U becomea}UaNU and a’,(wala_,

calculation of the first three terms of the grand canonicatespectively. We point out that the Hamiltoniéh is already
partition function for the one-dimensional generalized Hub-in normal order, and the method by Charettal?° can be
bard modef The method isot based on the knowledge of applied directly.

the energy spectrum of the one-dimensional Hubbard model. First of all, the high-temperature expansigre1 for the

In the present paper, we will apply the approach develgrand canonical partition functiof(B; x) is
oped in Ref. 20 to get the coefficients associated to orflérs

and 8* of the high-temperature expansion of the grand po-
tential per site of the one-dimensional Hubbard model sub-
ject to a periodic space boundary condition. Our results are ~ Z(Biw)=Tie”#]=Tr{1]+ 21
analyticaland do not rest upon any additional hypothesis on "
the constants that characterize the model. We should point

out that we danot perform a perturbative expansion besideswhereK=H—uN, H is the Hamiltonian of the systen

the high-temperature expansion, that is we ® expansion is the total number of electrons operator, and the chemi-

of the grand canonical partition function for any density of cal potential with3=1/kT; k is the Boltzmann constant and
electrons. In Sec. Il we present the Grassmannian functions is the absolute temperature.

associated to the model, necessary to the application of the We showed in Ref. 20 that for any self-interacting fermi-
results of Ref. 20. In Sec. Il we present the coefficients abnic quantum system, the coefficients of iexpansion2)
ordersB* and 8° of the B expansion of the grand canonical can be written as multivariable Grassmann integrals. For the
partition function of the one-dimensional Hubbard model.one dimensionald=1), these coefficients are

Section IV is devoted to comparing our results to the ones

known in the literaturé®8 In Sec. IVA we compare our

o (=B

n!

K", (2

results to the perturbation expansion carried out by Beni 2 — o

et al® of the graFr)1d potential perpsite in the hopping tetrr)t/n Tr[K”]:f |1:[1 dmdn eXF{I’JE_l A7

Sec. IV B we present a numerical comparison between Taka-

hashi’s results and ours, in the half-filled case. Finally, in XIC@(;, ,];,,ZO)IC@(;, nv=1)---

Sec. IV C we study, for different values &f, the range of o

validity of our expressions i, by comparing them to the X KOy, p;v=n-1), 3

numerical solutions provided by tlner et al. integral equa-

tions for the specific heat and magnetic susceptibility. Sec- — ,
tion V contains our conclusions. where 7,7 are Grassmann generatois® is the kernel of

the K operator and the matrii is given by

Il. ONE-DIMENSIONAL HUBBARD MODEL Al O
The Hamiltonian that describes the one-dimensional Hub- A= o Al @)
bard model in the presence of an external constant magnetic
field in thez direction is!
so that
N N
H=t>, 2 (a,a 1,ta,a:1,)+tU2 a\aa 3
i=1o=-11 . o S T Insn —Inxn Ouxn oo Ouxn
N
+)‘BZ > odl,a,, 1) Ousn —Inxn —Inxn oo Ouxn
i=1o0=-11 All=all=
whereaﬂa is the creation operator of an electron with spin
in theith site, andy,,, is the destruction operator of an elec-
tron with spino in theith site. The first term on the right- Inen - Oen - O 0 I 5
hand side(rhs) of Eq. (1) is the hopping term of the kinetic (5)

energy operator with constantU is the strength of the in-

teraction between electrons in the same site but with differEach matrixA?? has dimensiomNXnN, 1yxyn, and Qi

ent spins. We have definedg=3gugB, whereg is the  being the identity and null matrices in dimensibix N, re-
Landes factor, ug is the Bohr’'s magneton, anB is the  spectively. HereN is the number of space sites ands the
constant external magnetic field in tkedirection.N is the ~ power of theg term. The matrixA is independent of the
number of space sites in the one-dimensional lattice. We usearticular model under consideratigh.

the convention:c=1=1 and o=|=—1. The periodic The kernel of the operatoK for the one-dimensional
boundary condition in space is imp|emented by imposind"Ubbard m0d8|£n the |attice, written in terms of the Grass-
that ag,=ay, and ay+i,=a;,. Therefore, the hopping mann generatorg, and»;, is equal to
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N
’C@(;JLV):;G; U)\B M)”{(l o)

T(1-0)
——ntv }NH [—2—n+vN+I
N
+2 2 Y, 7(1-0)
I=1o0=%1 {TH‘FV}N‘F' [ 5N+ v|N+1+1
N
700 o) +E U704 m)N+1 Tt )N TN+ TN+ 1 (6)
[T”* }NH [—2—n+v N+I—-1] [I=1
|
where the mappirg _ NS _
U(ﬂ,ﬂ;V)EUlgl N+ »)N+1 T(n+ )N+l ToN+1 ToN+1 s
77(7(XI !TV)EW(]_,O.) (7) (12)
[ >—n+v N+I

whereE(o)=oAg— u. Now, for the one-dimensional Hub-

bard model, the Grassmannian functlﬁl@(n 7;v) can be
Swritten as[see Eq.(6)]

has been used. The generatﬁ,im ,7,) have an equivalent
mapping. These generators satisfy the boundary conditions
a. Periodic boundary conditions in space.

KOCn, mv)=Enyv)+ T (g, v)+ T (m,m;v)

n{(lia)nﬂ; N+N+1E n[(lio)nh» N+1 —
2 2 +U(n,7;v). (13
and
Ill. THE COEFFICIENTS OF THE B EXPANSION
7 (1-0) =y (1-0) . OF THE GRAND POTENTIAL
e N e Y FOR THE ONE-DIMENSIONAL HUBBARD MODEL

In Ref. 21, we calculated the coefficients of the terms of
order 82 and 82 in Eq. (2) for the one-dimensional Hubbard
model, for arbitrary values of the constarmtdJ, u, andB
(the external magnetic fieldin this section, the coefficients
M1 o) == Mg : of orders* and 8° are calculated.

[ 2 ”+"}N+' {T ”}N ! The evaluation of integrals has been performed by a num-

ber of procedurescomputer programsieveloped by the au-

thors in the symbolic systemaAPLE 5.1. This collection of

: : procedures is the computational implementation of the
@I)n_or(fler .to wr.|te d .own the terms- that contribute to method described in Ref. 20. We have called this package

K®(n,n;v) in a simplified way, we define of proceduregyint

The procedurgerm, contained in the package, is a use-

b. Anti-periodic boundary condition in the temperature

(v).

for 1=1,2,--,N, and o=7*1.

N
& vo)=S 7 . (8 ful tool to calculate the independent non-null terms that con-
(m. 7, & Ta-o T1-0) ’ tribute to TFK#] and TfK®], and implements the symme-
—5—n+y|N+l | ——n+v|N+| : . . . Ry
tries discussed in Ref. 21. The procedgiet , in its turn,
N calculates the multivariable Grassmann integrals, taking into
7—:(— o) Ez - . account the property of factorization into subgragios de-
K = n[@n%—vN%—l 7’[<1;">n+VN+|:1 tails, see Ref. 21
(9) We introduce a simplified notation,
We also define
(O1(v1) - Op(vw))
I _ 2nN 2nN
Enmn= 3 E@emmyvio), (10 = [T andme 3 7am,
- =1 1,J=1
= = XO1(nmiv)- - Ol v, (14)
T (p,mv)= ;rl t7T(n,m,v,0), (11 " m
- which let us write the independent terms that contribute to
and Tr[K*] in Eq. (2) with n=4 as
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TI KA =(EEEE) + A{UEEE) + 2(UEUE) + B(UT T+ &) In order to calculate the terms on the rhs of ELp), we

ot need the result of a set of Grassmann multivariable integrals.
+ AUUEE) + MUUUE) + (UUAU) + KT~ ETE) The procedurggint is used for obtaining such results. In

+8(T UT E+XT UT U +8(T T EE) Ref. 21 we give a lengthy explanation on how to handle
N . et those integrals applying the results of Ref. 23, where multi-

T TUOTST T U+ AT T°T T7) variable Grassmann integrals are written as co-factows. of

+&T T T'TH). (15 Lettingn=>5, the expression of TK®] output byperm is

T K 5] = 5(UEEEE) + S{UEUEE) + BIUUEEE) + B(UUEUE) + LUUT T E) + 5{UUUEE) + 5{UUUUE)
(UM + (EEEEEY+ 10T THT THE+ 10T THT THU)+ 10T UUT* E)+ 10(T T+ EUE)
+ 10T THEEEY +10(T T UEEY+ 10T THUUEY + 10(T T Uy + 1T~ ET UEY+ 10T ET* EE)
+ 10T UTTEE + 10T UT T UE) + 10T UT U+ 10T T T T E+ 10T T T T Uy + 1UT UT" )
F1UT ETHE +10UT THEEY + AUT T UE + 1T T T T E+10(T T THT ). (16)

The relation between the grand potential per $it€3; 1) and the grand canonical partition functi@{g; u) is

W(B; — i —|z 1
(Bim)= N'LanBn (Biu). (17)

From Eqgs(15), (16), (17) and the resultéup to orderB®) derived in Ref. 21, we get the grand potential per site up to order
B* for the one-dimensional Hubbard model,

2 1 1 1 1 13 1 1 1
N +| - —uth2- —y2t2 ut ———US+ — 22+_32__32 4.4
Biw) {,3'”2 16Ut e~ gVt o5V TV H 7gU K"~ 755U N~ ggUNe+ ggUn’
5 1 1 1 1 1 1 1 1 1
__4__23 3:2 4 | _ T2 _ _4_ A 3
768" # a8 # T gV )’8 ( gt TgUnhat gau't 151"+ gghat 1522Y" 25U
1 5 1 1 1
422 113 2112 2y 2 22 2y2 ., T2y 2| o3
+8t,u 192U,u 96'[U +64U )\B+64U +16,u )\B+8t )\B),B
+ U3+1U)\2 2u+1 u2| g2+ L 2+1>\2 ! u+t2+3u2 +U +0(B°
64 " 16 e e U genUT | BT gt e grUt o Ut B a (B
(18)
|
It is important to stress that the coefficients of fpexpan- 25)/\;( Bim)|
sion of W(B; i) are exact for any set of constants U, u, Cu(B)=—kB— B B B | (19
andB) of this model. From Eq(18) we can obtain the strong
limit approximation havingJ>t, as well as the atomic limit .. : o
N ; the magnetic susceptibilit ,
approximation havindJ <t. No matter how large the values (i) gnetic susceptibility(4)
of the constants, the high-temperature expansion still makes
sense, provided that those values are finite. In this cas@ the 1 202W(B; )
region where expressioii8) is bona fideis diminished. x(B)=— 59#3 - a2 (20)
From expressioril8), we can derive any physical quan- B
tity for the model at thermal equilibrium at high temperature.
In the following we consider the two quantities: In general, the available information is in terms of the
(i) the specific heat at constant length and fixed chemicallensity of electrons in the chain, instead of the chemical

potentialC, (B), potential. The density of electrons is given by
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N IWV(B; ) 1
S #, (21) W)~ Wepw(B) =7 Bt (23)

whereN, is the number of electrons in the chain g8dAg
and all the other constants of the model, are kept constants
the partial derivative. From Eq18) we get

whereWgpn(B) is the grand potential per site derived from
e expressions of Beret al. Such difference has diverse
consequences for distinct physical quantities. In the case of

Np - 5 5 the specific heat€, (B8) and Cgpn(B), the difference be-
p=N | T1gt VUt gUnutttggmU tween our result and the one derived by Benhal. is
1 5 1 3
+2—4U,U«3— 7_68u4_ 1—6U2M2),34 CL(IB)_CBPH(B):ZB4t4= (24)

whereCgpy(8) is the specific heat derived from Ref. 9. The
difference between these two expressions is independent of
U, but the relative error decreaseslasncreases.

The magnetic susceptibility is obtained from the grand
potential per sitéV(B) through Eq.(20). We see from Eq.
(23) that the difference between(8) and Wgpn(B) is in-
B+1. dependent of the external magnetic field. Both approaches

give the same expression for the magnetic susceptibility up
22) to orderB*. It is worth noticing that the result for this ther-
modynamic function derived in Ref. 9 was obtained for
t/U<1, whereas the approach presented here allows one to
affirm that, up to this order inB, it is valid for arbitrary

In this section, we compare our results derived in Sec. lIValues oft/U. _
to the ones presented by Besi al.’ as well as to Taka- In Ref. 24 Bartkowialet al. asserted: The HTSE method
hashi's integral solutidhand to the exact integral solution IS exact at each order in the inverse temperatyié We
derived by Jttner et al*® We explore the results of these have a simple argument to understand this assertion. I the
references in the high-temperature region, where our expre§xpansion of the grand canonical partition functjsee Eq.
sions are valid, comparing two derived thermodynamical2)], the 8" term is multiplied by TrK"], that is proportional
quantities, namely, the specific heat and the magnetic suscefst t*"*E"2U"s, with 2n;+n,+nz=n. For evenvalues ofn,
tibility, obtained by each particular approach. the term of highest order in the hopping constatitat con-

Throughout this section we have chogenl; all the re- tributes to orde;B” ist". Actually, this is the only term to be
maining constants in the model are expressed in units of calculated in order to get the exact coefficient of fhex-
pansion ofZ(B;u), since all the other terms proportional to

A. Comparison to Beniet al. t?" (n;=0, ... n/2) would have been calculated in lower

) ] ) orders in thet expansion after the standard high temperature
The high-temperature expansitdTSE) has been applied  expansiorf® When we include the ternt8)" in the standard
to the calculation of thg:2 coefficients of thg expansion g|)n high-temperature expansion, we lift the restrictigh) <1,
Eq. (2). Hendersoret al.“ calculated the terms up t80)°  under which perturbation theory is usually done. When
of this series for the single-band Hubbard model in two- andakes odd values, we do not have the tdfisince we cal-
three-dimensional lattices. Bartkowiak al?* calculated the culate traces in expansid@). Therefore all the coefficients
high-temperature expansion of the extended Hubbard modgk he term 8" would have been calculated already in the
on the simple cubic lattice up to ordeBt)®. On the other terms proportional tot?", [n;=0,1,...,0—1)/2]. We
hand, the high-temperature expansion of the one—dimensionghw need to collect all the terms of the fortR™E"2U"
H iql9 2 !
Hubbard model was carried out by Beatial." up to ordet™  nger the condition @, +n,+nz=n and drop the restriction
only, but to all orders ing. We believe that it is always {/y«1.
interesting to compare analytical results, mainly because in Thjs analysis is coherent with res®3), where only the

Ref. 9 the perturbation expansion is done under the conditiogy y, of order 8% in W(B; ) yielded a correction to the
t/U<1 and in the temperature region whe8e<1 whereas expansion obtained by Béat al®

our results are valid foany ratio t/U.

We compare our main resylEq. (18)] for the grand po-
tential per site of the one-dimensional Hubbard model to the
expansion of Eq(8) of Ref. 9 up to ordeB*. Even though In Ref. 6, Takahashi presents a set of coupled integral
both calculations allow us to handle the problem with arbi-equations of infinite order for the grand potenfiake Egs.
trary density of electrons in the chain, we consider here th€3.5b and (3.6) in Ref. 6]. Equation(3.6a in Ref. 6 has a
half-filled case p=1) only, when we haveu=U/2. The typographical error, which has been corrected in Ref. 7.
difference between the expressions derived for the grand po- We have obtained a numerical solution of Takahashi's
tential per site in both calculations is equations by recursively iterating those equations up to third

1 1
U I 1 ST 24 = 2 3
2 H 192U +32/.LU +8,LL7\ )B

! U 1U2
FLadiT

2+1 1U
Frizr—g

IV. COMPARISON TO PREVIOUS RESULTS

B. Comparison to Takahashi’s integral solution
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FIG. 1. Specific heat from Takahashi's equati¢sdid line) and

Charretet al. (dashed lingfor U=4 andU=8.
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FIG. 2. Relative error in the specific heat obtained from two
successive approximations to Takahashi's equatidashed lines
and the difference between Takahashi's and Chatetl. results

(solid lineg for U=4 andU=8.
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0.06 T T T T Magnetic Susceptibility

—— Takahashi

0.04 - ——- Charret et al.

0.02

0 0.02 0.04 0.06 0.08 0.1
B (units of 1/t)

FIG. 3. Magnetic susceptibility from Takahashi’'s equations
(solid line) and Charrett al. (dashed lingfor U=4.

order. Doing so, we have obtained the specific heat and mag-
netic susceptibility in the half-filled case.

More explicitly, we did our numerical analysis of Egs.
(3.6) for n=1,2,3. Forn=1, we took into account Egs.
(3.6, (3.6b), and(3.60, we considered several initial con-
ditions wherern,= ;= 7,= 5= 6, by choosing some dis-
tinct values off. The numerical results obtained are indepen-
dent of the particular choice of.. For n=2, the new
variables @73, 73) where included, as well as E¢8.6d and
(3.68 with n=2. We chose initial conditions such that
=n1=---=n3=n43=0 for several different values o#,
and again the results were independentofor n=3, two
more variables §;= 73) and two more equationsamely,
(3.60 and(3.68 with n=3] were included in the computa-
tions, and the same type of initial condition was used. Again,
the particular value of did not interfere with the results.

Such iterated solutions showed a good convergence: the
difference between the calculated grand potentials with
=2 andn=3 is smaller than 1%. The difference between
Takahashi's and Charret al. results are much greater.

We compare our results and those coming from Taka-
hashi's equations for two different values 0f namely,U
=4 andU=8 (in units oft). We havep ranging over the
interval [ 0,0.1]. Within this range(and for the values oU
under considerationour results are almost exattee Sec.

IV C). We compare two physical quantities: the specific heat
and the magnetic susceptibility. The specific heat curves are
shown in Fig. 1, fold =4 andU =8. The difference between
our results and Takahashi's solutions is not due to numerical
approximations. To make this point clear, we show in Fig. 2
that the relative error between the approaches is larger than
the estimated numerical error. In Fig. 3 we compare the re-
sults for the magnetic susceptibility. They agree for small
values of3, but asg increases their difference again cannot
be explained by numerical errors.

We conclude that, since our results can be considered ex-
act in the given range oB, something must be missing in
Takahashi’s result. For such small values@fboth results
should agree perfectly, but that is not the case.

C. Comparison to the exact integral solution by Jitner et al.

In Refs. 17 and 18, the thermodynamic properties of the
one-dimensional Hubbard model are fully determined by two
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P (units of ) FIG. 5. Magnetic susceptibility from fmer et al. equations

FIG. 4. Specific heat from fimer et al. equations(solid line) EJSOHS ling) and Charreet al. (dashed lingfor U=1, U=4, and

and Charreet al. (dashed lingfor U=1, U=4, andU=8.

. ) o i For the magnetic susceptibility we get even better results,
independent approaches; one important point is that solutiongs shown in Fig. 5. Fdu =1 andg=0.3 the error is 0.27%:
with built-in SO(4) symmetry appear in both, making their at 3=0.4 it is 0.88%(still less than 1% ). For U=4 and

results exact. The same applies to Ref. 16. ~ B=0.3 the error is 0.39%:; fg8=0.4 it is 1.98%. Finally, for
We take the results by @meret al.™" to discuss the valid- =g and=0.2 the error is 0.3% and fg8=0.29 it be-

ity of our expressions, since they have managed to write thggmes 204
largest eigenvalue of the suitable quantum transfer matrix as These comparisons stress that in all studied cases, the

the solution of a few coupled integral equations. precision of our analytical solution turned out to be far better
In Ref. 18 Jtineret al. extended the results of Ref. 16 for than our initial expectations.

arbitrary particle densities, obtaining a new set of coupled

integral equations. In the half-filled case, even though this set

is equivalent to the one presented in Ref. 16, it offers much

better numerical convergence. The method developed in Ref. 20 can be easily applied to
We restrict the comparison of our results with the oneshe one-dimensional Hubbard model, allowing us to derive

derived in Ref. 18 to the half-filled case. Our physical resultsexact analytical coefficients at each order of ghexpansion

are obtained by differentiating properly the grand potentialof the grand potential. With the help of the procedgiet

per site in Eq(18). This comparison can show the range for written in the symbolic languageaPLE 5.1, the multivariable

B which are suitable in describing the thermodynamics of th&Grassmann integrals can be easily calculated. Besides, the

one-dimensional Hubbard model, for different valueslbf property of factorization of graphs into subgraphs, described

(in units oft). As in the previous sections, we focus on thein Ref. 21, allows us to reduce the number of integrals to be

specific heat and the magnetic susceptibility. actually calculated. Besides, the method does not involve
For the specific heaisee Fig. 4 for U=1 at3=0.3 the  any further approximation scheme. Even though the physics

relative error between results is 0.63%;8t 0.4 it amounts  for U>0 andU <0 are different, the results of Sec. Il apply

to 2.26%. ForU=4 and 8=0.2, the error is 0.71%; g8 equally well for both cases.

=0.24 it becomes 2%. Fdy =8 our result af3=0.1 shows Beni et al® derived a perturbative expansion in the hop-

an error of 0.15% and g8=0.16 it is 2%. ping constant, valid in the temperature rangét<<1. It is

V. CONCLUSIONS
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simple to compare our results to theirs, since both methods-4, andU=8. In all cases studied the validity of our ex-
yielded analytical results. For the sake of comparison, wepressions are far beyond our initial expectations. For ex-
consider the one-dimensional Hubbard model in the halfample, forU=1 the error of our result for the magnetic
filled case. Equatioti23) shows that the difference between susceptibility at3=0.4 is less than 1%. The result of the
our result for the grand potential per site and Betal. is  standard high-temperature expansion is not reliableUor
proportional tot*33; it gives a correction to the specific heat =1 and the numerical solution of the coupled integral equa-
but keeps the magnetic susceptibility unchanged. Our resutions in the approach of ‘@mer et al® are very much in-

is compatible with the assertion of Bartkowiek al?* that  volved, while our analytical result is a very good approxima-
the coefficients derived by the standard high-temperature exion for U=1 up to 8=0.4.

pansion are exact at each order®f With our correction to Finally, we should mention that the present approach
the grand potential per site derived by Bestial, we can  opens the possibility of calculating the first terms of {Be
drop the conditiort/U<1 under which it was derived. expansion of the grand canonical partition function of the

Takahashi's integral soluti8ris derived from the energy Hubbard model in two space dimensions, as well as of one-
spectrum of the Bethe ansatz solution of the one-dimensionalimensional models with inhomogeneities. We believe that
Hubbard model plus the so-called string hypothesis. In thémprovements on the present approach will render a valuable
case of the specific heat, our correction to Takahashi’s resutbol for tackling such problems.
is not associated with any numerical approximation or error.
We present Fig. 2 to show this fact. For the magnetic sus-
ceptibility there is a larger correction to the Takahashi's so-
lution in the high-temperature region. Certainly, these differ- The authors thank J. Florencio, Jr., for interesting discus-
ences come from the fact that Takahashi's calculation doesions. O.R.S. and M.T.T. are deeply indebted to Andreas
not take into account solutions to the one-dimensional HubKItimper for discussing Ref. 18 and making available the
bard model with SG%) symmetry!® program that helped us to develop our own. O.R.S. thanks

In order to determine the range of validity j® of our = CAPES for financial support. M.T.T and S.M.S. thank CNPq
analytical solution for the grand potential per site for differ- for partial financial support. A.T.C., Jr., 1.C.C, and S.M.S.
ent values olJ (in units oft), we considered the curves of thank FAPEMIG for partial financial support. M.T.T. also
the specific heat and magnetic susceptibility =1, U thanks FAPERJ and FINEP for partial financial support.
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