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Analytical results of the one-dimensional Hubbard model in the high-temperature limit
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We investigate the grand potential of the one-dimensional Hubbard model in the high-temperature limit,
calculating the coefficients of the high-temperature expansion (b-expansion! of this function up to orderb4 by
an alternative method. The results derived are analytical and do not involve any perturbation expansion in the
hopping constant, being valid for arbitrary density of electrons in the one-dimensional model. In the half-filled
case, we compare our analytical results for the specific heat and the magnetic susceptibility, in the high-
temperature limit, with the ones obtained by Beniet al. @Phys. Rev. B8, 3329~1973!# and Takahashi’s integral
equations, showing that the latter result does not take into account the complete energy spectrum of the
one-dimensional Hubbard model. The exact integral solution by Ju¨ttneret al. @Nucl. Phys. B522, 471~1998!#
is applied to the determination of the range of validity of our expansion inb in the half-filled case, for several
different values ofU.
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I. INTRODUCTION

The Hubbard model has been an important candidat
explain distinct physical phenomena such as itinerant m
netism in 4d metals,1 quasi-one-dimensional2 organic salts,
and superconductivity in highTc for two-dimensional
materials.3

Since the earliest papers on what today is known as
Hubbard model,1 perturbation theory has been used due
the absence of exact solutions in dimensions higher than
For the special case of the one-dimensional Hubbard mo
Lieb and Wu4 applied the Bethe ansatz in order to get t
analytical expression of the ground-state wave function
the model with periodic space conditions in the half-fill
case. The wave functions of the excited states of the Be
ansatz and their corresponding energies were derived
Ovchinnikov5 from Lieb and Wu ground-state wave fun
tion. That was the situation of the one-dimensional Hubb
model atT50 in the early 1970s.

At that time, Takahashi6,7 derived an integral equation fo
the grand potential of the one-dimensional Hubbard mo
based on the known energy spectrum of the Bethe an
solutions besides the string hypothesis. The functions
appear in such integral equation satisfy an infinite set
coupled equations. At the same time, Shiba and Pincus8 nu-
merically studied the exact thermodynamics of the Hubb
model of a one-dimensional model with a finite number
space sites. The longest chain included six sites with a p
odic space boundary condition. Based on these results,
extended their conclusions on the behavior of the spec
heat and the magnetic susceptibility to the thermodyna
limit. Later, Beni et al.9 applied the standard high
temperature expansion~a perturbation theory in the hoppin
0163-1829/2001/64~19!/195127~8!/$20.00 64 1951
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constant t) to derive the grand potential of the one
dimensional Hubbard model up to ordert2. The literature
offers many examples of high temperature expansions of
grand canonical partition function for the Hubbard model
d-dimensions ford>2, some of them up to orderb9 (b
51/kT).10–12However, all these works refer to some pertu
bative scheme where one of the characteristic constant
the model~i.e., its parameters! must be much larger than th
other ones.

More recently, the interest on theoretical aspects of
one-dimensional Hubbard model returned when Shastry13–15

proved its integrability. A very interesting approach was d
veloped where ad-dimensional quantum system at fini
temperature is mapped onto a (d11)-dimensional classica
model. In this method, the calculation of the grand poten
of the quantum system reduces to obtaining the largest ei
value of the quantum transfer matrix of th
(d11)-dimensional classical model. This was successfu
applied to many quantum systems and, in particular, to
one-dimensional Hubbard model by Klu¨mper and Bariev in
1996 for the half-filled case.16 In 1998, Martins and Ramos17

and Ju¨ttneret al.18 fully performed the study of this model a
finite temperature. In both references, the largest eigenv
of the appropriate quantum matrix transfer was obtain
through the Bethe ansatz approach. In Ref. 18, Ju¨ttner et al.
extended the results obtained by Klu¨mper and Bariev to any
particle density. Differently from Takahashi’s integral sol
tion, the solution obtained by the quantum-transfer ma
approach includes the solutions with SO~4! symmetry for the
one-dimensional Hubbard model.19

Charretet al.20 developed a method to calculate the an
lytical expression of the exact coefficient of the hig
temperature expansion of the grand canonical partition fu
©2001 The American Physical Society27-1
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I. C. CHARRETet al. PHYSICAL REVIEW B 64 195127
tion at each order inb, applying this method to the
calculation of the first three terms of the grand canoni
partition function for the one-dimensional generalized Hu
bard model.21 The method isnot based on the knowledge o
the energy spectrum of the one-dimensional Hubbard mo

In the present paper, we will apply the approach dev
oped in Ref. 20 to get the coefficients associated to orderb3

and b4 of the high-temperature expansion of the grand
tential per site of the one-dimensional Hubbard model s
ject to a periodic space boundary condition. Our results
analyticaland do not rest upon any additional hypothesis
the constants that characterize the model. We should p
out that we donot perform a perturbative expansion besid
the high-temperature expansion, that is we do ab expansion
of the grand canonical partition function for any density
electrons. In Sec. II we present the Grassmannian funct
associated to the model, necessary to the application o
results of Ref. 20. In Sec. III we present the coefficients
ordersb4 andb5 of the b expansion of the grand canonic
partition function of the one-dimensional Hubbard mod
Section IV is devoted to comparing our results to the o
known in the literature.6,9,18 In Sec. IV A we compare our
results to the perturbation expansion carried out by B
et al.9 of the grand potential per site in the hopping termt. In
Sec. IV B we present a numerical comparison between Ta
hashi’s results and ours, in the half-filled case. Finally,
Sec. IV C we study, for different values ofU, the range of
validity of our expressions inb, by comparing them to the
numerical solutions provided by Ju¨ttner et al. integral equa-
tions for the specific heat and magnetic susceptibility. S
tion V contains our conclusions.

II. ONE-DIMENSIONAL HUBBARD MODEL

The Hamiltonian that describes the one-dimensional H
bard model in the presence of an external constant magn
field in the ẑ direction is:1

H5t(
i 51

N

(
s521,1

~ais
† ai 21,s1ais

† ai 11,s!1U(
i 51

N

ai↑
† ai↑ai↓

† ai↓

1lB(
i 51

N

(
s521,1

sais
† ais , ~1!

whereais
† is the creation operator of an electron with spins

in the i th site, andais is the destruction operator of an ele
tron with spins in the i th site. The first term on the right
hand side~rhs! of Eq. ~1! is the hopping term of the kinetic
energy operator with constantt. U is the strength of the in-
teraction between electrons in the same site but with dif
ent spins. We have definedlB5 1

2 gmBB, where g is the
Landé’s factor, mB is the Bohr’s magneton, andB is the
constant external magnetic field in theẑ direction.N is the
number of space sites in the one-dimensional lattice. We
the convention:s5↑[1 and s5↓[21. The periodic
boundary condition in space is implemented by impos
that a0s[aNs and aN11,s[a1s . Therefore, the hopping
19512
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terms a1s
† a0s and aNs

† aN11,s becomea1s
† aNs and aNs

† a1s ,
respectively. We point out that the Hamiltonian~1! is already
in normal order, and the method by Charretet al.20 can be
applied directly.

First of all, the high-temperature expansionb!1 for the
grand canonical partition functionZ(b;m) is

Z~b;m!5Tr@e2bK#5Tr@1#1 (
n51

`
~2b!n

n!
Tr@Kn#, ~2!

whereK5H2mN, H is the Hamiltonian of the system,N
is the total number of electrons operator, andm is the chemi-
cal potential withb51/kT; k is the Boltzmann constant an
T is the absolute temperature.

We showed in Ref. 20 that for any self-interacting ferm
onic quantum system, the coefficients of theb expansion~2!
can be written as multivariable Grassmann integrals. For
one dimensional (d51), these coefficients are

Tr@Kn#5E )
I 51

2nN

dh Idh̄ I expF (
I ,J51

2nN

h̄ IAIJhJG
3K qn ~ h̄,h;n50!K qn ~ h̄,h;n51!•••

3K qn ~ h̄,h;n5n21!, ~3!

where h̄,h are Grassmann generators,K qn is the kernel of
the K operator and the matrixA is given by

A5S A↑↑ Ol

Ol A↓↓D ~4!

so that

A↑↑5A↓↓5S 1N3N 21N3N Ol N3N ••• Ol N3N

Ol N3N 21N3N 21N3N ••• Ol N3N

A A

1N3N Ol N3N Ol N3N ••• 1N3N

D .

~5!

Each matrixAss has dimensionnN3nN, 1N3N, and Ol N3N
being the identity and null matrices in dimensionN3N, re-
spectively. Here,N is the number of space sites andn is the
power of theb term. The matrixA is independent of the
particular model under consideration.20

The kernel of the operatorK for the one-dimensiona
Hubbard model on the lattice, written in terms of the Gra
mann generatorsh̄ I andhJ , is equal to
7-2
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K qn ~ h̄,h;n!5(
l 51

N

(
s561

~slB2m!h̄ F~12s!
2 n1n GN1 l

h F~12s!
2 n1n GN1 l

1(
l 51

N

(
s561

tF h̄ F~12s!
2 n1n GN1 l

h F~12s!
2 n1n GN1 l 11

1h̄ F~12s!
2 n1n GN1 l

h F~12s!
2 n1n GN1 l 21

G1(
l 51

N

Uh̄ (n1n)N1 l h (n1n)N1 l h̄nN1 l hnN1 l , ~6!
t
n

re
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where the mapping20

hs~xl ,tn![h F~12s!
2 n1n GN1 l

~7!

has been used. The generatorsh̄s(xl ,tn) have an equivalen
mapping. These generators satisfy the boundary conditio

a. Periodic boundary conditions in space.

h F~12s!
2 n1n GN1N11

[h F~12s!
2 n1n GN11

and

h F~12s!
2 n1n GN[h F~12s!

2 n1n GN1N
.

b. Anti-periodic boundary condition in the temperatu
(n).

h F~12s!
2 n1nGN1 l

52h F~12s!
2 nGN1 l

,

for l 51,2,•••,N, and s571.

In order to write down the terms that contribute
K qn (h̄,h;n) in a simplified way, we define

E~ h̄,h;n;s![(
l 51

N

h̄ F~12s!
2 n1n GN1 l

h F~12s!
2 n1n GN1 l

; ~8!

T 7~ h̄,h;n;s![(
l 51

N

h̄ F~12s!
2 n1n GN1 l

h F~12s!
2 n1n GN1 l 61

.

~9!

We also define

E~ h̄,h;n![ (
s561

E~s!E~ h̄,h;n;s!, ~10!

T 7~ h̄,h;n![ (
s561

tT 7~ h̄,h;n;s!, ~11!

and
19512
s:

U~ h̄,h;n![U(
l 51

N

h̄ (n1n)N1 l h (n1n)N1 l h̄nN1 l hnN1 l ,

~12!

whereE(s)[slB2m. Now, for the one-dimensional Hub
bard model, the Grassmannian functionK qn (h̄,h;n) can be
written as@see Eq.~6!#

K qn ~ h̄,h;n!5E~ h̄,h;n!1T 2~ h̄,h;n!1T 1~ h̄,h;n!

1U~ h̄,h;n!. ~13!

III. THE COEFFICIENTS OF THE b EXPANSION
OF THE GRAND POTENTIAL

FOR THE ONE-DIMENSIONAL HUBBARD MODEL

In Ref. 21, we calculated the coefficients of the terms
orderb2 andb3 in Eq. ~2! for the one-dimensional Hubbar
model, for arbitrary values of the constantst, U, m, and B
~the external magnetic field!. In this section, the coefficient
of ordersb4 andb5 are calculated.

The evaluation of integrals has been performed by a nu
ber of procedures~computer programs! developed by the au
thors in the symbolic systemMAPLE 5.1. This collection of
procedures is the computational implementation of
method described in Ref. 20. We have called this packag22

of proceduresgint .
The procedureperm , contained in the package, is a us

ful tool to calculate the independent non-null terms that c
tribute to Tr@K4# and Tr@K5#, and implements the symme
tries discussed in Ref. 21. The proceduregint , in its turn,
calculates the multivariable Grassmann integrals, taking
account the property of factorization into subgraphs~for de-
tails, see Ref. 21!.

We introduce a simplified notation,

^O1~n1!•••Om~nm!&

[E )
I 51

2nN

dh Idh̄ I expS (
I ,J51

2nN

h̄ IAIJhJD
3O1~ h̄,h;n1!•••Om~ h̄,h;nm!, ~14!

which let us write the independent terms that contribute
Tr@K4# in Eq. ~2! with n54 as
7-3
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Tr@K4#5^EEEE&14^UEEE&12^UEUE&18^UT 2T 1E&

14^UUEE&14^UUUE&1^UUUU&14^T 2ET 1E&

18^T 2UT 1E&14^T 2UT 1U&18^T 2T 1EE&

18^T 2T 1UE&18^T 2T 1UU&12^T 2T 1T 2T 1&

14^T 2T 2T 1T 1&. ~15!
s
k

he

-
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19512
In order to calculate the terms on the rhs of Eq.~15!, we
need the result of a set of Grassmann multivariable integr
The proceduregint is used for obtaining such results. I
Ref. 21 we give a lengthy explanation on how to hand
those integrals applying the results of Ref. 23, where mu
variable Grassmann integrals are written as co-factors oA.

Letting n55, the expression of Tr@K5# output byperm is
der
Tr@K5#55^UEEEE&15^UEUEE&15^UUEEE&15^UUEUE&110̂ UUT 2T 1E&15^UUUEE&15^UUUUE&

1^UUUUU&1^EEEEE&110̂ T 2T 1T 2T 1E&110̂ T 2T 1T 2T 1U&110̂ T 2UUT 1E&110̂ T 2T 1EUE&

110̂ T 2T 1EEE&110̂ T 2T 1UEE&110̂ T 2T 1UUE&110̂ T 2T 1UUU&110̂ T 2ET 1UE&110̂ T 2ET 1EE&

110̂ T 2UT 1EE&110̂ T 2UT 1UE&110̂ T 2UT 1UU&110̂ T 1T 2T 2T 1E&110̂ T 1T 2T 2T 1U&110̂ UT 2UT 1E&

110̂ UT 2ET 1E&110̂ UT 2T 1EE&110̂ UT 2T 1UE&110̂ T 2T 2T 1T 1E&110̂ T 2T 2T 1T 1U&. ~16!

The relation between the grand potential per siteW(b;m) and the grand canonical partition functionZ(b;m) is

W~b;m!52 lim
N→`

1

Nb
ln Z~b;m!. ~17!

From Eqs.~15!, ~16!, ~17! and the results~up to orderb3) derived in Ref. 21, we get the grand potential per site up to or
b4 for the one-dimensional Hubbard model,

W~b;m!52H 2

b
ln 21S 2

1

16
Ut2lB

22
1

16
U2t2m1

1

1024
U51

1

16
Ut2m21

13

768
U3m22

1

768
U3lB

22
1

96
UlB

41
1

96
Um4

2
5

768
U4m2

1

48
U2m31

1

64
U3t2Db42S 2

1

8
t2Um2

1

16
UmlB

21
1

96
m41

1

16
t41

1

96
lB

41
1

1024
U42

1

48
Um3

1
1

8
t2m22

1

192
U3m1

5

96
t2U21

1

64
U2lB

21
1

64
U2m21

1

16
m2lB

21
1

8
t2lB

2 Db3

1S 2
U3

64
1

1

16
UlB

22
1

16
m2U1

1

16
mU2Db21S 1

4
m21

1

4
lB

22
1

4
mU1

t2

2
1

3

32
U2Db2S 2m1

U

4 D1O~b5!J .

~18!
e
cal
It is important to stress that the coefficients of theb expan-
sion ofW(b;m) are exact for any set of constants (t, U, m,
andB) of this model. From Eq.~18! we can obtain the strong
limit approximation havingU@t, as well as the atomic limit
approximation havingU!t. No matter how large the value
of the constants, the high-temperature expansion still ma
sense, provided that those values are finite. In this case, tb
region where expression~18! is bona fideis diminished.

From expression~18!, we can derive any physical quan
tity for the model at thermal equilibrium at high temperatu
In the following we consider the two quantities:

~i! the specific heat at constant length and fixed chem
potentialCL(b),
es

.

al

CL~b!52kb
]

]bFb2
]W~b;m!

]b G ; ~19!

~ii ! the magnetic susceptibilityx(b),

x~b!52S 1

2
gmBD 2]2W~b;m!

]lB
2

. ~20!

In general, the available information is in terms of th
density of electrons in the chain, instead of the chemi
potential. The density of electrons is given by
7-4
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NA

N
52

]W~b;m!

]m
, ~21!

whereNA is the number of electrons in the chain andb, lB
and all the other constants of the model, are kept constan
the partial derivative. From Eq.~18! we get

r[
NA

N
5S 2

1

16
t2U21

1

8
Umt21

13

384
mU3

1
1

24
Um32

5

768
U42

1

16
U2m2Db4

2S 2
1

8
Ut22

1

16
Ul21

1

24
m32

1

16
m2U

1
1

4
t2m2

1

192
U31

1

32
mU21

1

8
ml2Db3

1S 2
1

8
mU1

1

16
U2Db21S 1

2
m2

1

4
U Db11.

~22!

IV. COMPARISON TO PREVIOUS RESULTS

In this section, we compare our results derived in Sec.
to the ones presented by Beniet al.,9 as well as to Taka-
hashi’s integral solution6 and to the exact integral solutio
derived by Ju¨ttner et al.18 We explore the results of thes
references in the high-temperature region, where our exp
sions are valid, comparing two derived thermodynami
quantities, namely, the specific heat and the magnetic sus
tibility, obtained by each particular approach.

Throughout this section we have chosent51; all the re-
maining constants in the model are expressed in units ot.

A. Comparison to Beni et al.

The high-temperature expansion~HTSE! has been applied
to the calculation of the coefficients of theb expansion in
Eq. ~2!. Hendersonet al.12 calculated the terms up to (bt)9

of this series for the single-band Hubbard model in two- a
three-dimensional lattices. Bartkowiaket al.24 calculated the
high-temperature expansion of the extended Hubbard m
on the simple cubic lattice up to order (bt)6. On the other
hand, the high-temperature expansion of the one-dimensi
Hubbard model was carried out by Beniet al.9 up to ordert2

only, but to all orders inb. We believe that it is always
interesting to compare analytical results, mainly becaus
Ref. 9 the perturbation expansion is done under the condi
t/U!1 and in the temperature region wherebt!1 whereas
our results are valid forany ratio t/U.

We compare our main result@Eq. ~18!# for the grand po-
tential per site of the one-dimensional Hubbard model to
expansion of Eq.~8! of Ref. 9 up to orderb4. Even though
both calculations allow us to handle the problem with ar
trary density of electrons in the chain, we consider here
half-filled case (r51) only, when we havem5U/2. The
difference between the expressions derived for the grand
tential per site in both calculations is
19512
in

II

s-
l
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el
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in
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e
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e

o-

W~b!2WBPH~b!5
1

16
b3t4, ~23!

whereWBPH(b) is the grand potential per site derived fro
the expressions of Beniet al. Such difference has divers
consequences for distinct physical quantities. In the cas
the specific heatsCL(b) and CBPH(b), the difference be-
tween our result and the one derived by Beniet al. is

CL~b!2CBPH~b!5
3

4
b4t4, ~24!

whereCBPH(b) is the specific heat derived from Ref. 9. Th
difference between these two expressions is independen
U, but the relative error decreases asU increases.

The magnetic susceptibility is obtained from the gra
potential per siteW(b) through Eq.~20!. We see from Eq.
~23! that the difference betweenW(b) andWBPH(b) is in-
dependent of the external magnetic field. Both approac
give the same expression for the magnetic susceptibility
to orderb4. It is worth noticing that the result for this ther
modynamic function derived in Ref. 9 was obtained f
t/U!1, whereas the approach presented here allows on
affirm that, up to this order inb, it is valid for arbitrary
values oft/U.

In Ref. 24 Bartkowiaket al. asserted: ‘‘The HTSE method
is exact at each order in the inverse temperatureb.’’ We
have a simple argument to understand this assertion. In thb
expansion of the grand canonical partition function@see Eq.
~2!#, thebn term is multiplied by Tr@Kn#, that is proportional
to t2n1En2Un3, with 2n11n21n35n. For evenvalues ofn,
the term of highest order in the hopping constantt that con-
tributes to orderbn is tn. Actually, this is the only term to be
calculated in order to get the exact coefficient of theb ex-
pansion ofZ(b;m), since all the other terms proportional t
t2n1 (n150, . . . ,n/2) would have been calculated in lowe
orders in thet expansion after the standard high temperat
expansion.25 When we include the term (tb)n in the standard
high-temperature expansion, we lift the restrictiont/U!1,
under which perturbation theory is usually done. Whenn
takes odd values, we do not have the termtn since we cal-
culate traces in expansion~2!. Therefore all the coefficients
of the termbn would have been calculated already in t
terms proportional tot2n1, @n150,1, . . . ,(n21)/2#. We
only need to collect all the terms of the formt2n1En2Un3,
under the condition 2n11n21n35n and drop the restriction
t/U!1.

This analysis is coherent with result~23!, where only the
term of orderb4 in W(b;m) yielded a correction to the
expansion obtained by Beniet al.9

B. Comparison to Takahashi’s integral solution

In Ref. 6, Takahashi presents a set of coupled integ
equations of infinite order for the grand potential@see Eqs.
~3.5b! and ~3.6! in Ref. 6#. Equation~3.6a! in Ref. 6 has a
typographical error, which has been corrected in Ref. 7.

We have obtained a numerical solution of Takahash
equations by recursively iterating those equations up to th
7-5



ag-

s.
.
-

-
n-

-
in,

the

en

ka-

eat
are

ical
. 2
than
re-
all
ot

ex-
n

the
wo

wo

ns

I. C. CHARRETet al. PHYSICAL REVIEW B 64 195127
FIG. 1. Specific heat from Takahashi’s equations~solid line! and
Charretet al. ~dashed line! for U54 andU58.

FIG. 2. Relative error in the specific heat obtained from t
successive approximations to Takahashi’s equations~dashed lines!
and the difference between Takahashi’s and Charretet al. results
~solid lines! for U54 andU58.
19512
order. Doing so, we have obtained the specific heat and m
netic susceptibility in the half-filled case.

More explicitly, we did our numerical analysis of Eq
~3.6! for n51,2,3. For n51, we took into account Eqs
~3.6a!, ~3.6b!, and ~3.6c!, we considered several initial con
ditions whereh15h185h25h28[u, by choosing some dis
tinct values ofu. The numerical results obtained are indepe
dent of the particular choice ofu. For n52, the new
variables (h3 ,h38) where included, as well as Eqs.~3.6d! and
~3.6e! with n52. We chose initial conditions such thath1
5h185•••5h35h38[u for several different values ofu,
and again the results were independent ofu. For n53, two
more variables (h35h38) and two more equations@namely,
~3.6d! and ~3.6e! with n53] were included in the computa
tions, and the same type of initial condition was used. Aga
the particular value ofu did not interfere with the results.

Such iterated solutions showed a good convergence:
difference between the calculated grand potentials withn
52 andn53 is smaller than 1%. The difference betwe
Takahashi’s and Charretet al. results are much greater.

We compare our results and those coming from Ta
hashi’s equations for two different values ofU; namely,U
54 andU58 ~in units of t). We haveb ranging over the
interval @0,0.1#. Within this range~and for the values ofU
under consideration! our results are almost exact~see Sec.
IV C!. We compare two physical quantities: the specific h
and the magnetic susceptibility. The specific heat curves
shown in Fig. 1, forU54 andU58. The difference between
our results and Takahashi’s solutions is not due to numer
approximations. To make this point clear, we show in Fig
that the relative error between the approaches is larger
the estimated numerical error. In Fig. 3 we compare the
sults for the magnetic susceptibility. They agree for sm
values ofb, but asb increases their difference again cann
be explained by numerical errors.

We conclude that, since our results can be considered
act in the given range ofb, something must be missing i
Takahashi’s result. For such small values ofb, both results
should agree perfectly, but that is not the case.

C. Comparison to the exact integral solution by Ju¨ ttner et al.

In Refs. 17 and 18, the thermodynamic properties of
one-dimensional Hubbard model are fully determined by t

FIG. 3. Magnetic susceptibility from Takahashi’s equatio
~solid line! and Charretet al. ~dashed line! for U54.
7-6



io
ir

th
x

r
le
s

uc

e
lt

tia
or
th

he

lts,

the
ter

to
ive

, the
ed
be
lve

sics
ly

p-

ANALYTICAL RESULTS OF THE ONE-DIMENSIONAL . . . PHYSICAL REVIEW B 64 195127
independent approaches; one important point is that solut
with built-in SO~4! symmetry appear in both, making the
results exact. The same applies to Ref. 16.

We take the results by Ju¨ttneret al.18 to discuss the valid-
ity of our expressions, since they have managed to write
largest eigenvalue of the suitable quantum transfer matri
the solution of a few coupled integral equations.

In Ref. 18 Ju¨ttneret al.extended the results of Ref. 16 fo
arbitrary particle densities, obtaining a new set of coup
integral equations. In the half-filled case, even though this
is equivalent to the one presented in Ref. 16, it offers m
better numerical convergence.

We restrict the comparison of our results with the on
derived in Ref. 18 to the half-filled case. Our physical resu
are obtained by differentiating properly the grand poten
per site in Eq.~18!. This comparison can show the range f
b which are suitable in describing the thermodynamics of
one-dimensional Hubbard model, for different values ofU
~in units of t). As in the previous sections, we focus on t
specific heat and the magnetic susceptibility.

For the specific heat~see Fig. 4! for U51 at b50.3 the
relative error between results is 0.63%; atb50.4 it amounts
to 2.26%. ForU54 and b50.2, the error is 0.71%; atb
50.24 it becomes 2%. ForU58 our result atb50.1 shows
an error of 0.15% and atb50.16 it is 2%.

FIG. 4. Specific heat from Ju¨ttner et al. equations~solid line!
and Charretet al. ~dashed line! for U51, U54, andU58.
19512
ns

e
as

d
et
h

s
s
l

e

For the magnetic susceptibility we get even better resu
as shown in Fig. 5. ForU51 andb50.3 the error is 0.27%;
at b50.4 it is 0.88%~still less than 1% !!. For U54 and
b50.3 the error is 0.39%; forb50.4 it is 1.98%. Finally, for
U58 andb50.2 the error is 0.3% and forb50.29 it be-
comes 2%.

These comparisons stress that in all studied cases,
precision of our analytical solution turned out to be far bet
than our initial expectations.

V. CONCLUSIONS

The method developed in Ref. 20 can be easily applied
the one-dimensional Hubbard model, allowing us to der
exact analytical coefficients at each order of theb expansion
of the grand potential. With the help of the proceduregint ,
written in the symbolic languageMAPLE 5.1, the multivariable
Grassmann integrals can be easily calculated. Besides
property of factorization of graphs into subgraphs, describ
in Ref. 21, allows us to reduce the number of integrals to
actually calculated. Besides, the method does not invo
any further approximation scheme. Even though the phy
for U.0 andU,0 are different, the results of Sec. III app
equally well for both cases.

Beni et al.9 derived a perturbative expansion in the ho
ping constantt, valid in the temperature rangebt!1. It is

FIG. 5. Magnetic susceptibility from Ju¨ttner et al. equations
~solid line! and Charretet al. ~dashed line! for U51, U54, and
U58.
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simple to compare our results to theirs, since both meth
yielded analytical results. For the sake of comparison,
consider the one-dimensional Hubbard model in the h
filled case. Equation~23! shows that the difference betwee
our result for the grand potential per site and Beniet al. is
proportional tot4b3; it gives a correction to the specific he
but keeps the magnetic susceptibility unchanged. Our re
is compatible with the assertion of Bartkowiaket al.24 that
the coefficients derived by the standard high-temperature
pansion are exact at each order ofbn. With our correction to
the grand potential per site derived by Beniet al., we can
drop the conditiont/U!1 under which it was derived.

Takahashi’s integral solution6 is derived from the energy
spectrum of the Bethe ansatz solution of the one-dimensi
Hubbard model plus the so-called string hypothesis. In
case of the specific heat, our correction to Takahashi’s re
is not associated with any numerical approximation or er
We present Fig. 2 to show this fact. For the magnetic s
ceptibility there is a larger correction to the Takahashi’s
lution in the high-temperature region. Certainly, these diff
ences come from the fact that Takahashi’s calculation d
not take into account solutions to the one-dimensional H
bard model with SO~4! symmetry.19

In order to determine the range of validity inb of our
analytical solution for the grand potential per site for diffe
ent values ofU ~in units of t), we considered the curves o
the specific heat and magnetic susceptibility forU51, U
le

,

19512
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e
f-

ult

x-

al
e
ult
r.
s-
-
-
es
-

54, andU58. In all cases studied the validity of our ex
pressions are far beyond our initial expectations. For
ample, for U51 the error of our result for the magnet
susceptibility atb50.4 is less than 1%. The result of th
standard high-temperature expansion is not reliable forU
51 and the numerical solution of the coupled integral eq
tions in the approach of Ju¨ttner et al.18 are very much in-
volved, while our analytical result is a very good approxim
tion for U51 up tob50.4.

Finally, we should mention that the present approa
opens the possibility of calculating the first terms of theb
expansion of the grand canonical partition function of t
Hubbard model in two space dimensions, as well as of o
dimensional models with inhomogeneities. We believe t
improvements on the present approach will render a valua
tool for tackling such problems.
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