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A theory is presented for a recursion method folNQ(ab initio tight-binding calculations based on the
density-functional theory. A long-standing problem of generalizing the recursion method to a non-orthogonal
basis, which is a crucial step to make the recursion method applicahleitdtio calculations, is solved by the
introduction of hybrid representation and a two-sided block Lanczos algorithm. As a test of efficiency of the
proposed method, convergence properties in energy and force of insulators, semiconductors, metals, and
molecules are studied for not only simple model systems but also some real materials within the density-
functional theory. The present @] method possesses good convergence properties for metals as well as
insulators.
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[. INTRODUCTION the method in nonorthogonal basis. Several attempts have
been made to generalize the recursion method to nonor-
The application of the conventionab initio electronic  thogonal basi€.Nevertheless, within our knowledge of the
structure calculations to large systems is hampered by theiraditional recursion method the formalism is not in a satis-
inherent ON®) scaling properties witiN the number of at-  factory level and only very few examples ab initio calcu-
oms. In order to overcome this difficulty, efficient linear- lations are availabl&’ while the generalized Fermi-operator-
scaling algorithms, which are referred to asNp(methods, expansion method by Stephan and Drabbid one of the

have been developed during the last decadé few appli- moment-based methods that can be successfully applied to
cations of these @) methods have actually demonstrated nonorthogonal orbitals. _
the power of these () methods' However, several prob- In this paper we present a generalized block BOP for the

lems still remain in these M) methods. In particular, it is nonorthogonal TB basis by introducing a hybrid representa-
well known that the variational Q) methods produce large tion and the two-sided block Lanczos algorithm. We will
errors in the energy of metalssince in both metals and show convergence properties of the method within density-
narrow-gap semiconductors the density mapihas long- functional theory(DFT) and demonstrate that the present
range correlations in real space compared to that of insulanethod is a promising and practical /X method in both
tors with a wide gafi.Therefore, the application of the @}  insulators and metals.
methods relying on the locality gf is restricted to the ma-
terials with a wide gap. II. THEORY

Recently, one of the authors has shown that the block ) ) .
bond-order potentia(BOP) is a convergent moment-based It Will be assumed that one-particle wave functions are
O(N) method that provides good convergence properties fof*Panded with a nonorthogonal localized basis $iak))
energy and force in metals as well as insulators and semicof¢herei is a site index, andv an orbital index. Then, the
ductors within an orthogonal tight-binding (TB) ~ density of electrong(r) in nonspin-polarized systems can
representatiod Although it had been well documented that P€ written as
the moment-based methods cannot reproduce theﬁ\éacancy in
diamond or silicon within a low number of momentSthe — _ _ o
block BOP gave the first convergent results for vacancies in p(r) igﬁ Xia(")X16(1) Ot @
insulators using a moment-based method with a low number ) )
of moments? which means that this @) method is the most where y,(r)=(r|ia), and the bond-orde®, s is related
accurate approach within the moment-based methods. TH8 the imaginary part of the one-particle Green function as
block algorithm guarantees that the and = bonds are [ollOWS:
treated properly and that the band energy is invariant for the 5
r_otatlon of sy_stem%,and the terminator m_the_ Gregn func- O,jp=— _|mf Gi, jB(E+i0+)f
tions can es);lmate the long range contributions in a most ' ™ '
effective way for the total energy and force calculations. . . . _
Thus, the block BOP may be applicable to a wide variety ofW'th the Fermi f.u.nctpn.f(.x)—. 1/[1+exp(x)], where 0
materials with reliable accuracy. However, in order to maker_Epresents a p03|t|yeA|nf|n|teS|m&ELia,jB(Z) IS an expgcta-
the method applicable tab initio calculations, we have to tion value of Greenia(2)=(Z—H) ~* for dual base§i )
remove the limitation of orthogonal basis and reformulateand[j3) defined by

E—n
kB—T)dE @
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. - [Uo)=([i1),]i2), ... [iM})),

ia@)=2 iB)Sigia: (3)

1 Oo)=(TT)I72). ... [ ™

=([i1),]i2),... [iM})).

where ngl,m is the inverse of overlap matrixS, s ) ) 0 ) o ' )
=(ia|jB). From Eqs(1) and(2), we see that the functionals Equation(7) is an optimum choice in terms of computational
such as the total energy in DFT can be reformulated as th&ccuracy and efficiency because of the rotational invariance
functionals of the bond order. Therefore, we concentrate offf the total energy and the consistent description of the dif-

evaluating the bond order with reasonable accuracy and greffrent properties ofr, , andé bonds. _ _
reduction in the computational efforts. In the Lanczos basis representation the Hamiltoharis

Let us introduce a hybrid representation of HamiltonianP!ock tridiagonalized as a non-Hermitian matrix and the
that is a non-Hermitian matrix represented by the originaIGree”'fLL'nCt'On matrixG*(2) is the inverse of the Lmatrlx
and the dual bases hﬁ’a,jﬁ=<’fz¥||:||jﬁ).The hybrid Hamil- (ZI=H"), so that the block diagonal elemer@qy(Z)

fonian can be written in the matrix form a8'=5 'H, =(Uo/G|Uo) can be written explicitly in the form of the
whereH, . ;;=(i ||} 8). With the relationG(z)(zs—H) ~ Multiple inverse as follows:
=1, the hybrid Green functioi’(Z) defined by EBO(Z)=[Zl—§o—91[21—§1—92[- ) .]7152]7151]71,

()

Gl ip(2)={G(2)S}ia,p=(12lG(2)iB) ) o _
- , L , , where the index) indicates the representation based on the
sa,tlsﬂe.sG (2)(2Z1—H')=1. One of the merits of uSINg | 3ncz0s basis. The off-diagonal elements of hybrid Green-
G’(2) is that its diagonal element gives directly the Mul- f,nction matrix can be calculated by using a recurrence re-

liken populationP;, of an orbital|i ) lation that can be derived basically along the same line as
2 E_ that described for the case of orthogonal badise explicit
Pi,=— _|mf G/, ia(|5+o+)f( . #)dE expression consistent with EB) is given below:
m ' B
G6n(2)=[Gbn-1(Z)(Z1 = An-1) = Gbn_2(Z)Cp- 1~ S1l]
Z% Oin,isSipia- (5 X(En)*l, 9

In the block BOP, determination of the chemical potential iswhere & is Kronecker’s delta, and,_,(Z)=Cy=0. The
needed to conserve the total number of electidgsin the  block elements of the Green-function matrix have the same
systent? so that the relation of Eq5) is very advantageous relation to the bond orders based on the Lanczos i®is

to computational efficiency because of the simple relatioras Eq.(2) of the dual basis representation. Therefore, we can
Nee=2i,Pi.- Thus, we present below a prescription how to obtain the bond orders of E(R) through the following trans-
calculate the hybrid Green functions. The diagonal elementformation:

of the Green-function matrix can be rc?:alculated in a numeri-

cally stable way by the recursion methidzhsed on the Lanc- _ LT o1

zos algorithm'? The block-BOP method is a general recur- 9 _nz,k OonUniS"s (10

sion method for evaluating efficiently both the diagonal and - ~ ~

off-diagonal elements of the Green-function matrix by thewhereU,; is defined byU,;=(U,[(|j1),]j2), ... [jM})).
recursion method. Moreover the use of a single site containAs a result of the simple inverse transformation Ed), we

ing all the localized orbitals as the starting state intikeck ~ only have to perform the evaluation and the integration of
Lanczos algorithm rather than a single orbital in the usuafhe Green functions of the zeroth block line in the Lanczos
one conserves the rotational invariance of the total energy. IRasis representation, which means that the computational
the present case of nonorthogonal basis, we further exterfime of the algorithm is about two tim&Slonger compared
the formalism to adopt a two-sided block Lanczosto that of the orthogonal cageOnly the hybrid representa-
algorithm?® since the hybrid Hamiltonian is no more Her- tion can provide this simple relation E(LO) as well as Eq.

mitian. The set of central equations is (5), while the other representations suffer from computa-
tional inefficiency’'°In the generalized block BOP using the
AU =|U)A+|Un-1)Bn+|Uni1)Chit, nonorthogonal basis we need to calcul@té, the inverse of
- - - the overlap matrix. In the following calculations, we used a
(U A=A +Co(Uy_ 1| +Bpy1(Upsyl. (6) diff(tar_erllé OWN) efficient method for inverting the overlap
- - - matrix.

A,, B,, andC,, are recursion block coefficients with;

XM;in size, vthrd\/Ii is the number of localized orbitals on Ill. CONVERGENCE PROPERTIES

the starting atom, and the underline indicates that the ele-

ment is a block. In the two-sided block Lanczos algorithm In Fig. 1 we show convergence properties of the band

the Lanczos vectors in the left and right sides have a biorenergy in an insulator and a metal described by a simple
thogonality relation. It is essential to start the two-sideds-valent TB as a test of the present method. The errors in the
block Lanczos algorithm with a single site and its corre-band energy at the seven-shell cluster and recursion levels
sponding dual state as are 0.2% and 0.9% for the insulator and the metal, respec-
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in the band energy for an insulat@inc blend¢ and a metalfcc)

described by a simpla-valent TB model in which the nearest 4.0 1

neighbor hopping and overlap integrals ard.0 eV and 0.1, re- C60

spectively, with others being zero, and the number of electrons is 20 r

the same as that of atoms. The zinc blende has a direct gap of 1.0 0.0 bt b—b—®
eV that was controlled by the gap of the on-site energies of the L ' ) ) ) .
different atoms. In these calculations, the seven-shell cluster and a 13 5 7 9 11 138 15
square-root terminator were used. Number of Recursion Levels

. . . FIG. 3. Error in the cohesive energy for carbon in the diamond
tively. Thus, we see that the block BOP gives sufficient concqre, silicon in the diamond structure, fec aluminum, aggl C

vergent results in both the simple insulator and metal. Figtor three-, five-, and seven-shell clusters, calculated using a square-

ures 2a) and 2b) show the error in the band energy at the yoot terminator. These calculations were performed within DFT.
five-shell cluster and recursion levels for insulators and met-

als described by a simpkvalent TB as a function of direct
band gap and electronic temperature, respectively. In insul
tors the error goes to zero as the gap increases, while t
errors, whose absolute values are no more than 0.5% co
pared to the band energy in the whole region, are reIativeI)P
small. In metals the error becomes almost negligible for th

ab_igher electronic temperature. This behavior in both insula-
ars and metals is consistent with the recent study about the
cality of the density matrig, though the block BOP de-
ends on the convergence of the moment expansions for the
ensity matrix rather than the locality of the density mafrix.
rom the comparison in the NaCl and fcc structures it is
clear that the use of the terminator in the diagonal Green

0.06 [ a) —e Zinc blende functions effectively reduces the error in both cases.
+—+ Honeycomb . .

004 | s NaCl Next, we discuss convergence properties of the block

' *—v NaCl BOP in realistic materials within the TB-based DFT pro-
o002} (Non terminator) posed by Sankey and Niklewslé Figure 3 shows the con-
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FIG. 2. Error in the band energy f¢a) insulators andb) met- FIG. 4. Potential, kinetic, and total energies as a function of time

als, calculated at the five-shell cluster and recursion levels. Thér molecular dynamics simulations of carbon using a three-shell
calculations were carried out with the samealent TB model as  cluster and a square-root terminator. The fixed unit cell contains
that in Fig. 1 using a square-root terminator. For NaCl and fcc theeight atoms. In panel&) and (b) the results are for five and ten
nonterminator results are also shown. recursion levels at 300 K, respectively. The time step is 0.5 fs.
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vergence properties of the cohesive energy for carbon in theetween the total energy and forces. These test calculations
diamond structure, silicon in the diamond structure, fcc aluindicate that the block BOP can give forces consistent with
minum, and G, molecule!’ In carbon and silicon the cohe- the total energy.
sive energies rapidly converge to thespace results in the

five- and seven-shell clusters, while the convergence values

- i 0, 0,
for the three-shell cluster are in error by 0.4% and 0.9% from In summary, we have presented a theory of the block BOP

thek-space results, respectively. Even for metallic alummum,f r O(N) ab initio TB calculations. The introduction of the

the convergence is very fast with respect to the number o, : . .
recursion levels and the errors in the converged values arr?eybrld representation and the two-sided block Lanczos algo-

only 0.3% and 0.1% for the three- and five-shell Clustersrlthm enables us to generalize the theory to a nonorthogonal

respectively. For g the convergence is achieved with the basis set in a natural way. The test calculations for the simple
P y- 9 svalent TB systems and some real systems within DFT sug-

three-shell cluster. The error at the sixth recursion level is est that the O) method provides rapid convergence prop-
only 0.02%. As a test of the consistency between the totaf pro pid ¢ gence prop
erties for metals as well as insulators with sufficient accu-

energy and the forces, constant-energy molecular dynamics .
simulations have been performed for diamond within DFT."acy. Thus, we conclude that the block BOP is a robustlo(

In Fig. 4 we show the energy for diamond at 300 K usingmethOd that is applicable to a wide variety of materials in the

five and ten recursion levels. For five and ten recursion Ievelg1b initio TB approach.
we see that the total energy is almost conserved, while the
ten-recursion-level calculation gives a better result. Although
the simulations have been done for eight atoms, the small We would like to thank Y. Morikawa and H. Kino for
number of atoms is sufficient to demonstrate the consistendyelpful suggestions about the DFT calculations.

IV. CONCLUSIONS
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lence electrons were used for carbon, silicon, and aluminum
atoms. The radii of the radial-wave function confinement are
2.1, 3.1, and 3.7 A, respectively. The minimal-basis sets give
1.253(1.244), 2.280(2.246, and 2.5152.466 A as an equilib-

rium bond length of dimer for carbon, silicon, and aluminum,
respectively, where the values in the parentheses are experimen-
tal results.



