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Convergent recursive O„N… method for ab initio tight-binding calculations
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A theory is presented for a recursion method for O(N) ab initio tight-binding calculations based on the
density-functional theory. A long-standing problem of generalizing the recursion method to a non-orthogonal
basis, which is a crucial step to make the recursion method applicable toab initio calculations, is solved by the
introduction of hybrid representation and a two-sided block Lanczos algorithm. As a test of efficiency of the
proposed method, convergence properties in energy and force of insulators, semiconductors, metals, and
molecules are studied for not only simple model systems but also some real materials within the density-
functional theory. The present O(N) method possesses good convergence properties for metals as well as
insulators.
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I. INTRODUCTION

The application of the conventionalab initio electronic
structure calculations to large systems is hampered by t
inherent O(N3) scaling properties withN the number of at-
oms. In order to overcome this difficulty, efficient linea
scaling algorithms, which are referred to as O(N) methods,
have been developed during the last decade.1–3 A few appli-
cations of these O(N) methods have actually demonstrat
the power of these O(N) methods.4 However, several prob
lems still remain in these O(N) methods. In particular, it is
well known that the variational O(N) methods produce larg
errors in the energy of metals,5 since in both metals and
narrow-gap semiconductors the density matrixr has long-
range correlations in real space compared to that of ins
tors with a wide gap.6 Therefore, the application of the O(N)
methods relying on the locality ofr is restricted to the ma
terials with a wide gap.

Recently, one of the authors has shown that the bl
bond-order potential~BOP! is a convergent moment-base
O(N) method that provides good convergence properties
energy and force in metals as well as insulators and semi
ductors within an orthogonal tight-binding ~TB!
representation.2 Although it had been well documented th
the moment-based methods cannot reproduce the vacan
diamond or silicon within a low number of moments,5,7 the
block BOP gave the first convergent results for vacancie
insulators using a moment-based method with a low num
of moments,2 which means that this O~N! method is the mos
accurate approach within the moment-based methods.
block algorithm guarantees that thes and p bonds are
treated properly and that the band energy is invariant for
rotation of systems,8 and the terminator in the Green fun
tions can estimate the long range contributions in a m
effective way9 for the total energy and force calculation
Thus, the block BOP may be applicable to a wide variety
materials with reliable accuracy. However, in order to ma
the method applicable toab initio calculations, we have to
remove the limitation of orthogonal basis and reformul
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the method in nonorthogonal basis. Several attempts h
been made to generalize the recursion method to no
thogonal basis.9 Nevertheless, within our knowledge of th
traditional recursion method the formalism is not in a sa
factory level and only very few examples ofab initio calcu-
lations are available,10 while the generalized Fermi-operato
expansion method by Stephan and Drabold11 is one of the
moment-based methods that can be successfully applie
nonorthogonal orbitals.

In this paper we present a generalized block BOP for
nonorthogonal TB basis by introducing a hybrid represen
tion and the two-sided block Lanczos algorithm. We w
show convergence properties of the method within dens
functional theory~DFT! and demonstrate that the prese
method is a promising and practical O(N) method in both
insulators and metals.

II. THEORY

It will be assumed that one-particle wave functions a
expanded with a nonorthogonal localized basis set (u ia&)
where i is a site index, anda an orbital index. Then, the
density of electronsr(r ) in nonspin-polarized systems ca
be written as

r~r !5 (
ia, j b

x ia~r !x j b~r !Q ia, j b , ~1!

wherex ia(r )[^r u ia&, and the bond-orderQ ia, j b is related
to the imaginary part of the one-particle Green function
follows:

Q ia, j b52
2

p
ImE Gia, j b~E1 i01! f S E2m

kBT DdE ~2!

with the Fermi function f (x)51/@11exp(x)#, where 01

represents a positive infinitesimal.Gia, j b(Z) is an expecta-
tion value of GreenianĜ(Z)[(Z2Ĥ)21 for dual basesu i ã&
and u j b̃& defined by
©2001 The American Physical Society26-1
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u i ã&5(
j b

u j b&Sj b,ia
21 , ~3!

where Sj b,ia
21 is the inverse of overlap matrixSia, j b

[^ iau j b&. From Eqs.~1! and~2!, we see that the functional
such as the total energy in DFT can be reformulated as
functionals of the bond order. Therefore, we concentrate
evaluating the bond order with reasonable accuracy and g
reduction in the computational efforts.

Let us introduce a hybrid representation of Hamiltoni
that is a non-Hermitian matrix represented by the origi
and the dual bases asHia, j b8 5^ i ãuĤu j b&. The hybrid Hamil-
tonian can be written in the matrix form asH85S21H,
whereHia, j b[^ iauĤu j b&. With the relationG(Z)(ZS2H)
5I, the hybrid Green functionG8(Z) defined by

Gia, j b8 ~Z!5$G~Z!S% ia, j b5^ i ãuĜ~Z!u j b& ~4!

satisfies G8(Z)(ZI2H8)5I. One of the merits of using
G8(Z) is that its diagonal element gives directly the Mu
liken populationPia of an orbitalu ia&

Pia52
2

p
ImE Gia,ia8 ~E101! f S E2m

kBT DdE

5(
j b

Q ia, j bSj b,ia . ~5!

In the block BOP, determination of the chemical potentia
needed to conserve the total number of electronsNele in the
system,2 so that the relation of Eq.~5! is very advantageou
to computational efficiency because of the simple relat
Nele5( iaPia . Thus, we present below a prescription how
calculate the hybrid Green functions. The diagonal eleme
of the Green-function matrix can be calculated in a num
cally stable way by the recursion method9 based on the Lanc
zos algorithm.12 The block-BOP method is a general recu
sion method for evaluating efficiently both the diagonal a
off-diagonal elements of the Green-function matrix by t
recursion method. Moreover the use of a single site cont
ing all the localized orbitals as the starting state in theblock
Lanczos algorithm rather than a single orbital in the us
one conserves the rotational invariance of the total energ
the present case of nonorthogonal basis, we further ex
the formalism to adopt a two-sided block Lancz
algorithm,13 since the hybrid Hamiltonian is no more He
mitian. The set of central equations is

ĤuUn)5uUn)An1uUn21)Bn1uUn11)Cn11 ,

~ŨnuĤ5An~Ũnu1Cn~Ũn21u1Bn11~Ũn11u. ~6!

An , Bn , and Cn are recursion block coefficients withMi
3Mi in size, whereMi is the number of localized orbitals o
the starting atomi, and the underline indicates that the e
ment is a block. In the two-sided block Lanczos algorith
the Lanczos vectors in the left and right sides have a b
thogonality relation. It is essential to start the two-sid
block Lanczos algorithm with a single site and its cor
sponding dual state as
19512
e
n
at

l

s

n

ts
i-

d

n-

l
In
nd

-

r-

-

uU0)5~ u i1&,u i2&, . . . ,u iM i&),

uŨ0)5~ u i 1̃&,u i 2̃&, . . . ,u iM̃ i&). ~7!

Equation~7! is an optimum choice in terms of computation
accuracy and efficiency because of the rotational invaria
of the total energy and the consistent description of the
ferent properties ofs, p, andd bonds.

In the Lanczos basis representation the HamiltonianHL is
block tridiagonalized as a non-Hermitian matrix and t
Green-function matrixGL(Z) is the inverse of the matrix
(ZI2HL), so that the block diagonal elementG00

L (Z)

5(Ũ0uĜuU0) can be written explicitly in the form of the
multiple inverse as follows:

G00
L ~Z!5@ZI2A02C1@ZI2A12C2@•••#21B2#21B1#21,

~8!

where the indexL indicates the representation based on
Lanczos basis. The off-diagonal elements of hybrid Gre
function matrix can be calculated by using a recurrence
lation that can be derived basically along the same line
that described for the case of orthogonal basis.2 The explicit
expression consistent with Eq.~8! is given below:

G0n
L ~Z!5@G0n21

L ~Z!~ZI2An21!2G0n22
L ~Z!Cn212d1nI#

3~Bn!21, ~9!

where d is Kronecker’s delta, andG021(Z)5C050. The
block elements of the Green-function matrix have the sa
relation to the bond orders based on the Lanczos basisQ0n

L

as Eq.~2! of the dual basis representation. Therefore, we
obtain the bond orders of Eq.~2! through the following trans-
formation:

Q i j 5(
n,k

Q0n
L ŨnkSk j

21 , ~10!

where Ũn j is defined byŨn j5(Ũnu(u j 1&,u j 2&, . . . ,u jM j&).
As a result of the simple inverse transformation Eq.~10!, we
only have to perform the evaluation and the integration
the Green functions of the zeroth block line in the Lancz
basis representation, which means that the computati
time of the algorithm is about two times14 longer compared
to that of the orthogonal case.2 Only the hybrid representa
tion can provide this simple relation Eq.~10! as well as Eq.
~5!, while the other representations suffer from compu
tional inefficiency.9,10 In the generalized block BOP using th
nonorthogonal basis we need to calculateS21, the inverse of
the overlap matrix. In the following calculations, we used
different O(N) efficient method for inverting the overla
matrix.15

III. CONVERGENCE PROPERTIES

In Fig. 1 we show convergence properties of the ba
energy in an insulator and a metal described by a sim
s-valent TB as a test of the present method. The errors in
band energy at the seven-shell cluster and recursion le
are 0.2% and 0.9% for the insulator and the metal, resp
6-2



on
ig

he
e

t
ul
t

o
e
th

la-
the

-
r the
x.

is
en

ck
o-
-

,

t

s
f
th
nd

Th

th

nd
C
are-

me
hell
ins

n

CONVERGENT RECURSIVE O(N) METHOD FOR . . . PHYSICAL REVIEW B 64 195126
tively. Thus, we see that the block BOP gives sufficient c
vergent results in both the simple insulator and metal. F
ures 2~a! and 2~b! show the error in the band energy at t
five-shell cluster and recursion levels for insulators and m
als described by a simples-valent TB as a function of direc
band gap and electronic temperature, respectively. In ins
tors the error goes to zero as the gap increases, while
errors, whose absolute values are no more than 0.5% c
pared to the band energy in the whole region, are relativ
small. In metals the error becomes almost negligible for

FIG. 1. Error, with respect to the standardk-space calculations
in the band energy for an insulator~zinc blende! and a metal~fcc!
described by a simples-valent TB model in which the neares
neighbor hopping and overlap integrals are21.0 eV and 0.1, re-
spectively, with others being zero, and the number of electron
the same as that of atoms. The zinc blende has a direct gap o
eV that was controlled by the gap of the on-site energies of
different atoms. In these calculations, the seven-shell cluster a
square-root terminator were used.

FIG. 2. Error in the band energy for~a! insulators and~b! met-
als, calculated at the five-shell cluster and recursion levels.
calculations were carried out with the sames-valent TB model as
that in Fig. 1 using a square-root terminator. For NaCl and fcc
nonterminator results are also shown.
19512
-
-

t-

a-
he
m-
ly
e

higher electronic temperature. This behavior in both insu
tors and metals is consistent with the recent study about
locality of the density matrix,6 though the block BOP de
pends on the convergence of the moment expansions fo
density matrix rather than the locality of the density matri2

From the comparison in the NaCl and fcc structures it
clear that the use of the terminator in the diagonal Gre
functions effectively reduces the error in both cases.

Next, we discuss convergence properties of the blo
BOP in realistic materials within the TB-based DFT pr
posed by Sankey and Niklewski.16 Figure 3 shows the con
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e
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e

FIG. 3. Error in the cohesive energy for carbon in the diamo
structure, silicon in the diamond structure, fcc aluminum, and60

for three-, five-, and seven-shell clusters, calculated using a squ
root terminator. These calculations were performed within DFT.

FIG. 4. Potential, kinetic, and total energies as a function of ti
for molecular dynamics simulations of carbon using a three-s
cluster and a square-root terminator. The fixed unit cell conta
eight atoms. In panels~a! and ~b! the results are for five and te
recursion levels at 300 K, respectively. The time step is 0.5 fs.
6-3



th
lu
-

lu
om
m
r
a
rs
e

l
ot

T
ng
e
th
g

n

ions
ith

OP

lgo-
nal
ple
ug-
p-
cu-

the

r

T. OZAKI AND K. TERAKURA PHYSICAL REVIEW B 64 195126
vergence properties of the cohesive energy for carbon in
diamond structure, silicon in the diamond structure, fcc a
minum, and C60 molecule.17 In carbon and silicon the cohe
sive energies rapidly converge to thek-space results in the
five- and seven-shell clusters, while the convergence va
for the three-shell cluster are in error by 0.4% and 0.9% fr
thek-space results, respectively. Even for metallic aluminu
the convergence is very fast with respect to the numbe
recursion levels and the errors in the converged values
only 0.3% and 0.1% for the three- and five-shell cluste
respectively. For C60 the convergence is achieved with th
three-shell cluster. The error at the sixth recursion leve
only 0.02%. As a test of the consistency between the t
energy and the forces, constant-energy molecular dynam
simulations have been performed for diamond within DF
In Fig. 4 we show the energy for diamond at 300 K usi
five and ten recursion levels. For five and ten recursion lev
we see that the total energy is almost conserved, while
ten-recursion-level calculation gives a better result. Althou
the simulations have been done for eight atoms, the sm
number of atoms is sufficient to demonstrate the consiste
-

i,

.

.
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between the total energy and forces. These test calculat
indicate that the block BOP can give forces consistent w
the total energy.

IV. CONCLUSIONS

In summary, we have presented a theory of the block B
for O(N) ab initio TB calculations. The introduction of the
hybrid representation and the two-sided block Lanczos a
rithm enables us to generalize the theory to a nonorthogo
basis set in a natural way. The test calculations for the sim
s-valent TB systems and some real systems within DFT s
gest that the O(N) method provides rapid convergence pro
erties for metals as well as insulators with sufficient ac
racy. Thus, we conclude that the block BOP is a robust O(N)
method that is applicable to a wide variety of materials in
ab initio TB approach.
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