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Charge redistribution and polarization energy of organic molecular crystals

E. V. Tsiper and Z. G. Soos
Department of Chemistry, Princeton University, Princeton, New Jersey 08544

~Received 5 June 2001; published 22 October 2001!

We present an approach to electronic polarization in molecular solids treated as a set of quantum systems
interacting classically. Individual molecules are dealt with rigorously as quantum-mechanical systems subject
to classical external fields created by all other molecules and, possibly, external sources. Self-consistent equa-
tions are derived for induced dipoles and for atomic charges whose redistribution in external fields is given
explicitly by an atom-atom polarizability tensor. Electronic polarization is studied in two representative organic
molecular crystals, anthracene and perylenetetracarboxylic acid dianhydride, and contrasted to previous results
for systems of polarizable points. The stabilization energies of the neutral lattice, of isolated anions and cations,
and of cation-anion pairs are found. Charge redistribution on ions is included. The dielectric tensors of crystals
are successfully related to gas-phase properties and provide consistency checks on polarization energies. The
procedure is generally applicable to organic crystals in the limit of no intermolecular overlap.
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I. INTRODUCTION

Recent advances in the preparation of ordered thin fil1

and of organic molecular crystals2,3 with reduced impurity
levels have revived interest in organic electronics and
properties of charge carriers in these materials. Organic
lecular crystals are typically insulators with low dielectr
constantk;3 and charges localized on molecules. Ele
tronic polarization, an effect that is usually not considered
conventional inorganic semiconductors, has a central rol
the electronic properties of organic crystals, as discusse
Gutmann and Lyons,4 Pope and Swenberg,5 and Silinsh and
Capek.6 When a charge carrier is brought into a molecu
solid, its field polarizes the surrounding molecules. Seco
ary polarization fields created by polarized molecules c
tribute to the total self-consistent polarization cloud that s
rounds each charged quasiparticle. Such a cloud
sometimes referred to as an electronic polaron, to disting
from lattice relaxation effects.

The overall energy relaxation of a positive and negat
charge carrierP11P2 is an important property of an or
ganic material. Typical values4–6 are in the range of 2–3 eV
The transport gap, i.e., the energy necessary to create a
separated electron-hole pair is

Et5I 2A2P12P2 , ~1!

where I and A are the gas-phase ionization potential a
electron affinity of the molecule.P1 and P2 contain po-
laronic contributions due to both intramolecular and latt
phonons that are estimated6 to be ;10%. We focus on the
largeelectroniccomponent ofP1 andP2 and from now on
exclude polaronic effects.

The appearance in Eq.~1! of gas-phase properties is mad
possible by weak intermolecular forces and Van der Wa
separations in organic molecular crystals. The solid-state
vironment is taken as a perturbation in molecular exci
theory. In contrast to inorganic semiconductors, organic c
tals can normally be approximated as molecules with ne
gible overlap, and vanishing intermolecular overlap is
0163-1829/2001/64~19!/195124~12!/$20.00 64 1951
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crucial approximation to our general development of el
tronic polarization energies. The energy necessary to cr
an electron-hole pair at finite separationr defines the inter-
action potentialV(r ),0:

Epair~r !5Et1V~r !. ~2!

Nearest-neighbor ion pairs of large molecules obviously
viate from point charges.

Mott and Littleton7 first estimated the electronic polariza
tion energy in an atomic lattice by considering each atom
a polarizable point. The self-consistent treatment of po
charges in lattices of polarizable points was subseque
developed by Munn,8 Silinsh,6 and co-workers. While satis
factory for atomic lattices, polarizable points for molecule
completely neglect their structure. Polarization studies,6,8 pri-
marily on the acene family, addressed molecular size to so
extent by introducing submolecules, whose choice is a
trary, that carry a fraction of the total molecular polarizab
ity. A recent application9 to anthracene has several choice
the most elaborate one being submolecules at all carb
while a study10 of perylenetetracarboxylic acid dianhydrid
~PTCDA! has 11 submolecules centered at rings and
bonds. In effect, the quantum nature of molecules is appr
mated by the microelectrostatics of submolecules.

In large p-conjugated molecules subject to an extern
field, charge redistributes over distances comparable to
size of the molecule and generates large nonlinear op
responses. Such a flow of charge in molecules creates
ondary polarization fields that do not necessarily reduce
the field of a set of induced dipoles. Thus, rigorous treatm
of the polarization field requires analysis of the molecu
charge distributionr(r ).

Another issue is electrostatic interactions present alre
in the ground state of a condensed phase composed of
tral molecules, especially when they contain heteroato
These charges induce mutual polarization in the surround
molecules and contribute to the overall stabilization ene
of the solid. We estimate that the polarization contribution
the ground-state energy can be quite significant, reach
©2001 The American Physical Society24-1
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hundreds of meV per molecule. A notable exception is
acene family, whosep-systems have approximate electro
hole symmetry and negligible partial charges, making
polarization energy small.

In this paper we present an approach to electronic po
ization in molecular solids that allows for quantitative d
scription of intramolecular charge redistribution. The cruc
approximation is the neglect of intermolecular overlap. Ze
overlap implies that coordinate space can be subdivided
nonoverlapping regions, e.g., Wigner-Seitz cells, associa
with individual molecules. Each molecule is then a quantu
mechanical system subject to external fields created by
crystal and, possibly, other external sources. The exte
fields are rigorouslyclassical, so that quantum mechanics
needed at the intramolecular level only.

Section II illustrates the idea and presents self-consis
equations. Section III describes an approximate discrete f
of the equations that, we believe, strikes an optimum bala
between accuracy and simplicity for practical use. In Sec.
the equations are applied to the translationally invariant
tice to find the polarization contribution to the binding e
ergy. In Sec. V equations for the polarization energy o
system of ions embedded in a lattice are derived. The po
ization energy of isolated charge carriers in anthracene
PTCDA crystals is calculated, as well as the energy of v
ous ion pairs. The dielectric tensors of anthracene
PTCDA are computed in Sec. VII, and their consistency w
polarization energy calculations is established. We comp
P1 , P2 , and V(r ) to submolecular results and comme
briefly in Sec. VIII on applications to organic solids wit
mobile charge carriers.

II. SELF-CONSISTENT CHARGE DISTRIBUTION

In the zero-overlap approximation, the self-consistent
lution of the Schro¨dinger equation for a solid reduces to
product of wave functions of individual molecules. Th
minimum energy relative to gas-phase~noninteracting! mol-
ecules or ions can be done in two steps. First, the cha
E(f) in the ground state energy of each molecule is found
a functional of the external electrostatic potentialf(r ). For
simplicity we neglect any magnetic interactions. The grou
state charge distributionr(r ;f) also depends onf and de-
termines the secondary polarization field created by the m
ecule.

The total electrostatic potential at a pointr within a mol-
eculea is created by all other moleculesbÞa and, possibly,
an applied field:

fa~r !5fappl
a ~r !1( 8

b
E d3r 8

rb~r 8;fb!

ur2r 8u
. ~3!

The prime at the sum excludes the term withb5a. The total
energy of the solid is then

Etot5(
a

Ea~fa!2 (
a,b

E E d3rd3r 8
ra~r ;fa!rb~r 8;fb!

ur2r 8u
.

~4!
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The second term compensates for double counting the in
molecular interactions in the first term. Equivalently,

Etot5(
a

FEa2
1

2E d3r ~fa2fappl
a !raG . ~5!

Minimization of Etot with respect tofa(r ) yields the self-
consistent ground state energy of the molecular solid in
approximation of zero overlap.

In principle, variation of Eq.~5! with respect tofa gives
an equation forra(r ), which together with Eq.~3! forms a
complete self-consistent system. A more efficient way, p
haps, is to use an appropriate quantum chemical procedu
find ra(r ;fa) for each moleculea and iterate several time
by updatingfa(r ) using Eq.~3!. The self-consistent problem
defined by Eqs.~3! and ~5! for charges and potentials i
typical of classical electrostatics. The quantum part is limi
to the charge distributionra(r ,fa).

The indexa can be dropped or restricted to a single u
cell when the translationally invariant state of the lattice is
interest. This is the case, for example, in the calculation
the dielectric tensor.11 Otherwise, a finite number of mol
ecules must be considered. A practical implementation of
procedure requires some form of discretization of the c
tinuous functionsfa(r ) and ra(r ) defined within the mo-
lecular volume. Certain trade-off between the accuracy
simplicity suitable for repetitive quantum-chemical calcu
tion is unavoidable. In the following section we develop
simple scheme, which captures intramolecular charge re
tribution to a quantitative accuracy. The procedure has b
successfully implemented by us to calculate indices of
fraction of anthracene and PTCDA.11

III. MOLECULE IN NONUNIFORM FIELD

In this section we omit the indexa and consider a single
molecule subject to an external potentialf(r ). We note that
charge redistribution gives a major contribution to the pol
izability of large conjugated molecules. This ‘‘major part’’ i
not defined quantitatively, as there is no unique definition
atomic charges. The scheme we develop below separates
lecular polarizability into two parts, the sum of whic
matches the actual molecular polarizabilitya with the best
value known from experiment or theory.

We use a semiempirical Hamiltonian because it provide
natural way to represent an arbitrary external potential ac
on a molecule. We definef i5f(r i), the potential at the
position of each atomr i . A site energyf i is added to the
diagonal matrix elements for the orthogonalized valence
bitals of atom i. We employ the INDO/S Hamiltonian,12

which is known to approximate molecular properties at o
a tiny fraction of the cost ofab initio calculations. Through-
out the paper we use Lo¨wdin chargesr i

a , where i labels
atoms in moleculea. The charges are defined as the sums
occupation numbers of orthogonalized orbitals of atomi.

The corresponding contributionaC to the actual polariz-
ability a is clearly restricted to the molecular plane in co
jugated molecules. We associate the differencea2aC be-
tween the actual and INDO/S polarizabilities with ‘‘atomic
4-2
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contributions caused by the distortion of atomic orbitals
the field. Atomic contributions are small corrections to lar
in-plane polarizabilities. We note thatany choice of r i(F)
leads to in-planeaC as a consequence of a discrete cha
distribution.

Atomic contributions toa can be described, as in atom
lattices, in terms of induced dipoles situated at the positi
of atoms. Based on such an idea we propose the follow
minimal scheme that is designed to capture both cha
redistribution and ‘‘atomic’’ parts of the molecular respon
to external fields. We describe the state of anN-atom mol-
ecule by a set of 2N variables,r i and mi , which represent
the partial charges and induced dipole moments of ato
The same number of variablesf i5f(r i) and F i5
2“f(r i), describes the external field acting on a molecu

We denote byqi the deviation of partial charges from th
ground-state valuesr i

(0) of an isolated molecule or molecula
ion

qi~f!5r i~f!2r i
(0) . ~6!

At small fields the energy of the molecule is quadratic in
distortion from equilibrium:

E~r i ,mi ;f i ,F i !5
1

2 (
i j

qiP i j
21qj1(

i
r if i

1
1

2 (
i

mi ã i
21mi2(

i
miF i . ~7!

Here the positive-definite charge stiffness matrixP21 de-
scribes the increase in the internal energy of the molec
when the charge distribution deviates from its zero-fi
equilibrium; the tensorã i

21 plays the same role for atomi
dipoles. At given configuration$f i ,F i% of the external field,
the minimum of the energy functional Eq.~7! is achieved at

r i5r i
(0)2(

j
P i j f j , ~8a!

mi5ã iF i . ~8b!

We see thatã i is the polarizability for atomi. It does not
necessarily reduce to a scalar, since atoms in a molecule
no rotational symmetry. We could also assume nonz
atomic dipolesmi

(0) in the ground state of nonpolar mo
ecules and so obtain symmetric equations, but we setmi

(0)

50 in this paper. Equations~8! are similar to Stone’s13

analysis, in which molecules are partitioned into regions.
contrast the two approaches in the Discussion.

The energy of the molecule at the minimum is

E~f,F!5(
i

r i
(0)f i1

1

2 (
i

~qif i2miF i !. ~9!

Equivalently,

E~f,F!5(
i

r i
(0)f i2

1

2 (
i j

f iP i j f j2
1

2 (
i

F i ãF j .

~10!
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The last two terms describe the energy relaxation of the m
ecule in the external field. The positive-definite symmet
matrix P i j is the susceptibility with respect to site potentia
f i @see Eqs.~8a! and ~10!#:

P i j 52S ]r i

]f j
D

0

52S ]2E

]f i]f j
D

0

. ~11!

Partial derivatives are evaluated atf i50. P i j determines
the charge redistribution among atoms in the external po
tial. It is a natural extension of the similar quantityp i j used
in p-electron theory,14 and called the atom-atom polarizabi
ity. In our case, the total charge of all valence electrons
considered. Note that our definition differs by a facto
21/2.

Atom-atom polarizabilitiesP i j obey the condition

(
i

P i j 5(
j

P i j 50, ~12!

since the charge distribution in Eq.~8a! is invariant to an
additive constant in all site potentialsf i . The zero-overlap
approximation conserves charge at each molecule. Exp
sion to second order inf i is sufficient forf i,1 eV. Equa-
tions ~8! eliminate the need to solve repetitively the quantu
problem for the molecule. We calculateN(N11)/2 atom-
atom polarizabilitiesP i j only once using Eq.~11! for the
neutral molecule and for the cation and anion. Stronger p
turbations may require reevaluation ofP i j at some interme-
diatef i .

The total induced moment of a molecule is

m5(
i

„r ir i1mi…. ~13!

The molecular polarizability consists, therefore, of tw
terms,a5aC1ã:

aab5(
i j

P i j r i
ar j

b1(
i

ã i
ab , ~14!

where the Greek indices take the valuesx, y, andz.
Equation~14! illustrates the advantages and limitations

partial atomic charges. With the aid ofP i j , they provide a
rigorous description of charge redistribution. The assumpt
of polarizable points is atomic lattices is kept, howev
throughã5a2aC. We have corrections to INDO/S charge
and distributeã proportionally to the numbers of valenc
electrons ni associated with individual atoms:ã i

5ãni /(ni . As in previous theory,6–10 a is an independen
gas-phase input to the calculation.

Table I summarizes results for anthracene and PTCD
Density functional~B3LYP! results have been obtained usin
the GAUSSIAN 98 program.16 Theory and experiment are i
reasonable agreement for anthracene molecules when
basis sets are used,11,9 ~such as 6-31111G** ). Dielectric
data17 for crystalline PTCDA films are also consistent11 with
calculated molecular polarizabilities. The INDO/S results
aC from Eq. ~14! are confined to in-plane components th
4-3
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E. V. TSIPER AND Z. G. SOOS PHYSICAL REVIEW B64 195124
represent charge redistribution according toP i j in Eq. ~14!.
We also needã5a2aC. Unless otherwise indicated, w
will use the B3LYP polarizabilities in Table I. Since the
exceedaC, atomic contributions increase the polarizati
compared to the ‘‘charges-only’’ choice ofã50. We note
that simple Hu¨ckel theory often overestimates responses
applied fields and hence the amount of charge redistribut
in that caseã may be negative and the atomic part reduc
the polarization. Equations~8! hold for anyã.

IV. SELF-CONSISTENT EQUATIONS

In the condensed phase the potential and field at the
sition of atomi of moleculea created by all other molecule
bÞa are

f i
a5( 8

b (
j

v~r i j
ab!r j

b1vb~r i j
ab!m j

bb , ~15a!

Fi
aa5( 8

b (
j

va~r i j
ab!r j

b1vab~r i j
ab!m j

bb , ~15b!

where v(r )51/r , va(r )52]v/]r a, vab(r )5]2v/]r a]r b.
Summation over repeated Greek indicesa,b5x,y,z is as-
sumed. The vectorr i j

ab5r i
a2r j

b points to the atom of interes
from atomj of moleculeb. Here we have assumed no exte
nal sources for simplicity. Equations~15! together with Eqs.
~8! form a complete self-consistent linear system forr i

a , mi
a ,

f i
a , andF i

a .
The total polarization energy of the solid is@compare to

Eq. ~5!#

Etot5(
a

FEa2
1

2 (
i

~r i
af i

a2mi
aF i

a!G . ~16!

After some algebra and using Eq.~9!, this reduces to

Etot5
1

2 (
a

(
i

r i
a(0)f i

a . ~17!

TABLE I. Principal components of the molecular polarizab
ities of anthracene and PTCDA; the long~L!, medium ~M!, and
normal ~N! axes are fixed byD2h symmetry.

Method aNN (Å 3) aMM (Å 3) aLL (Å 3)

Anthracene
Experiment~Ref. 15! 15.2 25.6 35.2

15.9 24.5 35.9
B3LYP/6-31111G** 12.03 24.27 42.56
INDO/S (aC) 0 24.05 41.52

PTCDA
B3LYP/6-31111G** 18.06 50.27 88.18
INDO/S (aC) 0 50.84 84.54
19512
o
n;
s

o-

The derivation of this formula is simplified by replacing th
dipoles by pairs of charges separated by small distances,
taking the limit in the final expression.

The total energy is a bilinear form of unperturbed charg
r i

a(0) and self-consistent potentialsf i
a . We can write it also

in terms of self-consistent chargesr i
a and dipolesmi

a , defin-
ing the unperturbed potentialsf i

a(0) and fieldsF i
a(0) in Eqs.

~15! by settingr i
a5r i

a(0) andmi
a50. Using the identity

(
ai

r i
a(0)f i

a5 (
aÞb

(
i j

v~r i j
ab!r i

a(0)r j
b5(

b j
r j

bf j
b(0) ,

~18!

the total energy becomes

Etot5
1

2 (
a

(
i

~r i
af i

a(0)2mi
aF i

a(0)!. ~19!

We use this form ofEtot in Sec. VI to treat ions in infinite
lattices.

Equation~19! reduces to the previous result18,6,8when all
molecules are shrunk to points, with( ir i

a50 for molecules
and 61 for ions. Since charge redistribution is no long
possible, we may setP i j 50, aC50, and polarizabilityã
5a at positions of neutral molecules. The first correction
aC for finite molecules is an induced dipole at the cent
which gives the same approximation fora when combined
with ã. The potentialf i

a(0) in Eq. ~19! is due to ions, and the
first sum, which is now restricted to charged sites, becom
the source termW0 of Ref. 18. The second term, over mo
ecules, describes induced dipoles in the field of the ions
is theW1 term of Ref. 18. The polarizability of ions is gen
erally different from molecules, but is not required for fin
ing P6 in centrosymmetric lattices of point molecules, sin
the ion is at an inversion center.

The expression~17! or ~19! for the lattice polarization
energy is not restricted to equivalent molecules. In princip
each moleculea may have its ownr i

a(0) , P i j
a , and ã i

a . In
practice, there are several molecules per unit cell in orga
molecular crystals. The translationally invariant lattice
neutral molecules, the neutral lattice of the following sectio
reduces to atomic charges and potentials within a unit c
Molecular ions in specified unit cells break translation
symmetry and, as discussed in Secs. VI and VII, requ
different methods for findingEtot . In the zero-overlap ap-
proximation, charge carriers are molecular ions in place
neutral molecules. The polarization energyP6 of a carrier is
the energy difference between two extensive quantities,
lattice with the ion and the neutral lattice.

V. NEUTRAL LATTICE

In this section we evaluate the polarization energy of
neutral lattice. The analogous quantity vanishes identicall
the polarizable-point approach, since there are no fields
induced dipoles in the lattice until charges are introduc
The self-consistent Eqs.~8!, ~15! can be restricted to a singl
unit cell of volumevc . The problem, therefore, reduces to
system of 4NNc linear equations, whereNc is the number of
4-4



a
o

ng
l
au

er
n
t i

l

e

le

f

lat-
for

as
er

lar-
ich
rs.
nit
arly
o a
gle

u-

cor-

A
2.8
en-
ial
eg-
ole

DA
the
is

s
rtial
ro-
ipi-
ex-
H

ce

CHARGE REDISTRIBUTION AND POLARIZATION . . . PHYSICAL REVIEW B64 195124
molecules in a unit cell, andN is the number of atoms in a
molecule.

Madelung-type infinite sums in Eqs.~15! can be evaluated
using Ewald’s method.19 Special care has to be taken to tre
complex lattices with many partial charges in a unit cell. F
this purpose we introduce a fictitious uniform neutralizi
background for each partial charge. Since the unit cel
neutral, these backgrounds cancel exactly. We define an
iliary potential functionV(r ),

V~r !5 lim
R→`

F ( 8
u l u,R

1

ur2 lu
2

2pr 2

3vc

2S 9pMR
2

2vc
D 1/3G , ~20!

where the summation is overMR lattice vectorsl falling
within a sphere of radiusR, with the term l50 missing.
Subtracted is the potential of the uniform neutralizing sph
cal charge2MR centered at the origin of coordinates. Ce
tering of the neutralizing backgrounds at a common poin
space is necessary for proper cancelation.

Ewald’s method gives

V~r !52
2pr 2

3vc

2
erf~Gr !

r
1( 8

l

12erf~Gur2 lu!

ur2 lu
2

p

vcG
2

1
p

vcG
2
( 8

g

exp~2g2/4G2!

g2/4G2
cos~g•r !, ~21!

where erf(x)5(2/Ap)*0
xdy exp(2y2) is the error func-

tion. The second sum is over all reciprocal vectorsgÞ0,
exp(ig•l!51. Ewald’s parameterG is arbitrary ~the result
does not depend on its value!; a reasonable choice isG
5(p2/vc)

1/3. The functionV(r ) is regular within the centra
lattice cell l50, including the pointr50, and it is not peri-
odic because of the missing term. The functionV(r )11/r is
periodic in r .

Equations~15! can be written in terms ofV(r ) and its
derivatives Va(r )52]V(r )/]r a and Vab(r )
5]2V(r )/]r a]r b:

f i
a5( 8

b (
j

v~r i j
ab!r j

b1vb~r i j
ab!m j

bb

1(
b

(
j

V~r i j
ab!r j

b1Vb~r i j
ab!m j

bb , ~22a!

Fi
aa5( 8

b (
j

va~r i j
ab!r j

b1vab~r i j
ab!m j

bb

1(
b

(
j

Va~r i j
ab!r j

b1Vab~r i j
ab!m j

bb . ~22b!

The sums overb are restricted to the central unit cell. In th
primed sums the termb5a is excluded. The terms withV
and its derivatives give contributions by charges and dipo
beyond the central cell.

Equations~22! expressf i
a andF i

a in terms ofr j
b andmj

b .
Together with Eqs.~8! they form a complete linear system o
4NNc equations, half of them vector. For example,NNc
19512
t
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548 and 76, respectively, for anthracene and PTCDA
tices, which results in 192 and 304 scalar linear equations
these materials.

The solution for the neutral lattice is further denoted
r̄ i

a , m̄i
a , f̄ i

a , and F̄ i
a . These quantities are summed ov

molecules in Eq.~17! or ~19! to yield the ~extensive! self-
consistent energy of the neutral lattice.

Anthracene and PTCDA

Using the procedure described above we calculated po
ization energy of anthracene and PTCDA crystals, wh
represent two major families of organic semiconducto
Both materials are monoclinic with two molecules per u
cell. Both molecules have centers of inversion and are ne
planar in the crystal. PTCDA molecules are coplanar, up t
small tilt, and form layers and stacks. In anthracene the an
between molecular planes is significant.

We used the x-ray crystal structures for PTCDA21 and for
anthracene.20 The positions of hydrogens, not given acc
rately by x ray, were AM1-optimized usingGAUSSIAN.16 The
gas-phase polarizability, needed to determine the atomic
rection ã, is given in Table I.

We obtain polarization energy of 330 meV per PTCD
molecule. This is two orders of magnitude greater than
meV that we get for anthracene. The large polarization
ergy of the PTCDA lattice is caused by significant part
atomic charges in neutral PTCDA molecules, which are n
ligible in anthracene due to the approximate electron-h
symmetry, as mentioned above.

Figure 1 compares partial atomic charges of a PTC
molecule in the gas phase and crystal. The inset explains
atom numbering scheme. Only one half of the molecule
shown because of Ci symmetry. Charge redistribution yield
excess positive charge on three hydrogens whose pa
charges roughly double. It is worth noticing that these hyd
gens reside in positions that suggest the formation of inc
ent hydrogen bonds; the approximation of zero overlap
cludes any covalent contribution. The distances from C

FIG. 1. Partial charges in PTCDA molecule in crystal latti
(r i , solid line! and in gas phase (r i

(0) , dashed line!.
4-5
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carbons to the nearest oxygen atoms in neighboring m
ecules are 3.338, 3.269, and 3.768 Å for C5-O18 , C14-O198 ,
and C6-O198 , respectively, while the corresponding C-H-
angles are 143.8°, 149.3°, and 158.4°~see Fig. 2!.

VI. POLARIZATION ENERGY OF CHARGE CARRIERS

We now consider a lattice with one or more neutral m
ecules replaced with molecular ions. To evaluate the ene
we solve self-consistent equations with the ions and subt
the polarization energy of the neutral lattice. Each ion
described byP i j

ion , ã ion, andr i
ion(0) ((r i

ion(0)561), which
may differ from the similar quantities in the neutral mo
ecule. WhileP i j

ion andr i
ion(0) are determined by semiempi

ical calculation, the atomic correctionã ion depends on a
separate calculation for the ion. In this work, we use
sameã for molecules and ions.

It is useful to rewrite the self-consistent equations~8! and
~15! in terms of the deviation from the neutral-lattice sol
tion

dr i
a5r i

a2 r̄ i
a , df i

a5f i
a2f̄ i

a , ~23a!

dmi
a5mi

a2m̄i
a , dF i

a5F i
a2F̄ i

a . ~23b!

The equations fordr i
a , df i

a , and each component ofdmi
a

anddF i
a then read

dr i
a5r i

a* 2(
j

P i j
a df j

a , ~24a!

dm i
aa5ã i

abdFi
ab , ~24b!

and

FIG. 2. Arrangement of PTCDA molecules in a layer@projection
onto ~102! crystalline plane#. Incipient hydrogen bonds~dotted
lines! involve hydrogen atoms 5~a!, 14~b!, and 6~c!, according to
the numbering. Crystalline coordinates here and in Table II confo
to the notation of Ref. 21.
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df i
a5( 8

b (
j

v~r i j
ab!dr j

b1vb~r i j
ab!dm j

bb , ~25a!

dFi
aa5( 8

b (
j

va~r i j
ab!dr j

b1vab~r i j
ab!dm j

bb . ~25b!

The source termra* is zero except for ions

r i
ion* 5Dr i

ion(0)2(
j

DP i j
ionf̄ j

ion[dr i
ion~f̄ !, ~26!

whereDr i
ion(0)5r i

ion(0)2r i
(0) , DP i j

ion5P i j
ion2P i j , and f̄ j

ion

is the potential at the ion’s position in the lattice. In a hyp
thetical situation when a neutral molecule is replaced wit
foreign molecule which, subject to the potentialf̄ i , has
charge distributionr̄ i , the source term is zero, and such
molecule will not disturb the translationally invariant se
consistent solution.

With ions present, the problem has no translational sy
metry, and the number of self-consistent equations is infin
We consider an imaginary cluster within an infinite latti
that includes all the unit cells within a certain distanceR
from the origin. Some dozens of molecules are required
the cluster to resemble a sphere. We setdr i

a5dmi
a50 for the

molecules outside the cluster, and solve the self-consis
Eqs.~24! and~25! for dr i

a , dmi
a , df i

a , anddF i
a within. This

corresponds to an infinite lattice in which only the charg
within the cluster are allowed to relax. Molecules outsi
retain the charge distribution of the neutral lattice.

Settingdr i
a5dmi

a50 does not makedf i
a and dF i

a zero
outside the cluster. Nevertheless, we can write an expres
for the polarization energy of ions that does not contain s
consistent potentials and fields outside the cluster. Subtr
ing Eq.~19! for the lattice with ions from the similar expres
sion for the translationally-invariant lattice we obtain

DEtot5
1

2 (
a

(
i

~dr i
af i

a(0)2dmi
aF i

a(0)!

1
1

2 (
ion

(
i

Dr i
ion(0)f i

ion . ~27!

The first sum runs over all moleculesa including the ions.
The second sum over the ions appears because bothr andf
components of the bilinear expression Eq.~19! are different
at a5 ion. The potentialsf i

a(0) and fieldsF i
a(0) in the unre-

laxed translationally invariant lattice are evaluated us
Eqs.~22! with r i

b5r i
(0) andmi

b50. Thus, Eq.~27! gives the
energy of a set of ions in aninfinite lattice in which mol-
ecules beyond the imaginary cluster are not allowed to re
The polarization energy of the set of ions in an infinite latti
is obtained asR→`.

A. PÁ in anthracene and PTCDA

We start with a single ion, when Eq.~27! yields eitherP1

or P2 in Eq. ~1!. The cluster of radiusR is centered on the
unit cell that contains the anion or cation. Since clusters
defined in terms of unit cells, we know the number of mo
4-6
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eculesM (R) andMvc /Nc54pR3/3 relatesR to the molecu-
lar volume vc /Nc in the crystal. The polarization energ
P11P2 for ions at infinite separation is shown in Fig. 3
a function ofM 21/3 for anthracene and PTCDA crystals. Th
‘‘charges only’’ points refer toã50 and polarization due
entirely to charge redistribution; the other points are ba
on the B3LYP values ofa ~Table I!. The largest clusters
shown in Fig. 3 containM52000 molecules, which corre
sponds to a cluster diameter of 2R5114 Å for PTCDA and
97 Å for anthracene.

The polarization energy decreases with cluster size
more degrees of freedom for charge relaxation are added
large R the missing part due to the molecules outside
cluster can be thought of as the polarization energy o
charge in the center of a cavity of radiusR in a continous
dielectric medium. Such energy is linear in 1/R. Linear ex-
trapolation in Fig. 3 givesP11P2522.204 eV for anthra-
cene and21.822 eV for PTCDA crystals. The smaller io
has the greater stabilization.

The polarization energy of a charge in a spherical cav
in an anisotropic medium has been evaluated by Bounds
Munn22

P6~`!2P6~R!52
e2

2R S 12
1

keff
D . ~28!

The effective dielectric constantskeff is expressed in terms o
the principal valuesk1,k2,k3 of the dielectric tensor

keff5
Ak2~k32k1!

FS arctanAk32k1

k1

,Ak3~k22k1!

k2~k32k1!
D , ~29!

FIG. 3. Convergence ofP11P2 for anthracene and PTCDA
with M 21/3, which is proportional to the inverse radiusR21 of the
cluster. Straight lines are linear fits. Open symbols show

‘‘charges only’’ results withã50.
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whereF(f,k) is the elliptic integral of the first kind. Equa
tions ~28! and ~29! determine the slope of the asymtotic b
havior of P6 in Fig. 3. As a consistency check we comput
the slope using the dielectric tensor obtained in Sec. V
The values 2.482 eV Å for anthracene and 2.167 eV
for PTCDA are within 3% of the slope of the straight line
Fig. 3 drawn through the last two calculated points. T
‘‘charges only’’ slopes are also within 3% of the dielectr

constants based onã50.
Submolecules necessarily yieldP15P2 , since ions are

assumed to have equal and opposite charges and the ne
lattice contains neither charges nor dipoles. The anthrac
result isP651.193 eV~Ref. 23! for three points at the cen
ters of rings and an effectivea based on the static dielectri
tensor of the crystal. The electronic polarization,P11P2

;2.40 eV, is somewhat larger than our 2.20 eV. F
PTCDA, 11 submolecules anda similar to Table I lead to10

P11P252.14 eV, which is again greater than our 1.82 e
While the results clearly depend on the inputteda, the po-
larization energy of single ions found via charge redistrib
tion is reduced compared to submolecules, especially w
only one or a few are used. The difference is even gre
when the ion’s chargesr i

ion(0) are frozen at the gas-phas
values. This decreasesP11P2 by 10–20 % in these sys
tems. Although anthracene and PTCDA ions are at invers
centers, their atoms are not and thus experience local fi
that are related by inversion. By contrast, submolec
charges are fixed at the outset and the field vanishes by s
metry at the center of the molecule.

The transport gap, Eq.~1!, of molecular crystals is di-
rectly related24 to photoelectron~PES! and inverse photo-
electron spectra~IPES! on surfaces, which yield adiabati
P11P2 that include6 intramolecular relaxation, but not lat
tice relaxation. The inferred24 P11P2;1.7 eV for PTCDA
films is quite consistent with the calculated 1.82 eV in t
crystal. The importance ofEt for electronic organic devices
and recent thin film data were the motivation for the accur
calculation of electronic polarization in the well-defined lim
of zero overlap. The systems of interest1–3,24have mobilities
of 0.1—1.0 cm2/Vs at room temperature, which is high fo
organics and indicates that overlap corrections will have
be included.

Partial charges and induced dipoles in the neutral lat
lead toP1ÞP2 . The individual components are shown
Fig. 4 and go asM 21/3}1/R. The anion and cation slopes a
equal at largeR, in accord with Eq.~28!. P1 and P2 are
almost identical for anthracene and strikingly different f
PTCDA. In the smallest cluster, which contains only the a
ion or cation, the ion interacts with the chargesr̄ i and di-
polesm̄i of the neutral lattice.

Finite P1(M51) andP2(M51) are the energies of th
cation and anion in the unrelaxed neutral lattice. They
nonzero due to fields in the neutral lattice. Without relaxat
of the ion itself,P6(M51) is given by the second term o
Eq. ~27! with potentialsf i

ion5f̄ i1f i
(0) . The relaxed ion in

the field of the neutral lattice has charge distributionr i
ion* ,

and P6(M51) is given by Eq.~27! with dr i
a5r i

ion* for a

e

4-7
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5ion and 0 otherwise. We have assumedã ion5ã for sim-
plicity; more generally, nonzeroDã5ã ion2ã will introduce
a source termmi

ion* 5Dã i F̄ i in Eq. ~24b!.
The large PTCDA contributions atM51 do not cancel

exactly because the anion and cation charges are not
cisely equal and opposite. Approximate electron-hole sy
metry for thep system of anthracene ensures almost eq
and opposite charges. Our treatment gives two contribut
to P6 , an initial interaction atM51 that does not arise fo
submolecules and a relaxation or polarization of the lat
that remains almost the same for the anion and cation. S
a distinction may be useful in future work.

The charge distribution in PTCDA is such that positi
atomic charges are closer to the molecular centers. The
sulting quadrupole moments of molecules create an ave
positive potential at each molecule in the neutral lattice. T
p-electron density above and below the molecular plane
generates a quadrupole as discussed by Silinsh and Ca6

In fact, the quadrupole contribution toP1 and P2 de-
pends on the macroscopic shape of the sample. It is pro
tional to*d3r (1/r 3), which gives finite contribution from the
remote parts of the sample. The contribution to the poten
is constant on the scale of the unit cell, because the co
sponding contribution to the field,}*d3r (1/r 4), vanishes.
Thus, the individual quantitiesP1 and P2 are not well de-
fined, but the shape-dependent contribution cancels exa
in the sum,P11P2 , which enters Eq.~1! for the gap.

The quantitiesI 2P1 and A1P2 can be viewed as the
ionization potential and the electron affinity of the solid. W
see that they depend on the macroscopic shape of the sa
due to quadrupolar corrections. In general, the polariza
energy of an abitrary set of charges in a crystal lattice
pends on the shape of the macroscopic sample, unles
total charge is zero.

The interpretation ofP1 and P2 is, however, of consid-

FIG. 4. Convergence ofP1 andP2 for anthracene and PTCDA
with with M 21/3. Straight lines are linear fits. The values atM51
are discussed in the text.
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erable interest because PES and IPES spectra are relate24 to
I 2P1 and A1P2 , respectively. Direct comparison, there
fore, requires a surface calculation. Compilations5,6 of I
2P1 for organics, while admittedly approximate, clear
point to P1.P2 and to the physical meaning of individua
polarization energies.

B. Ion pairs in anthracene and PTCDA

Polarization effects modify the interaction between cha
carriers. We computeV(r ) in Eq. ~2! by replacing two neu-
tral molecules in the lattice with a cation and anion. T
cation is at the origin and the anion’s center has crysta
graphic coordinatesr5(a,b,c) given in Table II. As in the
previous section, we consider an imaginary cluster of rad
R that contains both ions, solve the self-consistent Eqs.~24!
and ~25!, and evaluate the energyEpair using Eq.~27!. We
repeat with largerR until V(r ) converges.

Figure 5 showsV(r ) as a function of 1/M , which is pro-
portional to the inverse clustervolume, for various ion pairs.
Since the pair is neutral, the 1/R contribution given by Eq.
~28! vanishes, and the asymptotic behavior is linear in 1/R3.
It represents the polarization energy of a dipole in the cen
of spherical cavity in a dielectric medium.

The extrapolated values ofV(r ) for various pairs are pre
sented in Table II, which also lists the distances betwe
centers and identifies pairs using the crystallographic n

TABLE II. EnergiesV(r ), in eV, of charge-transfer states withi
zero-overlap approximation for several separationsr . The cation
and anion are at (0,0,0) and (a,b,c), respectively.

Pair (a,b,c) r, Å V(r ) Vappr(r )a

Anthracene

( 1
2 ,2 1

2 ,0) 5.228 20.92 20.79

(0,1,0) 6.016 20.82 20.76
(1,0,0) 8.553 20.55 20.50
(1,0,1) 9.458 20.51 20.50

( 1
2 , 1

2 ,1) 9.894 20.54 20.57

(2
1
2 , 3

2 ,0) 9.986 20.51 20.47
(1,1,0) 10.456 20.49 20.42
(0,0,1) 11.172 20.51 20.56
(1,21,1) 11.209 20.50 20.42
PTCDA
(1,0,0) 3.726 21.06 20.75
(2,0,0) 7.453 20.57 20.46

(0,1
2 ,2 1

2 ) 10.558 20.46 20.48

(1,2 1
2 , 1

2 ) 10.751 20.43 20.40
(3,0,0) 11.179 20.38 20.32

(1,1
2 ,2 1

2 ) 11.624 20.43 20.46

(0,1,0) 11.998 20.42 20.46
(2,2 1

2 , 1
2 ) 12.144 20.36 20.32

(1,21,0) 12.563 20.39 20.42

(2,1
2 ,2 1

2 ) 13.658 20.38 20.37

(2,21,0) 14.124 20.33 20.32

aEq. ~30!.
4-8
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CHARGE REDISTRIBUTION AND POLARIZATION . . . PHYSICAL REVIEW B64 195124
tion of Ref. 21. The lowest charge-transfer~CT! exciton in
PTCDA ~Fig. 5! corresponds to neighbors in the stack. T
next CT state is the second neighbor along the stack, w
is closely followed in energy by other configurations f
neighboring molecules in different stacks, as shown in Fig
In anthracene the lowest CT state corresponds to the clo
neighbor.

Bounds and Siebrand25 obtainedV(r ) for anthracene us
ing a single point per molecule and experimental polarizat
data; they find 0.78 and 0.58 eV binding for the lowest C
states. Three submolecules at the centers of rings yie26

binding energies of 0.96 and 0.73 eV, which are close to
0.92 and 0.82 eV and show the need for several point
represent long molecules. The inclusion26 of charge-
quadrupole corrections require an extension of the pre
work that is in progress. Anisotropica and charge redistri-
bution in anthracene produce several instances~e.g., at 9.894
and 11.172 Å) whereV(r ) is not monotonic inr.

The point-charge approximation27 gives almost 2.0 eV of
binding for PTCDA neighbors in a stack, twice the 1.05 e
in Table II, while the binding10 is 0.99 eV for 11 submol-
ecules. Point charges are poor approximations for large m
ecules with interplanar separation of 3.4 Å. Charge redis
bution and partial charges provide a direct way to comp
such electrostatic interactions.

We may considerV(r ) for a cation-anion pair in a conti
nous anisotropic medium with dielectric tensork. We de-
scribe each ion with fixed partial chargesr i and write an
electrostatic expression in terms of the double sum over
atoms of the cation and anion. SinceDEtot is defined relative
to the neutral lattice, charge differencesDr i

ion5r i
ion2 r̄ i ap-

pear inV(r ):

FIG. 5. Interaction energyV(r ), Eq. ~2!, for various ion pairs in
clusters ofM molecules.
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Vappr~r !5(
i j

Dr i
1Dr j

2

@det~k!kab
21r i j

a r i j
b #1/2

. ~30!

Here r i j
a are the components ofr i j 5r i

12r j
2 , and det(k)

5k1k2k3 is the determinant of the dielectric tensor.28 At
large r , Eq. ~30! reduces to point charges, since( i r̄ i50
ensures vanishing interactions in the neutral lattice. T
lowest-order corrections to Eq.~30! are induced dipoles due
to the other charge.

Table II lists Vappr(r ) values based on Eq.~30! and the
dielectric tensors obtained in the next section. Gas-ph
charges and dielectric data are a simple and reasonably
curate approximation to the self-consistent calculation.

We find comparableV(r );20.5 eV for second neigh-
bors in PTCDA stacks and first neighbors in different stac
~Fig. 2!. Mazur and Petelenz10 report instead that, by a sma
margin, an interstack neighbor has binding 1.02 eV that e
exceeds the first neighbor. They emphasize the compet
between large in-plane polarization for neighbors in adjac
stacks and Coulomb interactions in the same stack. S
trade-offs are seen in Table II for both anthracene a
PTCDA, although not as strongly as in Ref. 10. They co
puteEpair for fractional charges at 11 submolecules and th
find the Coulomb interaction between the anion and cat
using Löwdin charges in a 6-31G basis. While it is incons
tent to use different charges for polarization and direct int
actions, it is natural to prefer atomic charges for the ani
cation interaction to arbitrarily placed partial charges.

We also find ~1,0,0! to be the lowest CT state b
;0.3 eV on using, as in Ref. 10, 11 fractional charges a
partial polarizabilities for both the polarization and catio
anion interaction. Hence~1,0,0! is the lowest CT state in
PTCDA and, although important, the greater in-plane po
izability does not stabilize neighbors in different chains b
low ~2,0,0!.

VII. DIELECTRIC TENSOR

We now summarize the calculation of the dielectric ten
by considering a sample in a uniform electric field. The
results have been reported previously.11 The procedure is
similar to the polarization energy of the neutral lattice in S
V.

Formally, an applied field breaks translational invarian
since the electrostatic potential is unbound. Nevertheless
can add an appropriate constant to the potential in each
cell and restore translational symmetry, without effect
charge distribution. This follows for zero overlap becau
space can be subdivided such that each molecule feel
own potentialf(r ). The charge distribution does not chan
when a constant is added to allf i , according to Eq.~12!.

We addE0
a to the right-hand side of Eq.~22b!, and the

corresponding term2r i
aaE0

a to the right-hand side of Eq
~22a!. We then solve 4NNc self-consistent Equations~22!
and~8!, and obtain the total dipole momentma of each mol-
eculea in the unit cell using Eq.~13!. The total dipole mo-
ment of the unit cellm5(ama determines the polarization
P5m/vc , wherevc is the unit-cell volume. Repeating thi
4-9
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E. V. TSIPER AND Z. G. SOOS PHYSICAL REVIEW B64 195124
procedure withE0 directed along each of the coordinate ax
we find the tensorz that relatesP to E0:

P5zE0 . ~31!

Alternatively, one may choose to differentiate the se
consistent equations with respect toE0

a to find an explicit
expression forz.

The susceptibility tensorx is defined by the relationP
5xF, whereF is the total average macroscopic field that
created by external sources as well as the polarized s
itself.28 According to the Lorentz relation, a dielectric sphe
with uniform polarizationP creates a field24pP/3 in its
center. The spherical shape is consistent with the defini
of V(r ) in Eq. ~21!. Thus,

F5E02
4p

3
P. ~32!

Using Eq.~32! we eliminateE0 in favor of F and usingk
5114px we obtain the dielectric tensor

k5
11~8p/3!z

12~4p/3!z
. ~33!

Table III lists the principal components ofk in anthracene
crystals and PTCDA films.k2 is along theb axis; u is the
angle in the ac plane betweenk1 and a. The anthracene
data17,29–31are averages over independent measuremen
the dielectric tensor and refractive indices. The calcula
values are fora in Table I, and additionala inputs for larger
bases are reported in Ref. 11. The results agree with
available experimental data, which has an accuracy of a
percent. Whileã50 accounts fork3, the largest componen
the quantitative importance of accuratea is clearly seen in
Table III.

Equation~33! for k is strictly based on neutral molecule
in a translationally invariant crystal. The energies of mole
lar ions were found instead within clusters of radiusR. As
noted above, Eq.~28! reproduces theM 21/3 slope in Figs. 3
and 4 within 3%. This demonstrates the internal consiste
of the procedure.

TABLE III. Experimental~averaged! and calculated component
of dielectric tensor of anthracene and PTCDA.

Inputs k1 kb k3 u°

Anthracene
Experiment~Refs. 17,29–31! 2.49~10! 3.07~10! 4.04~20! 28~2!

B3LYP/6-31111G** 2.23 2.91 4.03 31.6

Charges only (ã50) 1.36 2.39 3.90 34.5

PTCDA
Experiment~Ref. 17! 1.9~1! 4.3~2! 4.6~2!

1.85 4.07 4.07
B3LYP/6-31111G** 1.96 3.98 4.02

Charges only (ã50) 1.01 3.74 3.81
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VIII. DISCUSSION

In the limit of zero overlap, molecules in organic crysta
are quantum systems with purely classical electrostatic in
actions. We have developed a self-consistent approach
treats each molecule quantum-mechanically, subject to
external fields of all other molecules. We have found th
such external fields can be treated perturbatively to a g
accuracy, expanding the solution of Schro¨dinger equation for
each molecule near the gas-phase solution. Self-consis
analysis of large systems, with over 105 atoms, is straight-
forward.

The self-consistent procedure captures an important
fect: the redistribution of charge in molecules subject
~nonuniform! external fields. Direct description of charge r
distribution avoids the ambiguity that accompanies partitio
ing the molecular polarizability over a number of polarizab
points.

As outlined in Sec. III, we discretize the molecular char
distributionr(r ) by assigning a partial charger i and induced
dipole mi to every atomi. The atom-atom polarizability ten
sor P i j then governs charge redistribution in external field
The tensorP i j is conveniently found quantum mechanical
at a semiempirical level, such as INDO/S, which is w
suited for introducing potentials or site energies. The corr
tion ã5a2aC is distributed over the atoms, and as in pr
vious theory,6,8 we still face the familiar problems associate
with submolecules. The present approach, however, all
for a certain compensation of error: the partitioning now on
involves the small correctionã, which is about 10—20 % of
the actual molecular polarizabilitya in large conjugated
molecules.

We return to Stone’s approach13 of distributed polarizabil-
ities in which molecules are partitioned into regionss, the
choice of which is left open, characterized by the chargesQs,
dipoles ma

s , and higher multipole moments. Perturbatio
treatment leads to the linear dependence of all the multip
moments on the external potentialV(r ), Taylor expanded
about the centerss of the regions. For instance, chargeQs in
Eq. ~3.5! of Ref. 13 depends on the potentialV(s8), field
Va(s8), and higher derivatives ofV(r ) via susceptibilities
a00, a0a , etc. The charge susceptibilitya00 corresponds to
our tensorP in Eq. ~11!. Instead of the perturbation expan
sion we start with the energy functional Eq.~9! which gives
no cross terms, so that the charges only depend on poten
and the dipoles depend on fields. In addition, we cho
atomic polarizabilitiesã to be local by construction. Al-
though disjoint regionss are not essential, they are needed
practice13 and are not easy to define for molecules such
anthracene or PTCDA. We avoid regions by using atom
chargesr i

a and the related tensorP to describe charge redis
tribution according to Eq.~8!. We retain induced dipoles an
ã in order to match the best available molecular polariza
ity in Eq. ~14!. Static atomic dipolesmi

(0) or quadrupoles can
be introduced to fit higher moments of the molecular cha
distribution, and we are considering such extensions.

The electrostatic potentialf(r ) created by a molecule
with charge distributionr(r ) is given by Eq.~3!. While
4-10
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atomic charges cannot be defined uniquely, charges or
poles that reproducef(r ) accurately at intermolecular dis
tances in crystals would be completely satisfactory. Thusab
initio r(r ) generatef(r ) outside the molecule, which pro
vides a basis32 for assigning discrete charges. This sugge
an interesting possibility of introducing gas-phase atomic
polesmi

(0) along with the gas-phase atomic chargesr i
(0) in

Eq. ~8b!, as long as they improve the description of fiel
created by a neutral molecule.

Another possible extention is to introduce atomic quad
poles to representp-electron density above and below th
plane. This will result in an additional 10N scalar equations
per molecule. In practice, only theqNN component normal to
the conjugation plane is needed forp electrons. Classica
multipoles lead to complications even in the limit of no ove
lap. These are corrections, however, to charges and ind
dipoles whose fieldsF i we have found, and perturbatio
theory may well be sufficient.

We have already contrasted our method to the exis
approach in which a molecule is represented by a numbe
polarizable points, termed submolecules. The qualitative
ferences are the electrostatic energy of the neutral lattice
the energyP6(M51) of an ion in the unrelaxed lattice i
Fig. 4. Charge redistribution avoids entirely the number a
location of the submolecules. Since the actuala enters in
either case, the numerical results forP11P2 in Sec. VI and
for V(r ) in Table II do not differ greatly, especially in com
parison to calculations with many submolecules.

Crystalline organic films that function as electron or ho
conductors are of particular interest for organ
electronics.1–3 Although overlap is then finite, it should b
considered as a correction to much greater polarization e
gies. We have a systematic method for computing the e
tronic part ofP11P2 , while the total polarization energy in
Eq. ~1! is about 10% larger due to the lattice contribution
even before overlap or charge transport is introduced. R
able comparisons of the large electronic part are the
step. We comment on two issues.

First, the greater stabilization of separated ions has m
implications on the binding energyuV(r )u of neighboring
ions. Since the energy of the lowest CT in PTCDA~Ref. 33!
is comparable to the lowest Frenkel exciton,uV(r )u is closely
related to discussions and debates about the magnitud
exciton binding energies.34 Lattice ~molecular! relaxation
about ions is estimated6 to be tens of meV per ion. The valu
of 15 meV per charge and 10 meV per CT state has rece
been estimated for anthracene.35 As expected, separate
charges are preferentially stabilized, but the effect is sma

Recent interest in organic devices has focused on sys
.
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with mobile holes or electrons. Finite overlaps and trans
integrals in the 50—100 meV range are typical for hoppi
transport and stabilize polarons in Holstein models. T
range is now 100 meV or more per charge. CT states,
contrast, have vanishing bandwidth or mobility because tw
electron transfers are needed. Overlap, therefore, also pr
entially stabilizes individual ions and hence reducesuV(r )u.
The lowest CT state of PTCDA has electronic binding of;1
eV in Table II that could be reduced substantially by overla

The second issue addresses novel features of
consistent atomic charges. As noted above, charge redist
tion of isolated ions increasesP1 or P2 by about 10% even
when ions are at inversion centers. The lower symmetry
ion pairs leads to more extensive charge redistribution
mutual polarization that is automatically included in o
treatment throughP i j for ions. Charge redistribution on ion
is important. Its contribution can be estimated by se
consistent calculation with ionic charges and dipoles se
gas-phase values. Specific contributions are found by c
paring two self-consistent solutions.

In summary, we have implemented a general approac
electronic polarization of organic molecular crystals in t
limit of zero intermolecular overlap. Redistribution of parti
atomic charges is governed by the atom-atom polarizab
tensorP i j , which provides a quantum mechanical basis
the description of electronic polarization. Partial charges
place the microelectronics of postulated submolecules in
vious treatments and introduce such new features as e
tronic stabilization of the neutral lattice and charge relaxat
on ions. Self-consistent atomic charges and induced dip
relate the molecular polarizability of anthracene or PTCD
to the dielectric tensor and the energies of fixed ions and
pairs in the crystal. The cluster approach used for ions
suitable for surfaces and other systems with reduced sym
try, provided that all molecular positions are specified. Ze
overlap provides a starting point for the treatment of el
tronic polarization in organic systems with mobile localiz
charge carriers.
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Köster, Chem. Phys.261, 359 ~2000!; H. Reis, M.G. Papa-
dopoulos, and D.N. Theodorou, J. Chem. Phys.114, 876~2001!.

10G. Mazur and P. Petelenz, Chem. Phys. Lett.324, 161 ~2000!.
11Z.G. Soos, E.V. Tsiper, and R.A. Pascal, Jr., Chem. Phys. L

342, 652 ~2001!.
12M.C. Zerner, G.H. Loew, R.F. Kirchner, and U.T. Muelle

Westerhoff, J. Am. Chem. Soc.102, 589 ~1980!.
13A.J. Stone, Mol. Phys.56, 1065~1985!.
14C.A. Coulson and H.C. Lonquet-Higgins, Proc. R. Soc. Lond

Ser. A191, 39 ~1947!; L. Salem,The Molecular Orbital Theory
of Conjugated Systems~Benjamin, New York, 1966!, Chap. 1.

15C.L. Cheng, D.S.N. Murthy, and G.L.D. Ritchie, Aust. J. Che
25, 1301 ~1972!; R.J.W. LeFevre, L. Radom, and G.L.D
Ritchie, J. Chem. Soc. B, 775~1968!.

16M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M
Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery,
R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.
Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Ba
one, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adam
S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui,
Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.
Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefan
G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomper
R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A
Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B
Johnson, W. Chen, M.W. Wong, J.L. Andres, M. Head-Gord
E.S. Replogle, and J.A. Pople,GAUSSIAN 98 ~Gaussian Inc, Pitts-
burgh, 1998!.

17D.Y. Zang, F.F. So, and S.R. Forrest, Appl. Phys. Lett.59, 823
~1991!.
19512
.

tt.

,

.

.
r.,

,
.

,

.
,

18D. Fox, Chem. Phys.17, 273 ~1979!.
19E. Madelung, Die Mathematischen Hilfsmittel Des Physike

~Springer-Verlag, Berlin, 1957!; M. Born and M. Bradburn,
Proc. Cambridge Philos. Soc.39, 104 ~1943!.

20C.P. Brock and J.D. Dunitz, Acta Crystallogr., Sect. B: Struct. S
46, 795 ~1990!.

21T. Ogawa, K. Kuwamoto, S. Isoda, T. Kobayashi, and N. Ka
Acta Crystallogr., Sect. B: Struct. Sci.55, 123 ~1999!.

22P.J. Bounds and R.W. Munn, Chem. Phys.44, 103 ~1979!.
23I. Eisenstein and R.W. Munn, Chem. Phys.77, 47 ~1983!.
24I.G. Hill, A. Kahn, Z.G. Soos, and R.A. Pascal, Jr., Chem. Ph

Lett. 327, 181 ~2000!.
25P.J. Bounds and Siebrand, Chem. Phys. Lett.75, 414 ~1980!.
26P.J. Bounds, W. Siebrand, I. Eisenstein, R.W. Munn, and P. P

lenz, Chem. Phys.95, 197 ~1985!.
27Z. Shen and S.R. Forrest, Phys. Rev. B55, 10 578~1997!.
28L.D. Landau and I.M. Lifshitz,Electrodynamics of Continuou

Media ~Pergamon, Oxford, 1993!.
29N. Karl, H. Rohrbacher, and D. Siebert, Phys. Status Solidi A4,

105 ~1971!.
30R.W. Munn, J.R. Nicholson, H.P. Schwob, and D.F. Williams,

Chem. Phys.58, 3828~1973!.
31A.N. Winchell, The Opecial Properties of Organic Compound,

2nd ed.~Academic Press, New York, 1954!.
32M.M. Francl and L.E. Chirlian, Rev. Comput. Chem.14, 1

~2000!.
33M.H. Hennessy, R.A. Pascal, Jr., and Z.G. Soos, Mol. Cryst. L

Cryst.335, 41 ~2001!; M.H. Hennessy, Z.G. Soos, R.A. Pasca
Jr., and A. Girlando, Chem. Phys.245, 199 ~1999!.

34Primary Photoexcitations in Conjugated Polymers: Molecul
Exciton Versus Semiconductor Band Moder, edited by N. S. Sar-
iciftci ~World Scientific, Singapore, 1997!.

35I.V. Brovchenko, Chem. Phys. Lett.278, 355 ~1997!.
4-12


