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Charge redistribution and polarization energy of organic molecular crystals
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We present an approach to electronic polarization in molecular solids treated as a set of quantum systems
interacting classically. Individual molecules are dealt with rigorously as quantum-mechanical systems subject
to classical external fields created by all other molecules and, possibly, external sources. Self-consistent equa-
tions are derived for induced dipoles and for atomic charges whose redistribution in external fields is given
explicitly by an atom-atom polarizability tensor. Electronic polarization is studied in two representative organic
molecular crystals, anthracene and perylenetetracarboxylic acid dianhydride, and contrasted to previous results
for systems of polarizable points. The stabilization energies of the neutral lattice, of isolated anions and cations,
and of cation-anion pairs are found. Charge redistribution on ions is included. The dielectric tensors of crystals
are successfully related to gas-phase properties and provide consistency checks on polarization energies. The
procedure is generally applicable to organic crystals in the limit of no intermolecular overlap.
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I. INTRODUCTION crucial approximation to our general development of elec-
tronic polarization energies. The energy necessary to create
Recent advances in the preparation of ordered thin filmsan electron-hole pair at finite separatiomefines the inter-
and of organic molecular crystafswith reduced impurity  action potentiaV(r)<0:
levels have revived interest in organic electronics and the
properties of charge carriers in these materials. Organic mo- Epail 1) =E(+V(r). 2
lecular crystals are typically insulators with low dielectric
constantk~3 and charges localized on molecules. Elec-Nearest-neighbor ion pairs of large molecules obviously de-
tronic polarization, an effect that is usually not considered inviate from point charges.
conventional inorganic semiconductors, has a central role in Mott and Littletor first estimated the electronic polariza-
the electronic properties of organic crystals, as discussed ljon energy in an atomic lattice by considering each atom as
Gutmann and Lyon$,Pope and Swenberfgand Silinsh and  a polarizable point. The self-consistent treatment of point
Capek® When a charge carrier is brought into a molecularcharges in lattices of polarizable points was subsequently
solid, its field polarizes the surrounding molecules. Seconddeveloped by MunA,Silinsh® and co-workers. While satis-
ary polarization fields created by polarized molecules confactory for atomic lattices, polarizable points for molecules
tribute to the total self-consistent polarization cloud that surcompletely neglect their structure. Polarization stufiégri-
rounds each charged quasiparticle. Such a cloud isarily on the acene family, addressed molecular size to some
sometimes referred to as an electronic polaron, to distinguisbxtent by introducing submolecules, whose choice is arbi-
from lattice relaxation effects. trary, that carry a fraction of the total molecular polarizabil-
The overall energy relaxation of a positive and negativeity. A recent applicationto anthracene has several choices,
charge carrielP . +P_ is an important property of an or- the most elaborate one being submolecules at all carbons,
ganic material. Typical valués® are in the range of 2-3 eV. while a study® of perylenetetracarboxylic acid dianhydride
The transport gap, i.e., the energy necessary to create a we{PTCDA) has 11 submolecules centered at rings and CO

separated electron-hole pair is bonds. In effect, the quantum nature of molecules is approxi-
mated by the microelectrostatics of submolecules.
Ei=I-A-P,—-P_, (1) In large 7-conjugated molecules subject to an external

field, charge redistributes over distances comparable to the
where | and A are the gas-phase ionization potential andsize of the molecule and generates large nonlinear optical
electron affinity of the moleculeP, and P_ contain po- responses. Such a flow of charge in molecules creates sec-
laronic contributions due to both intramolecular and latticeondary polarization fields that do not necessarily reduce to
phonons that are estimafeth be ~10%. We focus on the the field of a set of induced dipoles. Thus, rigorous treatment
large electroniccomponent ofP, andP_ and from now on of the polarization field requires analysis of the molecular
exclude polaronic effects. charge distributiorp(r).

The appearance in E¢l) of gas-phase properties is made  Another issue is electrostatic interactions present already
possible by weak intermolecular forces and Van der Waal#n the ground state of a condensed phase composed of neu-
separations in organic molecular crystals. The solid-state ertral molecules, especially when they contain heteroatoms.
vironment is taken as a perturbation in molecular excitonThese charges induce mutual polarization in the surrounding
theory. In contrast to inorganic semiconductors, organic crysmolecules and contribute to the overall stabilization energy
tals can normally be approximated as molecules with negliof the solid. We estimate that the polarization contribution to
gible overlap, and vanishing intermolecular overlap is thethe ground-state energy can be quite significant, reaching
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hundreds of meV per molecule. A notable exception is thelThe second term compensates for double counting the inter-
acene family, whoser-systems have approximate electron- molecular interactions in the first term. Equivalently,
hole symmetry and negligible partial charges, making the
polarization energy small.
In this paper we present an approach to electronic polar- Etot_E
ization in molecular solids that allows for quantitative de-
scription of intramolecular charge redistribution. The crucialMinimization of E,,, with respect to¢?(r) yields the self-
approximation is the neglect of intermolecular overlap. Zeraconsistent ground state energy of the molecular solid in the
overlap implies that coordinate space can be subdivided intapproximation of zero overlap.
nonoverlapping regions, e.g., Wigner-Seitz cells, associated In principle, variation of Eq(5) with respect tog? gives
with individual molecules. Each molecule is then a quantum-an equation fop?(r), which together with Eq(3) forms a
mechanical system subject to external fields created by theomplete self-consistent system. A more efficient way, per-
crystal and, possibly, other external sources. The externadlaps, is to use an appropriate quantum chemical procedure to
fields are rigorouslylassical so that quantum mechanics is find p3(r; ¢?) for each molecule and iterate several times
needed at the intramolecular level only. by updating?(r) using Eq.(3). The self-consistent problem
Section Il illustrates the idea and presents self-consisterdefined by Eqs(3) and (5) for charges and potentials is
equations. Section Il describes an approximate discrete foriypical of classical electrostatics. The quantum part is limited
of the equations that, we believe, strikes an optimum balancg the charge distributiop?(r, ¢2).
between accuracy and simplicity for practical use. In Sec. IV The indexa can be dropped or restricted to a single unit
the equations are applied to the translationally invariant latcell when the translationally invariant state of the lattice is of
tice to find the polarization contribution to the binding en-interest. This is the case, for example, in the calculation of
ergy. In Sec. V equations for the polarization energy of athe dielectric tensdft Otherwise, a finite number of mol-
system of ions embedded in a lattice are derived. The polaicules must be considered. A practical implementation of the
ization energy of isolated charge carriers in anthracene angrocedure requires some form of discretization of the con-
PTCDA crystals is calculated, as well as the energy of varitinuous functionsg?(r) and p?(r) defined within the mo-
ous ion pairs. The dielectric tensors of anthracene angkcular volume. Certain trade-off between the accuracy and
PTCDA are computed in Sec. VII, and their consistency withsimplicity suitable for repetitive quantum-chemical calcula-
polarization energy calculations is established. We compargon is unavoidable. In the following section we develop a
P,, P_, andV(r) to submolecular results and comment simple scheme, which captures intramolecular charge redis-
briefly in Sec. VIII on applications to organic solids with tribution to a quantitative accuracy. The procedure has been
mobile charge carriers. successfully implemented by us to calculate indices of re-
fraction of anthracene and PTCDA.

1
- EJ d3r(¢a_ d)gppppa . (5)

Il. SELF-CONSISTENT CHARGE DISTRIBUTION

In the zero-overlap approximation, the self-consistent so- lll. MOLECULE IN NONUNIFORM FIELD

lution of the Schrdinger equation for a solid reduces to a |n this section we omit the index and consider a single
product of wave functions of individual molecules. The molecule Subject to an external potenwi(h')_ We note that
minimum energy relative to gas-phag®ninteractingmol-  charge redistribution gives a major contribution to the polar-
ecules or ions can be done in two steps. First, the changeability of large conjugated molecules. This “major part” is
E(¢) in the ground state energy of each molecule is found asot defined quantitatively, as there is no unique definition of
a functional of the external electrostatic potenidr). For  atomic charges. The scheme we develop below separates mo-
simplicity we neglect any magnetic interactions. The groundecular polarizability into two parts, the sum of which
state charge distributiop(r; ¢) also depends o and de-  matches the actual molecular polarizabilitywith the best
termines the secondary polarization field created by the molyalue known from experiment or theory.
ecule. We use a semiempirical Hamiltonian because it provides a
The total electrostatic potential at a pomwithin a mol-  natural way to represent an arbitrary external potential acting
eculea is created by all other molecul&s#a and, possibly, on a molecule. We define; = ¢(r;), the potential at the

an applied field: position of each atomm;. A site energy¢, is added to the
diagonal matrix elements for the orthogonalized valence or-

" P) bitals of atomi. We employ the INDO/S Hamiltonialf,
()= PpapplT) +2 fds — |f o (3 which is known to approximate molecular properties at only

a tiny fraction of the cost ofb initio calculations. Through-

The prime at the sum excludes the term witha. The total  OUt the paper we use lin chargeSpi""., wherei labels

energy of the solid is then atoms in molecul@. The charges are deflngd as the sums of

occupation numbers of orthogonalized orbitals of aiom
a(r: %) p2(r": ) The corresponding (:_ontributioaiaC to the actual polariz-

Emt:z E3($%)— Z f f d3rd3r’p PP AT _ _ablllty «a is clearly restricted tq the molegular plane in con-
a a<b [r—r’| jugated molecules. We associate the differencea® be-

(4)  tween the actual and INDO/S polarizabilities with “atomic”
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contributions caused by the distortion of atomic orbitals inThe last two terms describe the energy relaxation of the mol-
the field. Atomic contributions are small corrections to largeecule in the external field. The positive-definite symmetric
in-plane polarizabilities. We note thainy choice of p;(F) matrix IT;; is the susceptibility with respect to site potentials

leads to in-planex® as a consequence of a discrete chargep; [see Eqs(8a) and(10)]:

distribution. 5
Atomic contributions tow can be described, as in atomic ﬂ) _ _( J°E ) (11)
abi/ Ipidd;/

lattices, in terms of induced dipoles situated at the positions
of atoms. Based on such an idea we propose the following
minimal scheme that is designed to capture both charge?artial derivatives are evaluated @t=0. II;; determines
redistribution and “atomic” parts of the molecular responsethe charge redistribution among atoms in the external poten-
to external fields. We describe the state ofNsatom mol- tial. It is a natural extension of the similar quantity, used
ecule by a set of ® variables,p; and u;, which represent in m-electron theory? and called the atom-atom polarizabil-
the partial charges and induced dipole moments of atomdty. In our case, the total charge of all valence electrons is
The same number of variableg)=(r;) and F;= considered. Note that our definition differs by a factor
—V ¢(r;), describes the external field acting on a molecule.~ 1/2.

We denote byg; the deviation of partial charges from the ~ Atom-atom polarizabilitied1;; obey the condition
ground-state valugs'® of an isolated molecule or molecular

ion 2 Hij:E Hij:O, (12)
i ]

) =9 —50) 6
a()=pi(h)=pi ® since the charge distribution in E¢8a) is invariant to an
At small fields the energy of the molecule is quadratic in theadditive constant in all site potentiads . The zero-overlap

Hij:_

distortion from equilibrium: approximation conserves charge at each molecule. Expan-
1 sion to second order ig; is sufficient for;<1 eV. Equa-
E(p . b F)== T g+ o tions (8) eliminate the need to solve repetitively the quantum
(piopi i b1 F) =5 ; 9t 4 E. pid problem for the molecule. We calculad(N+1)/2 atom-

1 atom polarizabilitieslI;; only once using Eq(11) for the
+= ~-1. E (7 neutral molecule and for the cation and anion. Stronger per-
2 2 paci A 2. Hi @ turbations may require reevaluation f; at some interme-

diate ¢; .

. _ . . . 71 _
Here the positive-definite charge stiffness matfiix = de The total induced moment of a molecule is

scribes the increase in the internal energy of the molecule

when the charge distribution deviates from its zero-field

equilibrium; the tensoi; * plays the same role for atomic M:Z ripi+ m). (13
dipoles. At given configuratiofig; ,F;} of the external field,

the minimum of the energy functional E¢) is achieved at The molecular polarizability consists, therefore, of two

terms,a= o+ a:
Pi:pi(O)_; 1L &; (89
aaﬁ:% nijrf“rjMZi a’f, (14)
wi=aoiF;. (8b) .
_ where the Greek indices take the valuey, andz
We see thaly; is the polarizability for atoni. It does not Equation(14) illustrates the advantages and limitations of
necessarily reduce to a scalar, since atoms in a molecule hapertial atomic charges. With the aid bf;;, they provide a

no rotational symmetry. We could also assume nonzeroigorous description of charge redistribution. The assumption
atomic dipoles;ui(o) in the ground state of nonpolar mol- of polarizable points is atomic lattices is kept, however,

ecules and so obtain symmetric equations, but we$®t  througha=a— . We have corrections to INDO/S charges

=0 in this paper. Equation$8) are similar to Sto_ne’§’ and distributea proportionally to the numbers of valence
analysis, in which molecules are partitioned into regions. We : . N ~
: . . electrons n; associated with individual atoms:g;
contrast the two approaches in the Discussion. Z i } 0 i
The energy of the molecule at the minimum is =an;/Zn; ._As in previous theo_r?, a is an independent
gas-phase input to the calculation.

) 1 Table | summarizes results for anthracene and PTCDA.
E(¢.F)=2> pO¢+ > > (Gidhi— miFy). (9 Density functionalB3LYP) results have been obtained using
' ' the GAUSSIAN 98 program'® Theory and experiment are in
Equivalently, reasonable agreement for anthracene molecules when large
L L basés? sets are uset? (such as 6-311 +G**). Dieérel;tric
_ 0, = R3O - data’ for crystalline PTCDA films are also consistenith
E(¢.F) Z PGS ; $illij b~ 3 Z FiaF;. calculated molecular polarizabilities. The INDO/S results for
(10 a® from Eq. (14) are confined to in-plane components that
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TABLE |. Principal components of the molecular polarizabil-
ities of anthracene and PTCDA, the lori), medium (M), and
normal (N) axes are fixed byD,, symmetry.

Method anny (A% auw (A% (AY)

Anthracene

Experiment(Ref. 15 15.2 25.6 35.2
15.9 24.5 35.9

B3LYP/6-311+ + G** 12.03 24.27 42.56

INDO/S (a©) 0 24.05 41.52

PTCDA

B3LYP/6-311+ + G** 18.06 50.27 88.18

INDO/S (a©) 0 50.84 84.54

represent charge redistribution accordindlg in Eq. (14).
We also needae=a—aC. Unless otherwise indicated, we
will use the B3LYP polarizabilities in Table I. Since they
exceeda®, atomic contributions increase the polarization
compared to the “charges-only” choice af=0. We note
that simple Hekel theory often overestimates responses t

applied fields and hence the amount of charge redistributiorP0Ss!
in that casen may be negative and the atomic part reduces

the polarization. Equation®) hold for anya.

IV. SELF-CONSISTENT EQUATIONS

In the condensed phase the potential and field at the p

sition of atomi of moleculea created by all other molecules .

b#a are

#=3" S ol toaru, (59

Fr=3 "  ourefoariul’, s

where v(r)=1/r, v,(r)=—dvlar®, v,pg(r)=d%vlar*rk.
Summation over repeated Greek indiecegB3=x,y,z is as-
sumed. The vectar’®=r?—r? points to the atom of interest
from atomj of moleculeb. Here we have assumed no exter-
nal sources for simplicity. Equatior{45) together with Egs.
(8) form a complete self-consistent linear systemdpr
%, andF?.

The total polarization energy of the solid isompare to
Eq. (5)]

1
Bo=2 |E*=5 2 (pfe7-pFD|. (16
After some algebra and using E@®), this reduces to
1
Bo=3 2 2 14 (17)
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The derivation of this formula is simplified by replacing the
dipoles by pairs of charges separated by small distances, and
taking the limit in the final expression.

The total energy is a bilinear form of unperturbed charges
p2(® and self-consistent potentials® . We can write it also
in terms of self-consistent chargp8 and dipolesu?, defin-
ing the unperturbed potentials®® and fieldsF*® in Egs.
(15) by settingp?=p3® and u?=0. Using the identity

> pOg2=> > v(r3")pdOpP=2 pPpP(®),
ai a#b ij bj
(18)
the total energy becomes

1
Etotzz ; Z (P?¢?(O)_M?Fia(o))- (19
We use this form ok, in Sec. VI to treat ions in infinite
lattices.
Equation(19) reduces to the previous resti®®when all
molecules are shrunk to points, wih)p®=0 for molecules

Oand +1 for ions. Since charge redistribution is no longer

ble, we may séil;; =0, a®=0, and polarizabilitya

«a at positions of neutral molecules. The first correction to
aC for finite molecules is an induced dipole at the center,
which gives the same approximation farwhen combined
with @. The potentiaky®® in Eq. (19) is due to ions, and the
first sum, which is now restricted to charged sites, becomes

dhe source ternW, of Ref. 18. The second term, over mol-

ecules, describes induced dipoles in the field of the ions and
is theW; term of Ref. 18. The polarizability of ions is gen-
erally different from molecules, but is not required for find-
ing P.. in centrosymmetric lattices of point molecules, since
the ion is at an inversion center.

The expression(17) or (19) for the lattice polarization
energy is not restricted to equivalent molecules. In principle,
each molecule may have its owrp®®, TI3 , anda?. In
practice, there are several molecules per unit cell in organic
molecular crystals. The translationally invariant lattice of
neutral molecules, the neutral lattice of the following section,
reduces to atomic charges and potentials within a unit cell.
Molecular ions in specified unit cells break translational
symmetry and, as discussed in Secs. VI and VII, require
different methods for findinde,;. In the zero-overlap ap-
proximation, charge carriers are molecular ions in place of
neutral molecules. The polarization eneigy of a carrier is
the energy difference between two extensive quantities, the
lattice with the ion and the neutral lattice.

V. NEUTRAL LATTICE

In this section we evaluate the polarization energy of the
neutral lattice. The analogous quantity vanishes identically in
the polarizable-point approach, since there are no fields or
induced dipoles in the lattice until charges are introduced.
The self-consistent Eq$3), (15) can be restricted to a single
unit cell of volumev .. The problem, therefore, reduces to a
system of NN, linear equations, whend.. is the number of
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0.5 T T T T T T T T T
04+

molecules in a unit cell, anll is the number of atoms in a
molecule.

Madelung-type infinite sums in Eg&L5) can be evaluated
using Ewald’s method® Special care has to be taken to treat
complex lattices with many partial charges in a unit cell. For %2|
this purpose we introduce a fictitious uniform neutralizing 0.1+
background for each partial charge. Since the unit cell is g
neutral, these backgrounds cancel exactly. We define an aw, |

iliary potential function)/(r),

2ar? 13

.1
I%:R [r=1|  3uv,

where the summation is ovevlii lattice vectorsl falling
within a sphere of radiu®k, with the terml=0 missing.

9rM3
2v,

V(r)= lim

R—o

» (20)

Subtracted is the potential of the uniform neutralizing spheri-
cal charge— My centered at the origin of coordinates. Cen-

021
03+
04|
05|

06 . L . . . L . . .
0 2 4 6 8

Atom number

tering of the neutralizing backgrounds at a common point in  FIG. 1. Partial charges in PTCDA molecule in crystal lattice

space is necessary for proper cancelation.
Ewald’s method gives

2712 erf(Gr) ,1-erf(Glr—I])) =

r)=— -
Uc r Ir=1| UCG2
77 , exp(—g?/4G?)
+ cogg-r), (21)
v,G2 9 9°/4G?

where erfé<)=(2/\/;)fédyexp(—y2) is the error func-
tion. The second sum is over all reciprocal vectgrs0,
exp(g-1)=1. Ewald’s paramete is arbitrary (the result
does not depend on its valyea reasonable choice 6
= (7?lve) Y. The functionV(r) is regular within the central
lattice celll=0, including the point=0, and it is not peri-
odic because of the missing term. The functigm) + 1/ is
periodic inr.

Equations(15) can be written in terms o¥/(r) and its

derivatives V,(r)==dr)lor and Vep(r)
=92V(r)/ar“or#:
¢i=2" 2 v(ri)p)+vp(ri) P
+§b‘, ; V(rE2) pP + V(r3) ul?, (223
Foe=2' ; Va(rE2) 0] + 0 g (1)
+ 20 2 Valri)p)+ Vag(riP) . (22b)

b j

The sums oveb are restricted to the central unit cell. In the
primed sums the terrb=a is excluded. The terms with

(pi, solid ling) and in gas phasep(”’, dashed ling

=48 and 76, respectively, for anthracene and PTCDA lat-
tices, which results in 192 and 304 scalar linear equations for
these materials.

The solution for the neutral lattice is further denoted as
pt, pud, 2, and F?. These quantities are summed over
molecules in Eq(17) or (19) to yield the (extensive self-
consistent energy of the neutral lattice.

Anthracene and PTCDA

Using the procedure described above we calculated polar-
ization energy of anthracene and PTCDA crystals, which
represent two major families of organic semiconductors.
Both materials are monoclinic with two molecules per unit
cell. Both molecules have centers of inversion and are nearly
planar in the crystal. PTCDA molecules are coplanar, up to a
small tilt, and form layers and stacks. In anthracene the angle
between molecular planes is significant.

We used the x-ray crystal structures for PTCEHand for
anthracené® The positions of hydrogens, not given accu-
rately by x ray, were AM1-optimized usingaussian.® The
gas-phase polarizability, needed to determine the atomic cor-

rection «, is given in Table I.

We obtain polarization energy of 330 meV per PTCDA
molecule. This is two orders of magnitude greater than 2.8
meV that we get for anthracene. The large polarization en-
ergy of the PTCDA lattice is caused by significant partial
atomic charges in neutral PTCDA molecules, which are neg-
ligible in anthracene due to the approximate electron-hole
symmetry, as mentioned above.

Figure 1 compares partial atomic charges of a PTCDA
molecule in the gas phase and crystal. The inset explains the
atom numbering scheme. Only one half of the molecule is
shown because of,Gymmetry. Charge redistribution yields

and its derivatives give contributions by charges and dipolegxcess positive charge on three hydrogens whose partial

beyond the central cell.

Equations(22) expressgf andF? in terms ofp? and s .
Together with Eqs(8) they form a complete linear system of
ANN, equations, half of them vector. For examphN,

charges roughly double. It is worth noticing that these hydro-
gens reside in positions that suggest the formation of incipi-
ent hydrogen bonds; the approximation of zero overlap ex-
cludes any covalent contribution. The distances from CH
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697=2" 2 o) op] topri)on’, (254

5F?“=2’ 2 V(18 0pP+0v 513 ol . (25D

The source ternp®* is zero except for ions

pP™ =Ap" O~ E,: ATIE = 0p™(4),  (26)

where Ap" = O p O “ATI=TT"—IT;; , and ¢
is the potential at the ion’s position in the lattice. In a hypo-
thetical situation when a neutral molecule is replaced with a
foreign molecule which, subject to the potenti@|, has

charge distributiorp;, the source term is zero, and such a
molecule will not disturb the translationally invariant self-
FIG. 2. Arrangement of PTCDA molecules in a layprojection  ¢gnsistent solution.
onto (102) crystalline plang Incipient hydrogen bondsdotted With ions present, the problem has no translational sym-
lines) involve hydrogen atoms(8), 14(b), and &c), according t0 ety and the number of self-consistent equations is infinite.
the numberllng. Crystalline coordinates here and in Table Il conforn‘Ne consider an imaginary cluster within an infinite lattice
to the notation of Ref. 21. that includes all the unit cells within a certain distarRRe
from the origin. Some dozens of molecules are required for
he cluster to resemble a sphere. We&st= su?=0 for the
molecules outside the cluster, and solve the self-consistent
Egs.(24) and(25) for 6p?, suf, 647, andSF within. This
corresponds to an infinite lattice in which only the charges
within the cluster are allowed to relax. Molecules outside
VI. POLARIZATION ENERGY OF CHARGE CARRIERS retain the charge distribution of the neutral lattice.

Setting 8p?= Spl=0 does not mak&4" and 5FY zero

carbons to the nearest oxygen atoms in neighboring mo
ecules are 3.338, 3.269, and 3.768 A far@,,, C,4-O;q ,
and G-O,q , respectively, while the corresponding C-H-O
angles are 143.8°, 149.3°, and 158(4&e Fig. 2

We now consider a lattice with one or more neutral mol- tside the cluster N thel i .
ecules replaced with molecular ions. To evaluate the energ@"t>/0€ th€ ClUSIEr. NEVErtNEIess, we can write an expression

we solve self-consistent equations with the ions and subtradp" th€ polarization energy of ions that does not contain self-

the polarization energy of the neutral lattice. Each ion isconsistent potentials and fields outside the cluster. Subtract-

. ion ~ion ion(0) ion(0) _ . ing Eq.(19) for the lattice with ions from the similar expres-
described Y17, o™, and pi™™™ (2p" = 21), which — qiqp for the translationally-invariant lattice we obtain
may differ from the similar quantities in the neutral mol-

. ion ion(0) - . e
gcule. Whlle_l'[ij and p; _ are dete_mlmed by semiempir AE :E S S (502670 5,8E0)
ical calculation, the atomic correctioa' depends on a ot p & & g i
separate calculation for the ion. In this work, we use the
samea for molecules and ions. 1 ion(0) yion
: : ) , + - Ap; i 2
It is useful to rewrite the self-consistent equatig@sand 2 % 2 P ¢ @0

(15) in terms of the deviation from the neutral-lattice solu- ' . . .
tion The first sum runs over all moleculesincluding the ions.
The second sum over the ions appears becausepbatid ¢

components of the bilinear expression EtP) are different

a_ a___a a_ 4a_ ja
opi=pi—pi, OPI=di b, (233 ata=ion. The potentialss®® and fieldsF2© in the unre-
. o laxed translationally invariant lattice are evaluated using
opl=pd—pu?, OSFA=F2-F2, (23 Egs.(22) with pP=p{? and u’=0. Thus, Eq(27) gives the

energy of a set of ions in aimfinite lattice in which mol-
The equations foBpi!, ¢, and each component diui  ecules beyond the imaginary cluster are not allowed to relax.
and 6F? then read The polarization energy of the set of ions in an infinite lattice
is obtained afR— .

a_ _akx _ a a
opi=pi EJ: Iij oy, (249 A. P in anthracene and PTCDA
We start with a single ion, when E7) yields eitherP ..
5Miaa:;[ia/35|:fﬁ, (24b) or P_ in Eqg. (1). The cluster of radiuf is centered on the
unit cell that contains the anion or cation. Since clusters are
and defined in terms of unit cells, we know the number of mol-
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whereF(¢,k) is the elliptic integral of the first kind. Equa-
tions (28) and (29) determine the slope of the asymtotic be-
havior of P.. in Fig. 3. As a consistency check we computed
the slope using the dielectric tensor obtained in Sec. VIII.
The values 2.482 eV A for anthracene and 2.167 eV A
for PTCDA are within 3% of the slope of the straight line in
Fig. 3 drawn through the last two calculated points. The
“charges only” slopes are also within 3% of the dielectric
constants based am=0.

Submolecules necessarily yieRl, =P _, since ions are
assumed to have equal and opposite charges and the neutral
lattice contains neither charges nor dipoles. The anthracene
result isP.=1.193 eV(Ref. 23 for three points at the cen-

ters of rings and an effective based on the static dielectric
2.2t . . . tensor of the crystal. The electronic polarizatidh, + P _

0.1 0.15 0.2 ~2.40 eV, is somewhat larger than our 2.20 eV. For
M PTCDA, 11 submolecules and similar to Table | lead ttf

P,.+P_=2.14 eV, which is again greater than our 1.82 eV.
_FIG. 3. Convergence oP. +P_ for anthracene and PTCDA \ypjle the results clearly depend on the inputtedthe po-

with M, which is proportional to the inverse radiBs ~of the - | avion energy of single ions found via charge redistribu-
cluster. Straight lines are linear fits. Open symbols show thetion is reduced compared to submolecules. especially when
“charges only” results witha=0. P . T P y

only one or a few are used. The difference is even greater
; when the ion's chargep®®) are frozen at the gas-phase
eculesM(R) andMuv /N =47R°/3 relatesRto the molecu-  \,51ues. This decreasé®, +P_ by 10-20% in these sys-
lar volume v./N, in the crystal. The polarization energy tems. Although anthracene and PTCDA ions are at inversion
P, +P_ for ions at infinite separation is shown in Fig. 3 as centers, their atoms are not and thus experience local fields
a function ofM ~* for anthracene and PTCDA crystals. The that are related by inversion. By contrast, submolecule
“charges only” points refer toa=0 and polarization due charges are fixed at the outset and the field vanishes by sym-
entirely to charge redistribution; the other points are basedhetry at the center of the molecule.
on the B3LYP values ofx (Table |). The largest clusters The transport gap, Eql), of molecular crystals is di-
shown in Fig. 3 contairM = 2000 molecules, which corre- rectly related* to photoelectronPES and inverse photo-
sponds to a cluster diameter oR2 114 A for PTCDA and electron spectrdIPES on surfaces, which yield adiabatic
97 A for anthracene. P, +P_ that includ& intramolecular relaxation, but not lat-

The polarization energy decreases with cluster size afice relaxation. The inferréP, +P_~1.7 eV for PTCDA
more degrees of freedom for charge relaxation are added. Aims is quite consistent with the calculated 1.82 eV in the
large R the missing part due to the molecules outside thecrystal. The importance d, for electronic organic devices
cluster can be thought of as the polarization energy of @nd recent thin film data were the motivation for the accurate
charge in the center of a cavity of radiésin a continous calculation of electronic polarization in the well-defined limit
dielectric medium. Such energy is linear irRl/Linear ex-  of zero overlap. The systems of interest*have mobilities
trapolation in Fig. 3 give®, + P_=—2.204 eV for anthra- of 0.1—1.0 cnd/Vs at room temperature, which is high for
cene and—1.822 eV for PTCDA crystals. The smaller ion organics and indicates that overlap corrections will have to
has the greater stabilization. be included.

The polarization energy of a charge in a spherical cavity Partial charges and induced dipoles in the neutral lattice
in an anisotropic medium has been evaluated by Bounds arl@ad toP . #P_. The individual components are shown in
Munn?? Fig. 4 and go ad1 ~ 3= 1/R. The anion and cation slopes are

equal at largeR, in accord with Eq.(28). P, andP_ are
e2 1 almost identical for anthracene and strikingly different for
P.(®)—P.(R)=— ﬁ( 1- —) , (28)  PTCDA. In the smallest cluster, which contains only the an-
Keft ion or cation, the ion interacts with the chargesand di-
polesy; of the neutral lattice.

Finite P, (M=1) andP_(M=1) are the energies of the
cation and anion in the unrelaxed neutral lattice. They are
nonzero due to fields in the neutral lattice. Without relaxation
of the ion itself,P..(M=1) is given by the second term of

Eq. (27) with potentials$”"= ¢;+ #{*). The relaxed ion in
the field of the neutral lattice has charge distributjgft™
andP.(M=1) is given by Eq.27) with 8p{=p{°™ for a

The effective dielectric constaniss is expressed in terms of
the principal valuesc; < k,< k5 of the dielectric tensor

VKo(K3— K1)

Keff: ’
K3— Ky K3(Kky— K1)
F| arctal ,
K1 Ko(K3— K1)

(29
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' ' ' . TABLE II. EnergiesV(r), in eV, of charge-transfer states within
e zero-overlap approximation for several separationghe cation
1F . g,_u—a—ﬁ"“’ -g 1 and anion are at (0,0,0) and,p,c), respectively.
L .,BEBE"E’:EEE'MV— DA (*) 4 i a
p1C Pair (a,b,c) r, A V(r) Vapp(T)
0 . Anthracene
> N e © (3,-%0 5.228 -0.92 -0.79
® 1 P\“‘“‘a(’e“:i s P 1 (0,1,0) 6.016 -0.82 -0.76
aH e (1,0,0) 8.553 -0.55 —-0.50
I -,—;:assgm:(aceﬂe ) 1 (1,0,1) 9.458 -0.51 -0.50
Aot (211 9.894 ~0.54 ~0.57
[ ] 212
i R 1 (—3,3,0) 9.986 -0.51 -0.47
" ,,!.,.!—-— """ - (1,1,0) 10.456 —0.49 —0.42
2r .—--'“'"'ﬂ{oDP* © 1 (0,0,1) 11.172 ~0.51 ~0.56
. 3 . . . (1,-1,1) 11.209 —0.50 —0.42
0 0.2 0.4 0.6 0.8 1 PTCDA
M (1,0,0) 3.726 —1.06 —0.75
(2,0,0) 7.453 —-0.57 —0.46
FIG. 4. Convergence d?, andP_ for anthracene and PTCDA (011 10.558 —0.46 —0.48

with with M ~22, Straight lines are linear fits. The valuesht=1

_11 _ _

are discussed in the text. E;O 8’)2) 11(1715719 832 822
L (15,-1 11.624 -0.43 —0.46

=ion and O otherwise. We have assumetl'=« for sim- (0,1,0) 11.998 042 046
plicity; more generally, nonzerd = o'~ a will introduce (5 — 1 1 12.144 —036 —032
a source termul®™ = A'a;F; in Eq. (24b). (1,-1,0) 12.563 ~0.39 —0.42
The large PTCDA contributions & =1 do not cancel (1 _1 13.658 —-0.38 —-0.37
exactly because the anion and cation charges are not pre; _ 4 o 14.124 ~0.33 ~0.32

cisely equal and opposite. Approximate electron-hole sym:-
metry for thes system of anthracene ensures almost equaEq. (30).

and opposite charges. Our treatment gives two contributions

to P.., an initial interaction aM =1 that does not arise for erable interest because PES and IPES spectra are félated
submolecules and a relaxation or polarization of the latticg — P, and A+P_, respectively. Direct comparison, there-
that remains almost the same for the anion and cation. Sud@re, requires a surface calculation. Compilatitthef |

a distinction may be useful in future work. — P for organics, while admittedly approximate, clearly

The charge distribution in PTCDA is such that positive point to P, >P_ and to the physical meaning of individual
atomic charges are closer to the molecular centers. The regolarization energies.

sulting quadrupole moments of molecules create an average
positive potential at each molecule in the neutral lattice. The
mr-electron density above and below the molecular plane also
generates a quadrupole as discussed by Silinsh and €apek. Polarization effects modify the interaction between charge
In fact, the quadrupole contribution 8, and P_ de-  carriers. We comput®(r) in Eq. (2) by replacing two neu-
pends on the macroscopic shape of the sample. It is propotral molecules in the lattice with a cation and anion. The
tional to f d3r (1/r3), which gives finite contribution from the cation is at the origin and the anion’s center has crystallo-
remote parts of the sample. The contribution to the potentiagjraphic coordinates=(a,b,c) given in Table Il. As in the
is constant on the scale of the unit cell, because the corrgerevious section, we consider an imaginary cluster of radius
sponding contribution to the fields [d®r(1/r%), vanishes. R that contains both ions, solve the self-consistent E2j$.
Thus, the individual quantitieB, and P_ are not well de- and (25), and evaluate the enerdy,,;; using Eq.(27). We
fined, but the shape-dependent contribution cancels exacthgpeat with largeR until V(r) converges.
in the sum,P, +P_, which enters Eq(1) for the gap. Figure 5 showd/(r) as a function of M, which is pro-
The quantitied —P, and A+ P_ can be viewed as the portional to the inverse clusteolume for various ion pairs.
ionization potential and the electron affinity of the solid. We Since the pair is neutral, theR/contribution given by Eq.
see that they depend on the macroscopic shape of the sampR8) vanishes, and the asymptotic behavior is linear R1/
due to quadrupolar corrections. In general, the polarizatiott represents the polarization energy of a dipole in the center
energy of an abitrary set of charges in a crystal lattice deef spherical cavity in a dielectric medium.
pends on the shape of the macroscopic sample, unless the The extrapolated values ¥(r) for various pairs are pre-
total charge is zero. sented in Table Il, which also lists the distances between
The interpretation oP, andP_ is, however, of consid- centers and identifies pairs using the crystallographic nota-

B. lon pairs in anthracene and PTCDA
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0

rcene ™ —nom| PTCDA Api"Ap;
Anthracerig_f,. (1,1,1) C Va1 =3) Pi Ap;

@2-1,0) i [de(K)K;ﬁll’ﬁrﬁ]llz.

(30

ol

1 Herer? are the components af;=r."—r; , and detk)
1] J I J

=kK1KkyK3 is the determinant of the dielectric tenddrAt
large r, Eq. (30) reduces to point charges, sin&gp;=0
| Ao172,172) ensures vanishing interactions in the neutral lattice. The
2.0,0) lowest-order corrections to E€30) are induced dipoles due
. to the other charge.
-t Table 11 lists Vpp(r) values based on Eq30) and the
1r . dielectric tensors obtained in the next section. Gas-phase
- 8,00 charges and dielectric data are a simple and reasonably ac-
Y curate approximation to the self-consistent calculation.
o : We find comparable/(r)~—0.5 eV for second neigh-
08 A 17 bors in PTCDA stacks and first neighbors in different stacks
(1/2,1/2,0) (Fig. 2). Mazur and Peteleﬁ%report instead that, by a small
e margin, an interstack neighbor has binding 1.02 eV that even
| exceeds the first neighbor. They emphasize the competition
I s between large in-plane polarization for neighbors in adjacent
! ! stacks and Coulomb interactions in the same stack. Such
c 10 20 300 5 10 15 trade-offs are seen in Table Il for both anthracene and
1000/ M 1000/ M PTCDA, although not as strongly as in Ref. 10. They com-
pute E 4 for fractional charges at 11 submolecules and then
find the Coulomb interaction between the anion and cation
using Lavdin charges in a 6-31G basis. While it is inconsis-
tent to use different charges for polarization and direct inter-
tion of Ref. 21. The lowest charge-transf@T) exciton in  actions, it is natural to prefer atomic charges for the anion-
PTCDA (Fig. 5 corresponds to neighbors in the stack. Thecation interaction to arbitrarily placed partial charges.
next CT state is the second neighbor along the stack, which We also find (1,0,0 to be the lowest CT state by
is closely followed in energy by other configurations for ~0.3 eV on using, as in Ref. 10, 11 fractional charges and
neighboring molecules in different stacks, as shown in Fig. 2partial polarizabilities for both the polarization and cation-
In anthracene the lowest CT state corresponds to the closestion interaction. Hencé€l,0,0 is the lowest CT state in
neighbor. PTCDA and, although important, the greater in-plane polar-

Bounds and SiebraRtiobtainedV/(r) for anthracene us- izability does not stabilize neighbors in different chains be-
ing a single point per molecule and experimental polarizationow (2,0,0.
data; they find 0.78 and 0.58 eV binding for the lowest CT
states. Three submolecules at the centers of rings #ield
binding energies of 0.96 and 0.73 eV, which are close to our
0.92 and 0.82 eV and show the need for several points to We now summarize the calculation of the dielectric tensor
represent long molecules. The inclusidnof charge- by considering a sample in a uniform electric field. These
quadrupole corrections require an extension of the presemésults have been reported previouslyThe procedure is
work that is in progress. Anisotropie and charge redistri- similar to the polarization energy of the neutral lattice in Sec.
bution in anthracene produce several instariees, at 9.894 V.
and 11.172 A) wher&/(r) is not monotonic irr. Formally, an applied field breaks translational invariance,

The point-charge approximatidhgives almost 2.0 eV of  since the electrostatic potential is unbound. Nevertheless, we
binding for PTCDA neighbors in a stack, twice the 1.05 eV can add an appropriate constant to the potential in each unit
in Table I, while the binding’ is 0.99 eV for 11 submol- cell and restore translational symmetry, without effect on
ecules. Point charges are poor approximations for large mokharge distribution. This follows for zero overlap because
ecules with interplanar separation of 3.4 A. Charge redistrispace can be subdivided such that each molecule feels its
bution and partial charges provide a direct way to comput@wn potentialg(r). The charge distribution does not change
such electrostatic interactions. when a constant is added to &, according to Eq(12).

We may considel(r) for a cation-anion pair in a conti- We addEg to the right-hand side of Eq22b), and the
nous anisotropic medium with dielectric tenser We de- corresponding term-r2“Eg to the right-hand side of Eq.
scribe each ion with fixed partial charges and write an  (224. We then solve KN, self-consistent Equation&2)
electrostatic expression in terms of the double sum over thgnd(g), and obtain the total dipole momep# of each mol-
atoms of the cation and anion. Sint&, is defined relative  eculea in the unit cell using Eq(13). The total dipole mo-
to the neutral lattice, charge differencap;”"=pi"—p; ap-  ment of the unit cellu==,u® determines the polarization
pear inV(r): P=pulv., wherev, is the unit-cell volume. Repeating this

S
-

FIG. 5. Interaction energy(r), Eq.(2), for various ion pairs in
clusters ofM molecules.

VII. DIELECTRIC TENSOR
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TABLE Ill. Experimental(averagefland calculated components
of dielectric tensor of anthracene and PTCDA.

Inputs K1 Kp K3 0°

Anthracene
Experiment(Refs. 17,29-311 2.4910) 3.0710) 4.0420) 28(2)

B3LYP/6-311+ + G** 2.23 291 4.03 31.6
Charges on|yzg: 0) 1.36 2.39 3.90 345
PTCDA
Experiment(Ref. 17 191 432 4.62

1.85 4.07 4.07
B3LYP/6-311 + G** 1.96 3.98 4.02
Charges only ¢=0) 1.01 3.74 3.81

PHYSICAL REVIEW B4 195124

VIIl. DISCUSSION

In the limit of zero overlap, molecules in organic crystals
are quantum systems with purely classical electrostatic inter-
actions. We have developed a self-consistent approach that
treats each molecule quantum-mechanically, subject to the
external fields of all other molecules. We have found that
such external fields can be treated perturbatively to a good
accuracy, expanding the solution of Saftirger equation for
each molecule near the gas-phase solution. Self-consistent
analysis of large systems, with over®18toms, is straight-
forward.

The self-consistent procedure captures an important ef-
fect: the redistribution of charge in molecules subject to
(nonuniform external fields. Direct description of charge re-
distribution avoids the ambiguity that accompanies partition-
ing the molecular polarizability over a number of polarizable
points.

procedure withe, directed along each of the coordinate axes As outlined in Sec. Ill, we discretize the molecular charge

we find the tensot that relates to Eg:

P=(E,. (31

distributionp(r) by assigning a partial charge and induced
dipole g; to every atoni. The atom-atom polarizability ten-
sorll;; then governs charge redistribution in external fields.

Alternatively, one may choose to differentiate the self- The tensoilj; is conveniently found quantum mechanically

consistent equations with respect g to find an explicit
expression for.
The susceptibility tensoy is defined by the relatiof®

at a semiempirical level, such as INDO/S, which is well
suited for introducing potentials or site energies. The correc-

tion a=a— € is distributed over the atoms, and as in pre-

= xF, whereF is the total average macroscopic field that isVious theony® we still face the familiar problems associated
created by external sources as well as the polarized soliith submolecules. The present approach, however, allows
itself.28 According to the Lorentz relation, a dielectric spherefor a certain compensation of error: the partitioning now only

with uniform polarizationP creates a field-4#P/3 in its

involves the small correctioa, which is about 10—20 % of

center. The spherical shape is consistent with the definitiothe actual molecular polarizabilitye in large conjugated

of V(r) in Eq. (21). Thus,

47TP
3
Using EQ.(32) we eliminateE, in favor of F and usingx
=1+4my we obtain the dielectric tensor

F=E,— (32

1+ (87/3)¢

T1-(4n3)¢ (33

K

Table 111 lists the principal components &fin anthracene
crystals and PTCDA filmsk, is along theb axis; 6 is the
angle in the ac plane betweeny and a. The anthracene
datd”?°-3'are averages over independent measurements

molecules.

We return to Stone’s approattof distributed polarizabil-
ities in which molecules are partitioned into regiog)sthe
choice of which is left open, characterized by the cha@gs
dipoles x>, and higher multipole moments. Perturbation
treatment leads to the linear dependence of all the multipole
moments on the external potenti®(r), Taylor expanded
about the centersof the regions. For instance, char@é in
Eqg. (3.5 of Ref. 13 depends on the potenti(s’), field
V,(s), and higher derivatives o¥(r) via susceptibilities
ago, @, €tc. The charge susceptibilityy, corresponds to
our tensorl in Eqg. (11). Instead of the perturbation expan-
sion we start with the energy functional E®) which gives
§p cross terms, so that the charges only depend on potentials,

the dielectric tensor and refractive indices. The calculate@nd the dipoles depend on fields. In addition, we choose

values are fow in Table I, and additionad inputs for larger

atomic polarizabilitiese to be local by construction. Al-

bases are reported in Ref. 11. The results agree with théough dgisjoint regions are not essential, they are needed in
available experimental data, which has an accuracy of a fewracticé® and are not easy to define for molecules such as

percent. Whilew=0 accounts foks, the largest component,
the quantitative importance of accurateis clearly seen in
Table 111

anthracene or PTCDA. We avoid regions by using atomic
charge? and the related tensdf to describe charge redis-
tribution according to Eq(8). We retain induced dipoles and

Equation(33) for « is strictly based on neutral molecules « in order to match the best available molecular polarizabil-
in a translationally invariant crystal. The energies of molecu4ty in Eq. (14). Static atomic dipolewi(o) or quadrupoles can

lar ions were found instead within clusters of radRsAs
noted above, Eq28) reproduces thé/ ~* slope in Figs. 3

be introduced to fit higher moments of the molecular charge
distribution, and we are considering such extensions.

and 4 within 3%. This demonstrates the internal consistency The electrostatic potentia(r) created by a molecule

of the procedure.

with charge distributionp(r) is given by Eg.(3). While
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atomic charges cannot be defined uniquely, charges or dwith mobile holes or electrons. Finite overlaps and transfer
poles that reproducé(r) accurately at intermolecular dis- integrals in the 50—100 meV range are typical for hopping
tances in crystals would be completely satisfactory. Thbs, transport and stabilize polarons in Holstein models. The
initio p(r) generated(r) outside the molecule, which pro- range is now 100 meV or more per charge. CT states, by
vides a basf¥ for assigning discrete charges. This suggestsontrast, have vanishing bandwidth or mobility because two-
an interesting possibility of introducing gas-phase atomic di€lectron transfers are needed. Overlap, therefore, also prefer-
poles u{®) along with the gas-phase atomic chargé¥ in  entially stabilizes individual ions and hence redupeég)|.
Eg. (8b), as long as they improve the description of fieldsThe lowest CT state of PTCDA has electronic binding-cf
created by a neutral molecule. eV in Table Il that could be reduced substantially by overlap.
Another possible extention is to introduce atomic quadru- The second issue addresses novel features of self-
poles to representr-electron density above and below the consistent atomic charges. As noted above, charge redistribu-
plane. This will result in an additional N)scalar equations tion of isolated ions increasé®, or P_ by about 10% even
per molecule. In practice, only thig,y component normal to  when ions are at inversion centers. The lower symmetry of
the conjugation plane is needed far electrons. Classical ion pairs leads to more extensive charge redistribution of
multipoles lead to complications even in the limit of no over-mutual polarization that is automatically included in our
lap. These are corrections, however, to charges and inducéatment throughl;; for ions. Charge redistribution on ions
dipoles whose fields; we have found, and perturbation is important. Its contribution can be estimated by self-
theory may well be sufficient. consistent calculation with ionic charges and dipoles set to
We have already contrasted our method to the existingas-phase values. Specific contributions are found by com-
approach in which a molecule is represented by a number gfaring two self-consistent solutions.
polarizable points, termed submolecules. The qualitative dif- In summary, we have implemented a general approach to
ferences are the electrostatic energy of the neutral lattice arglectronic polarization of organic molecular crystals in the
the energyP. (M=1) of an ion in the unrelaxed lattice in limit of zero intermolecular overlap. Redistribution of partial
Fig. 4. Charge redistribution avoids entirely the number andtomic charges is governed by the atom-atom polarizability
location of the submolecules. Since the actuakenters in  tensorll;;, which provides a quantum mechanical basis for
either case, the numerical results fr +P_ in Sec. VI and the description of electronic polarization. Partial charges re-
for V(r) in Table 1l do not differ greatly, especially in com- Pplace the microelectronics of postulated submolecules in pre-
parison to calculations with many submolecules. vious treatments and introduce such new features as elec-
Crystalline organic films that function as electron or holetronic stabilization of the neutral lattice and charge relaxation
conductors are of particular interest for organicOn ions. Self-consistent atomic charges and induced dipoles
electronics-~3 Although overlap is then finite, it should be relate the molecular polarizability of anthracene or PTCDA
considered as a correction to much greater polarization enet0 the dielectric tensor and the energies of fixed ions and ion
gies. We have a systematic method for computing the eledairs in the crystal. The cluster approach used for ions is
tronic part ofP, +P_, while the total po|arization energy in suitable for surfaces and other systems with reduced symme-
Eq. (1) is about 10% larger due to the lattice contributions,try, provided that all molecular positions are specified. Zero
even before overlap or charge transport is introduced. Relioverlap provides a starting point for the treatment of elec-
able comparisons of the large electronic part are the firsfonic polarization in organic systems with mobile localized
step. We comment on two issues. charge carriers.
First, the greater stabilization of separated ions has major
implications on the binding energy(r)| of neighboring
ions. Since the energy of the lowest CT in PTC[Ref. 33
is comparable to the lowest Frenkel excitpvi(r)| is closely It is a pleasure to thank R.A. Pascal, Jr., for discussions
related to discussions and debates about the magnitude ahd assistance with structural data and molecular polarizabil-
exciton binding energie¥. Lattice (moleculai relaxation ities; A. Kahn, S. F. Forrest, M. Hoffmann, and J. M. Sin for
about ions is estimatédo be tens of meV per ion. The value discussions of transport gaps, PES spectra, CT excitons and
of 15 meV per charge and 10 meV per CT state has recentlgtomic charges; and P. Petelenz and R. W. Munn for corre-
been estimated for anthracefleAs expected, separated spondence about induced dipoles. This work was partly sup-
charges are preferentially stabilized, but the effect is small.ported by the National Science Foundation through the MR-
Recent interest in organic devices has focused on systen®EC program under Grant No. DMR-9400362.
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