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Fermion hypernetted chain equations for the three-body distribution
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The fermion hypernetted chain equations for the three-body distribution function are derived in this paper.
These equations are relatively complicated and some care is required for their derivation. The formulas are
presented explicitly and an outline for their practical implementation discussed.
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[. INTRODUCTION tonian in a homogeneous many-fermion system and could
potentially be unnecessary for the inhomogeneous system

The fermion hypernetted chaifFHNC) equations were as well.
originally derived- for the study of uniform-density, nuclear ~ Where the three-body distribution would be important is
matter. However, the formalism is just as easily applied tdn the study of many-fermion systems when three-body cor-
other many_fermion systems such as the e|ectr0n’3véaﬂd relations are included in the Jastrow factor. The inclusion of
the equations can be further generalized for nonunifornihree-body correlations appears to be important for certain
systemgS The starting point for the formalism is the as- Systems, such as liquid heliutdA significant effort to intro-
sumption of a many-fermion wave function in the form of aduce these correlations was made by Krotscheck and
Slater determinant of one-fermion orbital functions times aSaareld’ and a call for the derivation of the three-body
correlation factor of the Jastrow for® Optimization of ~FHNC equations was made in that paper. Itis the goal of this
this wave function is associated with the evaluation of theP@per to present such a derivation.
expectation value of the Hamiltonian and this is where the An analogous derivation has been presented for the clas-
FHNC equations come in. sical HNC equations by Werthetthand much of that devel-

If the fermions interact in a pairwise fashion—the typical 0Pment can be tailored for the many-fermion system consid-
Case_and only one- and two_body Correlations are inc'udeered here. HOWeVer, there are some important distinctions
in the Jastrow factor, one formulation expresses this expe@ssociated with the exchange structure of the corresponding
tation value in terms of the one-, two-, and three-body disdiagrams in the FHNC case and some extra care is required
tribution functionst® The FHNC equations have been de- in performing the necessary topological analysis. Further, the
rived to evaluate the one- and two-body distribution development of Wertheim ignored the contribution of what
functions from the assumed form for the many-fermion wavear® known as elementary diagrams. Incorporation of these
function. To evaluate the expectation value of the Hamil-quantities requires some additional analysis.
tonian, an approximation is normally introduced for the
three-body distribution. The superposition approximation,
for instance, is a common choice. This allows the three-body
distribution to be evaluated directly from the solutions of the
two-body equations. A similar approach is taken in the solu- It is useful to begin by summarizing the two-body equa-
tion of the classical HNC(hypernetted chajnequations. tions. They will not be derived, but the quantities and con-
Within this formulation, then, it would be advantageous tocepts involved will be presented and the notation used will
have an exact formalism for the three-body distribution inbe carefully defined. This will provide a convenient base
order to investigate corrections to such approximations.  from which the three-body equations can be derived. It is of

An alternate formulation eliminates the need for a threedinterest to present the equations that apply to an inhomoge-
body distribution by effecting a transformation of the kinetic neous system and not specialize to the more commonly
energy that leads to the so-called Jackson-Feelb@agn  treated homogeneous system. For that reason, the equations
for the energy. In place of the three-body distribution, therewill correspond more closely with the formalism of Ripka,
is a term which contains the off-diagonal elements of a onewho specifically treated this case. The interested reader may
body function. The Jackson-Feenberg form is clearly supeeonsult that reference for more details.
rior for the homogeneous system, since this one-body quan- Unfortunately, Ripkdemployed a set of notation that dif-
tity can be evaluated directly from the solutions of the two-fers from that commonly used in the literature. The treatise
body FHNC equation$’ The inhomogeneous system is more of Clark!’ presents an alternative set of notation that seems
complex and many of the approximations possible for theo have become thde factostandard and the equations will
homogeneous system no longer apply. It seems reasonablelie presented here with that notation. It should be noted, how-
suppose that such a direct evaluation of the one-body quamver, that Clark’s work focuses on the homogeneous system
tity is still possible, but the derivation of the appropriate and so, some minor changes are needed in the definitions
relationships does not seem to have been investigated yethen extending the notation to the inhomogeneous system.
Nevertheless, the three-body distribution need not be consid- The system of interest consists of a very large number of
ered for the evaluation of the expectation value of the hamilidentical fermions interacting by a pairwise additive force

Il. SOME DEFINITIONS AND THE TWO-BODY FHNC
EQUATIONS
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law and subject to an externally applied one-body potential. It is important to be clear on certain features of these
The number of fermions is assumed to be large enough thaliagrams and so, they will be described in some detail. A
extending the system to infinite size would still provide agiven diagram consists of a number of points and connec-
reasonable approximation for the system of interest. As ations between them. Each point has a set of fermion coordi-
example, the electrons in a solid-state system of macroscopitates associated with it and there are two basic types, de-
size would fall into this category. It should be emphasizedpending on how the coordinates are used. Internal points
that the external potential is not assumed here to be uniformhave their coordinates integrated over and the external points
The coordinates of a single fermion consist of a set ofdo not. As a result, the diagram represents a function only of
three spatial coordinates plus a spin coordinate. These fodhe coordinates of the external points and the number of ex-
coordinates will be collected under the single symkoA  ternal points can serve as an initial categorization. One-body
subscript will be used to distinguish between the coordinatediagrams contain one external point, two-body diagrams
of different fermions. The wave function for the system will contain two external points, and so on. As might be sur-

be assumed to be the product mized, the one-body distribution function can be expressed
solely in terms of one-body diagrams, the two-body distribu-
¥=DF, (1) tion function can be expressed solely in terms of one- and

two-body diagrams, and so on.
Connections between points represent both exchange in-
teractions and correlation interactions. The two-body FHNC
1 1 equations derived in the literatdrestarted from a formalism
F:exp{—E uP(x)+ = 2 u@(x;,x)+---f. (2)  inwhich only two-body correlations were taken into account.
275 2k If three-body correlations are to be included, some modifica-
. . , tion of the traditional formalism is required. Fortunately, this
The sums in the exponent are over all fermions in the system__ = "~ "~ o
: . . modification is more of a technical issue than a fundamental
and the functions are referred to as correlation potentlalsOne The EHNC equations are derived based on a tonoloaical
u(x) is the one-body correlation potential(®(x,x’) is ' q polog

analysis of the diagrams. This topological analysis is valid

the two-body co.rrelatlo.n potential, and so on. By Spe.c'fy'ngwhether the diagrams contain elements representing three-
the set of occupied orbitals and the correlation potentials, thSody correlations or not. Introducing three-body correlations

Wa.\ll_ﬁ fufnct|on f?r. t:\e s;is'gen:hs fully d(;:\;tvermlneg.th bod will leave the overall equations unchanged, but will change
distribeuti((;(r:]ufsu r?cti?niredsefiﬁe q ie?geé’s foI(I)(;;/vz'n ree-DoYsnly some of the specifics regarding their ingredients. The
' ' associated three-point diagrammatic elements can be simply
superimposed on the diagrams of the traditional cluster ex-
p(x)Eﬂl)(x):J’ \IIT[E §(X—Xj)]llfd7-, pansion and will have no effect on the basic nature of the
] diagrams themselves. So, in order to avoid the complications
associated with adding further diagrammatic elements, the
, , following develop will assume only one- and two-body cor-
L0 ):f qﬁ[% S(X=x;) 8(x _Xk)]\PdT’ B relations. This will allow the important points regarding the
behavior of the diagrams to be made. Some comments on the
modifications associated with adding three-body correlations
F(3)(x,x’,x”):f \I”{ > (X)) 8(X" =X will be made at the end of this section.
k! Hence, connections occur between pairs of points and

whereD is a Slater determinant of orthonormal one-fermion
orbitals{ ¢;(x)} andF is a correlation factor of the form

there are two basic types. The first type is callechatirect
X 5(x”—x,)]\l’dr. line and represents a factor of
The integrations are over all fermion coordinates and each h(xl,x2)=e“(2)<xl'x2)—1, (4

Dirac delta function is applied to all four single-particle co-
ordinates simultaneously. The special notation for the onewhere the sets of coordinates are those of the points being
body distribution functionp(x) is customary. If the many- connected. This designatiqas opposed to just calling it a
fermion wave function is given simply by a Slater direct ling is intended to distinguish this type of line from
determinant of orthonormal orbitals, evaluation of the distri-the direct-type line that will arise in the three-body diagrams.
bution functions is straightforward. When the correlation fac-The second type is called@&exchange line, the function for
tor is added, however, the expressions become much moxehich will be labeledo(x4,X,). This is, in general, a rela-
complicated and it is necessary to derive alternate means tifzely complex function, but can be simplified with a specific
evaluating them. choice for the one-body correlation potential. This will be
The standard approach, at this point, is to expand the twodescribed in more detail later. Theexchange line is a di-
body portion of the correlation factor to obtain cluster rected function, so that the order of the arguments is mean-
expansion® -2 for the distribution functions. The terms of ingful. It is possible to refer to a-exchange line coming
the expansion can be more easily organized if they are repato or out of a point. As with thdr-direct lines, this desig-
resented by diagrams. It is this diagrammatic expansion thatation is designed to distinguish it from the exchange-type
is used to derive the FHNC equations. lines that will arise in the three-body diagrams.
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The diagrams appearing in the expansions can be gendr-direct line connected to itb) at most oneh-direct line
ated by brute force and a topological analysis leads to @onnects a give pair of points, an@d) if a point has a
formalism in which only certain types of diagrams are dealts-exchange line coming into it, @exchange line must also
with directly. In particular, the various distribution functions exit from it; there may be no more than oaeexchange line
are separated into quantities in which all the diagrams argoming into a point.
linked and irreducible. These terms will now be defined. It is also useful to list the rules for converting the dia-

A linked diagram is one in which all the points are linked grams into quantities which can be evaluated.
to each other. Put another way, a linked diagram is one where () Give each external point a label corresponding to one
it is always possible to travel, by way di-direct and of the arguments of the linked distribution function.
o-exchange lines, from any one point in the diagram to any (p) Label each internal point.
other. As it turns ouft, the One'body distribution funct,ﬂ(n() (C) Introduce a factor Oh(Xj !Xk) for an h-direct line be-

is expanded solely in terms of linked, one-body diagramstween pointg andk. These points may be internal or external
The two-body distribution contains unlinked contributions, points.

but can be decomposed as (@ introduce a factor ofr(x, x,) for a o-exchange line
@) (2) from pointk to point;j.
IH9(X1,%2) = p(X1) p(X2) + '} 7 (X1, X2) ) (&) Introduce a factor op(x;) if point j is connected to

the rest of the diagram only with-direct lines.

(f) Multiply by (=)™ /s, wheren,, equals the total
number ofag-exchange linesy; equals the number of closed
o-exchange line loops, arfflis a symmetry number equal to
the number of permutation operations that leave the topology
3) _ 2) of the connections unchanged. _

(X1, %2, X3) = p(X1) p(X2) p(X3) T p (X)) 17 (X2, X3) (g) Integrate over all sets of internal coordinates.
In deriving the two-body FHNC equations, it turns out to
be necessary to introduce a set of diagram elements that are
+T (X1, %2,X3), (6)  not proper diagrams according to the rules above. Specifi-
cally, these elements have only omeexchange line con-
whereT'{®)(x;,x,,x3) contains only linked three-body dia- nected to each of the external points. Otherwise, they satisfy
grams and will be called the linked three-body distributionall the rules. These diagrams will be referred toeashange
function. line diagrams

Irreducible diagrams are associated with what are known The FHNC equations are obtained by considering the
as articulation points. An articulation point is one whose re-ways in which subdiagrams may be connected to each other.
moval from the diagram would cause it to be separated intd@his requires some care in the treatment of external points.
two or more unconnected parts, at least one of which confwo subdiagrams are connected by fusing external points
tains only internal points. If the separated parts of the diafrom one to the other. What were originally two points be-
gram all contain at least one external point, this is not concome one, and it is important not to overcount the factors of
sidered an articulation point. An irreducible diagram is onethe density that may appear due to r@ebove. For this
that does not contain any articulation points. There may stilfeason, subdiagrams will be represented without the external
be points in an irreducible diagram whose removal wouldpoints explicity shown. When the subdiagrams are con-
separate it into more than one part, but each part contains aected and the fused external points become one, then the
least one external point. When such points occur in an irreappropriate rules are applied to the fused point. When a dia-
ducible diagram, they will be referred to as cutting points,gram needs to be evaluated fully, as with the evaluation of
using the nomenclature of Stéfl.If an irreducible diagram the two-body distribution function, the external points will
does not have any cutting points, it will be referred to asbe shown explicitly, in which case the appropriate factors of
fully irreducible. p(x) are added for the external points as well.

With these definitions in place, it is now possible to state Itis as a result of this issue that the notation of Clark must
the rules governing the generation of the diagrammatic exbe slightly modified. For the homogeneous system, these fac-
pansions for the distribution functions. It is important to re-tors of the density can be eliminated through a suitable re-
alize that these rules are associated with the diagrammataefinition of the diagrammatic elements, since the density is
development of Ripka,who tailored the rules towards the everywhere the same. This cannot be done with the inhomo-
general inhomogeneous system. At issue is the fact that, igeneous system, so the quantities appearing in Clark’s re-
the traditional cluster expansion, diagrams with articulationview must be appropriately modified here.
points automatically cancel each other for homogeneous sys- Under this formulation, the one-body distribution function
tem but not for inhomogeneous systems. With Ripka’s modiis equal to a single diagram consisting of just the external
fied development, diagrams with articulation points can bepoint; any other one-body diagram would not be irreducible.
eliminated for the inhomogeneous system as well. TheOn the other hand, the linked, two-body distribution is equal
linked, N-body distribution function is equal to the sum of all to an infinite sum of two-body diagrams. These two-body
topologically distinct, linked, and irreduciblbl-body dia- diagrams are conveniently classified by how they connect to
grams such thata) each internal point has at least one the external points. The connection can be with drbjirect

whereI'(?(x,,x,) contains only linked two-body diagrams.
For reference purposeE(?)(x,x,) will be called the linked
two-body distribution function. Likewise, the three-body dis-
tribution function is decomposed as

+p(Xx)T1? (X1, %3) + p(xg) T 12 (X1, X,)

195121-3



GARY G. HOFFMAN PHYSICAL REVIEW B 64 195121

lines or, in addition to any-direct lines, there may be two Now that these definitions have all been made, it is pos-
g-exchange lines, one coming into the external point and onsible to state the two-body FHNC equations.

leaving. The sum of two-body diagrams of a particular type

will be given a symbol, sa)A. Such a sum will not have the

external points explicitly evaluated, and so factors of the N(Xl’XZ):f X(x1,%3) 39 (xa){X (X3, %2) + N(X3, Xz) X,
density must be introduced later, if needed. Two subscripts (10

will be given to represent the types of connections to the

external points. A subscriptd” indicates a connection by

only h-direct lines and a subscripte” indicates that two Ncc(Xl-Xz):—J U(X11X3)Ncc(x3ixz)dx3_f Neo(X1,X3)
o-exchange lines connect to that external point. Ahgoint

may or may not havé-direct lines connected to it. There are X[Nec(X3,X2) + Xee(X3,X2) + 0(X3,Xz) JdX3
four possible combinations of connections and the four sums
are arranged in a’22 matrix +f (X1,X3) Xee(X3,X2) [ Nee(Xg,X2)

Ky Xo) = Agd(X1,%2)  Age(X1,X2) @ + Xee(X4,X2) + 0(X4,X5) dXad Xy, (11)

Acd(X1,X2)  AedX1,X2) |
. o _ Xad(X1,X2) = 09g(X1,X2) = Nga(X1,X2) — 1, (12
The first subscript indicates the type of connectiorahnd

the second at,. It may be noted that the quantitidg, and Xae(X1,%2) ={Ege(X1,X2) + Nge( X1 ,X2) }gg(X1 ,X2)
A4 are rarely distinguished in the literature; they are gener-
ally equal to each other. However, the matrices formed above —Nge(X1,X2), (13

make subsequent analysis much easier and so this distinction
will be made here. Further, it may be possible to formulate a ~ Xed(X1,X2) ={Eed(X,X2) + Ned(X1,X2) }9g(X1,X2)
special case of the theory in which these quantities actually

differ, and it would be useful to have the more general form —Ned(X1,X2), (14)
described here.

The sum of all two-body diagrams is given the symbol ~ Xed(X1,X2) ={Eee(X1,X2) + Ned(X1,X2) + [Eqge(X1,X2)
and the four combinations of connections are collected in the + Nge(X1,X2) T Eeg(X1,X2) + Neg(X1,X2) ]
matrix ['. The sums of just those diagrams that do not con-
tain any cutting points are given in the mati§(x;,x,). —[Ece(X1,%2) + Nee(X1,X2) + (X1, X2) ]

These are referred to asn-nodal diagramsThe sums of all

the diagrams that contain at least one cutting point, the so-
called nodal diagrams, are given N(x;,x,). It should be X gg(X1,X2) = Ned(Xq,X5), (15)
obvious that

X[Ege(X2,X1) + Nee(X2,Xq) + (X, X1) I}

Xee(X1,X2) = { Ecc(X1,X2) + Nee(X1,X2)

+ 0(X1,X2) }9g(X1,X2) — Nee(Xg,X2)

N(Xq,X2) +X(X1,X2) =L(X1,X3). (8)

A further type of diagram is the composite diagram. Such

diagrams can be decomposed as two or more two-body sub- —0(X1,X2), (16)

diagrams connected to each other only at the two extern

points. The sums of all diagrams that are not composite are

given in S(xq,X,). Diagrams that are not composite and _

which further contain no cutting points are referred to as 9s(X1.%2) [1+h(xl’XZ)]quEdd(Xl’X2)+Ndd(XlaXZ(?L]n

elementary diagrams. The simplest two-body elementary dia-

grams is just thén-direct line and is evaluated &gXx4,X,). and

The sums of allother elementary diagrams are given in

E(Xy,Xyp). g [P 1
The sum of all two-body exchange line diagrams is rep- I(x) = 1 0

resented byl'..(X1,X5). It is also possible to distinguish

those diagrams that do not have any cutting points, the sufquations(10)—(16) are ten in number and can be used to

of which is represented b¥.(X;,X,). The sum of all other solve for the ten quantitiesN(x;,X2), X(X1,Xp),

diagrams is represented by..(X;,X,). In analogy with Eq.  Ngo(X1,X2), andX.«(X;,Xz). This would require the input of

ere

(18

(8), the quantities E(X1,X5), Eco(X1,X2), o(X1,Xp), and
h(X1,%2).
Neo(Xq,X0) + Xee( X1, X0) = ool X1, X0). 9) The quantityh(x,,X,) is known if it is assumed that the

two-body correlation potential has been given. Even if the
The sum of noncomposite exchange line diagrams is repréwo-body correlation potential is being sought, it may ini-
sented byS..(x;,X,) and the sum of elementary exchangetially be guessed in order to solve the FHNC equations and
line diagrams is represented By (X1,X5). then iteratively optimized. The quantity(x,,X,) depends
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on the choice of the one-body correlation potentad well
as the one-fermion orbital functionsA convenient choice

PHYSICAL REVIEW B 64 195121

ementary diagrams. The FHNC equations generate a cluster
expansion by constructing all possible nodal and composite

connections of two-body diagrams, starting from a single

h-direct line plus the set of elementary diagrams chosen for
the calculation. It is necessary only to include elementary

diagrams that have three-point elements representing the
three-body correlations to get the full expansion with three-

body correlations.

that is commonly made is

u<l)(X)=—f[Ndd(x,X’)p(X’HNde(X.X’)]dX’- (19

When this is done,

o(xl.x2>=; b (x1) bi(X2) (20)

Ill. THE THREE-BODY DISTRIBUTION FUNCTION

is just the one-body density matrix for the Slater determinant The three-body FHNC equations can be derived in the
wave function alone. For the uniform system, Ef9) re-  same way as the two-body equations, but of course, the
duces to zero, which corresponds to the optimum choice iinalysis is considerably more complicated. To simplify the
this case. For the inhomogeneous system, the optimurgrocedure, the solution of the two-body equations can be
choice for the correlation potential is a more complicatedincorporated into the equations. Instead of the bhsiirect
mattef and Eq.(19) is not correct. Its use would be justified |ines ando-exchange lines encountered in the previous sec-
only as a matter of convenience. An accurate treatment of thgon "_direct lines, andl..-exchange lines will take their
inhomogeneous system would have to go beyond this simplgjace. These line elements represent infinite sums of subdia-
choice and a specific procedure to do this has been presentgehms connecting two points of a larger diagram. This sec-
in the literature’ The one-body distribution function can be tjon |ays the groundwork for the formalism by deriving an

shown to be equal to

p(X) =0 (X,X) = Nee(X,X) — J Nec(X, X)X, x)dX".
(21)

expression for the three-body distribution that can be used
for the subsequent diagrammatic analysis. The three-body
FHNC equations will be derived in the next section.

It is necessary to introduce some pictorial representations
of the diagrammatic elements. Internal points will be repre-

The sums of elementary diagrams must be approximatedented by solid circles and external points will be represented
Generally, some truncations of the sums are assumed and thg open circles. When an external point is included in a
guantities evaluated. A common choice is the FHNC/O apdiagram, it is assumed that there is a factor of the density
proximation, in which these sums are all set equal to zerop(x) if all the connections to that point are only withdirect

Other truncations have also been tried in the literattire.

lines. This explicit inclusion of factors of the density can

All the necessary equations have now been presented teecome a problem when diagrams are joined together. For
determine the one- and two-body distribution functions, asinstance, if an external point of one diagram with only direct
suming that the one-fermion orbital functions and the correconnections is joined to another at an external point contain-
lation potentials have been given. The FHNC equations caing exchange line connections, the first diagram will carry

be solved iteratively, and the solution can be used in(Ed).

along with it an extra, unnecessary factor of the density at

to evaluate the one-body distribution function. The two-bodythat point. To avoid this situation, diagrams will be con-

distribution function is then given by
I'2(x1,%2) = p(X1) p(X2) + p(X)T (X1, X2) p(X2)
+p(Xp) I ge(X1,X2) + Ted(X1,X2) p(X2)

+ l—1ee(XZI. !XZ)

=RT(X1)G(X1,%2)R(Xy), (22
where two new quantities have been introduced:
X
R(x)= p(l ) (23
and
1 0
G(X1,X2)= 0 0 +L(X1,X2). (24

structed in which the open circle external points are not
shown explicitly. This implies that factors of the density, if
ultimately needed, are not yet included at those points. When
diagrams are joined together, an internal or external point
will be generated and any needed factors of the density will
be implicitly incorporated.

Consider a diagram which contains a two-body connec-
tion between two particular points. It is possible to construct
an infinite set of diagrams which differ from this one only in
the portion between the two particular points. The sum of all
such diagrams then corresponds to adding all possible two-
body connections between those points, which therefore re-
sults in a factor involving the components B{x; ,x;) be-
tween the points. It is desirable to perform all such
summations of diagrams implicitly and view all two-body
connections as consisting of factors Bf, (x;,X;) rather
than the more basic elementtx;,x;) and o(x;,X;). An-
other type of two-point connection can be constructed by

The foregoing development only considered one- andonsidering a diagram in which an exchange line extends
two-body correlations. However, the equations will be un-from one point to another. By summing all diagrams which
changed if the three-body correlation potential is introduceddiffer only in the intermediate points and connections be-
the modification being solely in the specification of the el-tween them, the resulting diagram will have a contribution of

195121-5



GARY G. HOFFMAN PHYSICAL REVIEW B 64 195121

TABLE |. Two-point diagrams appearing in the three-body FHNC equations.

~~~~~~~~~~~~~~~~~~~~ appropriate sum of two-body terms, I'(zy, z2)
02 unity plus the appropriate sum of two-body terms
the sum of two-point exchange line diagrams, Ic.(z1, 22)

the sum of non-composite two-point exchange line diagrams, Se.(z1,z2)

I'.o(X,x") between the two points. section and so will be described there. There will also be
Diagrams are therefore to be constructed in which all two-components of the diagrams which connect three points to

point connections are of one of these two forms. It is neceseach other and these are distinct from the two-body connec-

sary to define diagram elements to represent these conneisns. They are referred to as three-body connections and will

tions and these are given in Table I. A dotted line representbe defined later.

a factor of the forml",,,(x,x") and will be referred to as a As a simple example, the two-body distribution function

I'-direct line. Because it comes up fairly often, it is conve-can be represented diagrammatically as

nient to have another diagrammatic element that represents a

factor of G,,(x,x"). This is given by a double solid line I zy,29) = ° o 4 o ° (25)

between the points and will be referred to aG-direct line.

This is simply equal to &'-direct line plus a diagram with no or, more concisely, as

connection between those points. Another two-point element

is a directed solid line. This represents a factof'gf(x,x") T@(z),2q) = o——>0 (26)

and will be referred to as ah..-exchange line. The final

element in the tablé&, (x4 ,X,) will not arise until the next The three-body distribution function is given by

IO (zy, zq,23) = + + +

l._.
MD
—
o
o
NG
a
no°

(27)

where the last term represents the linked, three-body distrieonstructed, a factor of the density must be added if only

bution function. d-type connections are made to a point. For instance, a com-
In the diagrammatic development for the two-body FHNCbination like I yq(x,X") p(Xx")Tge(X",x") might be encoun-

equations, the types of connections to the external points ardered and would require the intermediate factop(t’).

made explicit. This can be done for the three-body equations These restrictions are conveniently handled with the ma-

as well, but the expressions can get cluttered when this ifix J°(x) defined in Eq.(18). For example, consider the

done. For this reason, the types of connections at the erfiree-body diagram where twd-direct connections are

points of subdiagrams will not usually be specified. Whenmade from external points 1 and 3 to the intermediate point

two diagrams are connected at a point, however, all allowed- Including only the connecting point explicitly, the three-

connections at that point are to be summed over. From thBody diagram is evaluated as

rules for constructing the basic diagrams, the ways in which

two subdiagrams can be connected at a point are limited. At 3

most, two exchange lines can connect to a point, so two k

e-type connections cannot be made to the same point. For

instance, the combinatiol yo(X,x")Teo(X’,X") is not al-

lowed. Further, from the way the two-body diagrams were

)J422)T (w2, 23) (28
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The result is in the form of a2 2 matrix, indicating all the 3
possible ways the connections can be made to the end points . . . .
X, andxs. If the other two external points are included ex- R Tr H (@)L (@1, 22) ] (22)L (22, 3) ] (xS),{e]
plicitly in the diagram, all allowed connections to these .. kS
points must be added in evaluating the diagram. This is 1 2 (33
readily achieved by using the vect&®(x) defined in Eq.
(23). Thus,
The rules for constructing and evaluating diagrams need
3 only minor changes from those given in the previous section.
2. For constructing all acceptable diagrams, all the rules remain
= RT(xl)E(xl,z2)£d(x2)£(z2,x3)R(x3) with h-direct lines replaced bl/-direct lines andr-exchange
lines replaced by ' .-exchange lines. In addition, two points
1 2 (290  can be directly connected only through a sinfjlelirect or
I'..-exchange line. In evaluating the diagrams, the same re-
placement of lines must be made. In addition, all allowed

A useful reduction can be made for expressions such asonnections of diagrammatic elements at a point must be
this. For an arbitrary X2 matrix A, added.

Consider, now, the three-body distribution function. Once
the two-body equations are solved, only the linked part is
undetermined. Hence, focus attention on the linked three-
body distribution function for now. It is possible to break this
function up into several types of terms, depending on how
the external points are connected to each other. It is first

=T J%x,)AJ%(x,)J¢], (30) possible to separate out terms in which the exte_rnal points
- - - are connected to each other only through two-point connec-
tions. The first type of diagram is one in which one point has
where two-point connections with each of the other points and that
is all. The common point may be any one of the three so that
there are three different diagrams of this type. The next type
Je— ( 1 0) 31) of diagram is where all three points are directly connected to
each other. This is readily achieved withdirect lines, but it
can also be achieved wilh..-exchange lines. The remaining
terms must have true three-body connections between the
It can also be shown that external points. If there are two-point connections between
external points, these portions can be extracted from the dia-
grams. Specifically, there can be no direct connections be-
tween any two points, &'-direct connection can exist be-

RT(x;)AR(Xp)=Tr

A( p(X1)p(X2) P(Xz))
- p(X1) 0

p(x)RT(X2) AR(X3) =TI I%(x1) 3°3%(x2) Ad%(x5) I°].

(32) tween pairs of points, or all the points can be connected by
I'..-exchange line connections. Diagrammatically, the
Equation(29) can be rewritten as linked, three-body distribution function is given by
3 3 3 3
e.. :.9 .:_a'_u Q
T (21, 22,25) = o+ S + S+
§ > 4 ,3 : ) Breverereserenireas B
1 2 1 2 1 2 1 2

(34)

. ++

1 Y =% [ ——%

where the triangular element designated @yepresents the sum of all three-body terms that contain no direct two-point
connections between any external points.

Interestingly, an algebraic expression can be extracted from this that is relatively simple. Start with the first three terms of
Eq. (34). The first term has already been considered and is evaluated 28 gThe other two differ only in the identity of
the intermediate point and are evaluated in a similar way.
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The fourth diagram of Eq(34) is a bit more complicated tions. Thus,Q**(x;,X,,X3) represents the sum of three-
in that the two-point chain closes in on itself. Adding all point diagrams where the connections 1q ,&,,x3) are of
allowed connections at the external points, it can be reducetthe types(\uv), each index being eithat or e. Depending

to the trace on the specific indices for a given term, there will be restric-
tions on the allowed two-point diagrams between the exter-
3 nal points.

y . . For the very last term of Eq34), the connections of the
. o Tr [;l (@)L (a1, 22) ] (@2)L (@2, 25) ] (WS)E(IB@I)] three-point portion can only be with direct lines, so that this
AT (35) becomes

The fifth diagram is easily worked out as s

3 /\ = QU (z1, 23, 23)Tee(@1, 22)Te( %2, Z3) Toc( T3, 1)

- (37)
= Fcc(zly xZ)Fcc(ny zB)Pcc(x.’}y Il) (36)

For the remaining term, there will be contributions from
each possible set of indices f@"*"(x;,X,,X3) and each

For the final diagrams, it should be noted that the threewill be considered in turn. Label each composite term by
point portions labeled by depend on how they connect to T*”(x1,X»,X3), the superscripts corresponding to the super-
the external points, either with exchange lines or just direcscripts that appear o@*(x4,X,,xX3). With all direct con-
lines. As with the two-point diagrams, these diagrams can beections for the three-point portion, adding all the possible
labeled with three indices that indicate the types of connectwo-point connections between external points leads to

1 2

T99%x1,%2,%3) = QX1 , X2, X3){ p(X1) p(X2) p(X3) + p(X)RT(X2) T (X2, X3) R(X3) + p(X2) RT(X3) [ (X3,X1) R(Xy)

+p(X3)RT (X)L (X1, X2) R(X2) + RT(X) T (X1,%2) 39X T (X2, X3) R(X3)

+RT(X) T (X2,X3)%(X3) L (X3,X1) R(X1) + RT(X3) T (X3,%1) (X)L (X1, X2)R(Xp)

+TI4x)T (X1,%2) 3%(X2) T (X2, X3) I%(Xg) L (X3, X1) T}

=Q4%%(x1,%2,X3) T I%(X1) G (X1, X2) I4(X2) G(X2,X3) I%(X3) G (X3, X1) 1. (38)
If the three-point diagram has a single exchange line connection, say atxgoititere results
TA(X1 X2, X3) = QU(X1 , X2, X3){p(X1) p(X2) + RT(X1) T (X1,X2) R(X2) + p(X1) RT(X2) [ (X2,X3) S+ p(X2) ST (X3, X1)R(X1)
+RT(X)T (X1,%2) 34(X2) L (X, X3) S+ RT(X2) L (X7, %3) J°T (X3,X1) R(X1)

+STT(X3,%1) 39X T (X1, X2) R(Xp) + T I X)) T (X1, X2) I4(X2) L (X, %3) I°T (X3,%1) I}, (39
|
where As might be expected, similar expressions are obtained
for the terms where the three-point diagram has two or three
1 exchange line connections. Thus,
sz(o). (40)
T9%X1,Xp,X3)
As with the previous term, the vector-matrix products can be _ de d
replaced by traces, this time replacidf(x) by J¢ at the = QX1 X2, X3) TIT I (X1) G (X1, X2)
exchange point. Equatiof89) becomes X JG(Xy,X3)J°G(X3,X1)] (42)
Tdde(Xl,Xz,X;g) and
= QX1 Xz, X3) T I4(X1) G(X1,X2) U(X,) Te®q Xy, X5, X3)
X G(X2,%3)J°G(X3,%1) |- (41)

=Q®®qXy,X2,X3) T J°G(X1,X2) I°G (X7 ,X3)

Analogous expressions are obtained Tdf% and T¢4¢, X JG(X3,X1)]. (43
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Going back to Eq(34) and inserting the various terms this will be referred to as thenaximal cutting pointAn
that have been evaluated, a compact expression results. Itésternal point can have associated with it at most one maxi-
in fact easier to express the full three-body distribution, asnal cutting point. The diagrams i@"*"(x;,X,,X3) Will be

follows: classified according to how many maximal cutting points
3 they contain 0, 1, 2, or 3.
[(X1,%2,X3) Consider, first, the set of diagrams that contain three
=TI 3% X)) G(Xg . %) I%(Xo) G (X0, Xa) I (X maximal cutting points. There is one special case in which
[ (0G0 %2) I 1(%2) G (%2, %) 17(%3) all the cutting points are the same one. The contribution to
X G(X3,X1) ]+ e X1, X2) T ge(X2,X3) QM(x4,X2,X3) is readily worked out to be
X Teo(Xg,X){1+ Q4 (xy, X5, %3)} Q%SV(Xl,Xz,Xs)
+)Z QM(X1,X2,X3) TITIN(X1) G(X1,X2) I#(X7) :f AXg{ Ty a(X1,Xa) T a(X2,Xa) T a(X3,X4) p(Xg)
y7ax
X G(X2,X3)d"(X3)G(X3,X1)]. (44 (X1, Xa) T pa(X2 Xa) T e(X3,X4)
As a technical point, although® does not depend on any + T\ a(X1,Xa) T ye(X2,Xa) T ,g(X3,X4)
coordinates, there is no mathematical impropriety if an argu-
ment is attached to it. Allowing such a generalization of the (X1, X)L ua(X2,Xa) T a(X3,Xa) - (46)

notation makes the expression above easier to present.  The only other way a diagram can have three cutting points
The superposition approximatibnarises by assuming is when the external points are all connected to different
that the major contribution to the three-body distribution is inexternal points of an internal three-point subdiagram. This
the form of a product of two-body distributions between thethree-point subdiagram is necessarily irreducible and cannot
three pairs of points. This corresponds to eliminating all buicontain any cutting point&else at least one of the designated
the first term on the right-hand side of Eg4) maximal cutting points would not actually be maximal
They are therefore fully irreducible. There are no other re-
strictions on these diagrams; for instance, there may be two-
=Tr{ J%(X1) G (X1, X2) I4(X2) G (X5, %3) I4(X3) G (X3,%1) . point connections between their external points. Label the
sum of such fully irreducible, three-point diagrams by
(45 CM¥(x4,X,,X3). Working out all the allowed connections,
Note that the second term of E(4) also consists of two- the contribution toQ**"(x;,X,,X3) is given by
point connections only between external points, but this is., .,
not properly associated with the superposition approxima-<3b (X1.,X2,X3)
tion, since thesé ..-exchange line connections do not con- f

Fg&(xl 1X2,X3)

dXgdxsdx6 2 Ty (X1, Xg) 5, 00(Xa)
)\’}\U

tribute directly to the two-body distribution function.

IV. THE THREE-BODY FHNC EQUATIONS

d
. . X ! ron
The three-body FHNC equations are designed to evaluate H% i (X2:X6)J 1 ,,0(Xs)

the quantitiesQ*"(x;,X,,X3). The approach taken is a
modification of that of Wertheif? for the classical HNC d N
" . X r,, J, chwrv Xs5,Xg). (4

case. Many of the quantities to be introduced are analogous VEV v (X3,X6) 3,1 ,(Xe) (X4, X5, %) (47)
to those found in the classical case. A number of the details, ) ) _ ) )
especially those associated with the exchange structure of the The diagrams with two maximal cutting points must have
diagrams, are different. a three-point subdiagram which contains the unique external

The set of diagrams that appearsQh**(X;,X,,X3) con- point that does not have an associated cutting point. The
sists of all the irreducible three-point diagrams that have n®ther two external points have two-point connections to the
two-point connections between the external points. This seRther points of the three-point subdiagram. This subdiagram
of diagrams can be further decomposed in terms of the Cufs fU”y irreducible and has no further restrictions. Therefore,
ting points that are present. To prepare for this developmenthe contribution taQ *(x ,x,X3) is given by
note that the removal of any cutting point will result in at

least one diagrammatic fragment that contains only one ex- Q}*"(x;,X,;Xs)= | dx,dxs >, FM,(xl,x4)Jg,x,,(x4)
ternal point. The cutting point will be considered to be asso- AN

ciated with that external point. It is possible for a cutting

point to be associated with all three external points at the X >, I“W,(XZ,XS)JZ,M,,(XE;)

same time, but otherwise, a cutting point can be associated w'u

with only one external point. Now, there may be a sequence XC""“"V(X4,x5,x3). (48)

of cutting points associated with a given external point.
These would correspond to nodes along a two-point connecFhe pointxs is distinguished from the other two in this func-
tion. One of these cutting points will result in the largesttion. There are clearly two other quantities which differ only
possible fragment containing that external point alone, anih the choice of the unique external point.
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The diagrams with only one maximal cutting point must con-  The final contribution contains those three-point diagrams
tain a three-point subdiagram which connects to the two exwhich are fully irreducible but allow no two-point connec-
ternal points that do not have cutting points. The third exterions between any of the external points. Label the sum of
nal point must have a two-point connection with the thirdthése diagrams byZ*“"(x1,Xz,%3). The contribution to
point of that three-point subdiagram. These three-point sub@ * (X1,X2,X3) is given by

Qiagrams)\ are fully irreducible, but because of t'he construc- QMY(X1,Xp,X3) = Z V(X1 X2, X3). (50)

tion of Q"*”(x4,X5,X3), there can be no two-point connec-

tions between the two external points that are contained in it. There are five sums of three-point diagrams that have
No such restrictions are placed on connections between tHeeen defined, and they are summarized in Table Il. Further
other pairs of external points of the subdiagram. If poiats development is extremely tedious without going to a dia-

andxs are designated as the points between which two_pomgrammatic shorthand. In addition to the two-point elements

connections are not allowed, label the associated sum of di already presented, diagrammatic elements can be introduced

for the three-point tities defined far. Th bol

" . L point quantities defined so far. The symbols to
gr;’:\rr:s by X ().(1’)(.2’)(3)' The associated contribution to be used are included in Table Il. When generating an expan-
Q**¥(X1,X2,X3) is given by

sion of diagrams, it often happens that one point of a dia-
gram is treated differently from the other two, but there are

Q1" (X15%2,%3) other, equivalent diagrams included in the sum that differ
only in permutations of the external points. Rather than in-

= | dx, >, FW(xl,x4)Jg,)\,,(x4)xVW(x4;xz,x3)_ clude each permutation explicitly, such combinations will be
AN represented by a summation sign with the number of equiva-

(49) lent terms indicated under the sign. Which terms are to be

included should be clear from the construction. Following

There are clearly two more sums which differ only in thethis prescription, the following diagrammatical representa-
choice of external point to be treated specially. tion for QM*¥(x,,X,,X3) is obtained:

3 3 3
é = + é +3 C\
) 2 1 P 1 2

3 3
(51)

+3 fj + / \

3
1 2 1 2
Using this, Equatior{34) becomes
3 3

AADA
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TABLE Il. Three-point sums appearing in the equations.

sum description symbol

A
1-,[(3) W(xl, Zg,z3) all linked, irreducible three-point diagrams

o

Do

QM¥(z1,z2,73) all linked, irreducible three-point diagrams

without two-point connections between exter-

—
L)

nal points

CM¥(z),29,23) all linked, fully irreducible three-point dia-

grams

> [>

(3]

XM¥ (21, 20,23) all linked, fully irreducible three-point dia-

grams without two-point connections between

—
(3]

points z3 and z3

ZM¥(x), 75,x3) all linked, fully irreducible three-point dia-

pw

grams without two-point connections between

—
N

external points

As noted earlier, the lack of explicit circles for the external 3 8 3 3 3
points implies that the connections to these points are lef - +

unspecified. The quantity on the left is equal to /° O b
FMer(x, X,.%5), which is not the same thing as ' 2ot 2 2ot 2! 2
I'®)(x1,%2,X3), even though the same symbol is being used.
To be clear on this issue, the two are related by

3
FI( )(X1'X21X3)

=§ Ry (X)) R, (X2) R, (Xg) T [P (X1, X5, X3).
y7a%

(53

The linked, three-body distribution function corresponds
to a sum of all the linked, irreducible three-body diagrams.
The quantityC**”(x,,X,,X3) represents a diagrammatic ex-  The diagrammatic expansion fof **(x5;X;,X,) con-
pansion that contains a subset of these: all those that are fultgins all the diagrams of a subset of those in
irreducible. A diagrammatic expansion for this quantity canC***(x,,x,,X3): those that contain no two-point connec-
therefore be obtained by removing those diagrams in Eqgions betweerx; andx,. Removing all such diagrams from
(52) that are not fully irreducible. There results Eq. (54), there results

2
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(59

1 2

Note that if diagrams having two-point connections between any external points are removed, the only diagram that remains
on the right hand side correspondszb“*(x,,X,,X3), as is required.
To derive some direct relationships between three-point sums, consider taking the difference(62Easd (54)

1 2 1';:.: 2 (56)
3 3
RN
1 1';:.: 2
3
1 2

Next, consider this difference on topological grounds. Bytwo-point connection. Diagrams with two cutting points are
subtractingCM”(x; ,X,,X3) from I'®7(x, x,,x3), all the  constructed by joining two external points by two-point con-
fully irreducible diagrams are removed from the sum ofnections to a three-point diagram that contains the third ex-
linked, irreducible diagrams. What remains, therefore, ardernal point. The three-point diagrams must be fully irreduc-
just those diagrams that have at least one cutting point. Focuble and are otherwise unrestricted. The sum of them is
first on the diagrams with one cutting point. There are twotherefore given byC***(x;,X,,X3). There are three topo-
cases to consider. The first is to have that cutting point béogically different such terms, depending on which external
one of the external points and joining it to the other two bypoint is contained in the three-point diagram. Finally, there is
two-point connections. The second is to have one externdahe set of diagrams that have three cutting points. As in the
point joined by a two-point connection to a three-point dia-decomposition of the linked, three-body distribution func-
gram which contains the other two external points. Thistion, there are two cases: one where all three cutting points
three- point diagram has no restrictions other than that it beorrespond to the same internal point and one where all three
fully irreducible. The sum of such three-point diagrams isexternal points are connected directly to different points of a
therefore given byC*"(x;,X,,X3). There are three such fully irreducible internal subdiagram. Diagrammatically,
terms, depending on which external point is joined by thethen, the difference can be expressed by
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3 3 3 3 3
- = + +
1 L , e Y . ) )
3 3 (57)
+> +
3
1 2 1 P

Equating(56) and(57) leads to a relation betwed®*"(x;,X,,X3) andX**(x;;X,,X3) (and its permutations Rearrang-
ing a bit, this becomes

(58)

It may be noted that each term in this equation can be separated into three, each one distinguished by which external point has
a cutting point. It is tempting to separate the entire equation into three, one for each external point. However, this separation
is not necessarily valid, since there may be extra terms that should be included in the separate equations, but that happen to
cancel in the combination and so are not present in(E§. Fortunately, it is not necessary to separate the sum in the
following development.

Equation(58) can be rearranged to solve for the single term containing the sum of permutatXhé’6%, ; X,,X3), which
can then be used to replace two of the terms in (&4) to yield

(59

2
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There remains only one term that contains a dependence dretween external points is therefore given by
XMY(Xq;X5,X3). A little manipulation can generate a rela- Y ¥(Xq,X5,X3) + EM7(X1,X5,X3).

tionship that can be used to eliminate this dependence. First, Now, all the composite three-point diagrams encountered
note that onlyX"49(x;:x,,x3) or one of its permutations in Q"*¥(x;,X,,X3) andZ **(x;,X,,X3) must be constructed
contributes to this diagram. Second, the two-body FHNCfrom the joining of non-composite diagrams at all three ex-

equations yield ternal points. If two diagrams were joined at only two exter-
nal points, there would result a two-point connection be-
Pee(X1,%2) =[ 14T gq(X1,X2) ISec(X1,X2) (60)  tween the two external points. Such diagrams have been

excluded from these sums by definition. Further, the sum of
all composite diagrams B *”(x;,X,,X3) is constructed by
dpining noncomposite diagrams in the SUMAY(Xq,X5,X3)
+ EM¥(x4,X2,X3). Using the information so far deduced, it
is desired to derive relations for the functions
ZM4¥(X4,X5,X3) in terms of the elementary diagrams.

For all direct-type connections, the composite diagrams
must all be made from three-point diagrams with all direct
connections. This leads to the expression

so that thd"..-exchange line can be replaced by a product o
Sco(X1,X5) and aG- direct line. Introducing a new two-point
diagrammatic element, a directed dotted line, to represe
Sce(X1,X5) (see Table)l, Eq. (58) can be introduced to give

1
Z999(x; X5, X3) = E49%(x1, X5 ,X3) + E[Eddd(xl 1X2,X3)

1
+ Y999 (x; X, %3) ]2+ ﬁ[Eddd(Xl 1X2,X3)

. o . (6D +Y99%(x X5, X3) ]34+
By introducing this into Eq(59), the resulting equation con-
tains only two different types of three-body diagrams =E%99x;,X,,X3) + exd E49%x;, X, ,X3)

CM¥(Xq,X5,X3) andZM(xy,X5,X3). As might be expected,

ddd _ ddd
an algebraic representation of this equation would be rather +YT(X1,X2,X3) |~ ETH(X1, X2, X3)

unwieldy. The specific expressions are given in the appendix. —Y99Yx, X, ,X5)— 1
The advantage of the diagrammatic development is clear.
The evaluation of the three-body distribution function now = 0aa(X1,X2,X3) — Y99 x1 ,X5,%3) — 1, (63)

revolves around a proper identification BF#*(x;,X5,X3).

The Percus-Yevick approximation is equivalent to settingwhere

this quantity to zerd® This would give an equation for

C““’(>.<1,x2,x3) alone.. The FHNC approximation requires a 38(X1, X0, X3) = X E999(X, , X5, Xa) + Y3 X; Xz, X3)].

more involved analysis. (64)
The functionZ*”(x,,X,,x3) contains all the fully irre-

ducible three-point diagrams that do not contain any two-

) . . In the case that there is one exchange-line connection, the
point connections between external points. These are analg- . .
composite diagrams can always be decomposed so that one

g&uﬁéoethueagggénoAia\:nga?r::ijo?Sggur::t;srgdt'hr:stgirtnwgé?log art contains the exchange-line connection and all the rest
9 ' y ’ ontain only direct-line connections. In this case,

separated into two terms: a sum of noncomposite diagrams
and a sum of composite diagrams. The sum of nhoncomposite i i i

diagrams inZ*“"(x;,X,,X3) are referred to as elementary ~Z°°%(X1,X2,X3) =E““4(X1,X2,X3) +[E““4(X1,X2,X3)
diagrams and the sum of these diagrams is represented by dde ddd
EM¥(x4,X,X3). The function QM”(x,,X,,X3), by con- YT X2, Xa) JQTH(X1 X2 X3)

struction, contains all linked, three-point diagrams that have =EY9¢(x1,X5,X3)93p(X1 X2, X3)

no two-point connections between external points. This sum

contains a sum of fully irreducible diagrams, which is pre- +Y99%(x1 X5 ,X3) [ G38(X1,X2,X3) — 1].
cisely ZM”(x1,%X,,X3), and a sum of diagrams that contain (65)

at least one cutting point. Define the difference

Similar relations hold when the exchange connection is on a
) different external point.

The situation with two exchange-line connections is more
as this sum of all the three-point diagrams that have at leastomplicated. The composite diagrams can be constructed so
one cutting point. By construction, these diagrams are nonthat only one part contains both exchange-line connections
composite, although not elementary. The sum of all noncomand the rest only direct-line connections, or the exchange-
posite three-point diagrams without two-point connectiondine connections can be on two different parts. This leads to

— A\
YMP (X1, X2, X3) = QM(Xq , Xp,X3) — ZMY (X1, X2, X3)
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29991 , %2, X3) = E9®¥X1 X5, X3) + [E?®H(X1, X2, X3) + YI®X1 , X7, X3) ]QU9%( X1, X2, X3)
+[EY8(X1,X2,X3) + YOUX1 X, X3) 1QUY X1, X2, X3)
=E"°%X;,X2,X3)G3p( X1, X2,X3) + Y®4 X1, X2, X3)[ ap(X1 X2, X3) — 1]

+[E%9(x1, X5, X3) + YIU&(X1 , X0, X3) T E4®Y X1, X2, X3) + YI®U X1 , X ,X3) ]93p(X1, X2, X3).  (66)

Analogous equations hold for the other two cases.

The final equation is derived in the same way, although with a few more complications. It is possible to have all three
exchange-line connections on one part of the composite or to have two on one part and one ontheothare three ways
to do thig or to have one on three different parts. To ensure that each combination is included and not overcounted, we get

789Xy, X2,X3) = E®®XXq , X2, X3) T [E®®UX1, %2, X3) + YEOUX1,X2,X3) JQ (X1, X2, X5) + [E®®X X1 , X2, X3)
+Y99X1 X2, X3) Q%M X1, Xp , X3) + [E®I9(X 1, X2, X5) + YoU9X1, X2, X3) QU X1 , X2, X3)
+[E®*4xq,%0,%3) + YU X1, X0, X3) QX1 , X2, X3) + [ ESUX1, X2, X3) + YO4UX1 , X2, X5) ]
X[E®®4X1,%2,X3) + YOUX1 X2, X3) 1Q9%( X1, X5, X3),

=E®®(X1,X2,X3)G3p(X1,X2,X3) + Y*OUX1,X2,X3) [ G3p (X1, X2, X3) = 1]+ [E®®K(X, X2, X3)

+Y9X1 X2, X3) ILEY X1, X2, X5) + YoUUXq X2, X3) 1938(X1 X2, X3) + [ E*H9(X1 , X2, X5)
+YeI9X X, X3) ILE Y X1, X2, X3) + YO®UX1 X2, X3) 1938(X1 X2, X3) + [ E*®U Xy, X5, X3)
+YUXy X2, X3) JLE (X1, X2, X3) + YOU%(X1 , X2, X3) 1938(X1 X2, X3) + [E*9 X1 X, X3)
+ Y900, %0, %3) TEY®YX1 X2, X3) + Y994 X, X0, X3) ILE®%(Xq , X2, X3)

+ Y91, X2 ,X3) 193a(X1, X2, X3) (67)

All the equations necessary for computing the three-body (c) Using a combination of Egs.(59) and (61),
distribution are now derived. There are a large number of£***(x1,X,,X3) can be computed self-consistently from the
them and it is useful to see how they are related to eacBuessed values fa"**(x1,x;,x3) and the two-body func-
other. For this purpose, a general computational procedure KONS. . .
devised as follows. (d) Equation(55) can be solved self-consistently from the

(a) Choose a set of elementary diagraBi&”(xy ,X,,X3). guessed values f@"*"(x,,X,,x3) and the computed values

Auv
N . i ) . r X1,X2,X3).
This is not as simple an issue as might be surmised. In ana‘0 CH(X1,X,X3)

i o " (e) Equation(51) can be rearranged to an expression for
ogy with the FHNC/0 approximation for the two-body equa- YWV(Xl(?Xz,Xa), which can then be %olved directIF;/ using the

tions, one may choose the empty set for this. There is reasqymputed values foEM*(xy Xy, X5) and XM (X, Xy, Xa).

to suspec® that some useful results can be obtained in this (f) Equations(63)—(67) can be solved directly for the new
way. However, if three-body correlations are to be investi~/g|yes ofZM7(X4 , X5 ,X3) .

gated, it is necessary that a more careful choice be made. (g) The new and old values fa**(x;,x,,X3) are com-

This issue will be discussed in the Conclusions section.  pared. If they are close enough, they can be used in the next
() Make an initial guess for the functions, step. Otherwise, the process starting from s@should be

ZM(x4,X2,X3). This will be modified in an iterative fashion repeated.

during this procedure. Presumably, setting all the functions (h) Equation(62) is used to comput@**(x;,X,,Xs).

initially to zero, as in the Percus-Yevick approximation, will (i) Equation(44) is used to compute the three-body dis-
be satisfactory. tribution.
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It may be noted that the common procedure nowadays foquantum Monte Carfd results. However, optimization of
solving the FHNC equations involves a functional optimiza-the three-body correlation potential is a more delicate matter.
tion of the correlation potentials and not a direct iterativeln this case, it seems crucial that the sequential relation be-
solution as described above. Nevertheless, the equations dgveen the three- and two-body distributions be satisfied.
rived in this paper can still be used as a starting point ttHence, one might suspect that the three-body equations de-
construct the associated Euler equations for the correlatiofyed in this paper may be deficient in this respect. This is
potentials. certainly worth future investigation. There are two obvious

directions to go at this point. First, it may be possible to
V. CONCLUSIONS re_cast the formulas ir_1 this paper in a way that i_s consistent
with the KR formulation of the two-body equations. Even

The three-body FHNC equations have been derived anghough this would result in the elimination of certain dia-
are reported here explicitly. A uniform system is not as-grams(as it does in the two-body equationthere may be a
sumed; they are derived for the general inhomogeneous syprofitable return due to the satisfaction of the sequential re-
tem. They are, as expected, very complicated and would bgtions. Second, there may be alternative truncations of the
difficult to solve. Routine use would certainly not be ex- gjementary diagrams that lead to satisfaction or at least ac-

pected to be worthwhile. Nevertheless, they would be valuzenaply approximate satisfaction of the sequential relations.
able for directly testing the validity of the various approxi- These truncations will depend on the two-body elements

mations used and their explicit presentation here wo_uld hel'ﬂlsed and may work better within one formalism than the
to that end._Fur_ther, th_ere may be cases w_here a hlghly aGther. In any case, the results in this paper could serve as a
curate solution is required and the expressions derived here . . .
may be useful for that. In particular, situations where three> Uitable starting point.
body correlations should be taken into account would require
an accurate treatment of the three-body distribution and the
equations derived here would serve as a starting point in that APPENDIX: THE ALGEBRAIC FHNC THREE-BODY
direction. EQUATIONS

One further issue is worth discussing here. The equations
derived in this paper are more closely associated with the Although all the formulas for the three-body distribution
Fantoni-Rosati (FR) formulation of FHNC theory than with are in principle given, they are mostly in diagrammatic form
the Krotscheck-Risti@(KR) formulation. As a result, these and must be translated to an algebraic form before they can
equations suffer the same shortcomirgsd strengthsas the  be practically implemented. The resulting expressions are
FR two-body equations. The solution of these FHNC equanecessarily lengthy, but it is useful to have them written
tions depends directly on the choice of elementary diagramgown for potential use. They are presented in this appendix
that is made. The common choice for the two-body equationg, g|| their glory.
involves a truncation of the cluster expansion of elementary A direct translation is, of course, possible, but the expres-

diagrams up to a specific number of %‘:i”ts’ the so-calledjons are very long. It is possible to streamline them a bit
FHNC/n approximation. It has been notethat the cluster iyt sacrificing the explicit nature of the expressions by
expansion contains divergences that end up canceling eaﬁlﬁroducing a new three-component ar@y??, the indices

other in the full sum. However, the FHN@/runcation of i, eithe ore. It is defined by the following expressions:
elementary diagrams results in an incomplete cancelfHtion

that could be harmful for computed results. The KR formu-

lation aims to ensure a proper cancellation of these divergent

terms, even at a truncated level. However, it is useful to note

that the three-body equations derived in this paper do not gdﬁy_(l 0) geﬁ'y_(o 1). (A1)

rely on the specifics of the two-body elements. They could 0 0/ 1 0

just as easily come from solution of the KR-FHNC equations

as from the FR-FHNC equations. Whether using two-body

elements from the KR formulation would yield an improve-

ment over the FR formulation is not clear, but would be This arrayG*#” can be used when joining two diagrammatic

worth investigating. portions with ends of typ@ andy to each other. The overall
This cancellation phenomenon is expected to occur in théype for the point of the joined diagram then corresponds to

three-body equations as well and probably to a stronger deghe indexa. This array will be used in the following expres-

gree. The KR formulation was developed by enforcing thesions. The procedure presented in the text will be repeated

correct smallk behavior of the structure factor, a property here with the diagrammatic equations replaced by algebraic

which is intimately tied to the sequential relation between theexpressions.

one- and two-body distributions. It is this property that the (a) Choose a set of elementary diagrai$'”(x; ,X,,X3).

FR formulation does not handle satisfactorily. There are in- (b) Make an initial guess for the functions

dications that calculations within the FR formulation yield Z***(x1,X5,X3).

satisfactory total energies. For instance, calculations on the (c) Use the following equations to solve for

electron ga%* lead to energies in excellent agreement withC**(x;,X,,X3).
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Cddd(xlvX21X3):Fdd(xl1X2)Fdd(x21X3)Fdd(x3uxl)_{ J AXg{ T ga(X1,Xa) T ga(X2,Xa) T g(X3,X4) p(X4)
+ L ga(X1,Xa) T ga(X2,Xa) U ge(X3,X4) + T gd(Xq, Xa) U ge( X2, Xa) I ga(X3,X4)
+Fde(xl1X4)rdd(x2vx4)rdd(x31x4)}+fdX4dX5dX6Fd)\(X1-X4)Fd;¢(X21X5)rdv(X3-X6)
Xng'(x4)‘]iw(Xs)ngr(Xe)C}‘,“’V’(X4,X5,X6)J{Fdd(xl,Xz)rdd(xz,Xs)+Fdd(X2,X3)Fdd(X3,X1)
+ T ga(X3,X) T gg(X1,%2) + 21 gg(X1,X2) T ga(X2 . X3) T ga(X3,X1) }

+f dx4dx5rd>\(X2vx4)rd,u(x31X5)‘]g)\’(XA)J?LM'(XS)Cd)\,M,(XlvXAaXS){Fdd(XZ1X3)

~Tad(X1,:%2) T 4a(X1,X3) Ggal X2, X3) } + f AXgXs Ly (X3, X0) T (X1, Xs) 5, (X2) 35,/ (Xs)
X CMNH (x5, %4, Xs){T ga(Xg,X1) — T ga( X2, X3) T g X2, X1) G Xa,X1) }

+f dX4dX5Fd)\(X1vx4)rd,u(x2iXS)Jg)\r(X4)~J2#r(X5)Cd>\1M/(X31X41X5){Fdd(X1:X2)
_Fdd(x31X1)Fdd(x3vXZ)Gdd(Xlrxz)}+f dX4Fd>\(X1-X4)Jg)\r(x4)c)‘,dd(x4,xz-X3){Fdd(X1,X2)
+Fdd(Xl,Xs)+Fdd(X17X2)Fdd(X1,X3)}+J dX4Fd)\(X21X4)Jg)\l(x4)c)\,dd(x4vx31X1){Fdd(x21X3)

+ T ga(X2,X1) + T (X2, X3) T ga(X2,X1) } + j dXal' g\ (X3 ,X4)fo,(x4)C*'d“(X4,X1 XTI gd(X3,X1)

+T ga(X3,X2) + Tga(X3,X1) T ga(X3,X2)} + Gal( X1, X2) Gaa( X2,X3) Gaa(X3,X1) Z99% X1, X2, X3),  (A2)
Cdde(xlixzax3):Fdd(xlaXZ)Fda(XZ!XS)geaﬁFﬁd(X:%le)_[fdx4{rdd(xlrx4)rdd(x21X4)Fad(X3aX4)P(X4)

T gd(X1,Xa) T ga(X2,X4) T qe( X3, X4) + Tga(X1,Xa) U ge(X2,Xa) T 0a(X3,X4)
+Fde(xl1X4)Fdd(X21X4)Fad(x31x4)}+f dxadX5dXel g\ (X1, Xa) g, (X2, X5) (X3, X6)
><J;‘w(xm;’w(xg,)J‘iy,(xe)ck’#’V’(x4,x5,xe>]ge“ﬂ{rdd(xl,xardﬁ(xz,xs)+rdy<xz,x3>gﬁ75r5d<x3,x1>
+T ga(X3, X)) T ga(X1,X2) + 2T g X1, X2) T g (X2, X3) G 7T 54(X3,%X1) }
“‘f dx4dx5[‘d)\(x2,x4)FaM(x3,x5)‘]g)\,(x4)\]2M,(x5)Cd>‘"’“/(xl,x4,x5)ge“ﬁ{f‘dﬁ(x2,x3)
P60 X (60 X509 Gz X+ | BXT O ) 60 0035 060) 2,5
X CMNA' (Xg,%Xq,X5) F¥P(T gg(X3,%1) — Ty (X2, X3) T g X2, X1) GPY2G s4( X3, 1)}
+ J dxadxsTan (X1, Xa) T (X2, X6) I3y (%) 3, (X6) O (Xg X X5) PGP (X1, o)
_Fyd(XSle)gﬂyérﬁd(XSyX2)Gdd(X1:X2)}+f dX4rdx(X1,X4)ng(x4)cwba(x4axz:X3)geaﬁ

X{GPYUT 44(Xq ,X2) + T gp(Xq,X3) + Ty Xe , X2) T ap(X1,X3)}
+f dX4Fd>\(X21X4)Jg>\r(x4)c)‘lba(x4’xl:Xs)geaﬁ{gﬁddrdd(xl:X2)+Fdﬁ(X2aX3)
+Fdd(X1:X2)Fdﬁ(X2-X3)}+j dX4Fa>\(X3,X4)Jg>\r(x4)c)\’dd(x4:Xl,xz)geaﬂ{rﬁd(xayxl)+Fﬁd(x3,xz)

+T,4(X3,X1) GPYT 54(X3, %)} + Z99%(X1, X2, X3) G2*PG (X1, X2) G (X2, X3) GPY2G 54(X3,X1), (A3)
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Cdee(xlax21X3):Fda(X1vXZ)QeH'BFBa’(XZ1X3)gea/ﬁ/rﬁ’d(x3axl)_{j AX{ T gg(X1,Xa) T qd(X2,Xa) T 07 g(X3,X4) p(X4)
+ T ga(X1,Xa) T 0a(X2,Xa) T 07 e(X3,Xa) + T ga(X1,Xa) T ge(X2,Xa) Iy a(X3,X4)

+Fde(X1!X4)Fad(X2’X4)Fa’d(x3ix4)}+f dXadXsdXel gy (X1, X4) I 0 (X2, X5) I 41, (X3,X6)

xJ;’w<x4>J;1M,(x5>J3V,<x6>c*’ﬂ’V’<x4,x5.x6>]geaﬁge“’ﬁ’{rdxxl,x2>gwragf<x2.x3>

+T 5,(X2,%3)GP 7 2T 514(Xa, X1) + T grg(X3, %) T gp(X1 , Xo)

+20 (X1, X2) GPYT i (X0, Xa) GP 7 2T 51 g(X5, %)}

+ J AxAX6T o (X2 Xa) T (X3, X6) I3 (Xa) 3y, (X6) C 4 (X4 X4, X5) GP G T 1 (3, %)

—de(xl,XZ)QBV‘SGW(XZ,x3)gﬁ'7'5'l“5rd(x3,xl)}+f dX4dX5Fa’)\(X3!X4)de,(xllX5)‘]g)\r(X4)Ji’ur(X5)
XCa)\’”’(xzaX4,Xs)geaﬁgea’ﬁ’{gﬁddrﬁ’d(xs:Xl)_rdy(xlaxz)gﬁyarﬁy'(xzaxs)gﬁryrgreﬁ'd(xsvxl)}

+ f dxgdXsT gy (X1, Xg) T o (Xa X6) 5 1 (X2) I L, (X5) CON#' (X, %4, %5) GEHPGE B {GE AT 4, %)

= Gay(X1, %) G°7T 5, (X2 X3) G 77T 514(X3, %)}

+f dX4Fd>\(X1,X4)Jg>\r(X4)C)‘,M/(X4.Xz,Xs)geaﬁgea,'gl{gﬁlddrdg(xl,X2)+gﬁddrdﬂ'(X1,X3)
+T g5(X1 %) T g (Xg ,X3) L+ f AXgT o (X2, X4) 30,/ (X4) CN P (x4, X1, X5) GE4PGE B {GF" AT (x4 ,X,)

+FB,3,(X2,X3)+de(xl,X2)9575F5B(X2,X3)}+f dX4Fa'x(X3-X4)Jg>\r(x4)c)\/ba(x4-Xlaxz)geaﬁge“/ﬁ/

XAGPYIT 5 4(x3,%1) +T g1 g(X3,X0) + Ty (X1, Xg) G 7 O'T 50 (X3, X2) }

+Z99%" (X1, X5, X3) GEP G P Gy, (X1, X0) GPY0G 5,1 (X2, %3) GF 7' G g1 Xa , Xq), (A4)

CoeYXy X9, X3) =T g (X1,X2) G° BT g1 (X2, X3) G2 P'T g (X3, %1) G°P
_[fdX4{Fad(Xl1X4)ra’d(x21X4)Fa”d(x37x4)p(x4)+Fad(xl1X4)Fa’d(x21X4)Fa”e(x3=x4)
+ T (X1, X)) T re(X2,X0) T ra(X3,Xg) + T (X1, X0) T r (X2, Xg) T (X3, X4) }
+ f X AdX0X6T (X1, Xa)T a7 (X2 X6)T (X X6) Iy (Xa) 35, (X6) 35,0 (X6) CM A (X4, X5, Xe)
x GerP G B e BT o (Xe X)) P Y 0T 51 (X, %a) + T g1 (X2, X3) GV O'T g 5(X3,X4)
+T (X3, X0) GPYT 55 (Xq %) + 2T 5, (X1, X2) GF' Y 2T 51 (X, Xg) GF Y O'T g1, (X3, %0)}

+J dX4dX5F"‘”‘(X2’X4)Fa”M(X3’X5)‘Jf>\'(X4)‘]iw(x5)cm\,“/(xl.X4,X5)geaﬁgealﬁlgeaﬂﬁﬂ
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X{gﬁddrﬁfﬁ"(xz:X3)_Fay’(xlaxz)gﬁly/'s/eaf y"(Xz,X3)gﬁﬁy”5”r5"y(xs1X1)9B78}
+f dX4dX5Fa">\(X3aX4)FaM(X1,X5)Jg>\r(X4)Ji#r(X5)CaW”/(X2'X4,Xs)geaﬁgealﬁlgeaﬂﬁﬂ
X{GP" UL (X3, %1) =T 5y (X1, X2) G 7 2T 510( X X3) GP 7% G g (X3, X1 ) GF7%)
+J dX4dX5Fa>\(X1,X4)Fa'ﬂ(xz,Xs)ngr(X4)Ji#r(X5)CaN>\,M/(X3'X4’Xs)geaﬁgwlﬁlgeaﬂﬁﬂ
XAGP T g0 (X1, X0) = Gyr (X1, X2) G Y T 51 yr(Xa X0) 7 O'T (X3, %1) GP7%)
+ J AT o (X1, X0) 303 (X)) CN' @@ (X4, X, X5) GEXPGE B G B GF"IT 1, (x4, Xg) + G 9T pn(Xq , Xa)
+T g1 (X9, X1) GPYT 50(Xq ,X3)}
+ f AXaT oy (X2, Xa) 3%, () CN @ (x4, X1, X5) G2*BG B GO B"{GF"IIT 1o, (x4, %)

+GPUT g1 (X2, X3) + T g (X1, X2) GF 7 O T 51 (X2, X3) }
d ! ! ’ r " ol r
+f dX4Fau>\(X3,X4)JM,(X4)C)‘ ¥ (Xg,X1,Xp) GEHPGET B GRaTB {Q'B ddrﬁ”ﬁ(xsnxl)
+GPYT 451 (Xa,Xo) + T gyr(Xq ,X3) GF Y O'T 5151(Xa,X2) }
+Z99 9" (%1, X, %3) GPP GO 'GP E G 1 (X1, %0) GP Y 7 Gyt (%0, X3) GF YOG g (X3 X1) GV

+ 1—‘cc(x3 ’XZ)FCC(XZ ixl)rcc(xl ,X3)

X

1+f AXa[ T qa(X1,Xa) T ga(X2,X4) T aa(X3,Xa) p(X4) + Tga(X1,Xa) T gd(X2,Xa) T ge( X3, X4)

+ T ga(X1,X4) T ge(X2,Xa) Tga(X3.X4) + el X1, X4) T'gd(X2,X4) I'ga(X3,X4) ]

+J dX4dX5dX6Fdx(X1,X4)Fd#(xz:Xs)rdy(xs,XG)J?\;\/(X4)Jiﬂf(Xs)J?,,,r(Xe)Cw“’V’(X4:X5=X6)
+f dX4dX5Fd>\(X2aX4)FdM(X3aX5)Jg>\r(X4)JiMr(X5)Cd)‘,“,(X1,X4-X5)

+ f dxadXsT g (X3, X) T g1, X6) 35/ (Xa) 3y, (X5) C™ ' (X2, X4, Xs)

+ J AxgdX6T g (X1, X)Xz, X6) 351 (Xa) 35,0 (X5) C ' (X5, X4, X5) 299X, Xz Xa)
+Scc(XZvxl)rcc(xlvx3)rcc(x3!xz){J' dXAFdA(XsaX4)Jg)\/(X4)Cdd)\,(X1'szx4)

_f dXg[ T ga(X1,Xa) Tga(X2,Xa) T ga(X3,X4) p(X4) + T ga(X1,X4) I ga(X2 ,Xa) I ge( X3, X4)
T aa(X1,X0) T ge(X2,Xa) Tda(X3.X4) + T ge(X1,X4) T'ad(X2,Xa) I ga(X3,X4) IT g X1, X2)
_f dx4dxsdXsl" g\ (X1, X4) (X2, X5) g, (X3,X6)
X‘]gh’(x4)‘liu’(x5)‘]gv'(X6)C)\/”,V,(X41X5'Xe)rdd(xl-xz)

‘f AxaxsT o (X1 Xa) T, (Xa Xa) I3y (Xa) 35,0 (X6) C ' (% X4, X6) Tt Xo)

- f dXg0X5T g (X2, Xa) Tt (X3, X5) I3,/ (Xa) 35, (X6) CN A (X1, Xg  X6) T X1, X2)
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+Scc(x3rX2)Fcc(X2-Xl)FCC(X11X3){j AT gp (X1,X4) 35,/ (Xa) CIN (%5,%3,X4)
_f dXg[ T ga(X2,Xa) T ga(X3,X4) T ga(X1,X4) p(Xa) + T ga(X2,Xa) I ga(X3,Xa) I ge( X1, X4)
+ga(X2,Xa) T ge(X3,Xa) T dd(X1,Xa) + T ge(X2,Xa) T ga(X3,Xa) T ga( X1, Xa) ] T da( X2, X3)

- f dXadXsdXgl" 4\ (X2, X4) T g, (X3, X5) I g, (X1, X6)

X I8 (%) 38 L (x6) 3%, (X6)CM ' (Xg X5, X6)T (X2 X3)

—f dx4dX5Fd>\(X2,X4)FdM(X1aX5)Jg>\r(X4)~]iﬂr(X5)Cd)"“,(X3,X4-X5)Fdd(X2aX3)

- f AXdX6T i (X, Xa) T (X1, X6) 0 ()5, (X6) C™ ' (3, X X6) T gl X X)
+Scc(X1!Xs)rcc(x3rx2)rcc(x21X1){f dX4Fdx(X2:X4)Jg}\r(x4)cddw(xs,X1:X4)

—f AXa[ T gd(X3,Xa) I ga(X1,X4) I'qa(X2,Xa) p(X4) + Tqa(X3,X2) I a(X1,Xa) Tge( X2, X4)
T ga(X3,X4) T ge(X1,Xa) Tga(X2,X4) + T ge(X3,X4) T'gd(X1,Xa) I ga(X2,Xa) 1T g X3, X1)

- f dx4dxsdXs 1" g\ (X3,X4) g (X1, X5) g, (X2, X6)

><‘Jg}\’(X4)JZP«’(X5)J3V’(X6)CA,M,V'(X41X51X6)Fdd(x31xl)
_f dXAdXSFdA(XaaX4)qu(X2-Xs)ngr(X4)ng(Xs)de”’(X1'X4,X5)Fdd(X31X1)

- f AXadXsT gr (X1, Xa) T (X2, X5) 51 (Xa) 35, (X6) C™ A (X3, %4, X5)T gl X3, X1) (A5)

Equations(A3) and (A4) can be permuted to give equivalent expressions in which the direct-line and exchange-line connec-
tions are on different external points. There are eight equations in all.
(d) Use the following equations to solve fX"“*(x;;X,,X3):

XM”(X1§X2,X3):[IdX4[Fad(X1:X4)Fa'd(xz,X4)Fa"d(x3,X4)P(X4)+Fad(X11X4)Fa/d(xz:X4)ra”e(x3ax4)
FT ad(X1,Xa) Ty e(X2,X4) I ara(X3,Xa) + 1 ae( X1, Xa) T o (X2, Xa) U ara(X3,X4) ]
+J dX4dX5dX6Fa(r(Xl1X4)ra’7(x21X5)Fa”v(x31X6)‘Jga—/(x4)‘]?-7'(XS)‘JSUI(XS)CU'T’U’(X41X51X6)
+f dX4dX5Fa'g(X2'X4)Fa"T(X3,X5)Jggr(X4)3g7r(X5)CMIT,(X1,X4'X5)
+ f dx4rw(x1,x4)Jio,(x4)x0’a’“”(x4;xz,xg)]QMBGW"’Q”“"B"Fﬁry(x',z,xl)gﬁy"F(sﬁn(xl,Xs)
] [ Ol 0 2 1), 50038 )G 00050
+ f dx4raf(,<x1,x4>Ji0,<x4>x0’w”<x4;xz,x3>]gk“ﬁgﬂ“’ﬁ’gva"ﬁ"rﬁ/y<x2,xl>gﬁ75r5ﬁ~<xl,x3>
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+[ J AxgAX6T (X1 Xa) T 072(X3,X6)95,,/ (Xa) 37, (X5) C' 77 (%, X4, Xs)
+ f AXal (X3, Xa) 30 0 (Xa) X7 9 (X45%q  Xp) | GNBGH"B G BT 4, (Xg,%1) GPY2G 550 (X1 ,X2)

+ f dXaT oo (X1, Xa) 30 (X)X @ (X430, Xg) GMeBGre" B Gre" B 1 GB"AAD 1y (X %)

+ GBI o (Xg, Xa) b+ 29 ¥ (X1, Xg,X5) GMBGH G B G 1 (X0, X1) GPY7G sn(Xq,Xg) (A6)
(e) Use the following equations to solve fof™“"(X;,X,,X3):

Y}\“V(Xl,xz,xa):j AXg[ T \a(X1,Xa) T 4a(X2,Xa) T a(X3,Xa) p(Xa) +Tna(X1,Xa) T (X2, %) T Le(X3,X4)
F 1 a(X1,Xa) T (X0, Xa) T (X3, Xa) + Tye(X1,Xa) T a(X2 , Xa) T (X3, X4) ]
+J dX4dX5dXeFm(X1,X4)T,”(Xz7X5)FW(X3,Xe)Jggr(qu)JfTr(Xs)Jg,,r(Xe)C"'T'”'(Xme,Xe)
; J AxadxsT s o (X1 Xa)T (2 X502, (x0) 3%, (X6) G 7 (34 X5, X3)
[ AT 00 KT 0.%6)08 (X3, (190 O 7 e .50
[ T 0 X T 6 XD )30 06) 7 00 X5 30)
+ f dxa Ty o (X1, X4) 30 (X)X #¥(X43%,X5)
+f X (X2, %) 3G (Xg) X7 (X1 X3, X1)

+j dx4rvo(x3vX4)Jggr(X4)XU/}\M(X4;X1-X2)- (A7)

The rest of the equations needed for the procedure are already presented in algebraic form in the main part of the paper.
They will not be repeated here. The formulas above, while rather complicated and long, are amenable to the generation of
computer code to perform the calculations.
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