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Fermion hypernetted chain equations for the three-body distribution
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The fermion hypernetted chain equations for the three-body distribution function are derived in this paper.
These equations are relatively complicated and some care is required for their derivation. The formulas are
presented explicitly and an outline for their practical implementation discussed.
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I. INTRODUCTION

The fermion hypernetted chain~FHNC! equations were
originally derived1,2 for the study of uniform-density, nuclea
matter. However, the formalism is just as easily applied
other many-fermion systems such as the electron gas,3,4 and
the equations can be further generalized for nonunifo
systems.5,6 The starting point for the formalism is the a
sumption of a many-fermion wave function in the form of
Slater determinant of one-fermion orbital functions times
correlation factor of the Jastrow form.7–9 Optimization of
this wave function is associated with the evaluation of
expectation value of the Hamiltonian and this is where
FHNC equations come in.

If the fermions interact in a pairwise fashion—the typic
case—and only one- and two-body correlations are inclu
in the Jastrow factor, one formulation expresses this exp
tation value in terms of the one-, two-, and three-body d
tribution functions.10 The FHNC equations have been d
rived to evaluate the one- and two-body distributi
functions from the assumed form for the many-fermion wa
function. To evaluate the expectation value of the Ham
tonian, an approximation is normally introduced for t
three-body distribution. The superposition approximation11

for instance, is a common choice. This allows the three-b
distribution to be evaluated directly from the solutions of t
two-body equations. A similar approach is taken in the so
tion of the classical HNC~hypernetted chain! equations.
Within this formulation, then, it would be advantageous
have an exact formalism for the three-body distribution
order to investigate corrections to such approximations.

An alternate formulation eliminates the need for a thr
body distribution by effecting a transformation of the kine
energy that leads to the so-called Jackson-Feenberg12 form
for the energy. In place of the three-body distribution, th
is a term which contains the off-diagonal elements of a o
body function. The Jackson-Feenberg form is clearly su
rior for the homogeneous system, since this one-body qu
tity can be evaluated directly from the solutions of the tw
body FHNC equations.13 The inhomogeneous system is mo
complex and many of the approximations possible for
homogeneous system no longer apply. It seems reasonab
suppose that such a direct evaluation of the one-body q
tity is still possible, but the derivation of the appropria
relationships does not seem to have been investigated
Nevertheless, the three-body distribution need not be con
ered for the evaluation of the expectation value of the ham
0163-1829/2001/64~19!/195121~21!/$20.00 64 1951
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tonian in a homogeneous many-fermion system and co
potentially be unnecessary for the inhomogeneous sys
as well.

Where the three-body distribution would be important
in the study of many-fermion systems when three-body c
relations are included in the Jastrow factor. The inclusion
three-body correlations appears to be important for cer
systems, such as liquid helium.15 A significant effort to intro-
duce these correlations was made by Krotscheck
Saarela14 and a call for the derivation of the three-bod
FHNC equations was made in that paper. It is the goal of
paper to present such a derivation.

An analogous derivation has been presented for the c
sical HNC equations by Wertheim16 and much of that devel-
opment can be tailored for the many-fermion system con
ered here. However, there are some important distincti
associated with the exchange structure of the correspon
diagrams in the FHNC case and some extra care is requ
in performing the necessary topological analysis. Further,
development of Wertheim ignored the contribution of wh
are known as elementary diagrams. Incorporation of th
quantities requires some additional analysis.

II. SOME DEFINITIONS AND THE TWO-BODY FHNC
EQUATIONS

It is useful to begin by summarizing the two-body equ
tions. They will not be derived, but the quantities and co
cepts involved will be presented and the notation used
be carefully defined. This will provide a convenient ba
from which the three-body equations can be derived. It is
interest to present the equations that apply to an inhomo
neous system and not specialize to the more commo
treated homogeneous system. For that reason, the equa
will correspond more closely with the formalism of Ripka5

who specifically treated this case. The interested reader
consult that reference for more details.

Unfortunately, Ripka5 employed a set of notation that dif
fers from that commonly used in the literature. The treat
of Clark17 presents an alternative set of notation that see
to have become thede factostandard and the equations w
be presented here with that notation. It should be noted, h
ever, that Clark’s work focuses on the homogeneous sys
and so, some minor changes are needed in the definit
when extending the notation to the inhomogeneous syste

The system of interest consists of a very large numbe
identical fermions interacting by a pairwise additive for
©2001 The American Physical Society21-1
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GARY G. HOFFMAN PHYSICAL REVIEW B 64 195121
law and subject to an externally applied one-body poten
The number of fermions is assumed to be large enough
extending the system to infinite size would still provide
reasonable approximation for the system of interest. As
example, the electrons in a solid-state system of macrosc
size would fall into this category. It should be emphasiz
that the external potential is not assumed here to be unifo

The coordinates of a single fermion consist of a set
three spatial coordinates plus a spin coordinate. These
coordinates will be collected under the single symbolx. A
subscript will be used to distinguish between the coordina
of different fermions. The wave function for the system w
be assumed to be the product

C5DF, ~1!

whereD is a Slater determinant of orthonormal one-fermi
orbitals$f j (x)% andF is a correlation factor of the form

F5expH 1

2 (
j

u~1!~xj !1
1

2 (
j ,k

u~2!~xj ,xk!1¯J . ~2!

The sums in the exponent are over all fermions in the sys
and the functions are referred to as correlation potenti
u(1)(x) is the one-body correlation potential,u(2)(x,x8) is
the two-body correlation potential, and so on. By specify
the set of occupied orbitals and the correlation potentials,
wave function for the system is fully determined.

The focus of interest is the one-, two-, and three-bo
distribution functions, defined here as follows:

r~x![G~1!~x!5E C†H(
j

d~x2xj !J Cdt,

G~2!~x,x8!5E C†H(
j ,k

d~x2xj !d~x82xk!J Cdt, ~3!

G~3!~x,x8,x9!5E C†H (
j ,k,l

d~x2xj !d~x82xk!

3d~x92xl !J Cdt.

The integrations are over all fermion coordinates and e
Dirac delta function is applied to all four single-particle c
ordinates simultaneously. The special notation for the o
body distribution functionr(x) is customary. If the many-
fermion wave function is given simply by a Slate
determinant of orthonormal orbitals, evaluation of the dis
bution functions is straightforward. When the correlation fa
tor is added, however, the expressions become much m
complicated and it is necessary to derive alternate mean
evaluating them.

The standard approach, at this point, is to expand the t
body portion of the correlation factor to obtain clust
expansions18–21 for the distribution functions. The terms o
the expansion can be more easily organized if they are
resented by diagrams. It is this diagrammatic expansion
is used to derive the FHNC equations.
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It is important to be clear on certain features of the
diagrams and so, they will be described in some detail
given diagram consists of a number of points and conn
tions between them. Each point has a set of fermion coo
nates associated with it and there are two basic types,
pending on how the coordinates are used. Internal po
have their coordinates integrated over and the external po
do not. As a result, the diagram represents a function onl
the coordinates of the external points and the number of
ternal points can serve as an initial categorization. One-b
diagrams contain one external point, two-body diagra
contain two external points, and so on. As might be s
mized, the one-body distribution function can be expres
solely in terms of one-body diagrams, the two-body distrib
tion function can be expressed solely in terms of one- a
two-body diagrams, and so on.

Connections between points represent both exchange
teractions and correlation interactions. The two-body FHN
equations derived in the literature1,2 started from a formalism
in which only two-body correlations were taken into accou
If three-body correlations are to be included, some modifi
tion of the traditional formalism is required. Fortunately, th
modification is more of a technical issue than a fundame
one. The FHNC equations are derived based on a topolog
analysis of the diagrams. This topological analysis is va
whether the diagrams contain elements representing th
body correlations or not. Introducing three-body correlatio
will leave the overall equations unchanged, but will chan
only some of the specifics regarding their ingredients. T
associated three-point diagrammatic elements can be sim
superimposed on the diagrams of the traditional cluster
pansion and will have no effect on the basic nature of
diagrams themselves. So, in order to avoid the complicati
associated with adding further diagrammatic elements,
following develop will assume only one- and two-body co
relations. This will allow the important points regarding th
behavior of the diagrams to be made. Some comments on
modifications associated with adding three-body correlati
will be made at the end of this section.

Hence, connections occur between pairs of points
there are two basic types. The first type is called anh-direct
line and represents a factor of

h~x1 ,x2!5eu~2!~x1 ,x2!21, ~4!

where the sets of coordinates are those of the points b
connected. This designation~as opposed to just calling it a
direct line! is intended to distinguish this type of line from
the direct-type line that will arise in the three-body diagram
The second type is called as-exchange line, the function fo
which will be labeleds(x1 ,x2). This is, in general, a rela
tively complex function, but can be simplified with a specifi
choice for the one-body correlation potential. This will b
described in more detail later. Thes-exchange line is a di-
rected function, so that the order of the arguments is me
ingful. It is possible to refer to as-exchange line coming
into or out of a point. As with theh-direct lines, this desig-
nation is designed to distinguish it from the exchange-ty
lines that will arise in the three-body diagrams.
1-2
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FERMION HYPERNETTED CHAIN EQUATIONS FOR THE . . . PHYSICAL REVIEW B 64 195121
The diagrams appearing in the expansions can be ge
ated by brute force and a topological analysis leads t
formalism in which only certain types of diagrams are de
with directly. In particular, the various distribution function
are separated into quantities in which all the diagrams
linked and irreducible. These terms will now be defined.

A linked diagram is one in which all the points are linke
to each other. Put another way, a linked diagram is one wh
it is always possible to travel, by way ofh-direct and
s-exchange lines, from any one point in the diagram to a
other. As it turns out, the one-body distribution functionr(x)
is expanded solely in terms of linked, one-body diagram
The two-body distribution contains unlinked contribution
but can be decomposed as

G~2!~x1 ,x2!5r~x1!r~x2!1G l
~2!~x1 ,x2!, ~5!

whereG l
(2)(x1 ,x2) contains only linked two-body diagrams

For reference purposes,G l
(2)(x1 ,x2) will be called the linked

two-body distribution function. Likewise, the three-body d
tribution function is decomposed as

G~3!~x1 ,x2 ,x3!5r~x1!r~x2!r~x3!1r~x1!G l
~2!~x2 ,x3!

1r~x2!G l
~2!~x1 ,x3!1r~x3!G l

~2!~x1 ,x2!

1G l
~3!~x1 ,x2 ,x3!, ~6!

whereG l
(3)(x1 ,x2 ,x3) contains only linked three-body dia

grams and will be called the linked three-body distributi
function.

Irreducible diagrams are associated with what are kno
as articulation points. An articulation point is one whose
moval from the diagram would cause it to be separated
two or more unconnected parts, at least one of which c
tains only internal points. If the separated parts of the d
gram all contain at least one external point, this is not c
sidered an articulation point. An irreducible diagram is o
that does not contain any articulation points. There may
be points in an irreducible diagram whose removal wo
separate it into more than one part, but each part contain
least one external point. When such points occur in an i
ducible diagram, they will be referred to as cutting poin
using the nomenclature of Stell.22 If an irreducible diagram
does not have any cutting points, it will be referred to
fully irreducible.

With these definitions in place, it is now possible to sta
the rules governing the generation of the diagrammatic
pansions for the distribution functions. It is important to r
alize that these rules are associated with the diagramm
development of Ripka,5 who tailored the rules towards th
general inhomogeneous system. At issue is the fact tha
the traditional cluster expansion, diagrams with articulat
points automatically cancel each other for homogeneous
tem but not for inhomogeneous systems. With Ripka’s mo
fied development, diagrams with articulation points can
eliminated for the inhomogeneous system as well. T
linked,N-body distribution function is equal to the sum of a
topologically distinct, linked, and irreducibleN-body dia-
grams such that~a! each internal point has at least on
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h-direct line connected to it,~b! at most oneh-direct line
connects a give pair of points, and~c! if a point has a
s-exchange line coming into it, as-exchange line must also
exit from it; there may be no more than ones-exchange line
coming into a point.

It is also useful to list the rules for converting the di
grams into quantities which can be evaluated.

~a! Give each external point a label corresponding to o
of the arguments of the linked distribution function.

~b! Label each internal point.
~c! Introduce a factor ofh(xj ,xk) for an h-direct line be-

tween pointsj andk. These points may be internal or extern
points.

~d! Introduce a factor ofs(xj ,xk) for a s-exchange line
from point k to point j.

~e! Introduce a factor ofr(xj ) if point j is connected to
the rest of the diagram only withh-direct lines.

~f! Multiply by ( 2)(nr1nL)/S, wherenr equals the total
number ofs-exchange lines,nL equals the number of close
s-exchange line loops, andS is a symmetry number equal t
the number of permutation operations that leave the topol
of the connections unchanged.

~g! Integrate over all sets of internal coordinates.
In deriving the two-body FHNC equations, it turns out

be necessary to introduce a set of diagram elements tha
not proper diagrams according to the rules above. Spe
cally, these elements have only ones-exchange line con-
nected to each of the external points. Otherwise, they sa
all the rules. These diagrams will be referred to asexchange
line diagrams.

The FHNC equations are obtained by considering
ways in which subdiagrams may be connected to each o
This requires some care in the treatment of external poi
Two subdiagrams are connected by fusing external po
from one to the other. What were originally two points b
come one, and it is important not to overcount the factors
the density that may appear due to rulee above. For this
reason, subdiagrams will be represented without the exte
points explicitly shown. When the subdiagrams are co
nected and the fused external points become one, then
appropriate rules are applied to the fused point. When a
gram needs to be evaluated fully, as with the evaluation
the two-body distribution function, the external points w
be shown explicitly, in which case the appropriate factors
r(x) are added for the external points as well.

It is as a result of this issue that the notation of Clark m
be slightly modified. For the homogeneous system, these
tors of the density can be eliminated through a suitable
definition of the diagrammatic elements, since the densit
everywhere the same. This cannot be done with the inho
geneous system, so the quantities appearing in Clark’s
view must be appropriately modified here.

Under this formulation, the one-body distribution functio
is equal to a single diagram consisting of just the exter
point; any other one-body diagram would not be irreducib
On the other hand, the linked, two-body distribution is eq
to an infinite sum of two-body diagrams. These two-bo
diagrams are conveniently classified by how they connec
the external points. The connection can be with onlyh-direct
1-3
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GARY G. HOFFMAN PHYSICAL REVIEW B 64 195121
lines or, in addition to anyh-direct lines, there may be two
s-exchange lines, one coming into the external point and
leaving. The sum of two-body diagrams of a particular ty
will be given a symbol, sayA. Such a sum will not have the
external points explicitly evaluated, and so factors of
density must be introduced later, if needed. Two subscr
will be given to represent the types of connections to
external points. A subscript ‘‘d’’ indicates a connection by
only h-direct lines and a subscript ‘‘e’’ indicates that two
s-exchange lines connect to that external point. An ‘‘e’’ point
may or may not haveh-direct lines connected to it. There a
four possible combinations of connections and the four su
are arranged in a 232 matrix

A> ~x1 ,x2!5S Add~x1 ,x2! Ade~x1 ,x2!

Aed~x1 ,x2! Aee~x1 ,x2!
D . ~7!

The first subscript indicates the type of connection atx1 and
the second atx2 . It may be noted that the quantitiesAde and
Aed are rarely distinguished in the literature; they are gen
ally equal to each other. However, the matrices formed ab
make subsequent analysis much easier and so this distin
will be made here. Further, it may be possible to formulat
special case of the theory in which these quantities actu
differ, and it would be useful to have the more general fo
described here.

The sum of all two-body diagrams is given the symboG
and the four combinations of connections are collected in
matrix G> . The sums of just those diagrams that do not c
tain any cutting points are given in the matrixX> (x1 ,x2).
These are referred to asnon-nodal diagrams. The sums of all
the diagrams that contain at least one cutting point, the
called nodal diagrams, are given inN> (x1 ,x2). It should be
obvious that

N> ~x1 ,x2!1X> ~x1 ,x2!5G> ~x1 ,x2!. ~8!

A further type of diagram is the composite diagram. Su
diagrams can be decomposed as two or more two-body
diagrams connected to each other only at the two exte
points. The sums of all diagrams that are not composite
given in S> (x1 ,x2). Diagrams that are not composite an
which further contain no cutting points are referred to
elementary diagrams. The simplest two-body elementary
grams is just theh-direct line and is evaluated ash(x1 ,x2).
The sums of allother elementary diagrams are given
E> (x1 ,x2).

The sum of all two-body exchange line diagrams is re
resented byGcc(x1 ,x2). It is also possible to distinguish
those diagrams that do not have any cutting points, the
of which is represented byXcc(x1 ,x2). The sum of all other
diagrams is represented byNcc(x1 ,x2). In analogy with Eq.
~8!,

Ncc~x1 ,x2!1Xcc~x1 ,x2!5Gcc~x1 ,x2!. ~9!

The sum of noncomposite exchange line diagrams is re
sented byScc(x1 ,x2) and the sum of elementary exchan
line diagrams is represented byEcc(x1 ,x2).
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Now that these definitions have all been made, it is p
sible to state the two-body FHNC equations.

N> ~x1 ,x2!5E X> ~x1 ,x3!J> d~x3!$X> ~x3 ,x2!1N> ~x3 ,x2!%dx3 ,

~10!

Ncc~x1 ,x2!52E s~x1 ,x3!Ncc~x3 ,x2!dx32E Ncc~x1 ,x3!

3@Ncc~x3 ,x2!1Xcc~x3 ,x2!1s~x3 ,x2!#dx3

1E s~x1 ,x3!Xcc~x3 ,x4!@Ncc~x4 ,x2!

1Xcc~x4 ,x2!1s~x4 ,x2!#dx3dx4 , ~11!

Xdd~x1 ,x2!5gB~x1 ,x2!2Ndd~x1 ,x2!21, ~12!

Xde~x1 ,x2!5$Ede~x1 ,x2!1Nde~x1 ,x2!%gB~x1 ,x2!

2Nde~x1 ,x2!, ~13!

Xed~x1 ,x2!5$Eed~x,x2!1Ned~x1 ,x2!%gB~x1 ,x2!

2Ned~x1 ,x2!, ~14!

Xee~x1 ,x2!5$Eee~x1 ,x2!1Nee~x1 ,x2!1@Ede~x1 ,x2!

1Nde~x1 ,x2!#@Eed~x1 ,x2!1Ned~x1 ,x2!#

2@Ecc~x1 ,x2!1Ncc~x1 ,x2!1s~x1 ,x2!#

3@Ecc~x2 ,x1!1Ncc~x2 ,x1!1s~x2 ,x1!#%

3gB~x1 ,x2!2Nee~x1 ,x2!, ~15!

Xcc~x1 ,x2!5$Ecc~x1 ,x2!1Ncc~x1 ,x2!

1s~x1 ,x2!%gB~x1 ,x2!2Ncc~x1 ,x2!

2s~x1 ,x2!, ~16!

where

gB~x1 ,x2!5@11h~x1 ,x2!#exp@Edd~x1 ,x2!1Ndd~x1 ,x2!#
~17!

and

J> d~x!5S r~x! 1

1 0D . ~18!

Equations~10!–~16! are ten in number and can be used
solve for the ten quantities N> (x1 ,x2), X> (x1 ,x2),
Ncc(x1 ,x2), andXcc(x1 ,x2). This would require the input of
the quantities E> (x1 ,x2), Ecc(x1 ,x2), s(x1 ,x2), and
h(x1 ,x2).

The quantityh(x1 ,x2) is known if it is assumed that the
two-body correlation potential has been given. Even if t
two-body correlation potential is being sought, it may in
tially be guessed in order to solve the FHNC equations
then iteratively optimized. The quantitys(x1 ,x2) depends
1-4
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FERMION HYPERNETTED CHAIN EQUATIONS FOR THE . . . PHYSICAL REVIEW B 64 195121
on the choice of the one-body correlation potential~as well
as the one-fermion orbital functions!. A convenient choice
that is commonly made is

u~1!~x!52E @Ndd~x,x8!r~x8!1Nde~x,x8!#dx8. ~19!

When this is done,

s~x1 ,x2!5(
j

f j
†~x1!f j~x2! ~20!

is just the one-body density matrix for the Slater determin
wave function alone. For the uniform system, Eq.~19! re-
duces to zero, which corresponds to the optimum choic
this case. For the inhomogeneous system, the optim
choice for the correlation potential is a more complica
matter6 and Eq.~19! is not correct. Its use would be justifie
only as a matter of convenience. An accurate treatment o
inhomogeneous system would have to go beyond this sim
choice and a specific procedure to do this has been prese
in the literature.6 The one-body distribution function can b
shown to be equal to

r~x!5s~x,x!2Ncc~x,x!2E Ncc~x,x8!Gcc~x8,x!dx8.

~21!

The sums of elementary diagrams must be approxima
Generally, some truncations of the sums are assumed an
quantities evaluated. A common choice is the FHNC/0
proximation, in which these sums are all set equal to ze
Other truncations have also been tried in the literature.23

All the necessary equations have now been presente
determine the one- and two-body distribution functions,
suming that the one-fermion orbital functions and the cor
lation potentials have been given. The FHNC equations
be solved iteratively, and the solution can be used in Eq.~21!
to evaluate the one-body distribution function. The two-bo
distribution function is then given by

G~2!~x1 ,x2!5r~x1!r~x2!1r~x1!Gdd~x1 ,x2!r~x2!

1r~x1!Gde~x1 ,x2!1Ged~x1 ,x2!r~x2!

1Gee~x1 ,x2!

5RT~x1!G> ~x1 ,x2!R~x2!, ~22!

where two new quantities have been introduced:

R~x!5S r~x!

1 D ~23!

and

G> ~x1 ,x2!5S 1 0

0 0D 1G> ~x1 ,x2!. ~24!

The foregoing development only considered one- a
two-body correlations. However, the equations will be u
changed if the three-body correlation potential is introduc
the modification being solely in the specification of the
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ementary diagrams. The FHNC equations generate a clu
expansion by constructing all possible nodal and compo
connections of two-body diagrams, starting from a sin
h-direct line plus the set of elementary diagrams chosen
the calculation. It is necessary only to include element
diagrams that have three-point elements representing
three-body correlations to get the full expansion with thre
body correlations.

III. THE THREE-BODY DISTRIBUTION FUNCTION

The three-body FHNC equations can be derived in
same way as the two-body equations, but of course,
analysis is considerably more complicated. To simplify t
procedure, the solution of the two-body equations can
incorporated into the equations. Instead of the basich-direct
lines ands-exchange lines encountered in the previous s
tion, G-direct lines, andGcc-exchange lines will take thei
place. These line elements represent infinite sums of sub
grams connecting two points of a larger diagram. This s
tion lays the groundwork for the formalism by deriving a
expression for the three-body distribution that can be u
for the subsequent diagrammatic analysis. The three-b
FHNC equations will be derived in the next section.

It is necessary to introduce some pictorial representati
of the diagrammatic elements. Internal points will be rep
sented by solid circles and external points will be represen
by open circles. When an external point is included in
diagram, it is assumed that there is a factor of the den
r(x) if all the connections to that point are only withh-direct
lines. This explicit inclusion of factors of the density ca
become a problem when diagrams are joined together.
instance, if an external point of one diagram with only dire
connections is joined to another at an external point cont
ing exchange line connections, the first diagram will ca
along with it an extra, unnecessary factor of the density
that point. To avoid this situation, diagrams will be co
structed in which the open circle external points are
shown explicitly. This implies that factors of the density,
ultimately needed, are not yet included at those points. W
diagrams are joined together, an internal or external po
will be generated and any needed factors of the density
be implicitly incorporated.

Consider a diagram which contains a two-body conn
tion between two particular points. It is possible to constr
an infinite set of diagrams which differ from this one only
the portion between the two particular points. The sum of
such diagrams then corresponds to adding all possible t
body connections between those points, which therefore
sults in a factor involving the components ofG> (xi ,xj ) be-
tween the points. It is desirable to perform all su
summations of diagrams implicitly and view all two-bod
connections as consisting of factors ofGmn(xi ,xj ) rather
than the more basic elementsh(xi ,xj ) and s(xi ,xj ). An-
other type of two-point connection can be constructed
considering a diagram in which an exchange line exte
from one point to another. By summing all diagrams whi
differ only in the intermediate points and connections b
tween them, the resulting diagram will have a contribution
1-5



GARY G. HOFFMAN PHYSICAL REVIEW B 64 195121
TABLE I. Two-point diagrams appearing in the three-body FHNC equations.
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Gcc(x,x8) between the two points.
Diagrams are therefore to be constructed in which all tw

point connections are of one of these two forms. It is nec
sary to define diagram elements to represent these con
tions and these are given in Table I. A dotted line represe
a factor of the formGmn(x,x8) and will be referred to as a
G-direct line. Because it comes up fairly often, it is conv
nient to have another diagrammatic element that represe
factor of Gmn(x,x8). This is given by a double solid line
between the points and will be referred to as aG-direct line.
This is simply equal to aG-direct line plus a diagram with no
connection between those points. Another two-point elem
is a directed solid line. This represents a factor ofGcc(x,x8)
and will be referred to as anGcc-exchange line. The fina
element in the tableScc(x1 ,x2) will not arise until the next
st

C
ar
on
s
e
e
e
th
ic
.
tw
F

r

19512
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section and so will be described there. There will also
components of the diagrams which connect three points
each other and these are distinct from the two-body conn
tions. They are referred to as three-body connections and
be defined later.

As a simple example, the two-body distribution functio
can be represented diagrammatically as

~25!

or, more concisely, as

~26!

The three-body distribution function is given by
~27!
nly
om-

a-
e

int
e-
where the last term represents the linked, three-body di
bution function.

In the diagrammatic development for the two-body FHN
equations,5 the types of connections to the external points
made explicit. This can be done for the three-body equati
as well, but the expressions can get cluttered when thi
done. For this reason, the types of connections at the
points of subdiagrams will not usually be specified. Wh
two diagrams are connected at a point, however, all allow
connections at that point are to be summed over. From
rules for constructing the basic diagrams, the ways in wh
two subdiagrams can be connected at a point are limited
most, two exchange lines can connect to a point, so
e-type connections cannot be made to the same point.
instance, the combinationGde(x,x8)Gee(x8,x9) is not al-
lowed. Further, from the way the two-body diagrams we
ri-

e
s
is
nd
n
d
e
h
At
o
or

e

constructed, a factor of the density must be added if o
d-type connections are made to a point. For instance, a c
bination like Gdd(x,x8)r(x8)Gde(x8,x9) might be encoun-
tered and would require the intermediate factor ofr(x8).

These restrictions are conveniently handled with the m
trix J> d(x) defined in Eq.~18!. For example, consider th
three-body diagram where twoG-direct connections are
made from external points 1 and 3 to the intermediate po
2. Including only the connecting point explicitly, the thre
body diagram is evaluated as

~28!
1-6
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The result is in the form of a 232 matrix, indicating all the
possible ways the connections can be made to the end p
x1 andx3 . If the other two external points are included e
plicitly in the diagram, all allowed connections to the
points must be added in evaluating the diagram. This
readily achieved by using the vectorR(x) defined in Eq.
~23!. Thus,

~29!

A useful reduction can be made for expressions such
this. For an arbitrary 232 matrix A> ,

RT~x1!A> R~x2!5TrFA> S r~x1!r~x2! r~x2!

r~x1! 0 D G
5Tr@J> d~x1!A> J> d~x2!J> e#, ~30!

where

J> e5S 1 0

0 0D . ~31!

It can also be shown that

r~x1!RT~x2!A> R~x3!5Tr@J> d~x1!J> eJ> d~x2!A> J> d~x3!J> e#.
~32!

Equation~29! can be rewritten as
19512
nts

is

as

~33!

The rules for constructing and evaluating diagrams n
only minor changes from those given in the previous secti
For constructing all acceptable diagrams, all the rules rem
with h-direct lines replaced byG-direct lines ands-exchange
lines replaced byGcc-exchange lines. In addition, two point
can be directly connected only through a singleG-direct or
Gcc-exchange line. In evaluating the diagrams, the same
placement of lines must be made. In addition, all allow
connections of diagrammatic elements at a point must
added.

Consider, now, the three-body distribution function. On
the two-body equations are solved, only the linked part
undetermined. Hence, focus attention on the linked thr
body distribution function for now. It is possible to break th
function up into several types of terms, depending on h
the external points are connected to each other. It is
possible to separate out terms in which the external po
are connected to each other only through two-point conn
tions. The first type of diagram is one in which one point h
two-point connections with each of the other points and t
is all. The common point may be any one of the three so t
there are three different diagrams of this type. The next t
of diagram is where all three points are directly connected
each other. This is readily achieved withG-direct lines, but it
can also be achieved withGcc-exchange lines. The remainin
terms must have true three-body connections between
external points. If there are two-point connections betwe
external points, these portions can be extracted from the
grams. Specifically, there can be no direct connections
tween any two points, aG-direct connection can exist be
tween pairs of points, or all the points can be connected
Gcc-exchange line connections. Diagrammatically, t
linked, three-body distribution function is given by
oint

erms of
~34!

where the triangular element designated byQ represents the sum of all three-body terms that contain no direct two-p
connections between any external points.

Interestingly, an algebraic expression can be extracted from this that is relatively simple. Start with the first three t
Eq. ~34!. The first term has already been considered and is evaluated in Eq.~29!. The other two differ only in the identity of
the intermediate point and are evaluated in a similar way.
1-7
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The fourth diagram of Eq.~34! is a bit more complicated
in that the two-point chain closes in on itself. Adding a
allowed connections at the external points, it can be redu
to the trace

~35!

The fifth diagram is easily worked out as

~36!

For the final diagrams, it should be noted that the thr
point portions labeled byQ depend on how they connect t
the external points, either with exchange lines or just dir
lines. As with the two-point diagrams, these diagrams can
labeled with three indices that indicate the types of conn
b

19512
ed

-

t
e

c-

tions. Thus,Qlmn(x1 ,x2 ,x3) represents the sum of three
point diagrams where the connections to (x1 ,x2 ,x3) are of
the types~lmn!, each index being eitherd or e. Depending
on the specific indices for a given term, there will be restr
tions on the allowed two-point diagrams between the ex
nal points.

For the very last term of Eq.~34!, the connections of the
three-point portion can only be with direct lines, so that th
becomes

~37!

For the remaining term, there will be contributions fro
each possible set of indices forQlmn(x1 ,x2 ,x3) and each
will be considered in turn. Label each composite term
Tlmn(x1 ,x2 ,x3), the superscripts corresponding to the sup
scripts that appear onQlmn(x1 ,x2 ,x3). With all direct con-
nections for the three-point portion, adding all the possi
two-point connections between external points leads to
Tddd~x1 ,x2 ,x3!5Qddd~x1 ,x2 ,x3!$r~x1!r~x2!r~x3!1r~x1!RT~x2!G> ~x2 ,x3!R~x3!1r~x2!RT~x3!G> ~x3 ,x1!R~x1!

1r~x3!RT~x1!G> ~x1 ,x2!R~x2!1RT~x1!G> ~x1 ,x2!J> d~x2!G> ~x2 ,x3!R~x3!

1RT~x2!G> ~x2 ,x3!J> d~x3!G> ~x3 ,x1!R~x1!1RT~x3!G> ~x3 ,x1!J> d~x1!G> ~x1 ,x2!R~x2!

1Tr@J> d~x1!G> ~x1 ,x2!J> d~x2!G> ~x2 ,x3!J> d~x3!G> ~x3 ,x1!#%

5Qddd~x1 ,x2 ,x3!Tr@J> d~x1!G> ~x1 ,x2!J> d~x2!G> ~x2 ,x3!J> d~x3!G> ~x3 ,x1!#. ~38!

If the three-point diagram has a single exchange line connection, say at pointx3 , there results

Tdde~x1 ,x2 ,x3!5Qdde~x1 ,x2 ,x3!$r~x1!r~x2!1RT~x1!G> ~x1 ,x2!R~x2!1r~x1!RT~x2!G> ~x2 ,x3!S1r~x2!STG> ~x3 ,x1!R~x1!

1RT~x1!G> ~x1 ,x2!J> d~x2!G> ~x2 ,x3!S1RT~x2!G> ~x2 ,x3!J> eG> ~x3 ,x1!R~x1!

1STG> ~x3 ,x1!J> d~x1!G> ~x1 ,x2!R~x2!1Tr@J> d~x1!G> ~x1 ,x2!J> d~x2!G> ~x2 ,x3!J> eG> ~x3 ,x1!#%, ~39!
ned
ree
where

S5S 1
0D . ~40!

As with the previous term, the vector-matrix products can
replaced by traces, this time replacingJ> d(x) by J> e at the
exchange point. Equation~39! becomes

Tdde~x1 ,x2 ,x3!

5Qdde~x1 ,x2 ,x3!Tr@J> d~x1!G> ~x1 ,x2!J> d~x2!

3G> ~x2 ,x3!J> eG> ~x3 ,x1!#. ~41!

Analogous expressions are obtained forTded andTedd.
e

As might be expected, similar expressions are obtai
for the terms where the three-point diagram has two or th
exchange line connections. Thus,

Tdee~x1 ,x2 ,x3!

5Qdee~x1 ,x2 ,x3!Tr@J> d~x1!G> ~x1 ,x2!

3J> eG> ~x2 ,x3!J> eG> ~x3 ,x1!# ~42!

and

Teee~x1 ,x2 ,x3!

5Qeee~x1 ,x2 ,x3!Tr@J> eG> ~x1 ,x2!J> eG> ~x2 ,x3!

3J> eG> ~x3 ,x1!#. ~43!
1-8
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Going back to Eq.~34! and inserting the various term
that have been evaluated, a compact expression results
in fact easier to express the full three-body distribution,
follows:

G~3!~x1 ,x2 ,x3!

5Tr@J> d~x1!G> ~x1 ,x2!J> d~x2!G> ~x2 ,x3!J> d~x3!

3G> ~x3 ,x1!#1Gcc~x1 ,x2!Gcc~x2 ,x3!

3Gcc~x3 ,x1!$11Qddd~x1 ,x2 ,x3!%

1(
lmn

Qlmn~x1 ,x2 ,x3!Tr@J> l~x1!G> ~x1 ,x2!J>m~x2!

3G> ~x2 ,x3!J> n~x3!G> ~x3 ,x1!#. ~44!

As a technical point, althoughJ> e does not depend on an
coordinates, there is no mathematical impropriety if an ar
ment is attached to it. Allowing such a generalization of t
notation makes the expression above easier to present.

The superposition approximation11 arises by assuming
that the major contribution to the three-body distribution is
the form of a product of two-body distributions between t
three pairs of points. This corresponds to eliminating all
the first term on the right-hand side of Eq.~44!

GSA
~3!~x1 ,x2 ,x3!

5Tr@J> d~x1!G> ~x1 ,x2!J> d~x2!G> ~x2 ,x3!J> d~x3!G> ~x3 ,x1!#.

~45!

Note that the second term of Eq.~44! also consists of two-
point connections only between external points, but this
not properly associated with the superposition approxim
tion, since theseGcc-exchange line connections do not co
tribute directly to the two-body distribution function.

IV. THE THREE-BODY FHNC EQUATIONS

The three-body FHNC equations are designed to eval
the quantitiesQlmn(x1 ,x2 ,x3). The approach taken is
modification of that of Wertheim16 for the classical HNC
case. Many of the quantities to be introduced are analog
to those found in the classical case. A number of the det
especially those associated with the exchange structure o
diagrams, are different.

The set of diagrams that appears inQlmn(x1 ,x2 ,x3) con-
sists of all the irreducible three-point diagrams that have
two-point connections between the external points. This
of diagrams can be further decomposed in terms of the
ting points that are present. To prepare for this developm
note that the removal of any cutting point will result in
least one diagrammatic fragment that contains only one
ternal point. The cutting point will be considered to be as
ciated with that external point. It is possible for a cuttin
point to be associated with all three external points at
same time, but otherwise, a cutting point can be associ
with only one external point. Now, there may be a seque
of cutting points associated with a given external poi
These would correspond to nodes along a two-point conn
tion. One of these cutting points will result in the large
possible fragment containing that external point alone,
19512
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this will be referred to as themaximal cutting point. An
external point can have associated with it at most one m
mal cutting point. The diagrams inQlmn(x1 ,x2 ,x3) will be
classified according to how many maximal cutting poin
they contain 0, 1, 2, or 3.

Consider, first, the set of diagrams that contain th
maximal cutting points. There is one special case in wh
all the cutting points are the same one. The contribution
Qlmn(x1 ,x2 ,x3) is readily worked out to be

Q3a
lmn~x1 ,x2 ,x3!

5E dx4$Gld~x1 ,x4!Gmd~x2 ,x4!Gnd~x3 ,x4!r~x4!

1Gld~x1 ,x4!Gmd~x2 ,x4!Gne~x3 ,x4!

1Gld~x1 ,x4!Gme~x2 ,x4!Gnd~x3 ,x4!

1Gle~x1 ,x4!Gmd~x2 ,x4!Gnd~x3 ,x4!%. ~46!

The only other way a diagram can have three cutting po
is when the external points are all connected to differ
external points of an internal three-point subdiagram. T
three-point subdiagram is necessarily irreducible and can
contain any cutting points~else at least one of the designat
maximal cutting points would not actually be maxima!.
They are therefore fully irreducible. There are no other
strictions on these diagrams; for instance, there may be t
point connections between their external points. Label
sum of such fully irreducible, three-point diagrams b
Clmn(x1 ,x2 ,x3). Working out all the allowed connections
the contribution toQlmn(x1 ,x2 ,x3) is given by

Q3b
lmn~x1 ,x2 ,x3!

5E dx4dx5dx6 (
l8l9

Gll8~x1 ,x4!Jl8l9
d

~x4!

3 (
m8m9

Gmm8~x2 ,x5!Jm8m9
d

~x5!

3 (
n8n9

Gnn8~x3 ,x6!Jn8n9
d

~x6!Cl9m9n9~x4 ,x5 ,x6!. ~47!

The diagrams with two maximal cutting points must ha
a three-point subdiagram which contains the unique exte
point that does not have an associated cutting point.
other two external points have two-point connections to
other points of the three-point subdiagram. This subdiagr
is fully irreducible and has no further restrictions. Therefo
the contribution toQlmn(x1 ,x2 ,x3) is given by

Q2
lmn~x1 ,x2 ;x3!5E dx4dx5 (

l8l9
Gll8~x1 ,x4!Jl8l9

d
~x4!

3 (
m8m9

Gmm8~x2 ,x5!Jm8m9
d

~x5!

3Cl9m9n~x4 ,x5 ,x3!. ~48!

The pointx3 is distinguished from the other two in this func
tion. There are clearly two other quantities which differ on
in the choice of the unique external point.
1-9
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GARY G. HOFFMAN PHYSICAL REVIEW B 64 195121
The diagrams with only one maximal cutting point must co
tain a three-point subdiagram which connects to the two
ternal points that do not have cutting points. The third ex
nal point must have a two-point connection with the th
point of that three-point subdiagram. These three-point s
diagrams are fully irreducible, but because of the constr
tion of Qlmn(x1 ,x2 ,x3), there can be no two-point conne
tions between the two external points that are contained i
No such restrictions are placed on connections between
other pairs of external points of the subdiagram. If pointsx2

andx3 are designated as the points between which two-p
connections are not allowed, label the associated sum of
grams byXlmn(x1 ,x2 ,x3). The associated contribution t
Qlmn(x1 ,x2 ,x3) is given by

Q1
lmn~x1 ;x2 ,x3!

5E dx4 (
l8l9

Gll8~x1 ,x4!Jl8l9
d

~x4!Xl9mn~x4 ;x2 ,x3!.

~49!

There are clearly two more sums which differ only in t
choice of external point to be treated specially.
19512
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The final contribution contains those three-point diagra
which are fully irreducible but allow no two-point connec
tions between any of the external points. Label the sum
these diagrams byZlmn(x1 ,x2 ,x3). The contribution to
Qlmn(x1 ,x2 ,x3) is given by

Q0
lmn~x1 ,x2 ,x3!5Zlmn~x1 ,x2 ,x3!. ~50!

There are five sums of three-point diagrams that h
been defined, and they are summarized in Table II. Fur
development is extremely tedious without going to a d
grammatic shorthand. In addition to the two-point eleme
already presented, diagrammatic elements can be introd
for the three-point quantities defined so far. The symbols
be used are included in Table II. When generating an exp
sion of diagrams, it often happens that one point of a d
gram is treated differently from the other two, but there a
other, equivalent diagrams included in the sum that dif
only in permutations of the external points. Rather than
clude each permutation explicitly, such combinations will
represented by a summation sign with the number of equ
lent terms indicated under the sign. Which terms are to
included should be clear from the construction. Followi
this prescription, the following diagrammatical represen
tion for Qlmn(x1 ,x2 ,x3) is obtained:
~51!

Using this, Equation~34! becomes

~52!
1-10
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TABLE II. Three-point sums appearing in the equations.
a
le
to
s
ed

d
s

x-
fu
an
E

in
c-
As noted earlier, the lack of explicit circles for the extern
points implies that the connections to these points are
unspecified. The quantity on the left is equal
G l

(3)lmn(x1 ,x2 ,x3), which is not the same thing a
G l

(3)(x1 ,x2 ,x3), even though the same symbol is being us
To be clear on this issue, the two are related by

G l
~3!~x1 ,x2 ,x3!

5(
lmn

Rl~x1!Rm~x2!Rn~x3!G l
~3!lmn~x1 ,x2 ,x3!.

~53!

The linked, three-body distribution function correspon
to a sum of all the linked, irreducible three-body diagram
The quantityClmn(x1 ,x2 ,x3) represents a diagrammatic e
pansion that contains a subset of these: all those that are
irreducible. A diagrammatic expansion for this quantity c
therefore be obtained by removing those diagrams in
~52! that are not fully irreducible. There results
19512
l
ft

.

s
.

lly

q.

~54!

The diagrammatic expansion forXlmn(x3 ;x1 ,x2) con-
tains all the diagrams of a subset of those
Clmn(x1 ,x2 ,x3): those that contain no two-point conne
tions betweenx1 andx2 . Removing all such diagrams from
Eq. ~54!, there results
1-11
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~55!

Note that if diagrams having two-point connections between any external points are removed, the only diagram that
on the right hand side corresponds toZlmn(x1 ,x2 ,x3), as is required.

To derive some direct relationships between three-point sums, consider taking the difference of Eqs.~52! and ~54!

~56!
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Next, consider this difference on topological grounds.
subtractingClmn(x1 ,x2 ,x3) from G l

(3)lmn(x1 ,x2 ,x3), all the
fully irreducible diagrams are removed from the sum
linked, irreducible diagrams. What remains, therefore,
just those diagrams that have at least one cutting point. Fo
first on the diagrams with one cutting point. There are t
cases to consider. The first is to have that cutting point
one of the external points and joining it to the other two
two-point connections. The second is to have one exte
point joined by a two-point connection to a three-point d
gram which contains the other two external points. T
three- point diagram has no restrictions other than that i
fully irreducible. The sum of such three-point diagrams
therefore given byClmn(x1 ,x2 ,x3). There are three suc
terms, depending on which external point is joined by
19512
f
e
us
o
e

al
-
s
e

e

two-point connection. Diagrams with two cutting points a
constructed by joining two external points by two-point co
nections to a three-point diagram that contains the third
ternal point. The three-point diagrams must be fully irredu
ible and are otherwise unrestricted. The sum of them
therefore given byClmn(x1 ,x2 ,x3). There are three topo
logically different such terms, depending on which extern
point is contained in the three-point diagram. Finally, there
the set of diagrams that have three cutting points. As in
decomposition of the linked, three-body distribution fun
tion, there are two cases: one where all three cutting po
correspond to the same internal point and one where all th
external points are connected directly to different points o
fully irreducible internal subdiagram. Diagrammaticall
then, the difference can be expressed by
1-12
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~57!

Equating~56! and~57! leads to a relation betweenClmn(x1 ,x2 ,x3) andXlmn(x1 ;x2 ,x3) ~and its permutations!. Rearrang-
ing a bit, this becomes

~58!

It may be noted that each term in this equation can be separated into three, each one distinguished by which externa
a cutting point. It is tempting to separate the entire equation into three, one for each external point. However, this se
is not necessarily valid, since there may be extra terms that should be included in the separate equations, but that
cancel in the combination and so are not present in Eq.~58!. Fortunately, it is not necessary to separate the sum in
following development.

Equation~58! can be rearranged to solve for the single term containing the sum of permutations ofXlmn(x1 ;x2 ,x3), which
can then be used to replace two of the terms in Eq.~54! to yield

~59!
195121-13
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There remains only one term that contains a dependenc
Xlmn(x1 ;x2 ,x3). A little manipulation can generate a rela
tionship that can be used to eliminate this dependence. F
note that onlyXldd(x1 ;x2 ,x3) or one of its permutations
contributes to this diagram. Second, the two-body FH
equations yield

Gcc~x1 ,x2!5@11Gdd~x1 ,x2!#Scc~x1 ,x2! ~60!

so that theGcc-exchange line can be replaced by a produc
Scc(x1 ,x2) and aG- direct line. Introducing a new two-poin
diagrammatic element, a directed dotted line, to repres
Scc(x1 ,x2) ~see Table I!, Eq. ~58! can be introduced to give

~61!

By introducing this into Eq.~59!, the resulting equation con
tains only two different types of three-body diagram
Clmn(x1 ,x2 ,x3) andZlmn(x1 ,x2 ,x3). As might be expected
an algebraic representation of this equation would be ra
unwieldy. The specific expressions are given in the appen
The advantage of the diagrammatic development is cl
The evaluation of the three-body distribution function no
revolves around a proper identification ofZlmn(x1 ,x2 ,x3).
The Percus-Yevick approximation is equivalent to sett
this quantity to zero.16 This would give an equation fo
Clmn(x1 ,x2 ,x3) alone. The FHNC approximation requires
more involved analysis.

The functionZlmn(x1 ,x2 ,x3) contains all the fully irre-
ducible three-point diagrams that do not contain any tw
point connections between external points. These are an
gous to the non-nodal diagrams encountered in the two-b
FHNC equations. As with the two-body case, this sum can
separated into two terms: a sum of noncomposite diagr
and a sum of composite diagrams. The sum of noncompo
diagrams inZlmn(x1 ,x2 ,x3) are referred to as elementa
diagrams and the sum of these diagrams is represente
Elmn(x1 ,x2 ,x3). The function Qlmn(x1 ,x2 ,x3), by con-
struction, contains all linked, three-point diagrams that h
no two-point connections between external points. This s
contains a sum of fully irreducible diagrams, which is pr
cisely Zlmn(x1 ,x2 ,x3), and a sum of diagrams that conta
at least one cutting point. Define the difference

Ylmn~x1 ,x2 ,x3!5Qlmn~x1 ,x2 ,x3!2Zlmn~x1 ,x2 ,x3!
~62!

as this sum of all the three-point diagrams that have at l
one cutting point. By construction, these diagrams are n
composite, although not elementary. The sum of all nonco
posite three-point diagrams without two-point connectio
19512
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between external points is therefore given
Ylmn(x1 ,x2 ,x3)1Elmn(x1 ,x2 ,x3).

Now, all the composite three-point diagrams encounte
in Qlmn(x1 ,x2 ,x3) andZlmn(x1 ,x2 ,x3) must be constructed
from the joining of non-composite diagrams at all three e
ternal points. If two diagrams were joined at only two exte
nal points, there would result a two-point connection b
tween the two external points. Such diagrams have b
excluded from these sums by definition. Further, the sum
all composite diagrams inZlmn(x1 ,x2 ,x3) is constructed by
joining noncomposite diagrams in the sumYlmn(x1 ,x2 ,x3)
1Elmn(x1 ,x2 ,x3). Using the information so far deduced,
is desired to derive relations for the function
Zlmn(x1 ,x2 ,x3) in terms of the elementary diagrams.

For all direct-type connections, the composite diagra
must all be made from three-point diagrams with all dire
connections. This leads to the expression

Zddd~x1 ,x2 ,x3!5Eddd~x1 ,x2 ,x3!1
1

2!
@Eddd~x1 ,x2 ,x3!

1Yddd~x1 ,x2 ,x3!#21
1

3!
@Eddd~x1 ,x2 ,x3!

1Yddd~x1 ,x2 ,x3!#31¯

5Eddd~x1 ,x2 ,x3!1exp@Eddd~x1 ,x2 ,x3!

1Yddd~x1 ,x2 ,x3!#2Eddd~x1 ,x2 ,x3!

2Yddd~x1 ,x2 ,x3!21

5g3B~x1 ,x2 ,x3!2Yddd~x1 ,x2 ,x3!21, ~63!

where

g3B~x1 ,x2 ,x3!5exp@Eddd~x1 ,x2 ,x3!1Yddd~x1 ,x2 ,x3!#.
~64!

In the case that there is one exchange-line connection
composite diagrams can always be decomposed so that
part contains the exchange-line connection and all the
contain only direct-line connections. In this case,

Zdde~x1 ,x2 ,x3!5Edde~x1 ,x2 ,x3!1@Edde~x1 ,x2 ,x3!

1Ydde~x1 ,x2 ,x4!#Qddd~x1 ,x2 ,x3!

5Edde~x1 ,x2 ,x3!g3B~x1 ,x2 ,x3!

1Ydde~x1 ,x2 ,x3!@g3B~x1 ,x2 ,x3!21#.

~65!

Similar relations hold when the exchange connection is o
different external point.

The situation with two exchange-line connections is mo
complicated. The composite diagrams can be constructe
that only one part contains both exchange-line connecti
and the rest only direct-line connections, or the exchan
line connections can be on two different parts. This leads
1-14
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Zdee~x1 ,x2 ,x3!5Edee~x1 ,x2 ,x3!1@Edee~x1 ,x2 ,x3!1Ydee~x1 ,x2 ,x3!#Qddd~x1 ,x2 ,x3!

1@Edde~x1 ,x2 ,x3!1Ydde~x1 ,x2 ,x3!#Qded~x1 ,x2 ,x3!

5Edee~x1 ,x2 ,x3!g3B~x1 ,x2 ,x3!1Ydee~x1 ,x2 ,x3!@g3B~x1 ,x2 ,x3!21#

1@Edde~x1 ,x2 ,x3!1Ydde~x1 ,x2 ,x3!#@Eded~x1 ,x2 ,x3!1Yded~x1 ,x2 ,x3!#g3B~x1 ,x2 ,x3!. ~66!

Analogous equations hold for the other two cases.
The final equation is derived in the same way, although with a few more complications. It is possible to have a

exchange-line connections on one part of the composite or to have two on one part and one on another~there are three ways
to do this! or to have one on three different parts. To ensure that each combination is included and not overcounted

Zeee~x1 ,x2 ,x3!5Eeee~x1 ,x2 ,x3!1@Eeee~x1 ,x2 ,x3!1Yeee~x1 ,x2 ,x3!#Qddd~x1 ,x2 ,x3!1@Edee~x1 ,x2 ,x3!

1Ydee~x1 ,x2 ,x3!#Qedd~x1 ,x2 ,x3!1@Eede~x1 ,x2 ,x3!1Yede~x1 ,x2 ,x3!#Qded~x1 ,x2 ,x3!

1@Eeed~x1 ,x2 ,x3!1Yeed~x1 ,x2 ,x3!#Qdde~x1 ,x2 ,x3!1@Eedd~x1 ,x2 ,x3!1Yedd~x1 ,x2 ,x3!#

3@Eded~x1 ,x2 ,x3!1Yded~x1 ,x2 ,x3!#Qdde~x1 ,x2 ,x3!,

5Eeee~x1 ,x2 ,x3!g3B~x1 ,x2 ,x3!1Yeee~x1 ,x2 ,x3!@g3B~x1 ,x2 ,x3!21#1@Edee~x1 ,x2 ,x3!

1Ydee~x1 ,x2 ,x3!#@Eedd~x1 ,x2 ,x3!1Yedd~x1 ,x2 ,x3!#g3B~x1 ,x2 ,x3!1@Eede~x1 ,x2 ,x3!

1Yede~x1 ,x2 ,x3!#@Eded~x1 ,x2 ,x3!1Yded~x1 ,x2 ,x3!#g3B~x1 ,x2 ,x3!1@Eeed~x1 ,x2 ,x3!

1Yeed~x1 ,x2 ,x3!#@Edde~x1 ,x2 ,x3!1Ydde~x1 ,x2 ,x3!#g3B~x1 ,x2 ,x3!1@Eedd~x1 ,x2 ,x3!

1Yedd~x1 ,x2 ,x3!#@Eded~x1 ,x2 ,x3!1Yded~x1 ,x2 ,x3!#@Edde~x1 ,x2 ,x3!

1Ydde~x1 ,x2 ,x3!#g3B~x1 ,x2 ,x3! ~67!
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All the equations necessary for computing the three-b
distribution are now derived. There are a large number
them and it is useful to see how they are related to e
other. For this purpose, a general computational procedu
devised as follows.

~a! Choose a set of elementary diagramsElmn(x1 ,x2 ,x3).
This is not as simple an issue as might be surmised. In a
ogy with the FHNC/0 approximation for the two-body equ
tions, one may choose the empty set for this. There is rea
to suspect23 that some useful results can be obtained in t
way. However, if three-body correlations are to be inve
gated, it is necessary that a more careful choice be m
This issue will be discussed in the Conclusions section.

~b! Make an initial guess for the functions
Zlmn(x1 ,x2 ,x3). This will be modified in an iterative fashion
during this procedure. Presumably, setting all the functi
initially to zero, as in the Percus-Yevick approximation, w
be satisfactory.
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~c! Using a combination of Eqs.~59! and ~61!,
Clmn(x1 ,x2 ,x3) can be computed self-consistently from th
guessed values forZlmn(x1 ,x2 ,x3) and the two-body func-
tions.

~d! Equation~55! can be solved self-consistently from th
guessed values forZlmn(x1 ,x2 ,x3) and the computed value
for Clmn(x1 ,x2 ,x3).

~e! Equation~51! can be rearranged to an expression
Ylmn(x1 ,x2 ,x3), which can then be solved directly using th
computed values forClmn(x1 ,x2 ,x3) andXlmn(x1 ;x2 ,x3).

~f! Equations~63!–~67! can be solved directly for the new
values ofZlmn(x1 ,x2 ,x3).

~g! The new and old values forZlmn(x1 ,x2 ,x3) are com-
pared. If they are close enough, they can be used in the
step. Otherwise, the process starting from step~c! should be
repeated.

~h! Equation~62! is used to computeQlmn(x1 ,x2 ,x3).
~i! Equation~44! is used to compute the three-body di

tribution.
1-15
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It may be noted that the common procedure nowadays
solving the FHNC equations involves a functional optimiz
tion of the correlation potentials and not a direct iterat
solution as described above. Nevertheless, the equation
rived in this paper can still be used as a starting point
construct the associated Euler equations for the correla
potentials.

V. CONCLUSIONS

The three-body FHNC equations have been derived
are reported here explicitly. A uniform system is not a
sumed; they are derived for the general inhomogeneous
tem. They are, as expected, very complicated and would
difficult to solve. Routine use would certainly not be e
pected to be worthwhile. Nevertheless, they would be va
able for directly testing the validity of the various approx
mations used and their explicit presentation here would h
to that end. Further, there may be cases where a highly
curate solution is required and the expressions derived
may be useful for that. In particular, situations where thr
body correlations should be taken into account would req
an accurate treatment of the three-body distribution and
equations derived here would serve as a starting point in
direction.

One further issue is worth discussing here. The equat
derived in this paper are more closely associated with
Fantoni-Rosati1 ~FR! formulation of FHNC theory than with
the Krotscheck-Ristig2 ~KR! formulation. As a result, thes
equations suffer the same shortcomings~and strengths! as the
FR two-body equations. The solution of these FHNC eq
tions depends directly on the choice of elementary diagra
that is made. The common choice for the two-body equati
involves a truncation of the cluster expansion of element
diagrams up to a specific number of points, the so-ca
FHNC/n approximation. It has been noted2 that the cluster
expansion contains divergences that end up canceling
other in the full sum. However, the FHNC/n truncation of
elementary diagrams results in an incomplete cancellatio17

that could be harmful for computed results. The KR form
lation aims to ensure a proper cancellation of these diverg
terms, even at a truncated level. However, it is useful to n
that the three-body equations derived in this paper do
rely on the specifics of the two-body elements. They co
just as easily come from solution of the KR-FHNC equatio
as from the FR-FHNC equations. Whether using two-bo
elements from the KR formulation would yield an improv
ment over the FR formulation is not clear, but would
worth investigating.

This cancellation phenomenon is expected to occur in
three-body equations as well and probably to a stronger
gree. The KR formulation was developed by enforcing
correct small-k behavior of the structure factor, a proper
which is intimately tied to the sequential relation between
one- and two-body distributions. It is this property that t
FR formulation does not handle satisfactorily. There are
dications that calculations within the FR formulation yie
satisfactory total energies. For instance, calculations on
electron gas3,4 lead to energies in excellent agreement w
19512
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quantum Monte Carlo24 results. However, optimization o
the three-body correlation potential is a more delicate ma
In this case, it seems crucial that the sequential relation
tween the three- and two-body distributions be satisfi
Hence, one might suspect that the three-body equations
rived in this paper may be deficient in this respect. This
certainly worth future investigation. There are two obvio
directions to go at this point. First, it may be possible
recast the formulas in this paper in a way that is consis
with the KR formulation of the two-body equations. Eve
though this would result in the elimination of certain di
grams~as it does in the two-body equations!, there may be a
profitable return due to the satisfaction of the sequential
lations. Second, there may be alternative truncations of
elementary diagrams that lead to satisfaction or at least
ceptably approximate satisfaction of the sequential relatio
These truncations will depend on the two-body eleme
used and may work better within one formalism than t
other. In any case, the results in this paper could serve
suitable starting point.

APPENDIX: THE ALGEBRAIC FHNC THREE-BODY
EQUATIONS

Although all the formulas for the three-body distributio
are in principle given, they are mostly in diagrammatic for
and must be translated to an algebraic form before they
be practically implemented. The resulting expressions
necessarily lengthy, but it is useful to have them writt
down for potential use. They are presented in this appen
in all their glory.

A direct translation is, of course, possible, but the expr
sions are very long. It is possible to streamline them a
without sacrificing the explicit nature of the expressions
introducing a new three-component arrayGabg, the indices
being eitherd or e. It is defined by the following expressions

Gdbg5S 1 0

0 0D , Gebg5S 0 1

1 0D . ~A1!

This arrayGabg can be used when joining two diagramma
portions with ends of typeb andg to each other. The overal
type for the point of the joined diagram then corresponds
the indexa. This array will be used in the following expres
sions. The procedure presented in the text will be repea
here with the diagrammatic equations replaced by algeb
expressions.

~a! Choose a set of elementary diagramsElmn(x1 ,x2 ,x3).
~b! Make an initial guess for the function

Zlmn(x1 ,x2 ,x3).
~c! Use the following equations to solve fo

Clmn(x1 ,x2 ,x3).
1-16



FERMION HYPERNETTED CHAIN EQUATIONS FOR THE . . . PHYSICAL REVIEW B 64 195121
Cddd~x1 ,x2 ,x3!5Gdd~x1 ,x2!Gdd~x2 ,x3!Gdd~x3 ,x1!2 H E dx4$Gdd~x1 ,x4!Gdd~x2 ,x4!Gdd~x3 ,x4!r~x4!

1Gdd~x1 ,x4!Gdd~x2 ,x4!Gde~x3 ,x4!1Gdd~x1 ,x4!Gde~x2 ,x4!Gdd~x3 ,x4!

1Gde~x1 ,x4!Gdd~x2 ,x4!Gdd~x3 ,x4!%1E dx4dx5dx6Gdl~x1 ,x4!Gdm~x2 ,x5!Gdn~x3 ,x6!

3Jll8
d

~x4!Jmm8
d

~x5!Jnn8
d

~x6!Cl8m8n8~x4 ,x5 ,x6!J $Gdd~x1 ,x2!Gdd~x2 ,x3!1Gdd~x2 ,x3!Gdd~x3 ,x1!

1Gdd~x3 ,x1!Gdd~x1 ,x2!12Gdd~x1 ,x2!Gdd~x2 ,x3!Gdd~x3 ,x1!%

1E dx4dx5Gdl~x2 ,x4!Gdm~x3 ,x5!Jll8
d

~x4!Jmm8
d

~x5!Cdl8m8~x1 ,x4 ,x5!$Gdd~x2 ,x3!

2Gdd~x1 ,x2!Gdd~x1 ,x3!Gdd~x2 ,x3!%1E dx4dx5Gdl~x3 ,x4!Gdm~x1 ,x5!Jll8
d

~x4!Jmm8
d

~x5!

3Cdl8m8~x2 ,x4 ,x5!$Gdd~x3 ,x1!2Gdd~x2 ,x3!Gdd~x2 ,x1!Gdd~x3 ,x1!%

1E dx4dx5Gdl~x1 ,x4!Gdm~x2 ,x5!Jll8
d

~x4!Jmm8
d

~x5!Cdl8m8~x3 ,x4 ,x5!$Gdd~x1 ,x2!

2Gdd~x3 ,x1!Gdd~x3 ,x2!Gdd~x1 ,x2!%1E dx4Gdl~x1 ,x4!Jll8
d

~x4!Cl8dd~x4 ,x2 ,x3!$Gdd~x1 ,x2!

1Gdd~x1 ,x3!1Gdd~x1 ,x2!Gdd~x1 ,x3!%1E dx4Gdl~x2 ,x4!Jll8
d

~x4!Cl8dd~x4 ,x3 ,x1!$Gdd~x2 ,x3!

1Gdd~x2 ,x1!1Gdd~x2 ,x3!Gdd~x2 ,x1!%1E dx4Gdl~x3 ,x4!Jll8
d

~x4!Cl8dd~x4 ,x1 ,x2!$Gdd~x3 ,x1!

1Gdd~x3 ,x2!1Gdd~x3 ,x1!Gdd~x3 ,x2!%1Gdd~x1 ,x2!Gdd~x2 ,x3!Gdd~x3 ,x1!Zddd~x1 ,x2 ,x3!, ~A2!

Cdde~x1 ,x2 ,x3!5Gdd~x1 ,x2!Gda~x2 ,x3!GeabGbd~x3 ,x1!2 H E dx4$Gdd~x1 ,x4!Gdd~x2 ,x4!Gad~x3 ,x4!r~x4!

1Gdd~x1 ,x4!Gdd~x2 ,x4!Gae~x3 ,x4!1Gdd~x1 ,x4!Gde~x2 ,x4!Gad~x3 ,x4!

1Gde~x1 ,x4!Gdd~x2 ,x4!Gad~x3 ,x4!%1E dx4dx5dx6Gdl~x1 ,x4!Gdm~x2 ,x5!Gan~x3 ,x6!

3Jll8
d

~x4!Jll8
d

~x5!Jnn8
d

~x6!Cl8m8n8~x4 ,x5 ,x6!JGeab$Gdd~x1 ,x2!Gdb~x2 ,x3!1Gdg~x2 ,x3!GbgdGdd~x3 ,x1!

1Gbd~x3 ,x1!Gdd~x1 ,x2!12Gdd~x1 ,x2!Gdg~x2 ,x3!GbgdGdd~x3 ,x1!%

1E dx4dx5Gdl~x2 ,x4!Gam~x3 ,x5!Jll8
d

~x4!Jmm8
d

~x5!Cdl8m8~x1 ,x4 ,x5!Geab$Gdb~x2 ,x3!

2Gdd~x1 ,x2!Gdl~x1 ,x3!GbgdGdd~x2 ,x3!%1E dx4dx5Gal~x3 ,x4!Gdm~x1 ,x5!Jll8
d

~x4!Jmm8
d

~x5!

3Cdl8m8~x2 ,x4 ,x5!Geab$Gbd~x3 ,x1!2Gdg~x2 ,x3!Gdd~x2 ,x1!GbgdGdd~x3 ,x1!%

1E dx4dx5Gdl~x1 ,x4!Gdm~x2 ,x5!Jll8
d

~x4!Jmm8
d

~x5!Cal8m8~x3 ,x4 ,x5!Geab$GbddGdd~x1 ,x2!

2Ggd~x3 ,x1!GbgdGdd~x3 ,x2!Gdd~x1 ,x2!%1E dx4Gdl~x1 ,x4!Jll8
d

~x4!Cl8ba~x4 ,x2 ,x3!Geab

3$GbddGdd~x1 ,x2!1Gdb~x1 ,x3!1Gdd~x1 ,x2!Gdb~x1 ,x3!%

1E dx4Gdl~x2 ,x4!Jll8
d

~x4!Cl8ba~x4 ,x1 ,x3!Geab$GbddGdd~x1 ,x2!1Gdb~x2 ,x3!

1Gdd~x1 ,x2!Gdb~x2 ,x3!%1E dx4Gal~x3 ,x4!Jll8
d

~x4!Cl8dd~x4 ,x1 ,x2!Geab$Gbd~x3 ,x1!1Gbd~x3 ,x2!

1Ggd~x3 ,x1!GbgdGdd~x3 ,x2!%1Zdda~x1 ,x2 ,x3!GeabGdd~x1 ,x2!Gdg~x2 ,x3!GbgdGdd~x3 ,x1!, ~A3!
195121-17
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Cdee~x1 ,x2 ,x3!5Gda~x1 ,x2!GeabGba8~x2 ,x3!Gea8b8Gb8d~x3 ,x1!2 H E dx4$Gdd~x1 ,x4!Gad~x2 ,x4!Ga8d~x3 ,x4!r~x4!

1Gdd~x1 ,x4!Gad~x2 ,x4!Ga8e~x3 ,x4!1Gdd~x1 ,x4!Gae~x2 ,x4!Ga8d~x3 ,x4!

1Gde~x1 ,x4!Gad~x2 ,x4!Ga8d~x3 ,x4!%1E dx4dx5dx6Gdl~x1 ,x4!Gam~x2 ,x5!Ga8n~x3 ,x6!

3Jll8
d

~x4!Jmm8
d

~x5!Jnn8
d

~x6!Cl8m8n8~x4 ,x5 ,x6!JGeabGea8b8$Gdg~x1 ,x2!GbgdGdb8~x2 ,x3!

1Gbg8~x2 ,x3!Gb8g8d8Gd8d~x3 ,x1!1Gb8d~x3 ,x1!Gdb~x1 ,x2!

12Gdg~x1 ,x2!GbgdGgg8~x2 ,x3!Gb8g8d8Gd8d~x3 ,x1!%

1E dx4dx5Gal~x2 ,x4!Ga8m~x3 ,x5!Jll8
d

~x4!Jmm8
d

~x5!Cdl8m8~x1 ,x4 ,x5!GeabGea8b8$Gbb8~x2 ,x3!

2Gdg~x1 ,x2!GbgdGdg8~x2 ,x3!Gb8g8d8Gd8d~x3 ,x1!%1E dx4dx5Ga8l~x3 ,x4!Gdm~x1 ,x5!Jll8
d

~x4!Jmm8
d

~x5!

3Cal8m8~x2 ,x4 ,x5!GeabGea8b8$GbddGb8d~x3 ,x1!2Gdg~x1 ,x2!GbgdGdg8~x2 ,x3!Gb8g8d8Gd8d~x3 ,x1!%

1E dx4dx5Gdl~x1 ,x4!Gam~x2 ,x5!Jll8
d

~x4!Jmm8
d

~x5!Ca8l8m8~x3 ,x4 ,x5!GeabGea8b8$Gb8ddGdb~x1 ,x2!

2Gdg~x1 ,x2!GbgdGdg8~x2 ,x3!Gb8g8d8Gd8d~x3 ,x1!%

1E dx4Gdl~x1 ,x4!Jll8
d

~x4!Cl8aa8~x4 ,x2 ,x3!GeabGea8b8$Gb8ddGdb~x1 ,x2!1GbddGdb8~x1 ,x3!

1Gdb~x1 ,x2!Gdb8~x1 ,x3!%1E dx4Gal~x2 ,x4!Jll8
d

~x4!Cl8ba8~x4 ,x1 ,x3!GeabGea8b8$Gb8ddGdb~x1 ,x2!

1Gbb8~x2 ,x3!1Gdg~x1 ,x2!GbgdGdb~x2 ,x3!%1E dx4Ga8l~x3 ,x4!Jll8
d

~x4!Cl8ba~x4 ,x1 ,x2!GeabGea8b8

3$Gbdd8Gb8d~x3 ,x1!1Gb8b~x3 ,x2!1Gdg8~x1 ,x3!Gb8g8d8Gd8b~x3 ,x2!%

1Zdaa8~x1 ,x2 ,x3!GeabGea8b8Gdg~x1 ,x2!GbgdGdg8~x2 ,x3!Gb8g8d8Gd8d~x3 ,x1!, ~A4!

Ceee(x1 ,x2 ,x3)5Gba8~x1 ,x2!Gea8b8Gb8a9~x2 ,x3!Gea9b9Gb9a~x3 ,x1!Geab

2 H E dx4$Gad~x1 ,x4!Ga8d~x2 ,x4!Ga9d~x3 ,x4!r~x4!1Gad~x1 ,x4!Ga8d~x2 ,x4!Ga9e~x3 ,x4!

1Gad~x1 ,x4!Ga8e~x2 ,x4!Ga9d~x3 ,x4!1Gae~x1 ,x4!Ga8d~x2 ,x4!Ga9d~x3 ,x4!%

1E dx4dx5dx6Gal~x1 ,x4!Ga8m~x2 ,x5!Ga9n~x3 ,x6!Jll8
d

~x4!Jmm8
d

~x5!Jnn8
d

~x6!Cl8m8n8~x4 ,x5 ,x6!J
3GeabGea8b8Gea9b9$Gbg8~x1 ,x2!Gb8g8d8Gd8b9~x2 ,x3!1Gb8g9~x2 ,x3!Gb9g9d9Gd9b~x3 ,x1!

1Gb9g~x3 ,x1!GbgdGdb8~x1 ,x2!12Gdg8~x1 ,x2!Gb8g8d8Gd8g9~x2 ,x3!Gb9g9d9Gd9g~x3 ,x1!%

1E dx4dx5Ga8l~x2 ,x4!Ga9m~x3 ,x5!Jll8
d

~x4!Jmm8
d

~x5!Cal8m8~x1 ,x4 ,x5!GeabGea8b8Gea9b9
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3$GbddGb8b9~x2 ,x3!2Gdg8~x1 ,x2!Gb8g8d8Gd8g9~x2 ,x3!Gb9g9d9Gd9g~x3 ,x1!Gbgd%

1E dx4dx5Ga9l~x3 ,x4!Gam~x1 ,x5!Jll8
d

~x4!Jmm8
d

~x5!Ca8l8m8~x2 ,x4 ,x5!GeabGea8b8Gea9b9

3$Gb8ddGb9b~x3 ,x1!2Gdg8~x1 ,x2!Gb8g8d8Gd8g9~x2 ,x3!Gb9g9d9Gd9g~x3 ,x1!Gbgd%

1E dx4dx5Gal~x1 ,x4!Ga8m~x2 ,x5!Jll8
d

~x4!Jmm8
d

~x5!Ca9l8m8~x3 ,x4 ,x5!GeabGea8b8Gea9b9

3$Gb9ddGbb8~x1 ,x2!2Gdg8~x1 ,x2!Gb8g8d8Gd8g9~x2 ,x3!Gb9g9d9Gg9g~x3 ,x1!Gbgd%

1E dx4Gal~x1 ,x4!Jll8
d

~x4!Cl8a8a9~x4 ,x2 ,x3!GeabGea8b8Gea9b9$Gb9ddGbb8~x1 ,x2!1Gb8ddGbb9~x1 ,x3!

1Gb8g~x2 ,x1!GbgdGdb9~x1 ,x3!%

1E dx4Ga8l~x2 ,x4!Jll8
d

~x4!Cl8aa9~x4 ,x1 ,x3!GeabGea8b8Gea9b9$Gb9ddGbb8~x1 ,x2!

1GbddGb8b9~x2 ,x3!1Gbg8~x1 ,x2!Gb8g8d8Gd8b9~x2 ,x3!%

1E dx4Ga9l~x3 ,x4!Jll8
d

~x4!Cl8aa8~x4 ,x1 ,x2!GeabGea8b8Gea9b9$Gb8ddGb9b~x3 ,x1!

1GbddGb9b8~x3 ,x2!1Gbg9~x1 ,x3!Gb9g8d9Gd9b8~x3 ,x2!%

1Zaa8a9~x1 ,x2 ,x3!GeabGea8b8Gea9b9Gdg8~x1 ,x2!Gb8g8d8Gd8g9~x2 ,x3!Gb9g9d9Gd9g~x3 ,x1!Gbgd

1Gcc~x3 ,x2!Gcc~x2 ,x1!Gcc~x1 ,x3!

3 H11E dx4@Gdd~x1 ,x4!Gdd~x2 ,x4!Gdd~x3 ,x4!r~x4!1Gdd~x1 ,x4!Gdd~x2 ,x4!Gde~x3 ,x4!

1Gdd~x1 ,x4!Gde~x2 ,x4!Gdd~x3 ,x4!1Gde~x1 ,x4!Gdd~x2 ,x4!Gdd~x3 ,x4!#

1E dx4dx5dx6Gdl~x1 ,x4!Gdm~x2 ,x5!Gdn~x3 ,x6!Jll8
d

~x4!Jmm8
d

~x5!Jnn8
d

~x6!Cl8m8n8~x4 ,x5 ,x6!

1E dx4dx5Gdl~x2 ,x4!Gdm~x3 ,x5!Jll8
d

~x4!Jmm8
d

~x5!Cdl8m8~x1 ,x4 ,x5!

1E dx4dx5Gdl~x3 ,x4!Gdm~x1 ,x5!Jll8
d

~x4!Jmm8
d

~x5!Cdl8m8~x2 ,x4 ,x5!

1E dx4dx5Gdl~x1 ,x4!Gdm~x2 ,x5!Jll8
d

~x4!Jmm8
d

~x5!Cdl8m8~x3 ,x4 ,x5!1Zddd~x1 ,x2 ,x3!J
1Scc~x2 ,x1!Gcc~x1 ,x3!Gcc~x3 ,x2!H E dx4Gdl~x3 ,x4!Jll8

d
~x4!Cddl8~x1 ,x2 ,x4!

2E dx4@Gdd~x1 ,x4!Gdd~x2 ,x4!Gdd~x3 ,x4!r~x4!1Gdd~x1 ,x4!Gdd~x2 ,x4!Gde~x3 ,x4!

1Gdd~x1 ,x4!Gde~x2 ,x4!Gdd~x3 ,x4!1Gde~x1 ,x4!Gdd~x2 ,x4!Gdd~x3 ,x4!#Gdd~x1 ,x2!

2E dx4dx5dx6Gdl~x1 ,x4!Gdm~x2 ,x5!Gdn~x3 ,x6!

3Jll8
d

~x4!Jmm8
d

~x5!Jnn8
d

~x6!Cl8m8n8~x4 ,x5 ,x6!Gdd~x1 ,x2!

2E dx4dx5Gdl(x1 ,x4)Gdm(x3 ,x4)Jll8
d (x4)Jmm8

d (x5)Cdl8m8(x2 ,x4 ,x5)Gdd(x1 ,x2)

2E dx4dx5Gdl(x2 ,x4)Gdm(x3 ,x5)Jll8
d (x4)Jmm8

d (x5)Cdl8m8(x1 ,x4 ,x5)Gdd(x1 ,x2)J
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1Scc~x3 ,x2!Gcc~x2 ,x1!Gcc~x1 ,x3!H E dx4Gdl~x1 ,x4!Jll8
d

~x4!Cddl8~x2 ,x3 ,x4!

2E dx4@Gdd~x2 ,x4!Gdd~x3 ,x4!Gdd~x1 ,x4!r~x4!1Gdd~x2 ,x4!Gdd~x3 ,x4!Gde~x1 ,x4!

1Gdd~x2 ,x4!Gde~x3 ,x4!Gdd~x1 ,x4!1Gde~x2 ,x4!Gdd~x3 ,x4!Gdd~x1 ,x4!]Gdd~x2 ,x3!

2E dx4dx5dx6Gdl~x2 ,x4!Gdm~x3 ,x5!Gdn~x1 ,x6!

3Jll8
d

~x4!Jmm8
d

~x5!Jnn8
d

~x6!Cl8m8n8~x4 ,x5 ,x6!Gdd~x2 ,x3!

2E dx4dx5Gdl~x2 ,x4!Gdm~x1 ,x5!Jll8
d

~x4!Jmm8
d

~x5!Cdl8m8~x3 ,x4 ,x5!Gdd~x2 ,x3!

2E dx4dx5Gdl~x3 ,x4!Gdm~x1 ,x5!Jll8
d

~x4!Jmm8
d

~x5!Cdl8m8~x2 ,x4 ,x5!Gdd~x2 ,x3!J
1Scc~x1 ,x3!Gcc~x3 ,x2!Gcc~x2 ,x1!H E dx4Gdl~x2 ,x4!Jll8

d
~x4!Cddl8~x3 ,x1 ,x4!

2E dx4@Gdd~x3 ,x4!Gdd~x1 ,x4!Gdd~x2 ,x4!r~x4!1Gdd~x3 ,x4!Gdd~x1 ,x4!Gde~x2 ,x4!

1Gdd~x3 ,x4!Gde~x1 ,x4!Gdd~x2 ,x4!1Gde~x3 ,x4!Gdd~x1 ,x4!Gdd~x2 ,x4!#Gdd~x3 ,x1!

2E dx4dx5dx6Gdl~x3 ,x4!Gdm~x1 ,x5!Gdn~x2 ,x6!

3Jll8
d

~x4!Jmm8
d

~x5!Jnn8
d

~x6!Cl8m8n8~x4 ,x5 ,x6!Gdd~x3 ,x1!

2E dx4dx5Gdl~x3 ,x4!Gdm~x2 ,x5!Jll8
d

~x4!Jll8
d

~x5!Cdl8m8~x1 ,x4 ,x5!Gdd~x3 ,x1!

2E dx4dx5Gdl~x1 ,x4!Gdm~x2 ,x5!Jll8
d

~x4!Jmm8
d

~x5!Cdl8m8~x3 ,x4 ,x5!Gdd~x3 ,x1!J ~A5!

Equations~A3! and ~A4! can be permuted to give equivalent expressions in which the direct-line and exchange-line c
tions are on different external points. There are eight equations in all.

~d! Use the following equations to solve forXlmn(x1 ;x2 ,x3):

Xlmn~x1 ;x2 ,x3!5 H E dx4@Gad~x1 ,x4!Ga8d~x2 ,x4!Ga9d~x3 ,x4!r~x4!1Gad~x1 ,x4!Ga8d~x2 ,x4!Ga9e~x3 ,x4!

1Gad~x1 ,x4!Ga8e~x2 ,x4!Ga9d~x3 ,x4!1Gae~x1 ,x4!Ga8d~x2 ,x4!Ga9d~x3 ,x4!#

1E dx4dx5dx6Gas~x1 ,x4!Ga8t~x2 ,x5!Ga9v~x3 ,x6!Jss8
d

~x4!Jtt8
d

~x5!Jvv8
d

~x6!Cs8t8v8~x4 ,x5 ,x6!

1E dx4dx5Ga8s~x2 ,x4!Ga9t~x3 ,x5!Jss8
d

~x4!Jtt8
d

~x5!Cas8t8~x1 ,x4 ,x5!

1E dx4Gas~x1 ,x4!Jss8
d

~x4!Xs8a8a9~x4 ;x2 ,x3!JGlabGma8b8Gna9b9Gb8g~x2 ,x1!GbgdGdb9~x1 ,x3!

1 H E dx4dx5Gas~x1 ,x4!Ga8t~x2 ,x5!Jss8
d

~x4!Jtt8
d

~x5!Ca9s8t8~x3 ,x4 ,x5!

1E dx4Ga8s~x1 ,x4!Jss8
d

~x4!Xs8aa9~x4 ;x2 ,x3!JGlabGma8b8Gna9b9Gb8g~x2 ,x1!GbgdGdb9~x1 ,x3!
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1 H E dx4dx5Gas~x1 ,x4!Ga9t~x3 ,x5!Jss8
d

~x4!Jtt8
d

~x5!Ca8s8t8~x2 ,x4 ,x5!

1E dx4Ga9s~x3 ,x4!Jss8
d

~x4!Xs8aa8~x4 ;x1 ,x2!JGlabGma8b8Gna9b9Gb9g~x3 ,x1!GbgdGdb8~x1 ,x2!

1E dx4Gas~x1 ,x4!Jss8
d

~x4!Xs8a8a9~x4 ;x2 ,x3!GlabGma8b8Gna9b9$Gb9ddGbb8~x1 ,x2!

1Gb8ddGbb9~x1,x3!%1Zaa8a9~x1,x3,x3!GlabGma8Gna9b9Gb8g~x2,x1!GbgdGdb9~x1,x3! ~A6!

~e! Use the following equations to solve forYlmn(x1 ,x2 ,x3):

Ylmn~x1 ,x2 ,x3!5E dx4@Gld~x1 ,x4!Gmd~x2 ,x4!Gnd~x3 ,x4!r~x4!1Gld~x1 ,x4!Gmd~x2 ,x4!Gne~x3 ,x4!

1Gld~x1 ,x4!Gme~x2 ,x4!Gnd~x3 ,x4!1Gle~x1 ,x4!Gmd~x2 ,x4!Gnd~x3 ,x4!#

1E dx4dx5dx6Gls~x1 ,x4!Gmt~x2 ,x5!Gnv~x3 ,x6!Jss8
d

~x4!Jtt8
d

~x5!Jvv8
d

~x6!Cs8t8v8~x4 ,x5 ,x6!

1E dx4dx5Gls~x1 ,x4!Gmt~x2 ,x5!Jss8
d

~x4!Jtt8
d

~x5!Cs8t8n~x4 ,x5 ,x3!

1E dx4dx5Gms~x2 ,x4!Gnt~x3 ,x5!Jss8
d

~x4!Jtt8
d

~x5!Cs8t8l~x4 ,x5 ,x1!

1E dx4dx5Gns~x3 ,x4!Glt~x1 ,x5!Jss8
d

~x4!Jtt8
d

~x5!Cs8t8m~x4 ,x5 ,x2!

1E dx4Gls~x1 ,x4!Jss8
d

~x4!Xs8mn~x4 ;x2 ,x3!

1E dx4Gms~x2 ,x4!Jss8
d

~x4!Xs8nl~x4 ;x3 ,x1!

1E dx4Gns~x3 ,x4!Jss8
d

~x4!Xs8lm~x4 ;x1 ,x2!. ~A7!

The rest of the equations needed for the procedure are already presented in algebraic form in the main part of t
They will not be repeated here. The formulas above, while rather complicated and long, are amenable to the gene
computer code to perform the calculations.
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