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Molecular tests of the random phase approximation to the exchange-correlation energy functiona
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The exchange-correlation energy functional within the random phase approximation~RPA! is recast into an
explicitly orbital-dependent form. A method to evaluate the functional in finite basis sets is introduced. The
basis set dependence of the RPA correlation energy is analyzed. Extrapolation using large, correlation-
consistent basis sets is essential for accurate estimates of RPA correlation energies. The potential energy curve
of N2 is discussed. The RPA is found to recover most of the strong static correlation at large bond distance.
Atomization energies of main-group molecules are rather uniformly underestimated by the RPA. The method
performs better than generalized-gradient-type approximations~GGA’s! only for some electron-rich systems.
However, the RPA functional is free of error cancellation between exchange and correlation, and behaves
qualitatively correct in the high-density limit, as is demonstrated by the coupling strength decomposition of the
atomization energy of F2. The GGA short-range correlation correction to the RPA by Yan, Perdew, and Kurth
@Phys. Rev. B61, 16 430~2000!# does not seem to improve atomization energies consistently.
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I. INTRODUCTION

Kohn-Sham~KS! density functional theory1–3 is one of
the most widely used methods in electronic structure the
Due to a well-balanced compromise between accur
and computational efficiency, generalized gradie
approximations4–8 ~GGA’s! to the exchange-correlation en
ergy functional are very successful in solid-state and part
larly in molecular applications. However, further improv
ment of approximations to the exchange-correlation ene
functional is still an issue. ‘‘Chemical accuracy’’ in atomiz
tion energies~1 kcal/mol! has not yet been achieved,9–13 en-
ergies and potentials are contaminated with self-interactio14

and orbital energy spectra are qualitatively incorrect15–17—to
name some of the most pressing difficulties of GGA-ty
functionals. Although these problems have been known
more than a decade, they are hard to overcome in a pr
cable and and general manner.

An evident strategy for improvement is to identify th
parts of the exchange-correlation energy for which the G
is accurate and to treat the remainder exactly. For this
pose, the coupling strength decomposition of the exchan
correlation functional,18

Exc@r#5E
0

1

da Wa@r#, ~1!

has proved a convenient starting point. The integrandWa@r#
is defined as

Wa@r#5^Ca@r#uŴuCa@r#&2
1

2E d3r d3r 8
r~r !r~r 8!

ur2r 8u
,

~2!

whereŴ denotes the operator of the electron-electron C
lomb interaction, andCa@r# is the ground state of anN
electron system with scaled interactionaŴ, whose ground-
state density is constrained at the densityr of the physical
ground state C1@r#. For any approximate exchange
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correlation functional, the coupling strength decomposit
can be computed by means of the scaling relation19–21

Wa@r#5
d

da
~a2Exc@r1/a#!, ~3!

where rl(r )5l3r(lr ) is a scaled density, with uniform
scaling parameterl. Thus,Wa at a50 is determined by the
high-density limit ofExc , while the low-density limit corre-
sponds to largea values. By construction,C0@r# is the KS
determinant, andW0@r#5Ex@r# is the exact orbital-
dependent exchange functional.

For molecular densities, the GGA is known to yield
rather poor description of the high-density~exchange-only!
limit. This is obvious, e.g., from the errors in GG
exchange-only~x-only! atomization energies that are signifi
cantly larger than errors in total GGA atomization energies22

It is not sufficient to replace the GGA exchange part by
exact functional only, since there is considerable error c
cellation between GGA exchange and correlation at sm
coupling constant values.23 The random phase approximatio
~RPA! to the exchange-correlation functional18,24,25 is more
accurate in the high-density limit. It correctly reduces to t
exact exchange functional in the high-density limit, and t
leading correlation contribution recovers the direct part
the exact high-density limit20 of the correlation energy func
tional. Exc

RPA@r# is nonperturbative, containing contribution
from all orders ina. It has a well-defined homogeneous lim
and has played an important role in the development of
mogeneous gas theory~for an overview, see Refs. 2 and 26!.

Recently, there has been a revival of interest in
RPA.27–29 Yan, Perdew, and Kurth~YPK! have presented a
GGA correction to RPA correlationEc, sr

GGA@r# ~Ref. 30!; it
accounts for short-range correlation effects that are not w
described within the RPA.31 YPK suggest that the GGA ma
be more accurate for the correction to the RPA than for
full exchange-correlation energy. In other words,

Exc
RPA1@r#5Exc

RPA@r#1Ec, sr
GGA@r# ~4!
©2001 The American Physical Society20-1
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FILIPP FURCHE PHYSICAL REVIEW B 64 195120
is supposed to be a very accurate approximation to the e
exchange-correlation functional. YPK find thatEc, sr

GGA@r#
gives large corrections to total correlation energies but sm
corrections to atomization energies, and conclude that
RPA itself might come close to chemical accuracy.

Molecular tests of the RPA have been hampered by
fact that the common expression forExc

RPA@r# @cf. Eq. ~5! in
Sec. II# contains the frequency-dependent RPA density
sponse function of the interacting system at coupl
strengtha, which depends on the KS orbitals and the dens
in a complicated way. Moreover, a nontrivial integration ov
frequency is required. In Sec. II, the RPA correlation ene
functional is recast into an explicitly orbital-dependent fo
which does not involve frequency integration@Eqs.~20! and
~21! in Sec. II#. The derivation is simple and relies on th
density-matrix-based approach to KS response theo32

Implementation in finite basis sets is straightforward, as d
cussed in Sec. III. Technical details of the computations
given in Sec. IV. Due to the correlation cusp, the basis
dependence of the RPA correlation energy is quite differ
from that familiar from GGA calculations; this is invest
gated in a separate subsection. The firstab initio RPA results
for atomization energies as well as bond properties of the2
molecule are presented in Sec. V.~The author is aware o
similar work by Fuchs and Gonze being in progress.33! The
coupling strength dependence of the F2 atomization energy
within the GGA and the RPA is analyzed in detail. Conc
sions are discussed in Sec. V.

II. THEORY

Following Langreth and Perdew,18,25the coupling strength
integrandWa can be expressed as

Wa5W02E
0

`dv

2p
ImE dx dx8

xa~v,x,x8!2x0~v,x,x8!

ur2r 8u
.

~5!

xa(v) is the frequency-dependent density response func
of the system with scaled interaction and fixed density, a
x0(v) is the KS density response function. As usual,x
5(r ,s) denotes a set of space-spin coordinates. Tim
dependent Kohn-Sham~TDKS! theory leads to a Dyson-typ
equation forxa(v),34

xa~v,x,x8!5x0~v,x,x8!1E dx dx1x0~v,x,x1!

3S a

ur12r18u
1 f xc a~v,x1 ,x18!D xa~v,x18 ,x8!.

~6!

f xc a(v) denotes the frequency-dependent exchan
correlation kernel at coupling strengtha. The RPA coupling
strength integrandWa

RPA is obtained by replacingxa(v) with
its RPA counterpartxa

RPA(v) in Eq. ~5!. xa
RPA(v) is defined

by18
19512
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xa
RPA~v,x,x8!5x0~v,x,x8!1E dx1dx18x0~v,x,x1!

3
a

ur12r18u
xa

RPA~v,x18 ,x8!; ~7!

i.e., f xc a(v) in Eq. ~6! is formally set to zero.
In the following it is shown how the calculation ofWa

RPA

can be reduced to finite-dimensional linear algebra in fin
basis sets. The procedure largely follows Ref. 32, to wh
the reader is referred for details.xa

RPA(v) can be considered
as the diagonal of thedensity-matrix response function
Ja

RPA(v),

xa
RPA~v,x,x8!5Ja

RPA~v!~x,x,x8,x8!. ~8!

Ja
RPA(v) is an operator on the Hilbert spaceL5Locĉ Lvirt

% Lvirt ^ Locc, whereLocc andLvirt denote the Hilbert space
of occupied and virtual KS molecular orbitals~MO’s! asso-
ciated with the ground-state densityr. ~Note that the density
determines the KS potential and thusall MO’s, occupied and
virtual.! For vectors inL the notation

uX,Y&5S X

YD ~9!

is convenient, i.e.,XPLocĉ Lvirt ,YPLvirt ^ Locc. Ja
RPA(v)

has a straightforward matrix equivalent, in contrast
xa

RPA(v). From the equation of motion for the TDKS densi
matrix it follows32 that Ja

RPA(v) is related to the TDKS re-
sponse operator within the RPALa

RPA by

Ja
RPA~z!52~La

RPA2Dz!21, zPC. ~10!

La
RPA and D are defined onL and can be cast in the well

known form

La
RPA5S Aa Ba

Ba Aa
D , D5S 1 0

0 21D . ~11!

Assuming real KS MO’s,Aa andBa are symmetric and have
the matrix elements

~Aa2Ba! ia jb5~ea2e i !d i j dab , ~12a!

~Aa1Ba! ia jb5~Aa2Ba! ia jb12a^ i j uab&. ~12b!

As usual, indicesi , j , . . . label occupied anda,b, . . . vir-
tual MO’s; e i ,ea are orbital energies and̂i j uab& is the ma-
trix element of the electron-electron interaction~in Dirac no-
tation!. Equations~8! and ~10! are generalizations of the
Dyson-type equation~7!. The matrix representation ofLa

RPA

is the key to the basis set formulation of the RPA, since
matrix elements reduce to a finite number of standard m
lecular integrals in finite basis sets.

The integration over frequency in Eq.~5! can be carried
out using the resolvent equation~10!. The poles of2Ja

RPA at
positive frequency are the positive eigenvaluesVn a of
La

RPA, and the residues are given by the corresponding eig
0-2
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projectorsuXn a ,Yn a&^Xn a ,Yn au. This leads to the RPA ei
genvalue problem32,35 at coupling strengtha,

~La
RPA2Vn aD!uXn a ,Yn a&50, ~13!

where the eigenvectors obey^Xn a ,Yn auDuXn a ,Yn a&51.
Requiring thatJa

RPA(z) be analytic in the upper half of th
complexz plane, one arrives at

E
0

`dv

p
Im Ja

RPA~v!52(
n

uXn a ,Yn a&^Xn a ,Yn au.

~14!

Using thatL0
RPA is diagonal, and inserting into Eqs.~8! and

~5!, the RPA coupling strength integrand takes the form

Wa
RPA5W01

1

2 (
ia jb

^abu i j &Pa ia jb , ~15!

where

Pa ia jb5(
n

~Xn a1Yn a! ia~Xn a1Yn a! jb2d i j dab .

~16!

The expression forPa can be further simplified by the
introduction of the one-component vectors36

Zn a5Vn a
1/2~Aa2Ba!21/2~Xn a1Yn a!. ~17!

From Eq.~13! it follows that these vectors satisfy thesym-
metric eigenvalue equation

~Ma2Vn a
2 !Zn a50, ~18!

with the symmetric operatorMa given by

Ma5~Aa2Ba!1/2~Aa1Ba!~Aa2Ba!1/2. ~19!

Eliminating (Xn a1Yn a) by Eq. ~17!, and employing the
spectral representation ofMa , Pa finally takes the form

Pa5~Aa2Ba!1/2Ma
21/2~Aa2Ba!1/221. ~20!

Inserting Eq.~15! into the adiabatic connection formula~1!,
the integrated RPA exchange-correlation energy follows

Exc
RPA5Ex1

1

2E0

1

da(
ia jb

^abu i j &Pa ia jb . ~21!

Equations ~20! and ~21! express the RPA exchange
correlation energy as an explicit functional of the KS orb
als.

One can easily verify that the above expression has
behavior expected for the RPA to second order in
electron-electron interaction. Elementary perturbation the
starting from eigenvalue problem~18! yields

Ma ia jb
21/2 5~ea2e i !

21/2

3S d i j dab22a
^abu i j &

ea1eb2e i2e j
1O~a2! D

3~eb2e j !
21/2. ~22!
19512
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Thus, by Eqs.~20! and ~15!,

Wa
RPA5W02a(

ia jb

^abu i j &2

ea1eb2e i2e j
1O~a2!. ~23!

Upon coupling strength integration, the constant term gi
the exchange functional, while the term linear ina produces
the direct part of the exact second-order correlation ene
functional.

There is obviously a close connection between the R
exchange-correlation energy and time-dependent den
functional theory~TDDFT!. The eigenvaluesVn a are exci-
tation energies of a system with scaled electron interac
within the RPA, and the eigenvectorsuXn a ,Yn a& give the
corresponding density changes.32 The expression forPa , Eq.
~16!, may be viewed as a factorization of the correlation h
into contributions arising from collective excitations. Th
was actually the physical motivation behind the RPA as
was first introduced 50 years ago by Bohm and Pines.24

In the derivation of Eq.~20! it has been tacitly assume
that (Aa2Ba) and (Aa1Ba) ~and henceMa) are positive
definite. The positivity of (Aa2Ba) is always given if the
Aufbau principle is obeyed.37 The same is true for (Aa
1Ba) in the RPA since the electron Coulomb interaction
positive as well, and coupling strengthsa are always greate
than or equal to zero. Without giving too much details t
possibility should be mentioned here to define the RPA c
relation energy in a Hartree-Fock~HF! context as well. The
formalism largely has the same structure as above; me
(Aa2Ba) and (Aa1Ba) are replaced by the correspondin
expressions familiar from time-dependent Hartree-Fo
theory.35 However, instabilities of the HF ground state sho
ing up as negative eigenvalues of (Aa2Ba) and (Aa1Ba)
can occur.38 Moreover, although HF-based RPA correlatio
energies are exact to second order in the electron-elec
interaction,39 total correlation energies are considerably u
derestimated, as has been found in explorative calculat
for the present work.

III. IMPLEMENTATION

Evaluation of the RPA correlation energy functional
given by Eqs.~20! and~21! was implemented in the second
order Mo” ller-Plesset~MP2! moduleMPGRAD ~Ref. 40! of the
program systemTURBOMOLE.41 The electron repulsion inte
grals ^ i j uab& are constructed by transformation from th
atomic orbital basis, a step which is routinely performed
MP2 calculations and has an asymptoticN5 scaling of com-
putational cost. The algorithm implemented inMPGRAD is
integral direct; i.e., the integrals are transformed ‘‘on t
fly,’’ making integral prescreening effective.41 Furthermore,
molecular symmetry is fully exploited for finite point group
so that only nonredundant integrals need to be calculate42

Ma
21/2 is obtained in a straightforward manner by diag

nalization of Ma and taking the inverse square root of i
eigenvalues, i.e.,

Ma
21/25Zadiag~V1 a

21 ,V2 a
21 , . . . !Za

† , ~24!
0-3
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whereZa signifies the matrix of eigenvectors. With anN6

scaling, this is the most expensive step in RPA calculati
even for smaller molecules with more than 20–30 electro
However, the spaceL can be decomposed into a direct su
of subspaces transforming according to irreducible repre
tations of the molecular point group. This is implemented
Clebsch-Gordan reduction of the representations spanne
direct products of occupied and virtual MO’s. SinceMa is
totally symmetric, the Wigner-Eckart theorem applies, a
all operations need to be done for each irreducible subsp
only. The cost for diagonalization thus reduces by appro
mately 1/g3, if g denotes the point group order. For mo
molecules treated below, this results in a speedup by a fa
of 100–1000.

The coupling strength integral~21! is evaluated numeri-
cally. As the integrand is smooth and monotonous, this po
no particular difficulty. A seven-point Gauss-Legend
quadrature formula was found to produce energies accu
to at least six digits for several test cases. Correctness o
implementation was checked by comparison with RPA ex
tation energies from an independent TDDFT code36 at a
51 and by numerical and analytical evaluation
dWa

RPA/daua50. Computation times for a single-point corre
lation energy ranged between seconds and a few minute
a single CPU of a HP J240 workstation for most molecu
considered below; they were considerably larger~several
hours! due to theN6 scaling for benzene and phenyl radica

IV. COMPUTATIONAL DETAILS

All functionals were evaluated at self-consiste
Perdew-Burke-Ernzerhof8 ~PBE! GGA ground-state densi
ties. The PBE parametrization was chosen since it does
contain empirically adjusted parameters and behaves rea
ably under uniform scaling. Convergence of the density m
trix to at least 1027 was required, and fine quadrature gri
~grid size 543! were used. The PBE and x-only calculatio
were performed with a modified version of theDSCF

module41,43 of TURBOMOLE. Atomization energies were
evaluated at the experimental structures taken from Ref
for diatomics and from Ref. 10 for polyatomic molecules; f
the H abstraction energy of benzene, structures were o
mized using the PBE functional and a triple-zeta valen
basis45 with cc-pVTZ polarization functions~TZVPP!. Ex-
cept for this reaction, Dunning’s correlation consistent ba
sets were used throughout.46–48 The calculated atomization
energies were corrected for basis set superposition er49

~BSSE! according to the Boys-Bernardi counterpoi
procedure.50 RPA contributions to atomization energies we
determined from the 45 extrapolated valence electron R
correlation energies; the extrapolation method is discusse
Sec. V. PBE, x-only, and YPK short-range correction en
gies were evaluated in the cc-pV5Z basis. The bond dista
and the harmonic frequency of N2 were determined by nu
merical differentiation. For these properties as well as for
curves in Figs. 2 and 3, all-electron cc-pVQZ~Ref. 51! en-
ergies without BSSE correction were used. Experimenta
omization energies of diatomics were calculated from sp
troscopic D0 values by subtraction of experimental zer
19512
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point energies and anharmonicity corrections as availabl
Ref. 44. The experimental atomization energies of po
atomic molecules from Ref. 52 are based on thermochem
data, with calculated zero-point energies subtracted. The
pling strength decomposition of the PBE GGA as well as
YPK short-range correlation functional were obtained fro
scaling relation~3!.

V. RESULTS

A. Basis set dependence

The dependence of the RPA correlation energy on
one-particle basis set is fundamentally different from th
observed in local density approximation~LDA ! and GGA
calculations. This is exemplified for the N2 molecule in Table
I. Dunning’s correlation consistent polarized valence elect
basis sets cc-pVXZ, X53(T), 4~Q!,5,6, are designed for a
systematic assessment of basis set effects.46–48 The number
of polarization functions increases in a ‘‘correlation cons
tent’’ manner53,54 with the cardinal numberX, i.e., 2d 1 f for
X53, 3d 2 f 1g for X54, and so on. The largest basis s
used here, cc-pV6Z, contains up toi ( l 56) functions and a
total of 210 primitive Gaussians per atom. While the PB
energy is converged to 1023 Hartree in this basis, the error i
the RPA correlation energy is still more than then 10 tim
larger. The slow convergence with respect to the highest
gular momentum quantum number in the atomic basis
used is not unexpected, since the correlation cusp55 in the
RPA pair density is expanded in a basis of MO products
the present method@see, e.g., Eq.~16!#. This implies that the
RPA valence correlation energy depends on the card
numberX as

Ec
RPA~X!5Ec

RPA~`!1A/X3 ~25!

for sufficiently largeX ~Refs. 56–58!; A is some constant
Equation~25! can be used to extrapolate the basis set li
Ec

RPA(`), if Ec
RPA is known for two different cardinal num

bersX,Y. This will be calledXY extrapolation in the follow-
ing.

In Fig. 1, the RPA valence electron correlation energy
N2 is plotted as a function of the cardinal numberX. In fact,
an asymptoticX23 dependence due to the correlation cusp
observed. The extrapolated energies converge more rap
than the unextrapolated ones~Table I!; the error in the 56

TABLE I. Basis set dependence of the RPA valence elect
correlation energy~hartree!. PBE total energies are given for com
parison.

Basis Ec(RPA) E(PBE)

cc-pVTZ 20.550 874 2109.446 267
cc-pVQZ 20.599 531 2109.455 091
cc-pV5Z 20.621 644 2109.458 834
cc-pV6Z 20.633 447 2109.459 781
34 extr. 20.635 037
45 extr. 20.644 845
56 extr. 20.649 660
0-4
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extrapolation is estimated to be less than or equal to 5 m
tree. This is still more than typical errors encountered
post-HF correlation methods.58 A possible reason may b
that PBE highest-occupied and lowest-unoccupied molec
orbital ~HOMO-LUMO! gaps are much smaller than H
gaps, making response properties more sensitive to bas
changes.

The basis set convergence of RPA and PBE atomiza
energies of N2 ~Table II! is again strikingly different. While
the PBE result is converged to about 1 kcal/mol at the
pVTZ level, the error in the RPA value is more than 1
kcal/mol. In fact, the unextrapolated RPA atomization ene
is still more than 2 kcal/mol off the estimated basis set lim
even in the cc-pV6Z basis. The extrapolated energies c
verge reasonably, though. The error in the 45 extrapola
RPA atomization energy is probably below 1 kcal/mol; t
45 extrapolation has therefore been used for the molecule
Table IV, below, as well. Experience with other method59

and explorative all-electron calculations indicate that err
due to the frozen-core approximation used in the RPA ca
lations are smaller than 1 kcal/mol. It is therefore estima
that the RPA and RPA1 atomization energies given in Tab
IV are accurate to about 1 kcal/mol compared to the
electron basis set limit.

B. Properties of N2

In Table III, PBE and RPA1 equilibrium bond lengths

TABLE II. Basis set dependence of calculated N2 atomization
energies~kcal/mol!.

Basis RPA PBE

cc-pVTZ 210.8 242.8
cc-pVQZ 217.5 243.5
cc-pV5Z 220.2 243.6
cc-pV6Z 221.5 243.8
34 extr. 221.3
45 extr. 222.7
56 extr. 223.2

FIG. 1. Dependence of the RPA valence correlation energyEc

for N2 on the cardinal numberX of the basis set (X23 scale!. 56
extr. denotes a two-point extrapolation usingX55 and 6.
19512
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and harmonic vibrational frequencies of N2 are compared to
experiment. RPA results for these properties are nearly id
tical to RPA1 and are therefore not discussed separa
here. Agreement of the PBE results with experiment is s
prisingly good. The RPA1 results are slightly worse, but stil
close to PBE. Neglect of correlation generally gives too sh
bonds and too large frequencies; this is somewhat over
rected by RPA1.

Potential energy curves of N2 computed using the PBE
x-only, and RPA1 functionals are compared in Fig. 2. A
large bond distance, the x-only curve exhibits artifacts w
known from closed-shell HF theory. The PBE curve tends
a smaller value, indicating that the GGA incorporates par
the large static correlation in this limit. The RPA1 curve
comes very close to zero. This is a remarkable behavior f
single-reference method,60 since the huge error in the x-onl
energy is almost exactly canceled. At intermediate bond
tance, the RPA1 curve has a spurious maximum. It cann
be decided at present if this is an intrinsic shortcoming
RPA1 or caused by a worsening of the PBE densities at lo
bond distance.

C. Atomization energies

In Table IV, calculated atomization energies of sm
main-group molecules are compared to experimental res
The present sample cannot claim statistical significance.
molecules in Table IV should rather be considered as in
vidual, paradigmatic cases. By comparison with the x-o
results it is evident that the RPA correlation energy recov
the main part of the correlation contribution to atomizati

TABLE III. Calculated bond lengthr e and harmonic vibrational
frequencyve of N2 compared to experiment.

RPA1 PBE Expt.a

r e ~pm! 110.4 110.2 109.8
ve (cm21) 2323 2349 2359

aReference 44.

FIG. 2. Relative spin-restricted potential energy curves of N2 .
DE is the atomization energy, andR denotes the N-N distance.
0-5
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energies. However, except for H2, RPA and RPA1 atomiza-
tion energies are too small. Interestingly, this underestim
tion appears to be nearly independent of the error in
x-only atomization energies. For N2, for example, the x-only
atomization energy is smaller than half the experimen
value, and the RPA is rather accurate, while it falls short
HF which is reasonably described in a single-determin
ansatz. For several ‘‘difficult’’ cases such as N2, O2 , F2, or
CO2, the RPA performs better than PBE, which tends
overestimate atomization energies of electron-r
compounds.11 On the other hand, PBE results are clea
superior for HF, H2O, or C2H2 . Ne2 is a typical dispersion-
bound van der Waals molecule. In order to obtain meaning
results~BSSE not significantly larger than binding energie!,
all-electron calculations and special core-valence basis s51

were used. As expected, the neon dimer is not bound in
x-only approximation; the PBE atomization energy is ve
close to the experimental result. Perhaps surprisingly, RP1
fails, predicting a negative binding energy. As in all oth
cases except H2 and N2, the YPK short-range correlatio
correction has the wrong sign and does not improve the R
result.

The hydrogen abstraction from benzene is a chemica
action of interest in carbon chemistry and materials scien
accurate theoretical predictions of the reaction energy are
easily achieved.61 The PBE reaction energy of 115 kcal/m
is about 5 kcal/mol too small compared to the experimen
value. Again, the RPA result is even smaller. Due to the s
of the molecule, a more economic basis set without extra
lation was used; however, it is estimated that RPA and RP1
will still remain below the PBE reaction energy in the ba
set limit.

In Fig. 3, the coupling strength decomposition of the c
relation contribution to the atomization energy62 of F2 ac-

TABLE IV. Calculated atomization energies~kcal/mol! com-
pared to experiment. For details of the calculations see Sec. IV

System PBE x-only RPA RPA1 Expt.a

H2 105 84 109 110 109
N2 244 111 223 223 228
O2 144 25 113 111 121
F2 53 -43 30 29 38
Ne2

b 0.11 20.15 0.01 20.08 0.08c

Si2 81 38 70 70 75
HF 142 96 133 132 141
CO 269 170 244 242 259
CO2 416 234 364 360 389d

C2H2 415 291 381 378 405d

H2O 234 155 223 222 232d

C6H5-H e 115 100 112 112 12061 f

aReference 44, unless otherwise stated.
bAll-electron results.
cReference 65.
dReference 52.
eTZVPP basis, no counterpoise.
fReference 61.
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cording to the adiabatic connection formula~1! is plotted.
The total correlation part of the atomization energy is giv
by the positive area under the curves betweena50 and 1.
The plot illustrates well why GGA correlation functionals a
not compatible with exact exchange: The PBE curve is m
too flat for all coupling strength values. The PBE cur
shifted by the difference between the x-only and PBE
change atomization energiesDEx gives a better approxima
tion to the total correlation part of the atomization energ
However, the shifted PBE curve is qualitatively in wrong
the small-a ~high-density! limit, since it does not tend to
zero. This has been identified as the main reason why GG
overestimate atomization energies of electron-rich molecu
such as F2.21,63 The RPA1 curve behaves qualitatively cor
rect over the wholea range. The integral is still too smal
however, as indicated by the underestimation of the to
atomization energy.

VI. CONCLUSIONS

From the results presented above it is clear that nei
RPA nor RPA1 reach chemical accuracy for atomization e
ergies. The RPA is superior to the GGA only for certa
electron-rich molecules where the GGA itself has substan
problems. This modest improvement has to be paid b
dramatic increase of computational cost. Clearly, RPA a
RPA1 cannot~yet! compete with post-HF methods such
the coupled cluster singles and doubles approxima
~CCSD!, which give better results59 at a comparable price
The present conclusions are somewhat limited by the ac
racy of the PBE densities used. It is not expected that m
accurate densities will alter the results dramatically, bu
definite answer must be left to future investigations.

On the other hand, the RPA correlation energy seem
account well for strong static correlations. This is obvio
from the potential energy curves~Fig. 2! and the fact that
errors in RPA atomization energies of molecules such as2 ,

FIG. 3. Coupling strength decomposition of the correlation p
DEc of the F2 atomization energy.DEx denotes the x-only atomi-
zation energy.
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O2, and F2 are not significantly larger than for others. On t
whole, the RPA performs still reasonably without error ca
cellation between~exact! exchange and correlation. This in
dicates that RPA correlation energies are more accurate
GGA correlation energies. Few other correlation ene
functionals are known64 that yield atomization energies o
comparable quality when combined with exact exchange
is surprising, though, that the YPK GGA corrections to
omization energies are not satisfactory. Further detailed s
ies are needed to understand this unexpected result.
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45A. Schäfer, C. Huber, and R. Ahlrichs, J. Chem. Phys.100, 5829
~1994!.

46T.H. Dunning, Jr., J. Chem. Phys.90, 1007~1989!.
47D.E. Woon and T.H. Dunning, Jr., J. Chem. Phys.98, 1358

~1993!.
48A. Wilson, T. van Mourik, and T.H. Dunning, Jr., J. Mol. Struct

THEOCHEM 388, 339 ~1997!.
49B.J. Ransil, J. Chem. Phys.34, 2109~1961!.
50S.F. Boys and F. Bernardi, Mol. Phys.19, 553 ~1970!.
51D.E. Woon and T.H. Dunning, Jr., J. Chem. Phys.103, 4572

~1995!.
52C. Adamo, M. Ernzerhof, and G.E. Scuseria, J. Chem. Phys.112,

2643 ~2000!.
53K. Jankowskiet al., J. Chem. Phys.82, 1413~1984!.
54R. Ahlrichs, P. Scharf, and K. Jankowski, Chem. Phys.98, 381

~1985!.
55T. Kato, Commun. Pure Appl. Math.10, 151 ~1957!.
56W. Kutzelnigg and J.D. Morgan III, J. Chem. Phys.96, 4484

~1992!.
57T. Helgaker, W. Klopper, H. Koch, and J. Noga, J. Chem. Ph

106, 9639~1997!.
58A. Halkier et al., Chem. Phys. Lett.286, 243 ~1998!.
0-7



em

FILIPP FURCHE PHYSICAL REVIEW B 64 195120
59K.L. Bak et al., Chem. Phys. Lett.317, 116 ~2000!.
60W. Chen and H.B. Schlegel, J. Chem. Phys.101, 5957~1994!.
61K. May et al., Phys. Chem. Chem. Phys.2, 5084~2000!.
62M. Ernzerhof, J.P. Perdew, and K. Burke, Int. J. Quantum Ch

64, 285 ~1997!.
19512
.

63A.D. Becke, J. Chem. Phys.98, 1372~1993!.
64M. Seidl, J.P. Perdew, and S. Kurth, Phys. Rev. Lett.84, 5070

~2000!.
65J.F. Oglivie and F.Y.H. Wang, J. Mol. Struct.273, 277 ~1992!.
0-8


