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Charge density wave-assisted tunneling between Hall edge states
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We study the intraplanar tunneling between quantum Hall samples separated by a quasi-one-dimensional
barrier, induced through the interaction of edge degrees of freedom with the charge density waves of a Hall
crystal defined in a parallel layer. A field theory formulation is set up in terms of bosonic (211)-dimensional
excitations coupled to (111)-dimensional fermions. Parity symmetry is broken at the quantum level by the
confinement of soliton-antisoliton pairs near the tunneling region. The usual Peierls argument allows estimation
of the critical temperatureTc , so that forT.Tc mass corrections due to longitudinal density fluctuations
disappear from the edge spectrum. We compute the gap dependence upon the random global phase of the
pinned charge density wave, as well as the effects of a voltage bias applied across the tunneling junction.
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I. INTRODUCTION

The existence of charge density waves~CDW’s! in quan-
tum Hall systems, initially conjectured to arise in connecti
with cyclotron resonances and later on with the destruc
of the fractional effect in disordered samples,1 has by now a
convincing experimental and theoretical basis.2–5 However,
it has recently been found6,7 that for certain regimes at filling
fractionsn.2 the spectral properties of charge density flu
tuations at low wave numbers may substantially differ fro
the usual theoretical expectations, formulated even be
the discovery of the integer quantum Hall effect.8 Gapless
longitudinal and transverse modes for these exotic ‘‘H
crystals’’7 are predicted to be characterized by linear disp
sion curves, likely to be rendered massive by the presenc
disorder.

Our aim in this paper is to propose and study a dou
layer system conceived to probe the dynamics of CDW
with two-dimensional lattice structure in the quantum H
effect, under the assumption that they are governed b
linear dispersion in the gapless limit. The proposed exp
mental construction is schematically depicted in Fig. 1. T
close quantum Hall layers are coupled through the Coulo
interaction. A quantum Hall CDW state is defined in t
upper sample~referred to as system I!. The lower sample
~system II! is an assemblage of two coplanar systems, se
rated by a tunneling junction of width; l;102 Å ~the mag-
netic length in the usual quantum Hall sample!, which is
surrounded by two sets of oppositely oriented chiral ed
states~‘‘left’’ and ‘‘right’’ movers !.9 The essential situation
we will focus on is the tunneling resonance that occurs w
the Fermi level in system II is tuned so that the left and rig
chiral edge states become strongly coupled via the peri
structure of the CDW state in system I. Such a tunnel
resonance is actually attainable due to the fortunate fact
the lattice parameter in the Hall CDW states is also close
l.2,4,6

Before embarking on the main considerations, a d
claimer is in order. It is reasonable to suppose that the
perimental search for a Hall crystal should be done in p
ciple with the help of standard approaches, like rad
frequency absorption and transport measureme
0163-1829/2001/64~19!/195118~7!/$20.00 64 1951
n

-

re

ll
r-
of

e
s
l
a

i-
o
b

a-

e

n
t
ic
g
at

to

-
x-
-
-
ts,

performed on single layer structures.11 However, even if a
clear experimental signature of the Hall crystal is found
that way, the investigation of its low-energy spectrum tur
out to be a more involved problem. It should be clear that
do not intend to establish here the way todetecta Hall crys-
tal, but just advance a way toprobe its properties.

The basic physical conditions necessary for the exp
ment are completely realistic. Quantum Hall layers separa
by distances near 102 Å are the subject of actual experimen
tal and theoretical investigations~see the review Ref. 10!,
whereas tiny~at the magnetic length scale! and precisely
constructed quasi-one-dimensional barriers were rece
used by Kanget al. to study the tunneling between coplan
quantum Hall samples.12

To address~and by no means exhaust! a discussion on the
feasibility of the device sketched in Fig. 1, we find it usef
to comment on a few experimental aspects, having in m
modern nanostructure technology. Consider initially a H
crystal that is hypothetically prepared in a very clean~high-
mobility! quantum well AlxGa12xAs/GaAs/AlxGa12xAs.
The Hall crystal is believed to exist for some range of fillin
factors 2,n5nh/eB,3 at moderate Coulomb mixing be
tween Landau levels.6 Such a quantum well can be perfect
recreated in a double layer system, where it plays the rol
system I. We may take the other quantum well~system II! to
be the inversion layer at an adjoining AlxGa12xAs/GaAs in-
terface. The layers should be constructed within the clea
edge overgrowth technique,13 with the potential barrier in
system II corresponding to a thin, atomically precise reg
of an alloy of Alx8Ga12x8As/AlAs inserted in the GaAs side
before the cleave is made.12 The usual voltage gates ar
placed above and below systems I and II, in order to con

FIG. 1. The double layer system designed to probe low ene
modes of a quantum Hall CDW state in the upper layer~system I!
through the induced intra-planar tunneling which takes place
tween edge states in the lower layer~system II!.
©2001 The American Physical Society18-1
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L. MORICONI PHYSICAL REVIEW B 64 195118
their electron densitiesn1 andn2 in an independent way.14 It
is clear that the determination of optimal values for quant
well and potential barrier thicknesses, concentration of
doping, Al fractionsx and x8, etc., is a matter of detailed
quantum well engineering.

An advantage here over typical double layer tunnel
experiments is that there is no need to attach separate O
contacts to the layers, a task generally accomplished thro
extra electrostatic gating.15 The layers can be connected
parallel, sincesxx50 in the Hall crystal state~of course, any
external, in-plane electric field has to be small enough no
depin the CDW!. In case there is some residual longitudin
conductivity contribution from the top layer, differential con
ductance peaks would reveal the presence of tunneling r
nances in the bottom layer as well. The experimental pur
of the tunneling resonance can then be carried out in
essentially equivalent ways, either by varyingn2 with all the
other parameters fixed or, alternatively, by varying the m
netic field at fixed ratiosn1 /n2, to sweep the filling factors
2,n1,3 and 2n2 /n1,n2,3n2 /n1. Tunneling is expected
to take place between edge states that belong to the lo
Landau level, even ifn2Þ1.12

II. DEFINITION OF THE TUNNELING MODEL

Let us imagine system II as a stripe in the (x1 ,x2) plane,
with ux1u,L/2, where the limitL→` is eventually taken.
The transverse magnetic field isBW 52Bx̂3, and the tunneling
interface is given by a triangular potential barrierV(x2)5
2V0@2ux2u/d21#, defined for ux2u,d/2. In our computa-
tions the lateral size of the barrier,d, is assumed to be of th
order of the magnetic length. A concrete range of values
meV ,eV0,350 meV for the potential barrier, and 1
meV ,\vc,15 meV for the cyclotron energy.

The second quantized Hamiltonian, which takes into
count the interaction between system II and the CDW stat
system I, is written in the Landau gauge asH5HF1HFj

1Hj , where

HF5E d2xWF†H 1

2m
@~p12eBx2!21p2

2#1eV~x2!J F,

HFj5E d2xWd2xW8r~xW ;jW !
e2

e@~xW2xW8!21d2#1/2
F1~xW8!F~xW8!,

Hj5
u

2E d2xW @~] tjW !21c2~] ijW !21v0
2jW2#. ~1!

Above,r(xW ;jW ) is the deviation from the mean electron de
sity in the Hall crystal. Density fluctuations around the pe
odic lattice are described by the distortion fieldjW (xW ,t). The
nonlocal Coulomb coupling between electrons in the up
and lower samples is modeled throughHFj , whered in Eq.
~1! is the distance between layers.

The harmonic HamiltonianHj , which governs long
wavelength fluctuations of the distortion field, is not writte
on a first principles basis, otherwise it would necessarily
troduce the coupling of the elementary charge motion to
19511
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external magnetic field. Rather,Hj has to be regarded, in
‘‘Ginzburg-Landau’’ fashion, as the simplest phenomenolo
cal choice devised to satisfy a few basic physical propert
it must be~i! a local and isotropic functional ofjW (xW ,t), and
~ii ! characterized by the fact that all modes are linearly d
persing in the gapless limit. The role played by the com
nation of magnetic field, Coulomb interaction, and disord
is assumed to be implicit in the definition of coupling co
stantsu, c, andv0. In that sense, the gapless limitv0→0 in
Hj holds for absence of disorder in system I. Furthermo
one may estimate the energy density parameteruc2 from the
Coulomb interaction within the magnetic length scale, th
is, uc2;e2/e l 3[r s\vc / l 2, where r s>6, following Mur-
thy’s numerical explorations.6

There is some support to conjecture thatv0→0 should
indeed be taken for CDW’s realized in high-mobilit
samples. From a study of the static competition betwe
elastic, Coulomb, and disordering interactions due to im
rities, Fukuyama and Lee8 established a criterion to predict
there is or is not a gap at wave numberq→0 in the spectrum
of general two-dimensional CDW’s. The Fukuyama-Lee c
terion is rephrased as follows: Letn and ni be the electron
and impurity densities, respectively, while the CDW has a
plitude r0 and lattice parameter;1/k̄. An individual impu-
rity is mimicked by thed potential V(rW)5V0d2(rW), with
V0;edi , wheredi is of the order of the screening length
The two-dimensional CDW will have a diverging coheren
length~positional order in practice! and gapless excitations i

V0r0k̄2Ani

pen2 ,1. ~2!

Considering thatr0,n;1/l 2, k̄;1/l , and ni;1/di l p ,
where l p is the mean free path~evaluated at zero magneti
field!, we securely get Eq.~2! if di / l p!1. Sincedi is a few
angstroms large andl p.10 mm for a sample with mobility
m5106 cm2/V s, we expect Eq.~2! to be satisfied.

With no loss of important details, the CDW stater(xW ;0)
will be taken to be a square lattice with spatial peri
p/A2k̄. We may write

r~xW ;jW !5
1

2
r0J$cos@2A2k̄n̂1•~xW1jW1 x̂2u/2k̄!#

1cos@2A2k̄n̂2•~xW1jW1 x̂2u/2k̄!#%, ~3!

where J5det@dab1]ajb# is the Jacobian that guarante
charge conservation, that is,*d2xWr(xW ;jW )50. Crystal axes
are given byn̂1 and n̂2. We assume small and smooth di
tortions ~at the magnetic length scale! of the square lattice.
The global phaseu in Eq. ~3! gives finite translations of the
pinned CDW along thex2 direction. It is not necessary to
consider a phase parameter for the perpendicular direc
since the total Hamiltonian is invariant under shifts ofx1.
The phaseu is expected to take random values each time
two-dimensional CDW is crystallized, in view of the extrem
sensitivity of the pinning process to small perturbations.
8-2
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The careful reader may have already noticed that we
glected, in Eq.~1!, the Coulomb interaction between th
CDW and the charge depleted region at the barrier in
bottom layer. Actually, due to translation symmetry along
x1 axis, the charge depleted region generates a pote
Ṽ(x2) in the top layer. Therefore, we should have added
principle, the correction term

DH5eE d2xW Ṽ~x2!r~xW ;jW ! ~4!

to Hfj . However, taking now a homogenous distortionjW
and using Eqs.~3! and ~4! with periodic boundary condi-
tions, the integration overx1 implies, for general CDW ori-
entations, thatDH→0 in the low-wave-number limit~that is,
DH is a boundary term!. It is solely in the special case whe
one of the crystal axes is parallel to thex1 direction, as in
Fig. 1, that we may haveDH5DH@j2#Þ0, so that the
charge depleted region will favor some displacement of
CDW along thex2 direction.

For the benefit of a direct exposition, instead of develo
ing computations for arbitrary axis directionsn̂1 and n̂2, we
will consider fully isotropic CDW fluctuations, withn̂1

5( x̂11 x̂2)/A2 andn̂25( x̂12 x̂2)/A2, i.e.,

r~xW ;jW !5r0J cos@2k̄~x11j1!#cos@2k̄~x21j2!1u#. ~5!

When appropriate, we comment on the modifications int
duced by different choices of the crystal axes.

In order to define an expansion for the second quanti
fermion operator, we work in the lowest Landau level a
proximation, taking for the Hilbert space basis the on
particle eigenstates ofHF with V050. Up to a normalization
constant,

F~x1 ,x2!5(
n

an expF iknx12
1

2l 2 ~x22knl 2!2G . ~6!

Imposing the periodic boundary conditionF(x1 ,x2)5F(x1
1L,x2), one gets the discrete set of wave numberskn

52pn/L, with n integer. The operatoran
† creates a particle

which is free to move along thex1 direction, but is localized
around^x2&5knl 2. It is clear from the form of Eq.~5! that a
tunneling resonance occurs at the Fermi level which cros
the energy band generated by the potential barrier akn

56 k̄. Thus our task is to obtain a theory for the edge d
grees of freedom with quantum numbers around these
cial values ofkn . The starting point is to rename operators

an5S 2p

L D 1/2H aR~k1 k̄! if n,0

aL~k2 k̄! if n.0.
~7!

The indicesR and L denote chiral components defined in
reference frame comoving, respectively, with the2 k̄ and k̄
states~when the barrier electric field is ‘‘turned on’’!. Sub-
stituting Eqs.~5!–~7! in HF andHFj , we perform the inte-
19511
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grations overx2, taking jW (x1 ,x2).jW (x1,0) close to the tun-
neling region. It is also convenient to introduce the Dir
spinor

c5
1

A2p
E dk exp~ ikx!FaR~k!

aL~k!
G , ~8!

and the chiral representation of gamma matrices, written
terms of Pauli matrices asg05s1 , g152 is2, andg55s3.
We find then

H5Hj1E dxF2 ivc̄g1]1c

1
g

2
cos~2k̄j21u!c̄

3exp~2i k̄j1g5!cG , ~9!

wherev5eV0l 2/d is the drift velocity near the barrier, an
g5e2pr0 exp(2k̄d)/ek̄ parametrizes the Coulomb couplin
between layers. Note thatHFj is mapped into local terms in
Eq. ~9!, an approximation related to the smoothness prop
ties of the distortion field.

The above Hamiltonian describes the interaction of
11)-dimensional Dirac fermions—the edge excitations
with (211)-dimensional vector fields—the CDW’s—alon
the linex250. Two-body interaction effects within system
will not be considered; they may be addressed in a Luttin
liquid framework, since they are likely to just renormaliz
the bare~input! parameters of the fermion theory, such as t
gap ~its size and position! and the drift velocity.16–18

As is well known, disorder is expected to broaden a
reduce any tunneling resonance peak. It is not difficult
show that disorder may be effectively incorporated in Eq.~9!
as a random gauge field coupled to the edge states, in a
suitable for analysis via the replica formalism.19 While leav-
ing a deeper study of disorder for further work, we just no
from previous experiments,12 that disorder broadenening,
any, is typically of the order of 1 meV, which sets an ener
resolution for the observation of many of the results deriv
here.

Regarding alternative CDW orientations, it is worth no
ing there will be in generaltwo resonant Fermi levels, which
correspond to the two periodic functions in Eq.~3!. The lin-
earization procedure around the resonances now lead
coupling terms like

(
p51

2

gpc̄ exp@ i2A2k̄n̂p•~jW1 x̂2u/2k̄!g5#c. ~10!

The ‘‘degenerate case,’’ Eq.~9!, follows from g15g25g/4
with n̂15( x̂11 x̂2)/A2 andn̂25( x̂12 x̂2)/A2. As n̂1 and n̂2
are rotated, one of the coupling constantsg1 or g2 gets com-
paratively smaller. This is in fact the behavior related to
more realistic CDW profile, which is peaked in two
dimensional Fourier space at 2A2k̄n̂1 and 2A2k̄n̂2, but de-
parts from the idealized harmonic form~3!. If the rotation
8-3
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L. MORICONI PHYSICAL REVIEW B 64 195118
angle is large enough, we may discard one of theg’s in Eq.
~10!, implying that physical quantities become independ
of u. That is what happens whenn̂1 is parallel to the tunnel-
ing barrier. Notwithstanding the anisotropic CDW fluctu
tions which also appear in this situation, tunneling will
due to the interaction of edge states withj1, whereas any
extra termDH introduced to accommodate the effect of t
charge depleted region will have to do with transverse fl
tuations of the distortion field. As a consequence, the c
pling between the top layer and the charge depleted re
does not play a relevant role in the tunneling process.

The rationale in focusing on the degenerate case in d
relies on its rich vacuum structure, qualitatively similar to~or
even more general than! the ones found for diverse CDW
orientations.

III. VACUUM STRUCTURE OF THE NONLOCAL
EFFECTIVE FERMION MODEL

Our main interest is to determine the fermion mass—
tunneling gap—that could be experimentally determin
from the Fermi level positions of zero-bias differential co
ductance peaks, for instance. A naive inspection of
Hamiltonian~9!, ‘‘freezing’’ the bosonic degrees of freedom
in some homogeneous configurationjW , suggests that the fer
mion mass would bem5gucos(2k̄j21u)u/2, since the con-
stantj1 can be eliminated by a chiral rotation of the fermio
fields. However, this simple argument is completely misle
ing, since it neglects fluctuations of the distortion fie
which are particularly relevant in planar systems.

The central point of our analysis, to be performed in t
framework of finite temperature field theory,20 is the elimi-
nation of jW from the partition function by means of a sta
dard projection procedure. The computational strategy
based on the cumulant expansion for the perturbative Ha
tonian piece ofO(g) in Eq. ~9!, in terms of averages ove
fluctuations ofjW . We will be able to derive in this way an
effective ~nonlocal! (111)-dimensional fermion model
which describes the interaction between edge states.

The partition function is written, in a self-evident not
tion, as

Z5E DjWDc̄Dc exp@2Sj2Sc2Sjc#. ~11!

We get, from the second order cumulant expansion,

Z5Z0E Dc̄Dc exp@2Sc2DSc#, ~12!

where

DSc5^Sjc&01
1

2
@^Sjc

2 &02^Sjc&0
2#, ~13!

with ^(•••)&0 standing for the statistical average taken w
the partition functionZ05*DjW exp@2Sj#. We have
19511
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Sj5
u

2E dtd2xW @~]tjW !21c2~] ijW !21v0
2jW2# ~14!

and

Sjc5
g

2E dtdx cos~2k̄j21u!c̄ exp~2i k̄j1g5!c. ~15!

The integration over imaginary time is restricted to the int
val 0,t,b[1/T, and periodic and antiperiodic bounda
conditions are defined, as usual, for the boson and ferm
fields, respectively. The translation invariant bosonic tw
point correlation function, evaluated on the linex250, is
^j i(0,0,0)j j (x,0,t)&05d i j G(x,t), with

G~x,t!5
1

2pb (
n
E dk

~2uc2!21 exp@ i ~kx1vnt!#

@k21~vn
21v0

2!/c2#1/2 ,

~16!

wherevn52pn/b are the Matsubara frequencies. To obta
the statistical averages in Eq.~13!, it is only necessary to
know that

^sin@2k̄j i #&05^sin@2k̄j i #cos@2k̄j j #&050,

^cos@2k̄j i #&05cosh@2k̄2G~0!#,

^cos@2k̄j i~0,0,0!#cos@2k̄j j~x,0,t!#&05d i j exp@24k̄2G~0!#

3cosh@4k̄2G~x,t!#1~12d i j !cosh2@2k̄2G~0!#,

^sin@2k̄j i~0,0,0!#sin@2k̄j j~x,0,t!#&0

5d i j exp@24k̄2G~0!#sinh@4k̄2G~x,t!#. ~17!

The exact results in Eq.~17! can be approximated by mor
convenient expressions, if we note that all of them invo
functions ofk̄2G(x,t)5O(j2/ l 2)!1. We may take, in prac-
tice, the leading order contributions:

^cos@2k̄j i #&0.^cos@2k̄j i~0,0,0!#cos@2k̄j j~x,0,t!#&0.1,

^sin@2k̄j i~0,0,0!#sin@2k̄j j~x,0,t!#&0.4k̄2G~x,t!.
~18!

A direct computation then gives

DSc5
ig

2
cosuE dtdxc̄g5c1

g2k̄2

2 E dtdt8dxdx8

3G~x2x8,t2t8!@cos2u~c̄c!xt~ c̄c!x8t8

2sin2u~c̄g5c!xt~ c̄g5c!x8t8#. ~19!

Therefore, we have to study, from now on, th
(111)-dimensional fermion theory, with partition functio
~12! and nonlocal couplings given in Eq.~19!. The most
natural approach, following an analogy with the problem
BCS superconductivity, is to devise a Hartree-Fock com
tation of the gap equation. In the present context, we de
the nonlocal order parameters
8-4
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w1~x,t!5E dt8dx8G~x2x8,t2t8!~ c̄c!x8t8 , ~20!

w2~x,t!5E dt8dx8G~x2x8,t2t8!~ c̄g5c!x8t8 .

If the vacuum expectation value ofwW [w1x̂11w2x̂2 is non-
vanishing, we find, from Eqs.~19! and ~20!, the fermion
mass

m5g@ k̄2 cos2u^w1&
21~ 1

2 cosu2 k̄ sinu^w2&!2#1/2.
~21!

A fundamental aspect of the effective fermion theory o
tained after integration over the distortion fields regards
parity symmetry properties. At the tree level there is inva
ance under the discrete mappingx1→2x1 and c→g0c,
which implies thatw1→2w1. One could then state tha
^w1&50 is necessarily verified, since discrete symmetr
cannot be broken in one spatial dimension. However, suc
general theorem strictly holds for local Hamiltonians. As w
discuss below, the nonlocal coupling between fermions
fact renders parity symmetry breaking possible when qu
tum corrections are taken into account.

We may investigate the vacuum phases of the ferm
theory by expressing the partition function as a functio
integration over configurations ofwW . The basic difficult in
doing so is related to the evaluation of the fermion deter
nant, which, however, admits a loop expansion. At the o
loop level21 we get the partition function

Z5E DwW exp@2Sw#, ~22!

where

Sw5E dtdxH uc2(
i 51

2

w i@]t
21]21v0

2/c2#1/2w i

1~s2/4pv !@ ln~s2/L2!21#J . ~23!

Above, we haves25g2@ k̄2 cos2 uw1
21(1

2cosu2k̄sinuw2)
2#

andL is the ultraviolet cutoff, which may be regarded to
of the order ofeV0. The effective potential is thus

Veff~w1 ,w2!5ucv0wW 21
s2

4pv F ln
s2

L2 21G . ~24!

It follows from Eq. ~24! that there are two types of groun
state, which we refer to as ‘‘typeA’’ and ‘‘type B.’’ The type-
A ground state breaks parity symmetry and is associated
the fermion mass

m5L expS 2
c̄v0

k̄2g2 cos2 u
D , ~25!
19511
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where c̄52pvuc. Such a vacuum is realized for a specifi
pinning parameteru whenever m.gucosu/2(tan2u21)u.
The vacuum expectation values are

^w1&56F m2

k̄2g2
sec2 u2^w2&

2 cot2 uG1/2

, ~26!

^w2&5
tanu

2k̄~ tan2u21!
.

The parity symmetric type-B ground state is given in its turn
by ^w1&50 with ^w2& being obtained from

2c̄v0

k̄g sinu
^w2&5x ln

x2

L2 , ~27!

where x5g(cosu22k̄^w2&sinu)/2. The fermion gap ism
5uxu. With the exception ofu5p/2 and 3p/2, there is no
vacuum degeneracy here. A type-B ground state is always
the correct choice for some range of pinning phase par
eters, and in some situations, as in the weak or strong c
pling limits of g, it holds in fact for any value ofu.

To study the quantum stability of the type-A vacuum, we
employ a variational strategy, where dilute soliton-antisolit
configurations interpolating between the degenerate vac
states^w1&[6w0 are shown not to disorder the system
low temperatures. A variational soliton of size;a is con-
structed in a simple way through convolution of the step a
Gaussian functions. Just define

w1
s~x!5

2w0

aAp
E dx8

x8

ux8u
expF2

4~x2x8!2

a2 G
5w0E dk

p i

k exp~ ikx2k2a2!

k21h2 , ~28!

whereh→0. The antisoliton is, of course,w1
s̄(x)52w1

s(x).
The soliton energy, with the ground state level subtracted

DEs5
2uc2w0

2

p E dk

k2 F S k21
v0

2

c2 D 1/2

2
v0

c Gexp~22k2a2!

1E dx@Veff~w1
s ,^w2&!2Veff~w0 ,^w2&!#. ~29!

While the second term on the right-hand side rhs of Eq.~29!
may be approximated by a linear expressionga with g.0,
the first term diverges fora→0 in the ultraviolet limit and
vanishes fora→`, implying that there is necessarily a min
mum of DEs at somea5ā. Thus, the existence of a solito
state is verified.

Consider now a soliton-antisoliton pair separated by a d
tance x0@ā, which may be written as the superpositio

w1
ss̄(x)5w1

s(x)1w1
s̄(x2x0)2w0. Its energy is
8-5
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DEss̄52gā1
8uc2w0

2

p E dk

k2

3sin2
kx0

2 F S k21
v0

2

c2 D 1/2

2
v0

c G
3exp~22k2ā2!. ~30!

Taking v0 finite, it follows thatDEss̄ approaches a constan
in the largex0 limit. In this case, entropy effects domina
the free energy and the type-A vacuum is disordered, that is
^w1&50. However, if v0→0 at fixed x0, one gets the
asymptotic resultDEss̄; ln(x0 /ā). Energy and entropy fluc
tuations have similar logarithmic dependences, and a di
application of the Peierls argument22 gives the critical tem-
peratureTc(u);uc2w0

2. With r s56, \vc51.5 meV, and as-
suming w0;0.05l , for instance, we findTc;0.3 K. In the
disordered phase aboveTc , as in the finitev0 case, the lon-
gitudinal bosonic excitations along the interface do not c
tribute to the fermion mass renormalization~up to one-loop
level!.

Observe that forv0→0 the soliton energy diverges in th
infrared limit, but the soliton-antisoliton energy is finite. Th
soliton-antisoliton confinement belowTc is analogous to the
binding of vortices in the Kosterlitz-Thouless model.23 As a
matter of fact, the logarithmic interaction of kinks in a
Ising-like model was studied long ago by Anderson, Yuv
and Hamann as a way to model the Kondo effect.24 The
renormalization group flows are essentially the same as
ones for the Kosterlitz-Thouless transition.

IV. FINITE VOLTAGE BIAS EFFECTS

If a small voltage biasVb is applied across the quasi-on
dimensional interface, the potential barrier becomes loc
modified by the addition of a linear potential, viz.,

V~x2!52V0F2ux2u
d

21G2
Vbx2

2d
. ~31!

As a consequence, the chiral fermion components will h
different drift velocities~however, the average drift is kep
constant!. It is necessary to modify the Hamiltonian~9! ac-
cording to

c̄g1]1c→c̄g1]1c2
Vb

V0
c̄g0]1c. ~32!

Two distinct effects come into play. First, the modification
the fermion dispersion profile leads to a shift of the Fer
level where the tunneling resonance occurs. LetEf be the
Fermi level for the tunneling resonance at zero bias. A
finite biasVb , a purely geometrical reasoning shows that
energy position of the resonance moves up:
19511
ct

-

,

he

ly

e

i

a
e

Ef85Ef1~eV02Ef !
Vb

2

V0
2 . ~33!

Second, the one-loop computation may be performed o
again, yielding up toO(Vb

2) a renormalization of the cutof
L that appears in the expression of the effective poten
Takingz[L/s0, wheres0 denotes the gap evaluated at ze

bias, we find thatL is replaced byL̃5L exp(kVb
2/V0

2), with

k5
2

p
~11z2!1/2arctan@~11z2!21/2#2

z

2
. ~34!

In that way, the gap for a type-A vacuum is enhanced at finit
voltage bias. The same phenomenon happens for a typB
vacuum whenv0→0. In that limit,s0→L for both types of
vacua, so thatk.0.054.

An interesting experiment involving finite bias effects
the clean regimev0→0 is as follows. Imagine that the
double layer system is initially set in a type-B ground state
~throughL,g). The fermion gap is thenm;L, irrespective
of temperature and the pinning parameteru. As the voltage
biasVb is increased, the effective cutoffL gets enhanced a
discussed above, so that at some point a quantum-disord
vacuum of typeA arises, characterized by^w1&50 at u.0
andp. Using Eqs.~21! and~26!, we get, at such values ofu,
the gapm;g/2. Furthermore, since the critical temperatu
Tc(0)5Tc(p)}w0

2;(4L2/g221) grows with Vb , a low-
temperature regime may eventually be attained where
type-A vacuum becomes ordered, and the gap gets back t
original sizeL.

V. CONCLUSIONS

We studied possible vacuum phases that appear in
coplanar tunneling between Hall edge states, as indu
through the interaction with CDW’s in a double layer sy
tem. Quantum and thermodynamical critical transitions
found, yielding a rich phenomenological stage that could
explored to probe the dynamics of CDW’s in the quantu
Hall effect. The above results are intimately related to
existence of gapless and linearly dispersing CDW mod
The usual gaplessq3/2 dispersion,8 for instance, would lead
to weakly coupled soliton-antisoliton configurations and
permanently quantum-disordered vacuum states. Furthe
teresting work could be concerned with alternate CDW
derings~stripes!, and the tunneling between fractional Ha
edge states.
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