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Charge density wave-assisted tunneling between Hall edge states
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We study the intraplanar tunneling between quantum Hall samples separated by a quasi-one-dimensional
barrier, induced through the interaction of edge degrees of freedom with the charge density waves of a Hall
crystal defined in a parallel layer. A field theory formulation is set up in terms of bosorid J2limensional
excitations coupled to (& 1)-dimensional fermions. Parity symmetry is broken at the quantum level by the
confinement of soliton-antisoliton pairs near the tunneling region. The usual Peierls argument allows estimation
of the critical temperaturd ., so that forT>T. mass corrections due to longitudinal density fluctuations
disappear from the edge spectrum. We compute the gap dependence upon the random global phase of the
pinned charge density wave, as well as the effects of a voltage bias applied across the tunneling junction.
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[. INTRODUCTION performed on single layer structurBsHowever, even if a
clear experimental signature of the Hall crystal is found in
The existence of charge density way& W'’s) in quan-  that way, the investigation of its low-energy spectrum turns
tum Hall systems, initially conjectured to arise in connectionout to be a more involved problem. It should be clear that we
with cyclotron resonances and later on with the destructiolo not intend to establish here the waydetecta Hall crys-
of the fractional effect in disordered samplesas by now a  tal, but just advance a way fwrobeits properties.
convincing experimental and theoretical b&sisHowever, The basic physical conditions necessary for the experi-
it has recently been foufid that for certain regimes at filing ment are completely realistic. Quantum Hall layers separated
fractionsy>2 the spectral properties of charge density fluc-by distances near £0} are the subject of actual experimen-
tuations at low wave numbers may substantially differ fromtal and theoretical investigatiorisee the review Ref. 10
the usual theoretical expectations, formulated even befor&hereas tiny(at the magnetic length scalend precisely
the discovery of the integer quantum Hall effédBapless constructed quasi-one-dimensional barriers were recently
longitudinal and transverse modes for these exotic “Hallused by Kanget al. to study the tunneling between coplanar
crystals” are predicted to be characterized by linear disperduantum Hall sample¥:
sion curves, likely to be rendered massive by the presence of To addressand by no means exhalst discussion on the
disorder. feasibility of the device sketched in Fig. 1, we find it useful
Our aim in this paper is to propose and study a doubld0 comment on a few experimental aspects, having in mind
layer system conceived to probe the dynamics of CDW'gnodern nanostructure technology. Consider initially a Hall
with two-dimensional lattice structure in the quantum Hall crystal that is hypothetically prepared in a very cléhigh-
effect, under the assumption that they are governed by Biobility) quantum well AlGa _,As/GaAs/ALGa As.
linear dispersion in the gapless limit. The proposed experiThe Hall crystal is believed to exist for some range of filling
mental construction is schematically depicted in Fig. 1. Twofactors 2<v=nh/eB<3 at moderate Coulomb mixing be-
close quantum Hall layers are coupled through the Coulomiveen Landau leveRSuch a quantum well can be perfectly
interaction. A quantum Hall CDW state is defined in therecreated in a double layer system, where it plays the role of
upper samplereferred to as system.IThe lower sample System |. We may take the other quantum wsjlstem 1) to
(system 1) is an assemblage of two coplanar systems, sepd€ the inversion layer at an adjoining,8a ,As/GaAs in-
rated by a tunneling junction of width | ~10? A (the mag- terface. The layers should be constructed within the cleaved
netic length in the usual quantum Hall samplevhich is edge overgrowth techniqdé,with the potential barrier in
surrounded by two sets of oppositely oriented chiral edgeystem Il corresponding to a thin, atomically precise region
states(“left” and “right” movers ).° The essential situation Of an alloy of AL,Ga _,,As/AlAs inserted in the GaAs side
we will focus on is the tunneling resonance that occurs whepefore the cleave is madé.The usual voltage gates are
the Fermi level in system Il is tuned so that the left and rightplaced above and below systems | and II, in order to control
chiral edge states become strongly coupled via the periodic
structure of the CDW state in system |. Such a tunneling - - -
resonance is actually attainable due to the fortunate fact that / - - -
the lattice parameter in the Hall CDW states is also close to * * *

|.2,4,6 / /I/

Before embarking on the main considerations, a dis-
claimer is in order. It is reasonable to suppose that the ex- FIG. 1. The double layer system designed to probe low energy
perimental search for a Hall crystal should be done in prinmodes of a quantum Hall CDW state in the upper laggstem )
ciple with the help of standard approaches, like radio-through the induced intra-planar tunneling which takes place be-
frequency absorption and transport ~measurementsween edge states in the lower laysystem I).
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their electron densities; andn, in an independent way. It external magnetic field. Rathef, has to be regarded, in a
is clear that the determination of optimal values for quantuniGinzburg-Landau” fashion, as the simplest phenomenologi-
well and potential barrier thicknesses, concentration of Scal choice devised to satisfy a few basic physical properties:

doping, Al fractionsx and x’, etc., is a matter of detailed it must be(i) a local and isotropic functional af(x,t), and
quantum well engineering. (i) characterized by the fact that all modes are linearly dis-
An advantage here over typical double layer tunnelingpersing in the gapless limit. The role played by the combi-
experiments is that there is no need to attach separate Ohmigtion of magnetic field, Coulomb interaction, and disorder
contacts to the layers, a task generally accomplished through assumed to be implicit in the definition of coupling con-
extra electrostatic gating. The layers can be connected in stantsu, ¢, andwy. In that sense, the gapless liniy— 0 in
parallel, sincer,,=0 in the Hall crystal statéof course, any  H, holds for absence of disorder in system I. Furthermore,
external, in-plane electric field has to be small enough not tne may estimate the energy density parametdrfrom the

depin the CDW. In case there is some residual longitudinal coylomb interaction within the magnetic length scale, that
conductivity contribution from the top layer, differential con- s, yc?~e?/el3=rfiw./12, wherer.=6, following Mur-

ductance peaks would reveal the presence of tunneling resghy’s numerical exploration’.

nances in the bottom layer as well. The experimental pursuit "There is some support to conjecture thaj—0 should

of the tunneling resonance can then be carried out in tWehdeed be taken for CDW's realized in high-mobility
essentially equivalent ways, either by varyimgwith all the  samples. From a study of the static competition between
other parameters fixed or, alternatively, by varying the magg|astic, Coulomb, and disordering interactions due to impu-
netic field at fixed ratios; /ny, to sweep the filling factors rities, Fukuyama and L&established a criterion to predict if
2<v1<3 and d,/n;<v,<3n,/n;. Tunneling is expected there is or is not a gap at wave numiger 0 in the spectrum

to take place between edge states that belong to the lowegt general two-dimensional CDW’s. The Fukuyama-Lee cri-

H 12 ; .
Landau level, even if,# 1. terion is rephrased as follows: Latandn; be the electron
and impurity densities, respectively, while the CDW has am-
Il. DEFINITION OF THE TUNNELING MODEL plitude p, and lattice parameter 1/k. An individual impu-

Let us imagine system Il as a stripe in the (x,) plane, ity is mimicked by thes potential V(F):V052(_F), with
with |x,|<L/2, where the limitL—o is eventually taken. Vo~e€d;, whered; is of the order of the screening length.
The transverse magnetic fieldBs= — BXs, and the tunneling ;I'hettr\]/vo—dl.rpens;ongl C.DW W':! havg a dllvergmg .ctotheren_fce
interface is given by a triangular potential barri¢x,) = ength(positional order in practigeand gapless excitations i

—V[2|x,|/5—1], defined for|x,|<é/2. In our computa-

tions the lateral size of the barrief, is assumed to be of the Vopok® \/n—i<l o
order of the magnetic length. A concrete range of values is 1 men ' 2
meV <eV,<350 meV for the potential barrier, and 1.5 .

meV <fw.<15 meV for the cyclotron energy. Considering thatpo<n~1/1%2, k~1/, and ni~1/dil,,

The second quantized Hamiltonian, which takes into acwherel, is the mean free pattevaluated at zero magnetic
count the interaction between system Il and the CDW state ifield), we securely get Eq2) if d;/l,<1. Sinced; is a few
system |, is written in the Landau gauge lds=Hq+Hg  angstroms large and=10 um for a sample with mobility

+H,, where w=10F cm?/V's, we expect Eq(2) to be satisfied.
1 With no loss of important details, the CDW stat@Z;O)
Hq’:f dzifb’r(—[(pl—eBx2)2+p§]+eV(x2) P, will be taken to be a square lattice with spatial period
2m wl\2k. We may write
22A42%" (% E e’ " " 1
— ’ . + ! ’ - N N ~ J—
ang—J’ d?xd?x’ p(x; €) E[(;_;,)2+dz]llz¢ (x)P(x"), p(X: €)= 5 podfcog 22Ky - (X+ E+X,0/2K)]
u . . R +c0g22kn,- (X+ E+X,0/2k) 1}, (3)
He=5 f Px[(3d)7+ (08 +wpf]. (D) ’ ’

where J=def 6,5+ d,&] is the Jacobian that guarantees
Above, p(x;€) is the deviation from the mean electron den-charge conservation, that i§d®xp(x;€)=0. Crystal axes

sity in the Hall crystal. Density fluctuations around the peri-are given byn, andn,. We assume small and smooth dis-
odic lattice are described by the distortion fieﬁ@?,t). The tortions (at the magnetic length scalef the square lattice.
nonlocal Coulomb coupling between electrons in the uppeiThe global phas# in Eq. (3) gives finite translations of the
and lower samples is modeled through ., whered in Eq.  pinned CDW along thex, direction. It is not necessary to
(1) is the distance between layers. consider a phase parameter for the perpendicular direction,
The harmonic HamiltonianH,, which governs long since the total Hamiltonian is invariant under shifts>af
wavelength fluctuations of the distortion field, is not written The phasé is expected to take random values each time the
on a first principles basis, otherwise it would necessarily intwo-dimensional CDW is crystallized, in view of the extreme
troduce the coupling of the elementary charge motion to thaensitivity of the pinning process to small perturbations.
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The ca}reful reader may have al_ready r)oticed that we negrations ovelx,, taking &(x; ,X,) = &(x;,0) close to the tun-
glected, in Eq.(1), the Coulomb interaction between the neling region. It is also convenient to introduce the Dirac
CDW and the charge depleted region at the barrier in thgpinor

bottom layer. Actually, due to translation symmetry along the

X, axis, the charge depleted region generates a potential
V(x,) in the top layer. Therefore, we should have added, in

principle, the correction term

AH=e f d?XV(x2) p(x; €) (4)

to H,.. However, taking now a homogenous distortién
and using Eqs(3) and (4) with periodic boundary condi-
tions, the integration ovex; implies, for general CDW ori-
entations, thaAH— 0 in the low-wave-number limifthat is,
AH is a boundary term It is solely in the special case when
one of the crystal axes is parallel to tRke direction, as in
Fig. 1, that we may havé\H=AH[&,]#0, so that the

charge depleted region will favor some displacement of the

CDW along thex, direction.

For the benefit of a direct exposition, instead of develop-g: €2 1mpo EXp(—

ing computations for arbitrary axis directions andn,, we
will consider fully isotropic CDW fluctuations, witm,

= (X, +X,)/\2 andn,=(X;—X,)/\/2, i.e.,

p(X; €)= pod cog 2K(x, + £;)]cog 2K(Xo+ £5) + 6] (5)

agr(k)

dkexp(ik)|
L

®

. |

and the chiral representation of gamma matrices, written in
terms of Pauli matrices ag’=o0,, y'=—io,, andy’=o03.
We find then

H:H5+J dx —iviytoy

+ gcos(2?52+ 0) ¢

xexp(Zi?fly5>4, (9)

wherev=eV,l?/ § is the drift velocity near the barrier, and

kd)/ek parametrizes the Coulomb coupling
between layers. Note thétq,; is mapped into local terms in
Eg. (9), an approximation related to the smoothness proper-
ties of the distortion field.

The above Hamiltonian describes the interaction of (1
+1)-dimensional Dirac fermions—the edge excitations—
with (2+ 1)-dimensional vector fields—the CDW'’s—along

When appropriate, we comment on the modifications introthe linex,=0. Two-body interaction effects within system II

duced by different choices of the crystal axes.

will not be considered; they may be addressed in a Luttinger

In order to define an expansion for the second quantizeiquid framework, since they are likely to just renormalize
fermion operator, we work in the lowest Landau level ap-the bareinput) parameters of the fermion theory, such as the

proximation, taking for the Hilbert space basis the one-9ap(its size and positionand the drift velocity.

particle eigenstates &f4 with Vo=0. Up to a normalization
constant,

1
(I)(Xl,Xz):E an exr{iknxl_ﬁ()@_knlz)z . (6
n

Imposing the periodic boundary conditidn(x;,X,) =P (X4
+L,X,), one gets the discrete set of wave numbkgs
=2an/L, with n integer. The operatanﬁ creates a particle
which is free to move along the, direction, but is localized
around(x,)=kI2. It is clear from the form of Eq(5) that a
tunneling resonance occurs at the Fermi level which cross
the energy band generated by the potential barriek,at

6-18

As is well known, disorder is expected to broaden and
reduce any tunneling resonance peak. It is not difficult to
show that disorder may be effectively incorporated in .
as a random gauge field coupled to the edge states, in a way
suitable for analysis via the replica formalistiwhile leav-
ing a deeper study of disorder for further work, we just note,
from previous experimentg, that disorder broadenening, if
any, is typically of the order of 1 meV, which sets an energy
resolution for the observation of many of the results derived
here.

Regarding alternative CDW orientations, it is worth not-
ing there will be in generdiwo resonant Fermi levels, which

€brrespond to the two periodic functions in E8). The lin-

earization procedure around the resonances now leads to

=+k. Thus our task is to obtain a theory for the edge de—coupling terms like
grees of freedom with quantum numbers around these spe-
cial values ok, . The starting point is to rename operators as 2 _ _ .. _

> gpexpi2y2kn, (E+%,60/2k)y°Ty. (10
. p=1

1/2 aR(k+ k) if n<O0

The “degenerate case,” Eq9), follows from g,=g,=g/4
with Ny =(X;+X,)/\2 andn,=(X;—X,)/\2. Asn; andn,

are rotated, one of the coupling constagr g, gets com-
The indicesR and L denote chiral components defined in a paratively smaller. This is in fact the behavior related to a

reference frame comoving, respectively, with th& andk ~ more realistic CDW profile, which is peaked in two-
states(when the barrier electric field is “turned on”Sub-  dimensional Fourier space at/2kn, and 2/2kn,, but de-
stituting Eqs.(5)—(7) in Hg, andHg,,, we perform the inte-  parts from the idealized harmonic for(8). If the rotation

(@)

an=

T

a (k—k) if n>0.
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angle is large enough, we may discard one ofdlsein Eq. u . . . .

(10), implying that physical quantities become independent szj d7d?x[ (9,€)%+ cX(9,€)*+ %] (14

of 6. That is what happens when is parallel to the tunnel-

ing barrier. Notwithstanding the anisotropic CDW fluctua- @nd

tions which also appear in this situation, tunneling will be

due to the interaction of edge states withy whereas any Snggf drdxcog2ké,+ 0) prexp2ikéyy) . (15)
extra termAH introduced to accommodate the effect of the 2

charge depleted region will have to do with transverse flucrhg jntegration over imaginary time is restricted to the inter-
tuations of the distortion field. As a consequence, the cougyg o< 7<B=1/T, and periodic and antiperiodic boundary
pling between the top layer and the charge depleted regiogygitions are defined, as usual, for the boson and fermion

does not play a relevant role in the tunneling process. fields, respectively. The translation invariant bosonic two-
The rationale in focusing on the degenerate case in det oint correlation function, evaluated on the ling=0, is

relies on its rich vacuum structure, qualitatively similaXoo (0.0.0%(x.0))=&.G ith
even more general thahe ones found for diverse CDW (€(0.00);(x.0m))0= 3 G(x,7). wi
orientations. 1 j OII((2ucz)*1exp[i(kx+ wn7)]

Cxn=28 ; [K2+ (wh+ wh)/c?]

Ill. VACUUM STRUCTURE OF THE NONLOCAL (16)
EFFECTIVE FERMION MODEL

wherew,=2mn/B are the Matsubara frequencies. To obtain
Our main interest is to determine the fermion mass—thehe statistical averages in E¢L3), it is only necessary to
tunneling gap—that could be experimentally determinedknow that
from the Fermi level positions of zero-bias differential con-

ductance peaks, for instance. A naive inspection of the (Sir[2?§i]>o=(Sif{Z?fi]COiZ?fj])o:O,
Hamiltonian(9), “freezing” the bosonic degrees of freedom o o
in some homogeneous configuratinsuggests that the fer- (cog 2ké;1)o=cosh 2k*G(0)],

mion mass would ben=g|cos(Xé,+ 6)|/2, since the con- _ _ _
stanté, can be eliminated by a chiral rotation of the fermion (cog 2k&;(0,0,0)]cog 2k£;(x,0,7)1)o= &;j exd —4k*G(0)]
fields. However, this simple argument is completely mislead- — —,
ing, since it neglects fluctuations of the distortion field, X costi4k?G(x,7)]+ (1 &) cost[ 2k*G(0)],
which are particularly relevant in planar systems. _ _

The central point of our analysis, to be performed in the (sin 2k¢;(0,0,0)Jsin 2k (x,0,7) ])o
framework of finite temperature field theoz&js the elimi- — . —
nation of £ from the partition function by means of a stan- = 0ij eXp —4k°G(0) Jsinf 4k“G(x, 7)]. (a7
dard projection procedure. The computational strategy iShe exact results in E17) can be approximated by more
based on the cumulant expansion for the perturbative Hamileonvenient expressions, if we note that all of them involve
tonian piece 0fO(g) in Eq. (9), in terms of averages over functions ofk?G(x,7) =0(£%/1%)<1. We may take, in prac-
fluctuations of¢. We will be able to derive in this way an tice, the leading order contributions:
effective (nonloca) (1+1)-dimensional fermion model,

which describes the interaction between edge states. <c0$2?§i]}oz(005{2?&(0,0,0)]%{2?51-(x,O,r)]}oz1,
The partition function is written, in a self-evident nota- - - -
tion, as (sir{2k§i(O,O,O)]sir[Zkgj(x,O,r)])0:4kZG(x,7-).
(18
7= f DEDED yexd —S;— Sy~ Sl (11) A direct computation then gives
. ig — 9K
We get, from the second order cumulant expansion, AS¢=?cosaf drdxyy>y+ E drd7'dxdx
Z:Zof DEDl/feXF[_SI/,_ASL/,], (12) XG(x=X',7=7")[cOS O(hih) (b)) v

= SiIP Oy ) Y1) ] (19

where

Therefore, we have to study, from now on, the
1 (1+1)-dimensional fermion theory, with partition function
— T2y 2 (12) and nonlocal couplings given in E¢19). The most
ASy=(Sgyot 2[<S§¢>0 {Seuol. (13 natural approach, following an analogy with the problem of
_ ) o ~ BCS superconductivity, is to devise a Hartree-Fock compu-
with ((- - -))o standing for the statistical average taken withtation of the gap equation. In the present context, we define
the partition functionzy= D& exd —S;]. We have the nonlocal order parameters

195118-4



CHARGE DENSITY WAVE-ASSISTED TUNNELING . .. PHYSICAL REVIEW B4 195118

. e, , T wherec=2zvuc. Such a vacuum is realized for a specific
¢1(X’T)_j dr'dX' G(x=x",7=7) (Y-, (20 pinning parameterd whenever m>g|cosé/2(tarf6—1)|.
The vacuum expectation values are

oa(%, )= f 47 X G(X— X', ) (B m? 2
(p1)=7= P—gzseé 0—(g,)?cot 0| , (26)

If the vacuum expectation value gf=@,X;+ ¢@-X, iS non-
vanishing, we find, from Eqgs(19) and (20), the fermion
mass (p2)=

tané
2k(tarfo—1)

I ] 2 1 e 211/2
m=g[k* coS 6(p1)?+ (;c0os0—ksin (e,)) 12 The parity symmetric typ® ground state is given in its turn

(1) by {¢1)=0 with {¢,) being obtained from
A fundamental aspect of the effective fermion theory ob- — )
tained after integration over the distortion fields regards its 2Cwo (@)= . 27)
parity symmetry properties. At the tree level there is invari- ?g sing P2/ =X TpZ

ance under the discrete mapping— —x; and — %,

which implies thate¢;— —¢;. One could then state that \where X=g(cos€—2?<zp2>sin0)/2. The fermion gap ism
(¢1)=0 is necessarily verified, since discrete symmetries= | y|. With the exception o= /2 and 3r/2, there is no
cannot be broken in one spatial dimension. However, such ggcuum degeneracy here. A tyBeground state is always
general theorem strictly holds for local Hamiltonians. As Wethe correct choice for some range of pinning phase param-
discuss below, the nonlocal coupling between fermions ineters, and in some situations, as in the weak or strong cou-
fact renders parity symmetry breaking possible when quanp|ing limits of g, it holds in fact for any value of.
tum corrections are taken into account. ~ To study the quantum stability of the tygevacuum, we

We may investigate the vacuum phases of the fermionmploy a variational strategy, where dilute soliton-antisoliton
theory by expressing the partition function as a functionalonfigurations interpolating between the degenerate vacuum
integration over configurations af. The basic difficult in  states(¢,)=* ¢, are shown not to disorder the system at
doing so is related to the evaluation of the fermion determidow temperatures. A variational soliton of sizea is con-
nant, which, however, admits a loop expansion. At the onestructed in a simple way through convolution of the step and

loop levef! we get the partition function Gaussian functions. Just define
- o exd — 2¢q x' 4(x—=x")?
PR 1 PO L= s
a7 x| a?
where
) B dk keexplikx— k?a?)
2 2, 2. 2,291/ —®o) T K2+ 72 ’ (28)
S(sz drdxj uc 2 @il 92+ 97+ wil 7] g 77 7
=1 _
where »—0. The antisoliton is, of course3(x) = — ¢3(X).
+ (a2 4mv)[IN(cXA2) — 1]J. (23) The soliton energy, with the ground state level subtracted, is
_ _ 2uc?ed [ dk w3\ w
Above, we haveo?=g?[k?cos Og?+ (3coso—ksin 6p,)?] AE=—1 OJF k2+c—§ —?0 exp( — 2k?a?)

andA is the ultraviolet cutoff, which may be regarded to be
of the order ofeV,. The effective potential is thus

, +f dX[ Ver(@1,{02)) — Ve @0.{@2))]. (29

2
Vei( @1,92) =UCwop?+ ——
efl 1, ¢2 0 prp—

nz-1). (24

While the second term on the right-hand side rhs of §)
may be approximated by a linear expressiawith y>0,

It follows from Eq. (24) that there are two types of ground the first term diverges foa— 0 in the ultraviolet limit and
state, which we refer to as “typ&” and “type B.” The type-  vanishes fom— %, implying that there is necessarily a mini-
A ground state breaks parity symmetry and is associated with, ;m of AE; at somea=a. Thus, the existence of a soliton

the fermion mass state is verified.
. Consider now a soliton-antisoliton pair separated by a dis-
Cw > - . . e
m=A exp( S 0 ) ' (25) tance xo>a, which may be written as the superposition
k’g?cos ¢ @3%(X) = 03 (X) + 05 (X—Xo) — @o. Its energy is
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2

— 8uc?e? [ dk Vb
— — E{=E;+(eVp—E . 33
AEg=2vya+ pm K2 f i+(eVo f)V_ZO (33
kXO (1)(2) vz wqo
><sir127 (k2+ ?) B Second, the one-loop computation may be performed once

o again, yielding up toD(Vﬁ) a renormalization of the cutoff
X exp — 2k?a?). (30 A that appears in the expression of the effective potential.
Taking {=A/o0g, Whereoy denotes the gap evaluated at zero

Taking w, finite, it follows thatAE¢g approaches a constant bias, we find that\ is replaced byA = A exp(VAV2), with
in the largex, limit. In this case, entropy effects dominate

the free energy and the typevacuum is disordered, that is,
(¢1)=0. However, if wg—0 at fixed xo, one gets the

asymptotic resulAEg~In(xy/a). Energy and entropy fluc- 2 g
tuations have similar logarithmic dependences, and a direct K= ;(1+§2)1’2arcta|ﬁ(1+ 21?1 — >
application of the Peierls arguméhgives the critical tem-
peratureT( 6) ~uc?e3. With r4=6, w.=1.5meV, and as-
suming ¢y~ 0.03, for instance, we findl.~0.3K. In the  |n that way, the gap for a typ&-vacuum is enhanced at finite
disordered phase aboig, as in the finitew, case, the lon- yoltage bias. The same phenomenon happens for aBype-
gitudinal bosonic excitations along the interface do not conyacuum whenwy— 0. In that limit, ¢o— A for both types of
tribute to the fermion mass renormalizatioup to one-loop  y4cya, so thak=0.054.
leve). , , _ An interesting experiment involving finite bias effects in
Observe that for,— 0 the soliton energy diverges in the o cjean regimew,—0 is as follows. Imagine that the
infrared limit, but the soliton-antisoliton energy is finite. The double layer system is initially set in a tyf@eground state
soliton-antisoliton confinement beloW, is analogous to the (throughA <g). The fermion gap is them~ A, irrespective
binding of vortices in the Kosterlitz-Thouless modéAs a ¢ temperature and the pinning parame&elAé the voltage
matter of fact, the logarithmic interaction of kinks in an biasV, is increased, the effective cutoff gets enhanced as

Isngg;_'hke model was studied Iozglagr;]o ?2/ Agder‘;’?%n%guval'discussed above, so that at some point a quantum-disordered
and Hamann as a way to model the Kondo efiecthe o0, m of typeA arises, characterized Hy,)=0 at =0

renormalization group flows are essentially the same as th -
ones for the Kosterlitz-Thouless transition. nd . Using Eqgs(21) and(26), we get, at such values of

the gapm~g/2. Furthermore, since the critical temperature
To(0)=T(m)* @3~ (4A%/g?—1) grows withV,, a low-

IV. FINITE VOLTAGE BIAS EFFECTS temperature regime may eventually be attained where the
type-A vacuum becomes ordered, and the gap gets back to its
;/)riginal sizeA.

(34)

If a small voltage bia¥,, is applied across the quasi-one-
dimensional interface, the potential barrier becomes locall
modified by the addition of a linear potential, viz.,

V. CONCLUSIONS

V(X3)=—Vq

2|, VpXy We studied possible vacuum phases that appear in the
s | 28 (31) coplanar tunneling between Hall edge states, as induced

through the interaction with CDW'’s in a double layer sys-

tem. Quantum and thermodynamical critical transitions are

As a consequence, the chiral fermion components will havéound, yielding a rich phenomenological stage that could be
different drift velocities(however, the average drift is kept €xplored to probe the dynamics of CDW's in the quantum

cording to existence of gapless and linearly dispersing CDW modes.

The usual gaplesg®? dispersiorf for instance, would lead
to weakly coupled soliton-antisoliton configurations and to
Vv permanently quantum-disordered vacuum states. Further in-
_ _ b— i ;
yytos— byto — V—lﬂyoﬁllﬁ- (32) tere_stlng vv_ork could be concer_ned with alternatg CDW or-
0 derings(stripeg, and the tunneling between fractional Hall

. i , o edge states.
Two distinct effects come into play. First, the modification of

the fermion dispersion profile leads to a shift of the Fermi
level where the tunneling resonance occurs. Eetbe the
Fermi level for the tunneling resonance at zero bias. At a
finite biasV,,, a purely geometrical reasoning shows that the The author thanks D. G. Barci for calling his attention to
energy position of the resonance moves up: Ref. 16. This work was partially supported by CNPq.
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