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Screening of a positron in an inhomogeneous electron gas
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Most calculations of positron annihilation characteristics in metals avoid direct determination of the effect of
electron-positron interaction and use heuristic approaches such as the local density, generalized gradient, or
weighted density approximations, benefitting in this way of enhancement factors calculated for an electron gas.
As shown in the paper these approaches lead to quite different values of the local annihilation rates. In this
work these last are computed for a spherical inhomogeneity in jellium by solving quantum mechanical equa-
tions obtained along the lines of the theory of liquids in the difficult but extremely important case when the
surrounding of the positron is anisotropic. It is shown that, at least for the model investigated in this paper, the
weighted density approximation shows the smallest deviations from our results for a large interval of ampli-
tudes and sizes of the inhomogeneity. We do not treat situations when electrons are described by wave
functions having nodes in the present work. However, the formalism developed in this paper is a necessary step
in solving this problem also. A vacancy in Al is investigated as an example.
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[. INTRODUCTION the subject remains very controversial. The classical ap-
proach is the independent particle modg#*M) still used
The electron-positron interactiqiEPl) has always been a with success in most experimental Fermi surface studies. If
challenging many-body problem in positron annihilation EPI enhances the contact density of all electronic states on
studiest? Several approaches to EPI in an electron gas havehe positron by the same factor independent of the positron
been developedor a review see Ref.)3basing, e.g., on the coordinates IPMor rather constant enhancement approach
Bethe-Goldstone equatidr, the Sawada boson approach, (CEA)] is a better approximation than would follow from
and the Lippmann-Schwinger equatibriRecently Gilgien its name, at least as concerns the angular correlation
et al” performed extensive Quantum Monte Catl@MC) experiment.
studies of EPI in a homogeneous electron gas, including Dif- Many theoretical works used the local density approxima-
fusion Monte Carlo(DMC) calculations, which, at least in tion (LDA) to EPI®~18 This approach was generalized by
principle, should give information on the exact ground stateBarbiellini et al*® who proposed the generalized gradient ap-
of the system. There is an opinion that DMC calculationsproximation (GGA) and by Rubaszelet al. who used the
should constitute a "benchmark” in many-body studies. It isweighted density approximatiofW/DA).2° Works using the
obvious, and this is also apparent in Ref. 7 that such calcuzonstant density potential approximation should be
lations have problems of their own. The importance of EPImentioned??? as well as their generalizatioh$The com-
studies is due to the numerous applications of the positromon defect of all these approaches is that self-consistency of
annihilation method in investigations of condensed métter. EPI is not controlled, i.e., it is not known whether the poten-
The approach to EPI developed by Kallio, Piétin, and  tial used in the formalism leads to exact screening of the
Lantto*'’ and labeled HNQhypernetted-chainbenefits of ~ positron. If it does not, then the electron density on the pos-
the achievements of the theory of liquids. In its form pro-itron obtained in this way is not reliable.
posed by Gondzik and Stachowtakalso conventionally la- As concerns deviations from the local density approxima-
beled HNQ it proved to be particularly efficient and leading tion in metal lattices, this problem according to Ref. 24 is of
to reasonable results as well for positron lifetime, EPI corredesser importance, at least in Al. But this conclusion follows
lation energy and partial annihilation rates. The partial annifrom experimental considerations and means that a satisfac-
hilation rates, however, are obtained after development of theory theory ofe™ —e™ interaction in metal lattices is not
theory*?~14 (labeled PHNG by perturbing the Jastrow type existing. Note also that the conclusion of Ref. 24 differs in
trial function of HNC in order to allow for momentum de- this regard from other studies both experimental and
pendence in electron-positron scattertAighe simplicity of  theoretical® also (Refs. 25,20,25
the HNC-like approach of Ref. 11 makes it a useful one The HNC approach in the form of Ref. 11 has been used
while investigating EPI in an inhomogeneous medium, e.g.for studying EPI in inhomogeneous medrancluding metal
a metal lattice. Also, Ladanyt al'® presented a simple ap- lattices(for the case of a positron in lithiuni’?® However,
proach basing on the Thomas-Fermi-Wedksa theory, technical reasons prevented the authors of Refs. 25,27, and
however, their method does not properly take into accoun26 from treating cases where the medium surrounding the
e —e correlations. positron is anisotropic, so one single one-dimensional func-
Indeed, EPI in inhomogeneous media is still an unsolvedion cannot describe the screening.
theoretical problem. In spite of quite a few attempts to un- In the present work a formalism is developed in which the
derstand the mechanism of screening the positron in a metdhcal annihilation rates are computed for a positron inside a

0163-1829/2001/64.9)/19511614)/$20.00 64 195116-1 ©2001 The American Physical Society



H. STACHOWIAK AND E. BORONSKI PHYSICAL REVIEW B 64 195116

spherical inhomogeneity in an electron liquid. Since the pos- w2(rg,r')—1

itron is more or less delocalized, all its positions with regard W(rp ,r):f dr’p—,xz(r’), (6)
to the inhomogeneity must be taken into account, particularly Ir—r’|

those where the positron coordinates do not coincide with itg,e exchange-correlation contribution is assumed as
center. Remark that a spherical inhomogeneity is a quite

good model of a real metght least from the point of view of Wye(rp 1) = Vi AW2(rp, D XA} = Vi X2}, (7)
EPI), since far away from the positron the metal can be

treated as homogeneous as concerns screening the positriﬂ?ﬁézv\igfzgfp} has the form proposed by Hedin and

So a single spherical inhomogeneity includes most of th . . . .
problem. On the other hand, nodes of the density amplitude We !ntend to s_olve in this work the problem .Of positron
introduce singularities in the equations. In Refs. 27,26 creening in an mhomoggngous eIectrqn gas n which the
problem of this kind was solved in the isotropic céise., for spherical mhqmqgenelty is isolated an_d is described by the
the positron on the Li nuclesin the present work we de- electron density in absence of the positron expressed as
cided to overcome only one still unsolved problem, namely, r\2
screening of a noncentral positron, leaving aside the problem p(r)=x2(r)=pol 1+ aexp{ - (—) ] 8
of nodes in the anisotropic ca¢®r earlier attempts in this So
direction see Ref. 28 o ands, are parameterso(>— 1) that allow one to describe
both the amplitude and the size of the inhomogeneigyis
II. BASIC ASSUMPTIONS the density of the electron gas. In most of our calculations
) ) ) we will use for py the value of the density of conduction
. We derlved.the. equation for the enhancement amplitude g|actrons in lithium corresponding ta=3.248.
in a metal lattice in Ref. 26: Let us note that for=0 (i.e., for a homogeneous elec-
A= V2 W(r 1) Jw—2V xTw=0 0 tron gas, Eq. (1) takes the well-known form of Ref. 11
D .

2 —
x(r)—the density amplitude of conduction electrons in the [=VE+Wr)Jw=0. ©)
absence of the positron—is a known function. We will as-A similar model has already been investigated for the posi-
sume that it has spherical symmetry,—the positron tron in the center of the inhomogeneffyHere we will con-
coordinate—differs from zero. The derivatives are taken withsider the problem of a non central positron. The positron, of
regard tor. course, is a delocalized particle, so all its possible positions
Equation(1) is obtained in the following wayy(r) obeys must be considered.
the Euler-Lagrange type equation
ll. EQUATION FOR THE ENHANCEMENT AMPLITUDE

_ 12 0 _
[=2 VEHVIO Ix(r) = mx(r), 2) The enhancement amplitude can be written as an expan-

where VO(r) is the self-consistent lattice potentigself-  Sion in Legendre polynomials:

consistent in the meaning of E()] and 7 is the Lagrange W(ry,1)=A(r)e" S+ r(r,,r) (10)
multiplier. It is shown in Refs. 29,26,30 that in lithium and in P P P
other alkalis, x(r) obtained from Eq{(2) reproduces quite Where

well the main features of the distribution of conduction elec- *

trons. In presence of the positronrgtthe density amplitude 7(rp,r= E @n(rp,rPh(cosd) (11
takes the form{(r,,r) and it is logical to assume that it n=0

obeys the equation vanishes at=r, and is devoid of the cusp occurringmat

the positron.
[— 3 V2 VO(r)+ 3 W(rp,0)14(rp 1) =nd(rp.1), (3)

where W(r,,r) is the screened electron-positron potential.

s=|r—rp|=(r?+r3—2rr cos9)*2 (12)

From the assumption(r,,r,)=0 it follows thata=1/2.

Substituting Note that the above assumption is not the only way of
_ avoiding the cusp inr at the positron. In general we can
{(rp,r)=w(rp,rx(r) @ Sssume
into Eqg. (3) one gets Eq(1). 7(rp,rp)=D(ry) (13

The screened potential of electron-positron interacthdn

is consisted of three parts: and then the value of equal to

D(rp)+A(rp)
1 a=—F"—"— (14
W(rp,r)=—m+wp(rp,r)+wxc(rp,r), (5) 2A(rp)
P takes care of the cusp. Of course, the substitufien0 is the
where the Coulomb potential of the screening cloud is exsimplest one, since it leads to a constant valuevdinde-
pressed as pendent ofr ).
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TABLE I|. Dependence ofA(r,) as obtained from Eqg20), We solve Eq.(15) as usual by way of successive linear-

(21) for a homogeneous electron gas on the positron coordmate jzations, substituting fotpy, ¢, andA the forms
(rs=3.248).

Qo= @0+ 00y, @1=@1+ 001, A=Ay+SA, (16

. Mo _ A(rp)

In atomic units where ¢5, ¢9, andA, are assumed to be known add,,
0.011 25 3.250 04 S¢4, and SA to be small, so terms nonlinear in these quan-
0.0525 3.250 05 tities can be omitted. Usually five successive linearizations
0.1125 3.250 06 are sufficient to obtain a satisfactory solution of such equa-
0.2250 3.250 23 tions.

0.30 3.250 51 In this way we get from Eq(15) the linearized equation
0.45 3.25151 for 5¢; and 5A
0.60 3.25342
0.75 3.256 89 . oA ox L, 0
0.90 3.262 00 —8¢p—2 F+_ 5¢O+W0(rpvr)a(P0+‘P05\N(rpvr)
1.05 3.268 51
1.20 3.276 15 1 X 2
135 3.984 58 + —5¢’{—2(F+X? S+ WO(rp’r)+r_2 8o
1.50 3.293 67
1.65 3.302 87 o ) a x'
1.80 3.312 10 +@15W(rp,r) cosd+| —« +? 1+ Yr
1.95 3.320 83
2.10 3.329 10 2a ' e
v ercosi}JrWO(rp ,I) |6Ae
+Age “COW(ry,r)=—F(r), a7
The value ofA(r,) gives information about the local anni-
hilation rate.? is the angle betweenandr,. The smooth- where
ness ofr allows to limit ourselves, at least in this work, to
two terms in Eq.(11). o X"\ o 0
The exponential term in formulél0) includes the cusp  F(N=—¢o _2(F+ AL +Wo(rp.r)eo
contribution to y; . Reproducing the cusp with a series in
Legendre polynomials would need including many terms in o 1 X'\ 2|,
the expansion. Of course, describingvith only two spheri- Xy ~—¢1—2 F+Y ¢1 +| Wo(rp,r)+ 2|%1
cal harmonics requires the screening cloud around the posi-
tron to be large in comparison to the distance of the positron , 2a X' 2a x'
from the nucleus. Table | shows that such an assumption is XCosd+| —a+ —| 1+ Yr) T sy Mecos?
reasonable up to,=2.1 a.u.(at least forr=3.248 corre-
sponding to lithium and leads _to th_e right values of the. FWo(ro.r) | Age e, (19)
enhancement factors for a positron in an electron gas. It is P
also remarkable that for, approaching zero the solution
approaches continuously the result fgy =0 obtained by where
solving an infinitely simpler equation.
With two components left in the expansighl) and a W(rp,F)=Wq(rp,r)+oW(ry,r). (19
nodeless unperturbed density amplitude), Eq. (1) takes a
more specific form W, is obtained by substituting/, for w in Egs.(5)—(7). W,

and SW are treated in detail in the Appendixes.
Following the way described in Appendixes A—E we fi-
nally get the set of equations

!

n 1 X ’
—pp—2 F+ ; PoTW(ry,r e

1 X’ 2 ’
+ —@y—2| =+ | oi+ | W(ry,r) + = | @1 |cos® P O O ~
ey X)(Pl (p.1) r2) ¥t —d¢p—2 P 8o+ (Wit Loo) ot (Wt Lo1) 61
, 2a x' 2a x' 5 ©
i I Bl el i +<Bl+w4+§OA+2°>6A+8wforZdr'x2<r'>
+W(r,,r)|Ae”*s=0. (15) X[098¢o(r’)+a18¢1(r")]=—Fo, (20)
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” 1 X, ’ A
—8¢p1—2 F+7 0¢1+ (3Wo+ {10) 0¢g

+

2 ~
r_2+3W3+ 511) Spq

+(3By+3Ws+ LA+ 3 A+ 877J r'2dr’ x2(r’)
0

X[ag8@o(r')+o18eq(r')]=—F, (21)
where

!

1 x ~ ~
Fo(r>=—(<p8>”—2(;+7)<<p8>'+wlcp8+wz¢8

+(By+ Wy Ao, (22)
1 X' ~
Fa(r)=—(¢D)"=2| -+ | (eD)' +3Wse
~ 2 ~
+| 3Wst — | @2 +3(By+ We)Ag. (23
r

The above equations form the basis for the solution of th
problem. The meaning of the quantities appearing in them

also given in the Appendixes.

IV. COMPUTATIONS

In order to solve Eqs(20), (21) it is assumed that a suf-

ficiently good description of the functiorp,(r) is given by
their values at a discrete set of poimfsi=1, ... N. Under
this assumption, Eq&0), (21), which in fact form a set of

two integrodifferential equations, can be written in the form
of a set of linear algebraic equations for the unknown quan

tities ¢ (r;) and SA.
The boundary conditions are obvious:

()D(,)(rplo):()! (PO(rpim)Zli (Pl(rplo)zoi ¢l(rpvoo)zo'
(24)

The quantitysA rises the necessity of introducing an addi-

tional equation that gives the criterion for the choiceAah

the formula(10). In practice here is a major source of the

uncertainties occurring in the solution.
The additional condition should be

7(rp,rp)=0. (25

However, describingr with two spherical harmonics only,
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@o(rp.r), ¢3(r,,r), andA, as far as they are not too differ-
ent from the ground state function.

A major problem was to estimate the functiofr,) in
Eq. (26). Our first attempt to solve Eq$20), (21) was per-
formed for a homogeneous electron gas. Here we are in the
advantageous situation that the exact solution of the problem
is known. It is obtained for the positron a{=0. Transfer-
ring the positron from the central point of the coordinate
system tor, we can compute the functiong(r,,r) from
the formulas

. 1 (=
<pJo(rp,r)=§f sin® d¥ 7(0,]r—ry|), (27)
0

) 3(
gojl(rp,r)=—f sind dd 7(0,]r—ry[)cosd, (28
2Jo

where7(r,,r) is defined by Eqs(10), (11).
The functionu (r ) is obtained in analogy to E26) as

wherep, is the density of the electron gas. We remark that
the function7(0,s) is the exact value that should result from
solving Eg. (1) for a homogeneous electron gas while

evj(po,l‘p) is the exact value of the function(r,) for this
f)articular case.

Let us now solve Eq920), (21) with the boundary con-
ditions (24)—(26) with v (r ;) given by Eq.(29), but assuming
a value ofo in Eq. (8) equal 0. We solve in this way the
problem of screening the positron in a homogeneous electron
gas, but using a coordinate system displaced with regard to
the positron. The results fak(r ;) are given in Table I. It is
visible that for not very large values of, the formalism
developed in this work leads to quite reliable figures for the
annihilation rate, provided appropriate values #dr,) are
used in Eq.(26).

While solving Eqs(20), (21) for the inhomogeneous elec-
tron gas described by the formul@ we will simply use for
v(rp) the local density approximation, assuming thét ;)
is a function ofr, and of the electron density g in absence
of the positron, i.e.,

(PO(rparp)+(Pl(rp:rp):l)j[p(rp)arp]a (30)

wherep(r,) is given by Eq.(8). This approach is based on
numerical studies showing that the functierir,) has a
more local character than the screening cloud around the
positron.

V. LDA, GGA, AND WDA

we are unable to reproduce the zero. For this reason we used

in our calculations the additional condition in the form

(Po(rpvrp)""ﬁol(rpirp):U(rp)- (26)

where the way of choosing(r ) is described below.
For a given system defined by the formy& the condi-

We shall compare the results obtained in this work to the
predictions of the local density approximation, the general-
ized gradient approximatiofGGA),' the weighted density
approximation(WDA),?° and the constant enhancement ap-
proximation (CEA) for the same systerfdescribed by Eqg.
(8)]. Since this work is the generalization of the approach of

tions (24) and(26) lead to a unique solution, inasmuch as theGondzik and Stachowidk labeled HNC, we will assume
final results do not depend on the starting values ofwhile applying LDA, GGA, and WDA the values of the en-
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ng ] Here we will determiney on the base o#;(r,0), the value
18 S HNC on the positron of the solution of E(Q) for an electron gas
g et (0=0) characterized by the appropriate value of thea-
15 L Bororiski-Nieminen rameter[rg(r) in the case of Eq(32)]. Since the values of
14 \

wj(rs,0) for the electron gagaccording to the formalism of
Gondzik and Stachowidk have never been published we
present them here in the following form:

m(f) 10 4
= 2
= 3: 7hnc(rs):Wj(r3y0)
g: =1.019 06+ 1.336 96,+0.136 512+ 0.081 123
44 NS
33 +0.008 632 —3.2491x 10 *r2
1]
R T +4.414 5410 6r¢ (33
1 2 3 4 5 6
r, [the formula describewjz(rs,O) correctly in the range afg

from 0.1 to 25. Referring to the correlation functidi33) we
FIG. 1. Enhancement factors for jellium according to different sha|| |abel it with small letteréing while the self-consistent
approaches. In order of increasing enhancement the figure Sho"%ﬁ)proach expressed by E@) will be called HNC.
the enhancements proposed in Ref. (88), Ref. 12 (phno, and We will also use in this paper other formulas that have
Ref. 19(ap). The highest enhancement corresponds to the SOIUtiO'P)een proposed in the literature. When referring to them we
of Eq. (9) (hno. will assume a similar convention as above. The formula re-

hancement factors for a homogeneous electron gas obtaingHmng from the PHNC approathis

according to Ref. 11. Comparison of the enhancement factors Yprnd Fs) =1+1.23 ;—0.13752+13/6 (34)

of Ref. 11 with the ones obtained in other approaches to i

e*-e interaction in jellium is given in Fig. Tfor comments ~and the formula of Boroski and Nieminen &

see Ref. 32 The approach of Ref. 11 is very simple and 32 5 52 3

leads to results not very different from the ones obtained in?bon(fs)=1+1.2%+0.8295 7"~ 1.26'5+0.3286 "+ r /6.
Refs. 2,5, or 6. Since the purpose of LDA, GGA, and WDA (35

is to describe the influence of inhomogeneities on the effecthe local annihilation rates used in this work are determined
of electron-positron interaction, it is appropriate to assume iffrom the formula

all cases the same values of the jellium enhancement. Let us

remind the reader that assumptions concerning enhancement 12

factors in jellium do not constitute an integral part of the Mrp)=———A%rp), (36)
three approached.DA, GGA, and WDA; as for GGA, the rs(rp)

phenomenological constant should depend, however, on whereA is given by Eq.(10).

the choice of the Jelllum enhancemgntn their case the The genera”zed gradient approximatic@GA) has been

choice of jellium enhancement is a question of tastecon-  proposed by Barbiellinet al.*® In their approach the local
veniencg. The approach used in the present work differsenhancement factor depends both on the electron density and
from them in this regard: for a homogeneous electron gas ifhe absolute value of the local gradient of this density. It is

reduces to the formalism of Gondzik and Stachowiak. made to obey the formula
The local density approximation has been widely used in
positron physics both for determining the theoretical annihi- Yoeallp) =1+{yrs(rp)1—1iexp —ae), (37

lation rates and the angular correlation functibh®2 It

consists in assuming that the local annihilation pete,) (in where

units of 10 s~ 1) is determined uniquely by the local value of Vp(r) |2
the electron density in absence of the positron, i.e., it is ex- :‘ p , (39
pressed by the formula p(r)are
1 and y(rg) in Ref. 19 was given by the formula interpolating
_ the results of Arponen and Pajanf&P) for the homoge-
Moa(rp) 3rp) Arsrp)l, (31) neous electron gas
where y is the enhancement factor and the electron density Yap(ls) =1+ 1.23,—0.07422+r 6. (39
p(r) is connected with the local value of thgparameter by . . ,
the formula g7¢ is the local Thomas-Fermi screening length ands a
phenomenological constant chosen equal to 0.22 in order to
fit experimental positron lifetimes in metals. Because of the
p(r)= VR (32)  reasons presented at the beginning of this section we used in
4mrg(r) Eq. (37) the formula(33) for y(ry) [in Sec. VIl we use also
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the formulas(34), (35), and(39)]. In this situation the corre- >1) the screening charge builds up inside the inhomogeneity
sponding coefficientr should be different. We considered, and the charge distributio@and the contact valyestarts to
however, that the appropriate change would introduce onlapproach the expectations of LDA. The wider is the inhomo-
minor quantitative corrections tpgga. This is why we ap-  geneity the closer is the enhancement to the LDA values.
plied the value ofw proposed by Barbiellinet al. Comparison of the annihilation rates obtained in this pa-
The weighted density approximation applied to positronsper with the predictions of earlier works leads to the follow-
by Rubaszeket al?° (earlier applications can be found in ing conclusions. As concerns LDA the conclusions obtained
Refs. 34 and 3breplaces the local electron density by anin Ref. 26 concerning the case of a positronrgt=0 are
effective density taking account of the whole behavior of theconfirmed. Only fors;>1 the annihilation rates begin to
electron density within the range of theg -e~ interaction.  approach LDA expectations.
The correlation functiorgWDA(re,rp) is approximated by its GGA improves to a certain degree agreement with the
analog in an electron ga;:‘3[|re—rp|,p*(rp)], wherep* (r,,) results of the present work in comparison to LDA, but only
is an effective WDA density for electrons. for 0<0. This is connected with the fact that the sign of the
Conventionally, one assumes an exponential distributiomgradient correction does not change with the sigrrof
of the screening charge The WDA predictions are closer to our results than those
" of GGA. In many cases WDA reproduces quite well the re-
g'lIre=rpl,p* (rp)1=1+{ylrs(rp)]—Liexp—alre—ryl),  sults obtained from solving Eq42) especially ifc is put
(400 equal to 0. This last feature is presented in Fig. 4.

_3 * * The annihilation rates obtained in this work are also com-
wherea \/BW{Y[rS(r”)] Lo pared to the constant enhancement approximatioBA)
which as concerns angular correlation is equivalent to the
independent particle mod€IPM). According to CEA the
enhancement factor depends neither on the electronic state

nor on the positron coordinafey in Eq. (31) is given for the

f drep(ro){g"[|re—rpl.p*(rp)]1—=1}=1  (41)  constant value of; corresponding to the bulk value of the

electron density In surprisingly many cases the behavior of
[for given positron coordinates,, one seeks such a density the annihilation rate obtained in our work is closer to CEA

In our calculations the density*(r,,) is found for any
positron positiorr , on the base of the charge neutrality con-
dition for the screening cloud:

value p* that the formula41) is fulfilled]. than to LDA. Remark that WDA is still closer to CEA than
the results of the present paper.
VI. RESULTS Note that in Fig. 2 the annihilation rates drop quite often

_ below 2 (i.e., below the spin averaged positronium value
We present here results obtained éo= —0.9 and 2 and  Tpig agrees with the results obtained eaffer.

different values ofs, and compare them to the results of

different approaches used previously in the literature in order
to estimate annihilation characteristics in metals. Equations ~ VIl. CALCULATIONS FOR A VACANCY IN AL
(20), (21) are solved in two cases. Namely, writing Efj) in

In order to show how the methods presented above work
the form

for particular cases, we performed calculations for a vacancy

_v2 _ _ in Al. This vacancy was modelled by a spherical hole in
M= Vo Wrp nJw=2eVxVw=0 42 jellium with rg corresponding to the electron density of alu-
we should putt=1. However, in order to study the impor- minum and equal 2.07. The electron density distribution in
tance of the gradient term in the above equation we comthe vacancy has been calculated self-consistently according
puted the solution also far=0. to the conventional scheme used in Ref. 33. It can be de-

First-principles computations of the enhancement ampliscribed quite well by a Gaussian with parameters
tude forr,>0 performed in this way allow one to check the —0.84 ands,=3. We preferred to use, howevéhis pre-
reliability of earlier guesses concerning this quantity whichsents no difficulty, exactly the same profile as obtained from
can be found in the literature. The annihilation rates obtainedalculations.
from solving Egs.(20), (21) are shown in Figs. 2 and 3, We calculated the enhancement factors corresponding to
together with the predictions following from LDA, GGA, this density distribution according to formuld81), (37),
WDA, and CEA. The results of our calculations approach(40), (36) corresponding to LDA, GGA, WDA, and the
LDA only for quite large dimensions of the inhomogeneity present approach, respectively. Additionally, we calculated
(i.e., of the order of the lattice constant of lithiinCalcula-  the enhancement according to the Bakinand Nieminen
tions performed for the positron at=0 (Ref. 26 have al- (BN) two-component approath by applying the corre-
ready shown thata) the contact values of the enhancementsponding numerical code.
amplitudes for both casesr&0 ando>0) are not mono- In order to make all the approximations comparable we
tonic functions ofsy, (b) for narrow inhomogeneitiessg had to(a) replace the enhancement factors obtained from our
<1) the screening charge around the positf@nd the con- theory by the LDA result for ,>3 [the reason was that we
tact value resembles the corresponding figures for the bulkwere able to solve reliably Eq42) only up to 3.0 a.u. for
the inhomogeneity is too narrow for the screening cloud tahe rg value of All and (b) renormalize the enhancement
build up inside of it, andc) for wider inhomogeneitiessf,  calculated self-consistently according to the BNwo-
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A (in 10°s™)

a)

A (in 10°s™)
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FIG. 2. Local annihilation rate

6=-0.9, 5,=2 A(rp) according to this work and
0 s o n e 0-00 . ) labelled HNC, according to the lo-
' ' ' ’ : : ) ) : cal density approximatioLDA),
r,(a.u.) r,(a.u.) the weighted density approxima-
tion (WDA), the generalized gra-
57 ) dient approximation(GGA), and
2.4 the constant density approxima-
b) 1 tion (CEA). o is equal to—0.9
2.2+ and s, is given on the figures in
1 atomic units.
2.01
1.84
. _ 1.6+
‘Tm "_UJ 4
O’o °’o 14—_
£ £1.21
2 <
1.0
0.8
0.6
0.4+
0 T T T T T T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
r,(au.) r,(a.u.)

component approach in the whole region of interest in ordeapplied for determining the local annihilation rates in LDA
to account for the difference between the Bakiland Ni-  approximation. The application of the two-component
eminen formula(35) for the correlation function and the scheme required very complicated many-body calculations
HNC formula(33) applied in the present calculations. for electron-positron mixtures that have been carried out by
The results are presented in Fig. 5. Again, the WDA ap-Lantto®® In our opinion, the present approach that deter-
proximation agrees best with our results unlike LDA andmines directly the electron density amplitude for any posi-
GGA that are quite far both from WDA and the solution of tron position is superior to the method used in Ref. 33.
Eqg. (42). The BN enhancement in the vacarn@gcording to We also computed positron lifetimes for the vacancy in
the two-fluid approachis also smaller for —0 than follows ~ Al. The experimental values range from 240,246 to
from pure LDA or GGA. Let us remark that in the approach253 psec® Calculations were performed in LDA, GGA,
used in Ref. 33 an effective electron density in presence ofind WDA and according to the self-consistent approach pre-
the positron trapped in the vacancy is calculated using theented in this work. The positron wave function was calcu-
two-fluid model. Then the local values of this density arelated using the LDA approximation for the correlation poten-
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FIG. 3. The same as in Fig. 2
but for c=2.

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

tial. The results are presented in Table Il in the first columnwe simply renormalized the results obtained using #8).

Of course, the convenient and simple HNC-type approxi-We did it in such a way that we found with thec formula
mation to the enhancement used in this paper cannot be co(B83) the electron density corresponding to the HNC enhance-
sidered as the best and conclusive one when comparing ourent in the positron position and then used this value again
results to experiment. One should then apply rather thén the phncformula(34). The corresponding lifetime is pre-
PHNC approximation(elaborated for the electron gas in sented in the fourth row in the third column of Table(tlhe
Refs. 12 and 1Bthat takes into account scattering of elec- abbreviation renorm. is addedVe repeated a similar proce-
trons in different states on the positron. So, in order to seelure using the formulas of Arponen-Pajan(®9) and of
the trends we applied thehncformula (34) in LDA, GGA, Bororski-Nieminen(35) for the enhancement in jellium. The
and WDA approximations. The corresponding results areorresponding results are presented in the second and fourth
given in the third column in Table Il. Unfortunately, it is columns in Table Il. Note that the positron lifetime resulting
impossible at the moment to get self-consistent results for thom calculations in Ref. 33 is 240 psec.
inhomogeneous electron gas according to PHNC. Therefore As can be seen from Table Il the HNC approach gises
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60\

FIG. 4. Enhancement factors
for two values of ther ands, pa-
rameters. The case whenis put
equal 0 in Eq.(42) is also shown
(full curve with circles.

r (a.u.)

should be expecte(tf see Fig. 1] too low a value of posi- sults more reliable. Calculations have been performed for a
tron lifetime when comparing to experiment. The best agreemodel. They give the possibility to appreciate the reliability
ment can be observed fap (WDA and HNC renormalized  of such intuitive guesses concerning this problem as the local
and phnc (GGA and HNC renormalizedenhancements. density approximation, the generalized gradient approach,
AlSO, thebn LDA and GGA values are close to experimental the Weighted density approximation’ and the constant en-
figures. However, according to the discussion contained ihancement modébften referred to as IPMIt is shown that

the paper(in Sec. V) and our criticism towards LDA and 5| these approaches lead to local annihilation rates differing
GGA one should put confidence rather in the HNC and WDA(grastically as well from each other as from most of the re-
results. In this respect thep formula gives the values that fit gy|ts of first-principles calculations performed in this work.
the experiment the best. Because of the general reasons eX'The modei assumes a Sphericai inhomogeneity Of gauss_
pressed earlier in the paper and in Ref. 32, we give OUfan shape, characterized by two parameters describing its
confidence and priority to the PHNC approach. amplitude and its size, respectively. This allows to study
e"-e” interaction in any spherical inhomogeneity with regu-
lar behavior of the electron density. The two parameters
. i make possible a classification of inhomogeneities and are in
It has been shown that the problemeof-e™ interaction way a limitation of the generality of the approach. In this
in an inhomogeneous electron system can be solved frofgaper” however, we were unable to treat the inhomogeneities
first-principles by generalizing the approach proposed bynat play the most important role in metals, namely, those
Gondzik and Stachowiakfor a homogeneous electron gas. connected with atoms where singularities occur, connected

Unlike in earlier first-principles Ca"’“'aﬁp?‘jgzs self-  \ith the nucleus and the nodes in the wave functions of
consistency of the solution is controlled. This makes the rezonquction electrons. This problem was solved in Ref. 26 for

the positron on the nucleus. Generalizing the solution on

VIIl. CONCLUSIONS

arbitrary positions of the positron with regard to the nucleus

14—"‘\:\’ ———— LDA .
N needs further studies that are under way. However, the for-

------- N ------- GGA : ; : .
N - WDA malism developed in the present watike., computing the
27 \:\ HNG accumulation of electrons on the positron for the positron in
NN —weem- B-N rencormalized an anisotropic surroundifngs a necessary first step in this
direction.

TABLE II. Positron lifetimes in an Al vacancy according to
different approximationg§in pseg. The abbreviationhng phng ap,
andbn refer here to formulag33), (34), (39), and(35) used when
applying LDA, GGA, WDA, and HNC. Original self-consistent BN
calculations within the two-fluid model give 240 pse.

o
™ o
w
S

5 6
r,(a.u.) hnc ap phnc bn
FIG. 5. The enhancement factors for different positions of thelDA 198 216 230 250
positron inside the Al vacancy calculated with the form(88) in GGA 208 225 241 261
LDA, GGA, WDA, and HNC. The results obtained within the BN WDA 222 251 269 292
two-component approach have been renormalized as explained HMNC 227 247 renorm. 263 renorm. 285 renorm.
the text.
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In general LDA, GGA, and WDA lead to results for the  In order to perform the calculations it was necessary to
local enhancement very different from each other. WDAelaborate numerical methods of solving integrodifferential
seems to deviate less from the results of our computations iaquations for systems devoided of spherical symmetry. These
the whole range of values of the size and the amplitudenmethods, of course, have a more general applicability.
(positive or negativeof the inhomogeneity. This conclusion,
however, concerns only the kind of inhomogeneities investi- ACKNOWLEDGMENTS
gated in this work. . .

As concerns inhomogeneities corresponding to vacancie% Ih;]sgvork penef:cttedsfr_om _?rant No. 2 5038 09912 of the
we were able to perform full calculations of positron life- olish Committee for Scientific Research.
times. We used the example of an Al vacancy treated in
detail quite long ago by Boraki and Nieminer?®

Comparison of theoretical values of lifetime with experi-
ment(and in principle this is the only experimental informa- By expressing Eq(17) in terms of spherical harmonics
tion available is not very conclusive, since a single value we could obtain from it an infinite series of one-dimensional
can be easily adjusted to one’s needs. So we would like tequations describing the angular behavior of the solution.
emphasize rather methodological problems that are solved iRowever, since we limit ourselves to two terms in the expan-
the present work in comparison to Ref. 33. sion, the same must be done while solving B¢). Namely,

Bororski and Nieminen compute the electron and posi-we must expand both sides of E{.7) into spherical har-
tron distributions in the vacancy by using the two-fluid ap-monics, limiting ourselves to the first two terms. for ex-
proach. The electron distribution obtained in this way is therample, we have
enhanced on the positron using LDA. L L

Let us point out that applying the two-fluid model is in . K
this case :Econtroversial apszl);mgtion, since only one pOSitrOIIIZO(r)_ Efo Sindd#F(r) = Efo Sin¥ddF(r)Po(cosd),
is present in the system. And LDA fa"-e~ interaction is (A1)
just an approximation that can be contested on base of quan-
tum mechanics.

In the present paper the electron distribution around the
positron in the vacancy is computed directly for each posi-

APPENDIX A: SPHERICAL HARMONICS OF THE
EQUATION FOR THE ENHANCEMENT AMPLITUDE

3(m
Fir)= EL sin9ddF(r)cosd

tion of the positron by solving the appropriate Euler- 3 (7.
Lagrange equation. This last is a generalization of the ap- =2/, sindddF(r)Py(cosd). (A2)
proach proposed by Gondzik and Stachowiakn the base
of the work of Kallio, Lantto, and Pietilaen? From Eq.(17), we obtain in this way the set of equations
n 1 X’ !
—Spg—2 F+7 5¢0+<W0(rp,r)>5zp0+<W0(rp,r)cosi})écpﬁcpg(cSW(rp,r)>+¢2<5W(rp,r)cosﬁ)
, 2a x' 20 x' B B
| —a+ —| 1+ —r | = — —r,cosd+Wy(rp,r)e ) SA+A(SW(r,,re *)=—F(r), (A3)
X S X
1 X 0 2
— 8¢ —2 F+ 7 81+ 3(Wp(rp,r)cosd) oo+ 3eo( SW(ry,r)cosd) + 3<Wo(rp,r)cosz19>+ =
r

!

2a X 2a0 x
2
-« +?(1+ Yr)—?yrpcosﬁ—i-wo(rp,r)

><5<p1+3<p2<5W(rp,r)coszﬁ>+3< e“scosﬁ> SA

+3Ao( SW(r,,r)e”*cosd) = —Fy(r), (A4)

where(- - -) means averaging over directionsrof and
We introduce the notation

3i2<5WHi>1 (A6)
W, = (WoH;) (A5)  where
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H,=1, Hy=cosd®, Hz=cogd, H,=e

Hs=e “cosd. (A7)
We also define the functioB(r,,r) as
2a ! 2a '
B(rp,r=|—a?+—| 1+ X—r) -— X—rpcosﬁ e s
s X s x
(A8)
and its averages
B1=(B), B,=(B cosd). (A9)
The expression§' are defined as
g0= (,0831+ Q0232+A034, (AlO)
G'=3(¢0Ss+ 9155+ AoSs). (A1)

The way of computing the functiong),, S;, andB; is

shown in Appendixes B and D. In Appendix E it is shown | this wa:

that the expression@' can be written as

G'=iodpo(r) + Li18@1(r) + (Lia+21) 6A
+8wf°°r’2dr'x2<r')[agéqoo(r')w‘la@l(r')].
0

(A12)
The way of computing the quantiti; , > and cr} is also
shown in Appendix E.

APPENDIX B: NOTATION FOR THE AVERAGES

The quantities; andS; of Eqs(A5) and (A6) are com-
puted from the formulas

WiZ—Z/{i+Vi+Wi (Bl)
and
S=X+S;, (B2)
where
H;
U={ 5] V= (W), K=(aWycH),
W=(WoH;), S=(W,H)). (B3)
oW, is obtained from Eq(6) and has the form
Wo(ry,r’)dw(r,,r’
&Np(rp,r)zzf ar ot p| ) ,|( ") v27),
r—r
(B4)
Let us introduce the notation
f1=(0)?—1, f,=2¢0¢7, f3=(¢?)?
f4=(A0)? f5=2A0e], fe=2Ace}, (B5)

PHYSICAL REVIEW B 64 195116
0 0 0 0
01=¢0p0¢P0, 92= @000+ @091, 3= @16¢1,

94=A0SA, J5=Aodeo+ 9oA, 96=A06<p1+¢&’5A(- |
B6

We can writeWV, andS; in the form
6 6
wi=2 Wi, §=2 sl, (B7)
=1 i=1

where

W{:4wfo 2 fi(r,,r)XA(r)TH(ry,rr’), (B8)

S{'=8wfo r'2dr’g(rp,r )xA(r")Ti(rp,r,r'). (B9

y the problem of computing the averagé’s and
S; has been reduced to computing the functidhs Compu-

tation ofi4; and3; presents no special additional problem. In
Appendix D some indications are given about how to express

the T{ functions through the functionls, and D, defined in
Appendix C.

APPENDIX C: THE FUNCTIONS 1, AND D,

The functionsl ,(r,r’) andD(a,r,,r) are defined as

I2(Fq,r2) 1fldt Polt) (C1)
r,ro)== )
M 2 (124 r2= 211t 12

11
D“m%JFEIﬂM€“@#wa%4U (C2)

The analytical computation of the integral in E@C1)
starts with the substitution

s=(r2+r3—2rr,t)'?2 (C3
leading to
sds
=_— " i= 2, .22
dt r1r2,t 2r1r2(r1+r2 s9). (C9

In this way we get

1
rlrz(rwar%—sz) , (CS)

1 a
In(rl,r2)= Tlrsz dSPn
where

a=ri+ry, b=[ry—ry. (Co)

Using the notation
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n

Pn(x)= 2 anme

m=0

(C7)

we obtainl,(rq,r»,) in the form of polynomials. The func-

PHYSICAL REVIEW B 64 195116

The fourth formula will be particularly useful when aver-
aging over directions af expressions which depend both on
the angled betweerr andr, and on the angl® betweernr
andr’. The three vectors occurring in this case are expressed

tions D (T ,,r) are computed by direct numerical integra- by Eq. (D3).

tion, though their analytical form is known.

APPENDIX D: THE FUNCTIONS T{

We define the functioniT{(r r') as

pl!

1
4

cosd’)

fdQ/Fj(rp’r,’ '
[r—r’

Tl= | Hi(rp,r,cosd) |,

(D1)
whered()’ means integration over directionsdf We have

F]_:l, Fzzcosﬁ,, F3:C05219,, F4:e*2a5’,

Fs=e ', Fg=e “%cosd’, (D2)

H, are defined in Eq(A7). The angles are expressed in the

coordinate system connected with:
rp="rp(sind’,0,cosd’),
r'=r’(0, 0, 1),
r=r(sin® cos®,sin® sind,cosO). (D3)
T/ can be written in the form
Hi(rp,r,cosﬁ)>

1
Ti= fsmﬁ do'Fi(rp, ,cosﬁ”)< | |
r—r

)
(D4)

Our aim is to express the functioﬁ$ according to the gen-
eral formula

= D,(a,r,,r
2 Dyfary

XDnu(a]- ,rp,r,),

) > X el ()

n"=0n"=-1
(DY)

whereD _, is assumed to be equal to unity.
Four formulas are particularly useful while performing
the computations. These &fe

2

d® P, (sinY sin® cosd + cosd cosO)
0

=27P,(cos?)P,(cosO), (D6)
the second
(2n+1)zPy(2)=(n+1)P,11(2) +nP,_41(2), (D7)
the third
efa(riJrrngrlrzcost})llz
= (2n+1)Dy(a,r,r,)P,(cosd). (D8)
n=0

Using the formulagD6) and (C1) we have

|

We adopt the convention thit is a function ofr andr’ and
D, situated aftet,, depends om’ while situated beforé,, it
depends om. The prime atD;, indicates that the value is
replaced by 2 [see Eq(C2)]. We get, e.g.,

P,(cosd)

>=In(r,r’)Pn(cosﬁ’).

(D9)

(r2+r1'22rr'cos®)*?

+1
2n+3 n+1[(n+2) n+2+(n+1)Dn]

-3 o

[NnD,+(n—=1)Dy_5]1- (D10

n
T on_1in1
It follows from numerical calculations that for low values
of r, which are for us of particular interest the magnitude of
D, decreases rapidly with increasing So in the following
we will put D,=0 forn)1. In this case the function§ take

the following form which is used subsequently in the com-
putations:

Ti=lo, Ti=0, T3=31,, Ti=10Dg, T3=1¢Do,

T8=1,D,, (D11)

T3=0, T5=31;, T5=0, T3=1,D}, T5=1,D;,
TS= |31D0, (D12)

T3=3lo, T3=0, T3=5lo+ {515, T3=310Dy,
T3=310Do, T5=31¢D1+ 15 1,Dy, (D13

T3=Dgly, T3=Dyl;, T3=1Dglo,

T4=DyloD}y+3D41,D}, T5=DgloDg+3D4l:D;,

T$=DglgD;+D41;Do, (D14)
Ts=Dilo, Te=3Dgly, Te=3Di(lo+ £15,),

Te=Dgl1Dj+D;loDg, T2=Dgl;1D;+D;10Do,

(D15)

Te=1Dgl;Dg+DqloD;+ £ D4l,D;.
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APPENDIX E: DISENTANGLEMENT OF THE OG'
FUNCTIONS

In Egs.(A3) and (A4) the unknown quantitiedeq, d¢q
and A appear eitheexplicitor they are entangled ié\W. In

order to solve these equations, the unknown quantities mus

appear openly. We will treat now the terrg$ as defined by
Egs.(A10) and(Al1l).
From Eq.(5) it follows that

OW= 6Wy+ 6W,..
From Eq.(7) we have

(E)

SWie=2Wox 2V}, (8po+cosd S, +e *S5A). (E2)

We will use the notation from EqB3)
Xi=&o00pot &i10p1t EaoA (E3)
and alsdin analogy to Eq(ED)]
G'=G,+3G). (E4)
We have
vo= Li0dPot Lin 1+ {indA, (ED)
where
Loi= o1t @2+ Aokai s (E6)
{1i=3(¢obait+ @1és+ Agks). (E7)

We would like to preseng,, in the same form.

We remark, however, thai,. has the same form as the
remaining terms in EqgA3) and (A4) inasmuch as it does
not contain nonlocal contributiong’.'p is different. We have
[see Eqs(B7), (B9), (A10), (A11)]

6
98=87TJ0 Ir'zdr’xz(r’)lz1 9 (@dTh+ @ITL+AGTh),
(E8)

PHYSICAL REVIEW B 64 195116

6
gg=24wf0 r’2dr';(2(|r')j2l 9i(egTh+ @ITL+AGTL).

(E9)
et us call
0_ 0 j 0 j j
7 =@o(NTi+e1(NTy+ ATy,
=3[ Th+ XN Th+ATE.  (E10
We have
6
;1 97 = 000¢0t 7181+ TR, (E1D)
where
0b= 90" ) 7ot @11 Tt Ao,
1= oo(r' ) th+ @ (r') 75+ AgTg
On=@(r") 5+ @3(r") Te+ AgTy. (E12

So the terms containingW, in Egs. (A3), (A4) can be
written in the form

g‘p=8wfo r'2dr’ x3(r')[opdo(r') + oy 8@y (r')]+318A,
(E13
where

2i=877J'0r'2dr’X2(r’)aiA. (E19

Summarizing we have
G'=Lo8¢o(r)+ {1801(r") +(Lh+31) 6A
+87-rf r2dr’ x2(r' ) ohSeo(r') + ol Seq(r')].
0

(E19
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