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Screening of a positron in an inhomogeneous electron gas

H. Stachowiak and E. Boron´ski
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Most calculations of positron annihilation characteristics in metals avoid direct determination of the effect of
electron-positron interaction and use heuristic approaches such as the local density, generalized gradient, or
weighted density approximations, benefitting in this way of enhancement factors calculated for an electron gas.
As shown in the paper these approaches lead to quite different values of the local annihilation rates. In this
work these last are computed for a spherical inhomogeneity in jellium by solving quantum mechanical equa-
tions obtained along the lines of the theory of liquids in the difficult but extremely important case when the
surrounding of the positron is anisotropic. It is shown that, at least for the model investigated in this paper, the
weighted density approximation shows the smallest deviations from our results for a large interval of ampli-
tudes and sizes of the inhomogeneity. We do not treat situations when electrons are described by wave
functions having nodes in the present work. However, the formalism developed in this paper is a necessary step
in solving this problem also. A vacancy in Al is investigated as an example.
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I. INTRODUCTION

The electron-positron interaction~EPI! has always been a
challenging many-body problem in positron annihilati
studies.1,2 Several approaches to EPI in an electron gas h
been developed~for a review see Ref. 3!, basing, e.g., on the
Bethe-Goldstone equation,4,5 the Sawada boson approach2

and the Lippmann-Schwinger equation.6 Recently Gilgien
et al.7 performed extensive Quantum Monte Carlo~QMC!
studies of EPI in a homogeneous electron gas, including
fusion Monte Carlo~DMC! calculations, which, at least in
principle, should give information on the exact ground st
of the system. There is an opinion that DMC calculatio
should constitute a ’’benchmark’’ in many-body studies. It
obvious, and this is also apparent in Ref. 7 that such ca
lations have problems of their own. The importance of E
studies is due to the numerous applications of the posi
annihilation method in investigations of condensed matte8

The approach to EPI developed by Kallio, Pietila¨inen, and
Lantto9,10 and labeled HNC~hypernetted-chain! benefits of
the achievements of the theory of liquids. In its form pr
posed by Gondzik and Stachowiak11 ~also conventionally la-
beled HNC! it proved to be particularly efficient and leadin
to reasonable results as well for positron lifetime, EPI cor
lation energy and partial annihilation rates. The partial an
hilation rates, however, are obtained after development of
theory,12–14 ~labeled PHNC! by perturbing the Jastrow typ
trial function of HNC in order to allow for momentum de
pendence in electron-positron scattering.12 The simplicity of
the HNC-like approach of Ref. 11 makes it a useful o
while investigating EPI in an inhomogeneous medium, e
a metal lattice. Also, Ladanyiet al.15 presented a simple ap
proach basing on the Thomas-Fermi-Weizsa¨cker theory,
however, their method does not properly take into acco
e22e2 correlations.

Indeed, EPI in inhomogeneous media is still an unsolv
theoretical problem. In spite of quite a few attempts to u
derstand the mechanism of screening the positron in a m
0163-1829/2001/64~19!/195116~14!/$20.00 64 1951
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the subject remains very controversial. The classical
proach is the independent particle model~IPM! still used
with success in most experimental Fermi surface studies
EPI enhances the contact density of all electronic states
the positron by the same factor independent of the posi
coordinates IPM@or rather constant enhancement approa
~CEA!# is a better approximation than would follow from
its name, at least as concerns the angular correla
experiment.

Many theoretical works used the local density approxim
tion ~LDA ! to EPI.16–18 This approach was generalized b
Barbiellini et al.19 who proposed the generalized gradient a
proximation ~GGA! and by Rubaszeket al. who used the
weighted density approximation~WDA!.20 Works using the
constant density potential approximation should
mentioned,21,22 as well as their generalizations.23 The com-
mon defect of all these approaches is that self-consistenc
EPI is not controlled, i.e., it is not known whether the pote
tial used in the formalism leads to exact screening of
positron. If it does not, then the electron density on the p
itron obtained in this way is not reliable.

As concerns deviations from the local density approxim
tion in metal lattices, this problem according to Ref. 24 is
lesser importance, at least in Al. But this conclusion follo
from experimental considerations and means that a satis
tory theory of e12e2 interaction in metal lattices is no
existing. Note also that the conclusion of Ref. 24 differs
this regard from other studies both experimental a
theoretical19 also ~Refs. 25,20,26!.

The HNC approach in the form of Ref. 11 has been us
for studying EPI in inhomogeneous media,25 including metal
lattices~for the case of a positron in lithium!.27,26 However,
technical reasons prevented the authors of Refs. 25,27,
26 from treating cases where the medium surrounding
positron is anisotropic, so one single one-dimensional fu
tion cannot describe the screening.

In the present work a formalism is developed in which t
local annihilation rates are computed for a positron insid
©2001 The American Physical Society16-1
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H. STACHOWIAK AND E. BOROŃSKI PHYSICAL REVIEW B 64 195116
spherical inhomogeneity in an electron liquid. Since the p
itron is more or less delocalized, all its positions with rega
to the inhomogeneity must be taken into account, particula
those where the positron coordinates do not coincide with
center. Remark that a spherical inhomogeneity is a q
good model of a real metal~at least from the point of view o
EPI!, since far away from the positron the metal can
treated as homogeneous as concerns screening the pos
So a single spherical inhomogeneity includes most of
problem. On the other hand, nodes of the density amplit
introduce singularities in the equations. In Refs. 27,26
problem of this kind was solved in the isotropic case~i.e., for
the positron on the Li nucleus!. In the present work we de
cided to overcome only one still unsolved problem, name
screening of a noncentral positron, leaving aside the prob
of nodes in the anisotropic case~for earlier attempts in this
direction see Ref. 28!.

II. BASIC ASSUMPTIONS

We derived the equation for the enhancement amplitudw
in a metal lattice in Ref. 26:

x@2¹21W~r p ,r !#w22¹x¹w50. ~1!

x(r )—the density amplitude of conduction electrons in t
absence of the positron—is a known function. We will a
sume that it has spherical symmetry.r p—the positron
coordinate—differs from zero. The derivatives are taken w
regard tor .

Equation~1! is obtained in the following way:x(r ) obeys
the Euler-Lagrange type equation

@2 1
2 ¹21V0~r !#x~r !5hx~r !, ~2!

where V0(r ) is the self-consistent lattice potential@self-
consistent in the meaning of Eq.~2!# andh is the Lagrange
multiplier. It is shown in Refs. 29,26,30 that in lithium and
other alkalis,x(r ) obtained from Eq.~2! reproduces quite
well the main features of the distribution of conduction ele
trons. In presence of the positron atr p the density amplitude
takes the formz(r p ,r ) and it is logical to assume that
obeys the equation

@2 1
2 ¹21V0~r !1 1

2 W~r p ,r !#z~r p ,r !5hz~r p ,r !, ~3!

where W(r p ,r ) is the screened electron-positron potenti
Substituting

z~r p ,r !5w~r p ,r !x~r ! ~4!

into Eq. ~3! one gets Eq.~1!.
The screened potential of electron-positron interactionW

is consisted of three parts:

W~r p ,r !52
1

ur2r pu
1Wp~r p ,r !1Wxc~r p ,r !, ~5!

where the Coulomb potential of the screening cloud is
pressed as
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Wp~r p ,r !5E dr 8
w2~r p ,r 8!21

ur2r 8u
x2~r 8!, ~6!

the exchange-correlation contribution is assumed as

Wxc~r p ,r !5VHL$w2~r p ,r !x2~r !%2VHL$x2~r !%, ~7!

where VHL$r% has the form proposed by Hedin an
Lundqvist.31

We intend to solve in this work the problem of positro
screening in an inhomogeneous electron gas in which
spherical inhomogeneity is isolated and is described by
electron density in absence of the positron expressed as

r~r !5x2~r !5r0H 11s expF2S r

s0
D 2G J . ~8!

s ands0 are parameters (s.21) that allow one to describe
both the amplitude and the size of the inhomogeneity.r0 is
the density of the electron gas. In most of our calculatio
we will use for r0 the value of the density of conductio
electrons in lithium corresponding tor s53.248.

Let us note that fors50 ~i.e., for a homogeneous elec
tron gas!, Eq. ~1! takes the well-known form of Ref. 11

@2¹21W~r !#w50. ~9!

A similar model has already been investigated for the po
tron in the center of the inhomogeneity.26 Here we will con-
sider the problem of a non central positron. The positron
course, is a delocalized particle, so all its possible positi
must be considered.

III. EQUATION FOR THE ENHANCEMENT AMPLITUDE

The enhancement amplitude can be written as an exp
sion in Legendre polynomials:

w~r p ,r !5A~r p!e2as1t~r p ,r !, ~10!

where

t~r p ,r !5 (
n50

`

wn~r p ,r !Pn~cosq! ~11!

vanishes atr5r p and is devoid of the cusp occurring inw at
the positron.

s5ur2r pu5~r 21r p
222rr pcosq!1/2. ~12!

From the assumptiont(r p ,r p)50 it follows thata51/2.
Note that the above assumption is not the only way

avoiding the cusp int at the positron. In general we ca
assume

t~r p ,r p!5D~r p! ~13!

and then the value ofa equal to

a5
D~r p!1A~r p!

2A~r p!
~14!

takes care of the cusp. Of course, the substitutionD50 is the
simplest one, since it leads to a constant value ofa ~inde-
pendent ofr p).
6-2
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The value ofA(r p) gives information about the local ann
hilation rate.q is the angle betweenr and r p . The smooth-
ness oft allows to limit ourselves, at least in this work, t
two terms in Eq.~11!.

The exponential term in formula~10! includes the cusp
contribution tox i . Reproducing the cusp with a series
Legendre polynomials would need including many terms
the expansion. Of course, describingt with only two spheri-
cal harmonics requires the screening cloud around the p
tron to be large in comparison to the distance of the posit
from the nucleus. Table I shows that such an assumptio
reasonable up tor p52.1 a.u.~at least forr s53.248 corre-
sponding to lithium! and leads to the right values of th
enhancement factors for a positron in an electron gas.
also remarkable that forr p approaching zero the solutio
approaches continuously the result forr p 50 obtained by
solving an infinitely simpler equation.

With two components left in the expansion~11! and a
nodeless unperturbed density amplitudex(r ), Eq. ~1! takes a
more specific form

2w0922S 1

r
1

x8

x Dw081W~r p ,r !w0

1F2w1922S 1

r
1

x8

x Dw181S W~r p ,r !1
2

r 2D w1Gcosq

1F2a21
2a

s S 11
x8

x
r D2

2a

s

x8

x
r pcosq

1W~r p ,r !GAe2as50. ~15!

TABLE I. Dependence ofA(r p) as obtained from Eqs.~20!,
~21! for a homogeneous electron gas on the positron coordinatr p

(r s53.248).

r p

in atomic units
A(r p)

0.011 25 3.250 04
0.0525 3.250 05
0.1125 3.250 06
0.2250 3.250 23
0.30 3.250 51
0.45 3.251 51
0.60 3.253 42
0.75 3.256 89
0.90 3.262 00
1.05 3.268 51
1.20 3.276 15
1.35 3.284 58
1.50 3.293 67
1.65 3.302 87
1.80 3.312 10
1.95 3.320 83
2.10 3.329 10
19511
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We solve Eq.~15! as usual by way of successive linea
izations, substituting forw0 , w1, andA the forms

w05w0
01dw0 , w15w1

01dw1 , A5A01dA, ~16!

wherew0
0, w1

0, andA0 are assumed to be known anddw0 ,
dw1, anddA to be small, so terms nonlinear in these qua
tities can be omitted. Usually five successive linearizatio
are sufficient to obtain a satisfactory solution of such eq
tions.

In this way we get from Eq.~15! the linearized equation
for dw i anddA

2dw0922S 1

r
1

x8

x D dw081W0~r p ,r !dw01w0
0dW~r p ,r !

1F2dw1922S 1

r
1

x8

x D dw181S W0~r p ,r !1
2

r 2D dw1

1w1
0dW~r p ,r !Gcosq1F2a21

2a

s S 11
x8

x
r D

2
2a

s

x8

x
r pcosq1W0~r p ,r !GdAe2as

1A0e2asdW~r p ,r !52F~r !, ~17!

where

F~r !52w0
0922S 1

r
1

x8

x Dw0
081W0~r p ,r !w0

0

3H 2w1
0922S 1

r
1

x8

x Dw1
081FW0~r p ,r !1

2

r 2Gw1
0J

3cosq1F2a21
2a

s S 11
x8

x
r D2

2a

s

x8

x
r pcosq

1W0~r p ,r !GA0e2as, ~18!

where

W~r p ,r !5W0~r p ,r !1dW~r p ,r !. ~19!

W0 is obtained by substitutingw0 for w in Eqs.~5!–~7!. W0
anddW are treated in detail in the Appendixes.

Following the way described in Appendixes A–E we
nally get the set of equations

2dw0922S 1

r
1

x8

x D dw081~W̃11z00!dw01~W̃21z01!dw1

1~B11W̃41z0A1S0!dA18pE
0

`

r 82dr8x2~r 8!

3@s0
0dw0~r 8!1s1

0dw1~r 8!#52F0 , ~20!
6-3
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2dw1922S 1

r
1

x8

x D dw181~3W̃21z10!dw0

1S 2

r 2
13W̃31z11D dw1

1~3B213W̃51z1A1S1!dA18pE
0

`

r 82dr8x2~r 8!

3@s0
1dw0~r 8!1s1

1dw1~r 8!#52F1 , ~21!

where

F0~r !52~w0
0!922S 1

r
1

x8

x D ~w0
0!81W̃1w0

01W̃2w1
0

1~B11W̃4!A0 , ~22!

F1~r !52~w1
0!922S 1

r
1

x8

x D ~w1
0!813W̃2w0

0

1S 3W̃31
2

r 2D w1
013~B21W̃5!A0 . ~23!

The above equations form the basis for the solution of
problem. The meaning of the quantities appearing in them
also given in the Appendixes.

IV. COMPUTATIONS

In order to solve Eqs.~20!, ~21! it is assumed that a suf
ficiently good description of the functionsdwk(r ) is given by
their values at a discrete set of pointsr i ,i 51, . . . ,N. Under
this assumption, Eqs~20!, ~21!, which in fact form a set of
two integrodifferential equations, can be written in the fo
of a set of linear algebraic equations for the unknown qu
tities dwk(r i) anddA.

The boundary conditions are obvious:

w08~r p,0!50, w0~r p ,`!51, w1~r p,0!50, w1~r p ,`!50.
~24!

The quantitydA rises the necessity of introducing an add
tional equation that gives the criterion for the choice ofA in
the formula~10!. In practice here is a major source of th
uncertainties occurring in the solution.

The additional condition should be

t~r p ,r p!50. ~25!

However, describingt with two spherical harmonics only
we are unable to reproduce the zero. For this reason we
in our calculations the additional condition in the form

w0~r p ,r p!1w1~r p ,r p!5v~r p!, ~26!

where the way of choosingv(r p) is described below.
For a given system defined by the formula~8! the condi-

tions~24! and~26! lead to a unique solution, inasmuch as t
final results do not depend on the starting values
19511
e
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w0
0(r p ,r ), w1

0(r p ,r ), andA0 as far as they are not too differ
ent from the ground state function.

A major problem was to estimate the functionv(r p) in
Eq. ~26!. Our first attempt to solve Eqs.~20!, ~21! was per-
formed for a homogeneous electron gas. Here we are in
advantageous situation that the exact solution of the prob
is known. It is obtained for the positron atr p50. Transfer-
ring the positron from the central point of the coordina
system tor p we can compute the functionswk

j (r p ,r ) from
the formulas

w0
j ~r p ,r !5

1

2E0

p

sinq dq t~0,ur2r pu!, ~27!

w1
j ~r p ,r !5

3

2E0

p

sinq dq t~0,ur2r pu!cosq, ~28!

wheret(r p ,r ) is defined by Eqs.~10!, ~11!.
The functionv(r p) is obtained in analogy to Eq.~26! as

v j~r0 ,r p!5w0
j ~r p ,r p!1w1

j ~r p ,r p!, ~29!

wherer0 is the density of the electron gas. We remark th
the functiont(0,s) is the exact value that should result fro
solving Eq. ~1! for a homogeneous electron gas wh
v j (r0 ,r p) is the exact value of the functionv(r p) for this
particular case.

Let us now solve Eqs.~20!, ~21! with the boundary con-
ditions~24!–~26! with v(r p) given by Eq.~29!, but assuming
a value ofs in Eq. ~8! equal 0. We solve in this way the
problem of screening the positron in a homogeneous elec
gas, but using a coordinate system displaced with regar
the positron. The results forA(r p) are given in Table I. It is
visible that for not very large values ofr p the formalism
developed in this work leads to quite reliable figures for t
annihilation rate, provided appropriate values forv(r p) are
used in Eq.~26!.

While solving Eqs.~20!, ~21! for the inhomogeneous elec
tron gas described by the formula~8! we will simply use for
v(r p) the local density approximation, assuming thatv(r p)
is a function ofr p and of the electron density atr p in absence
of the positron, i.e.,

w0~r p ,r p!1w1~r p ,r p!5v j@r~r p!,r p#, ~30!

wherer(r p) is given by Eq.~8!. This approach is based o
numerical studies showing that the functionv(r p) has a
more local character than the screening cloud around
positron.

V. LDA, GGA, AND WDA

We shall compare the results obtained in this work to
predictions of the local density approximation, the gener
ized gradient approximation~GGA!,19 the weighted density
approximation~WDA!,20 and the constant enhancement a
proximation ~CEA! for the same system@described by Eq.
~8!#. Since this work is the generalization of the approach
Gondzik and Stachowiak11 labeled HNC, we will assume
while applying LDA, GGA, and WDA the values of the en
6-4
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hancement factors for a homogeneous electron gas obta
according to Ref. 11. Comparison of the enhancement fac
of Ref. 11 with the ones obtained in other approaches
e1-e2 interaction in jellium is given in Fig. 1~for comments
see Ref. 32!. The approach of Ref. 11 is very simple an
leads to results not very different from the ones obtained
Refs. 2,5, or 6. Since the purpose of LDA, GGA, and WD
is to describe the influence of inhomogeneities on the ef
of electron-positron interaction, it is appropriate to assum
all cases the same values of the jellium enhancement. Le
remind the reader that assumptions concerning enhance
factors in jellium do not constitute an integral part of t
three approaches~LDA, GGA, and WDA; as for GGA, the
phenomenological constanta should depend, however, o
the choice of the jellium enhancement!. In their case the
choice of jellium enhancement is a question of taste~or con-
venience!. The approach used in the present work diffe
from them in this regard: for a homogeneous electron ga
reduces to the formalism of Gondzik and Stachowiak.11

The local density approximation has been widely used
positron physics both for determining the theoretical ann
lation rates and the angular correlation functions.17,18,3 It
consists in assuming that the local annihilation ratel(r p) ~in
units of 109 s21) is determined uniquely by the local value
the electron density in absence of the positron, i.e., it is
pressed by the formula

lLDA~r p!5
12

r s
3~r p!

g@r s~r p!#, ~31!

whereg is the enhancement factor and the electron den
r(r ) is connected with the local value of ther s parameter by
the formula

r~r !5
3

4pr s
3~r !

. ~32!

FIG. 1. Enhancement factors for jellium according to differe
approaches. In order of increasing enhancement the figure s
the enhancements proposed in Ref. 33~bn!, Ref. 12 ~phnc!, and
Ref. 19~ap!. The highest enhancement corresponds to the solu
of Eq. ~9! ~hnc!.
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Here we will determineg on the base ofwj (r s,0), the value
on the positron of the solution of Eq.~9! for an electron gas
(s50) characterized by the appropriate value of ther s pa-
rameter@r s(r ) in the case of Eq.~32!#. Since the values of
wj (r s,0) for the electron gas~according to the formalism o
Gondzik and Stachowiak11! have never been published w
present them here in the following form:

ghnc~r s!5wj
2~r s,0!

51.019 0611.336 96r s10.136 51r s
210.081 12r s

3

10.008 63r s
423.249131024r s

5

14.414 5431026r s
6 ~33!

@the formula describeswj
2(r s,0) correctly in the range ofr s

from 0.1 to 25#. Referring to the correlation function~33! we
shall label it with small lettershnc, while the self-consisten
approach expressed by Eq.~3! will be called HNC.

We will also use in this paper other formulas that ha
been proposed in the literature. When referring to them
will assume a similar convention as above. The formula
sulting from the PHNC approach13 is

gphnc~r s!5111.23r s20.1375r s
21r s

3/6 ~34!

and the formula of Boron´ski and Nieminen is33

gbn~r s!5111.23r s10.8295r s
3/221.26r s

210.3286r s
5/21r s

3/6.
~35!

The local annihilation rates used in this work are determin
from the formula

l~r p!5
12

r s
3~r p!

A2~r p!, ~36!

whereA is given by Eq.~10!.
The generalized gradient approximation~GGA! has been

proposed by Barbielliniet al.19 In their approach the loca
enhancement factor depends both on the electron density
the absolute value of the local gradient of this density. It
made to obey the formula

gGGA~r p!511$g@r s~r p!#21%exp~2ae!, ~37!

where

e5U ¹r~r !

r~r !qTF
U2

, ~38!

andg(r s) in Ref. 19 was given by the formula interpolatin
the results of Arponen and Pajanne~AP! for the homoge-
neous electron gas2

gap~r s!5111.23r s20.0742r s
21r s

3/6. ~39!

qTF
21 is the local Thomas-Fermi screening length anda is a

phenomenological constant chosen equal to 0.22 in orde
fit experimental positron lifetimes in metals. Because of
reasons presented at the beginning of this section we use
Eq. ~37! the formula~33! for g(r s) @in Sec. VII we use also

t
ws

n
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the formulas~34!, ~35!, and~39!#. In this situation the corre-
sponding coefficienta should be different. We considere
however, that the appropriate change would introduce o
minor quantitative corrections togGGA. This is why we ap-
plied the value ofa proposed by Barbielliniet al.

The weighted density approximation applied to positro
by Rubaszeket al.20 ~earlier applications can be found i
Refs. 34 and 35! replaces the local electron density by
effective density taking account of the whole behavior of
electron density within the range of thee1-e2 interaction.
The correlation functiongWDA(re ,r p) is approximated by its
analog in an electron gasgh@ ure2r pu,r* (r p)#, wherer* (r p)
is an effective WDA density for electrons.

Conventionally, one assumes an exponential distribu
of the screening charge

gh@ ure2r pu,r* ~r p!#511$g@r s* ~r p!#21%exp~2aure2r pu!,
~40!

wherea5A3 8p$g@r s* (r p)#21%r* .
In our calculations the densityr* (r p) is found for any

positron positionr p on the base of the charge neutrality co
dition for the screening cloud:

E drer~re!$g
h@ ure2r pu,r* ~r p!#21%51 ~41!

@for given positron coordinatesr p , one seeks such a densi
valuer* that the formula~41! is fulfilled#.

VI. RESULTS

We present here results obtained fors520.9 and 2 and
different values ofs0 and compare them to the results
different approaches used previously in the literature in or
to estimate annihilation characteristics in metals. Equati
~20!, ~21! are solved in two cases. Namely, writing Eq.~1! in
the form

x@2¹21W~r p ,r !#w22c¹x¹w50 ~42!

we should putc51. However, in order to study the impo
tance of the gradient term in the above equation we co
puted the solution also forc50.

First-principles computations of the enhancement am
tude forr p.0 performed in this way allow one to check th
reliability of earlier guesses concerning this quantity wh
can be found in the literature. The annihilation rates obtai
from solving Eqs.~20!, ~21! are shown in Figs. 2 and 3
together with the predictions following from LDA, GGA
WDA, and CEA. The results of our calculations approa
LDA only for quite large dimensions of the inhomogene
~i.e., of the order of the lattice constant of lithium!. Calcula-
tions performed for the positron atr 50 ~Ref. 26! have al-
ready shown that~a! the contact values of the enhanceme
amplitudes for both cases (s,0 ands.0) are not mono-
tonic functions ofs0, ~b! for narrow inhomogeneities (s0
,1) the screening charge around the positron~and the con-
tact value! resembles the corresponding figures for the bu
the inhomogeneity is too narrow for the screening cloud
build up inside of it, and~c! for wider inhomogeneities (s0
19511
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.1) the screening charge builds up inside the inhomogen
and the charge distribution~and the contact value! starts to
approach the expectations of LDA. The wider is the inhom
geneity the closer is the enhancement to the LDA values

Comparison of the annihilation rates obtained in this p
per with the predictions of earlier works leads to the follo
ing conclusions. As concerns LDA the conclusions obtain
in Ref. 26 concerning the case of a positron atr p50 are
confirmed. Only fors0.1 the annihilation rates begin t
approach LDA expectations.

GGA improves to a certain degree agreement with
results of the present work in comparison to LDA, but on
for s,0. This is connected with the fact that the sign of t
gradient correction does not change with the sign ofs.

The WDA predictions are closer to our results than tho
of GGA. In many cases WDA reproduces quite well the
sults obtained from solving Eq.~42! especially if c is put
equal to 0. This last feature is presented in Fig. 4.

The annihilation rates obtained in this work are also co
pared to the constant enhancement approximation~CEA!
which as concerns angular correlation is equivalent to
independent particle model~IPM!. According to CEA the
enhancement factor depends neither on the electronic
nor on the positron coordinate@g in Eq. ~31! is given for the
constant value ofr s corresponding to the bulk value of th
electron density#. In surprisingly many cases the behavior
the annihilation rate obtained in our work is closer to CE
than to LDA. Remark that WDA is still closer to CEA tha
the results of the present paper.

Note that in Fig. 2 the annihilation rates drop quite oft
below 2 ~i.e., below the spin averaged positronium valu!.
This agrees with the results obtained earlier.25

VII. CALCULATIONS FOR A VACANCY IN AL

In order to show how the methods presented above w
for particular cases, we performed calculations for a vaca
in Al. This vacancy was modelled by a spherical hole
jellium with r s corresponding to the electron density of al
minum and equal 2.07. The electron density distribution
the vacancy has been calculated self-consistently accor
to the conventional scheme used in Ref. 33. It can be
scribed quite well by a Gaussian with parameterss5
20.84 ands053. We preferred to use, however~this pre-
sents no difficulty!, exactly the same profile as obtained fro
calculations.

We calculated the enhancement factors correspondin
this density distribution according to formulas~31!, ~37!,
~40!, ~36! corresponding to LDA, GGA, WDA, and the
present approach, respectively. Additionally, we calcula
the enhancement according to the Boron´ski and Nieminen
~BN! two-component approach33 by applying the corre-
sponding numerical code.

In order to make all the approximations comparable
had to~a! replace the enhancement factors obtained from
theory by the LDA result forr p.3 @the reason was that w
were able to solve reliably Eq.~42! only up to 3.0 a.u. for
the r s value of Al# and ~b! renormalize the enhanceme
calculated self-consistently according to the BN33 two-
6-6
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FIG. 2. Local annihilation rate
l(r p) according to this work and
labelled HNC, according to the lo
cal density approximation~LDA !,
the weighted density approxima
tion ~WDA!, the generalized gra-
dient approximation~GGA!, and
the constant density approxima
tion ~CEA!. s is equal to20.9
and s0 is given on the figures in
atomic units.
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component approach in the whole region of interest in or
to account for the difference between the Boron´ski and Ni-
eminen formula~35! for the correlation function and th
HNC formula ~33! applied in the present calculations.

The results are presented in Fig. 5. Again, the WDA a
proximation agrees best with our results unlike LDA a
GGA that are quite far both from WDA and the solution
Eq. ~42!. The BN enhancement in the vacancy~according to
the two-fluid approach! is also smaller forr→0 than follows
from pure LDA or GGA. Let us remark that in the approa
used in Ref. 33 an effective electron density in presence
the positron trapped in the vacancy is calculated using
two-fluid model. Then the local values of this density a
19511
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applied for determining the local annihilation rates in LD
approximation. The application of the two-compone
scheme required very complicated many-body calculati
for electron-positron mixtures that have been carried out
Lantto.36 In our opinion, the present approach that det
mines directly the electron density amplitude for any po
tron position is superior to the method used in Ref. 33.

We also computed positron lifetimes for the vacancy
Al. The experimental values range from 240,37, 246,38 to
253 psec.39 Calculations were performed in LDA, GGA
and WDA and according to the self-consistent approach p
sented in this work. The positron wave function was calc
lated using the LDA approximation for the correlation pote
6-7
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FIG. 3. The same as in Fig. 2
but for s52.
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tial. The results are presented in Table II in the first colum
Of course, the convenient and simple HNC-type appro

mation to the enhancement used in this paper cannot be
sidered as the best and conclusive one when comparing
results to experiment. One should then apply rather
PHNC approximation~elaborated for the electron gas
Refs. 12 and 13! that takes into account scattering of ele
trons in different states on the positron. So, in order to
the trends we applied thephnc formula ~34! in LDA, GGA,
and WDA approximations. The corresponding results
given in the third column in Table II. Unfortunately, it i
impossible at the moment to get self-consistent results for
inhomogeneous electron gas according to PHNC. There
19511
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we simply renormalized the results obtained using Eq.~42!.
We did it in such a way that we found with thehnc formula
~33! the electron density corresponding to the HNC enhan
ment in the positron position and then used this value ag
in the phnc formula ~34!. The corresponding lifetime is pre
sented in the fourth row in the third column of Table II~the
abbreviation renorm. is added!. We repeated a similar proce
dure using the formulas of Arponen-Pajanne~39! and of
Boroński-Nieminen~35! for the enhancement in jellium. Th
corresponding results are presented in the second and fo
columns in Table II. Note that the positron lifetime resultin
from calculations in Ref. 33 is 240 psec.

As can be seen from Table II the HNC approach gives@as
6-8
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FIG. 4. Enhancement factor
for two values of thes ands0 pa-
rameters. The case whenc is put
equal 0 in Eq.~42! is also shown
~full curve with circles!.
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should be expected~cf see Fig. 1!# too low a value of posi-
tron lifetime when comparing to experiment. The best agr
ment can be observed forap ~WDA and HNC renormalized!
and phnc ~GGA and HNC renormalized! enhancements
Also, thebn LDA and GGA values are close to experimen
figures. However, according to the discussion contained
the paper~in Sec. VI! and our criticism towards LDA and
GGA one should put confidence rather in the HNC and W
results. In this respect theap formula gives the values that fi
the experiment the best. Because of the general reason
pressed earlier in the paper and in Ref. 32, we give
confidence and priority to the PHNC approach.

VIII. CONCLUSIONS

It has been shown that the problem ofe1-e2 interaction
in an inhomogeneous electron system can be solved f
first-principles by generalizing the approach proposed
Gondzik and Stachowiak11 for a homogeneous electron ga
Unlike in earlier first-principles calculations21–23 self-
consistency of the solution is controlled. This makes the

FIG. 5. The enhancement factors for different positions of
positron inside the Al vacancy calculated with the formula~33! in
LDA, GGA, WDA, and HNC. The results obtained within the B
two-component approach have been renormalized as explaine
the text.
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sults more reliable. Calculations have been performed fo
model. They give the possibility to appreciate the reliabil
of such intuitive guesses concerning this problem as the lo
density approximation, the generalized gradient approa
the weighted density approximation, and the constant
hancement model~often referred to as IPM!. It is shown that
all these approaches lead to local annihilation rates differ
drastically as well from each other as from most of the
sults of first-principles calculations performed in this work

The model assumes a spherical inhomogeneity of ga
ian shape, characterized by two parameters describing
amplitude and its size, respectively. This allows to stu
e1-e2 interaction in any spherical inhomogeneity with reg
lar behavior of the electron density. The two paramet
make possible a classification of inhomogeneities and ar
no way a limitation of the generality of the approach. In th
paper, however, we were unable to treat the inhomogene
that play the most important role in metals, namely, tho
connected with atoms where singularities occur, connec
with the nucleus and the nodes in the wave functions
conduction electrons. This problem was solved in Ref. 26
the positron on the nucleus. Generalizing the solution
arbitrary positions of the positron with regard to the nucle
needs further studies that are under way. However, the
malism developed in the present work~i.e., computing the
accumulation of electrons on the positron for the positron
an anisotropic surrounding! is a necessary first step in th
direction.

TABLE II. Positron lifetimes in an Al vacancy according t
different approximations~in psec!. The abbreviationshnc, phnc, ap,
andbn refer here to formulas~33!, ~34!, ~39!, and~35! used when
applying LDA, GGA, WDA, and HNC. Original self-consistent BN
calculations within the two-fluid model give 240 pse.

hnc ap phnc bn

LDA 198 216 230 250
GGA 208 225 241 261
WDA 222 251 269 292
HNC 227 247 renorm. 263 renorm. 285 renorm.

e

in
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In general LDA, GGA, and WDA lead to results for th
local enhancement very different from each other. WD
seems to deviate less from the results of our computation
the whole range of values of the size and the amplitu
~positive or negative! of the inhomogeneity. This conclusion
however, concerns only the kind of inhomogeneities inve
gated in this work.

As concerns inhomogeneities corresponding to vacanc
we were able to perform full calculations of positron lif
times. We used the example of an Al vacancy treated
detail quite long ago by Boron´ski and Nieminen.33

Comparison of theoretical values of lifetime with expe
ment~and in principle this is the only experimental inform
tion available! is not very conclusive, since a single valu
can be easily adjusted to one’s needs. So we would lik
emphasize rather methodological problems that are solve
the present work in comparison to Ref. 33.

Boroński and Nieminen compute the electron and po
tron distributions in the vacancy by using the two-fluid a
proach. The electron distribution obtained in this way is th
enhanced on the positron using LDA.

Let us point out that applying the two-fluid model is
this case a controversial assumption, since only one pos
is present in the system. And LDA fore1-e2 interaction is
just an approximation that can be contested on base of q
tum mechanics.

In the present paper the electron distribution around
positron in the vacancy is computed directly for each po
tion of the positron by solving the appropriate Eule
Lagrange equation. This last is a generalization of the
proach proposed by Gondzik and Stachowiak11 on the base
of the work of Kallio, Lantto, and Pietila¨inen.9
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In order to perform the calculations it was necessary
elaborate numerical methods of solving integrodifferen
equations for systems devoided of spherical symmetry. Th
methods, of course, have a more general applicability.
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APPENDIX A: SPHERICAL HARMONICS OF THE
EQUATION FOR THE ENHANCEMENT AMPLITUDE

By expressing Eq.~17! in terms of spherical harmonic
we could obtain from it an infinite series of one-dimension
equations describing the angular behavior of the soluti
However, since we limit ourselves to two terms in the expa
sion, the same must be done while solving Eq.~17!. Namely,
we must expand both sides of Eq.~17! into spherical har-
monics, limiting ourselves to the first two terms. for e
ample, we have

F0~r !5
1

2E0

p

sinqdqF~r !5
1

2E0

p

sinqdqF~r !P0~cosq!,

~A1!

F1~r !5
3

2E0

p

sinqdqF~r !cosq

5
3

2E0

p

sinqdqF~r !P1~cosq!. ~A2!

From Eq.~17!, we obtain in this way the set of equation
2dw0922S 1

r
1

x8

x D dw081^W0~r p ,r !&dw01^W0~r p ,r !cosq&dw11w0
0^dW~r p ,r !&1w1

0^dW~r p ,r !cosq&

1 K F2a21
2a

s S 11
x8

x
r D2

2a

s

x8

x
r pcosq1W0~r p ,r !Ge2asL dA1A0^dW~r p ,r !e2as&52F0~r !, ~A3!

2dw1922S 1

r
1

x8

x D dw1813^W0~r p ,r !cosq&dw013w0
0^dW~r p ,r !cosq&1F3^W0~r p ,r !cos2q&1

2

r 2G
3dw113w1

0^dW~r p ,r !cos2q&13K F2a21
2a

s S 11
x8

x
r D2

2a

s

x8

x
r pcosq1W0~r p ,r !Ge2ascosq L dA

13A0^dW~r p ,r !e2ascosq&52F1~r !, ~A4!
where^•••& means averaging over directions ofr .
We introduce the notation

W̃i5^W0Hi& ~A5!
and

S̃i5^dWHi&, ~A6!

where
6-10
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H151, H25cosq, H35cos2q, H45e2as,

H55e2ascosq. ~A7!

We also define the functionB(r p ,r ) as

B~r p ,r !5F2a21
2a

s S 11
x8

x
r D2

2a

s

x8

x
r pcosqGe2as

~A8!

and its averages

B15^B&, B25^B cosq&. ~A9!

The expressionsG i are defined as

G 05w0
0S̃11w1

0S̃21A0S̃4 , ~A10!

G 153~w0
0S̃21w1

0S̃31A0S̃5!. ~A11!

The way of computing the functionsW̃i , S̃i , and Bi is
shown in Appendixes B and D. In Appendix E it is show
that the expressionsG i can be written as

G i5z i0dw0~r !1z i1dw1~r !1~z iA1S i !dA

18pE
0

`

r 82dr8x2~r 8!@s0
i dw0~r 8!1s1

i dw1~r 8!#.

~A12!

The way of computing the quantitiesz i j , S i , ands j
i is also

shown in Appendix E.

APPENDIX B: NOTATION FOR THE AVERAGES

The quantitiesW̃i and S̃i of Eqs.~A5! and ~A6! are com-
puted from the formulas

W̃i52Ui1Vi1Wi ~B1!

and

S̃i5Xi1Si , ~B2!

where

Ui5 K Hi

s L , Vi5^Wxc
0 Hi&, Xi5^dWxcHi&,

Wi5^Wp
0Hi&, Si5^dWpHi&. ~B3!

dWp is obtained from Eq.~6! and has the form

dWp~r p ,r !52E dr 8
w0~r p ,r 8!dw~r p ,r 8!

ur2r 8u
x2~r 8!.

~B4!

Let us introduce the notation

f 15~w0
0!221, f 252w0

0w1
0 , f 35~w1

0!2,

f 45~A0!2, f 552A0w0
0 , f 652A0w1

0 , ~B5!
19511
g15w0
0dw0 , g25w1

0dw01w0
0dw1 , g35w1

0dw1 ,

g45A0dA, g55A0dw01w0
0dA, g65A0dw11w1

0dA.
~B6!

We can writeWi andSi in the form

Wi5(
j 51

6

W i
j , Si5(

j 51

6

S i
j , ~B7!

where

W i
j54pE

0

`

r 82dr8 f j~r p ,r 8!x2~r 8!Ti
j~r p ,r ,r 8!, ~B8!

S i
j58pE

0

`

r 82dr8gj~r p ,r 8!x2~r 8!Ti
j~r p ,r ,r 8!. ~B9!

In this way the problem of computing the averagesWi and
Si has been reduced to computing the functionsTi

j . Compu-
tation ofUi andBi presents no special additional problem.
Appendix D some indications are given about how to expr
the Ti

j functions through the functionsI n andDn defined in
Appendix C.

APPENDIX C: THE FUNCTIONS I n AND Dn

The functionsI n(r ,r 8) andDn(a,r p ,r ) are defined as

I n~r 1 ,r 2!5
1

2E21

1

dt
Pn~ t !

~r 1
21r 2

222r 1r 2t !1/2
, ~C1!

Dn~a,r p ,r !5
1

2E21

1

dte2a(r p
2

1r 222r prt )1/2
Pn~ t !. ~C2!

The analytical computation of the integral in Eq.~C1!
starts with the substitution

s5~r 1
21r 2

222r 1r 2t !1/2 ~C3!

leading to

dt52
sds

r 1r 2
, t5

1

2r 1r 2
~r 1

21r 2
22s2!. ~C4!

In this way we get

I n~r 1 ,r 2!5
1

2r 1r 2
E

b

a

dsPnF 1

2r 1r 2
~r 1

21r 2
22s2!G , ~C5!

where

a5r 11r 2 , b5ur 12r 2u. ~C6!

Using the notation
6-11
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Pn~x!5 (
m50

n

anmxm ~C7!

we obtainI n(r 1 ,r 2) in the form of polynomials. The func
tions Dn(a,r p ,r ) are computed by direct numerical integr
tion, though their analytical form is known.

APPENDIX D: THE FUNCTIONS Ti
j

We define the functionsTi
j (r p ,r ,r 8) as

Ti
j5

1

4p K E dV8
F j~r p ,r 8,cosq8!

ur2r 8u
Hi~r p ,r ,cosq!L ,

~D1!

wheredV8 means integration over directions ofr 8. We have

F151, F25cosq8, F35cos2q8, F45e22as8,

F55e2as8, F65e2as8cosq8, ~D2!

Hi are defined in Eq.~A7!. The angles are expressed in t
coordinate system connected withr 8 :

r p5r p~sinq8,0,cosq8!,

r 85r 8~0, 0, 1!,

r5r ~sinQ cosF,sinQ sinF,cosQ!. ~D3!

Ti
j can be written in the form

Ti
j5

1

2E sinq8dq8F j~r p ,r 8,cosq8!K Hi~r p ,r ,cosq!

ur2r 8u
L .

~D4!

Our aim is to express the functionsTi
j according to the gen

eral formula

Ti
j5 (

n521

`

Dn~a,r p ,r ! (
n850

`

(
n9521

`

cnn8n9
i j I n8~r ,r 8!

3Dn9~a j ,r p ,r 8!, ~D5!

whereD21 is assumed to be equal to unity.
Four formulas are particularly useful while performin

the computations. These are40

E
0

2p

dF Pn~sinq sinQ cosF1cosq cosQ!

52pPn~cosq!Pn~cosQ!, ~D6!

the second

~2n11!zPn~z!5~n11!Pn11~z!1nPn21~z!, ~D7!

the third

e2a(r 1
2
1r 2

2
22r 1r 2cosq)1/2

5 (
n50

`

~2n11!Dn~a,r 1 ,r 2!Pn~cosq!. ~D8!
19511
The fourth formula will be particularly useful when ave
aging over directions ofr expressions which depend both o
the angleq betweenr andr p and on the angleQ betweenr
andr 8. The three vectors occurring in this case are expres
by Eq. ~D3!.

Using the formulas~D6! and ~C1! we have

K Pn~cosq!

~r 21r 8222rr 8cosQ!1/2L 5I n~r ,r 8!Pn~cosq8!.

~D9!

We adopt the convention thatI n is a function ofr andr 8 and
Dn situated afterI n depends onr 8 while situated beforeI n it
depends onr. The prime atDn8 indicates that the valuea is
replaced by 2a @see Eq.~C2!#. We get, e.g.,

T5
65 (

n50

`

DnH n11

2n13
I n11@~n12!Dn121~n11!Dn#

1
n

2n21
I n21@nDn1~n21!Dn22#J . ~D10!

It follows from numerical calculations that for low value
of r p which are for us of particular interest the magnitude
Dn decreases rapidly with increasingn. So in the following
we will put Dn50 for n&1. In this case the functionsTi

j take
the following form which is used subsequently in the co
putations:

T1
15I 0 , T1

250, T1
35 1

3 I 0 , T1
45I 0D08 , T1

55I 0D0 ,

T1
65I 0D1 , ~D11!

T2
150, T2

25 1
3 I 1 , T2

350, T2
45I 1D18 , T2

55I 1D1 ,

T2
65

I 1

3
D0 , ~D12!

T3
15 1

3 I 0 , T3
250, T3

35 1
9 I 01 4

15 I 2 , T3
45 1

3 I 0D08 ,

T3
55 1

3 I 0D0 , T3
65 1

3 I 0D11 4
15 I 2D1 , ~D13!

T4
15D0I 0 , T4

25D1I 1 , T4
35 1

3 D0I 0 ,

T4
45D0I 0D0813D1I 1D18 , T4

55D0I 0D013D1I 1D1 ,

T4
65D0I 0D11D1I 1D0 , ~D14!

T5
15D1I 0 , T5

25 1
3 D0I 1 , T5

35 1
3 D1~ I 01 4

5 I 2!,

T5
45D0I 1D181D1I 0D08 , T5

55D0I 1D11D1I 0D0 ,
~D15!

T5
65 1

3 D0I 1D01D1I 0D11 4
5 D1I 2D1 .
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APPENDIX E: DISENTANGLEMENT OF THE OG i

FUNCTIONS

In Eqs.~A3! and ~A4! the unknown quantitiesdw0 , dw1
anddA appear eitherexplicit or they are entangled indW. In
order to solve these equations, the unknown quantities m
appear openly. We will treat now the termsG i as defined by
Eqs.~A10! and ~A11!.

From Eq.~5! it follows that

dW5dWp1dWxc . ~E1!

From Eq.~7! we have

dWxc52w0x2VHL8 ~dw01cosqdw11e2asdA!. ~E2!

We will use the notation from Eq.~B3!

Xi5j i0dw01j i1dw11j iAdA ~E3!

and also@in analogy to Eq.~E1!#

G i5G p
i 1G xc

i . ~E4!

We have

G xc
i 5z i0dw01z i1dw11z iAdA, ~E5!

where

z0i5w0
0j1i1w1

0j2i1A0j4i , ~E6!

z1i53~w0
0j2i1w1

0j3i1A0j5i !. ~E7!

We would like to presentG p
i in the same form.

We remark, however, thatG xc
i has the same form as th

remaining terms in Eqs.~A3! and ~A4! inasmuch as it does
not contain nonlocal contributions.G p

i is different. We have
@see Eqs.~B7!, ~B9!, ~A10!, ~A11!#

G p
058pE

0

`

r 82dr8x2~r 8!(
j 51

6

gj~w0
0T1

j 1w1
0T2

j 1A0T4
j !,

~E8!
19511
st

G p
1524pE

0

`

r 82dr8x2~r 8!(
j 51

6

gj~w0
0T2

j 1w1
0T3

j 1A0T5
j !.

~E9!

Let us call

t j
05w0

0~r !T1
j 1w1

0~r !T2
j 1A0T4

j ,

t j
153@w0

0~r !T2
j 1w1

0~r !T3
j 1A0T5

j #. ~E10!

We have

(
j 51

6

gjt j
i 5s0

i dw01s1
i dw11sA

i dA, ~E11!

where

s0
i 5w0

0~r 8!t1
i 1w1

0~r 8!t2
i 1A0t5

i ,

s1
i 5w0

0~r 8!t2
i 1w1

0~r 8!t3
i 1A0t6

i ,

sA
i 5w0

0~r 8!t5
i 1w1

0~r 8!t6
i 1A0t4

i . ~E12!

So the terms containingdWp in Eqs. ~A3!, ~A4! can be
written in the form

G p
i 58pE

0

`

r 82dr8x2~r 8!@s0
i dw0~r 8!1s1

i dw1~r 8!#1S idA,

~E13!

where

S i58pE
0

`

r 82dr8x2~r 8!sA
i . ~E14!

Summarizing we have

G i5z0
i dw0~r !1z1

i dw1~r 8!1~zA
i 1S i !dA

18pE
0

`

r 82dr8x2~r 8!@s0
i dw0~r 8!1s1

i dw1~r 8!#.

~E15!
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