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Quantum theory of a nematic Fermi fluid
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We develop a microscopic theory of the electronic nematic phase proximate to an isotropic Fermi liquid in
both two and three dimensions. Explicit expressions are obtained for the small amplitude collective excitations
in the ordered state; remarkably, the nematic Goldstone mode~the director wave! is overdamped except along
special directions dictated by symmetry. At the quantum critical point we find a dynamical exponent ofz
53, implying stability of the Gaussian fixed point. The leading perturbative effect of the overdamped Gold-
stone modes leads to a breakdown of Fermi-liquid theory in the nematic phase and to strongly angle-dependent
electronic self energies around the Fermi surface. Other metallic liquid-crystal phases, e.g., a quantum hexatic,
behave analogously.
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There is a growing body of both experimental and the
retical evidence for the relevance of inhomogeneous an
anisotropic metallic phases in a wide array of highly cor
lated electronic systems. Quasi-one-dimensional~stripe or
‘‘electronic smectic’’! phases have been observed in a la
variety of transition-metal oxides.1 More recently,2,3 the dra-
matic discovery of a metallic phase with a strongly anis
tropic resistivity tensor for a range of magnetic fields in
traclean heterojunctions has provided clear evidence of
existence of a ‘‘quantum Hall nematic’’ phase. In parall
theoretical work4,5 has been carried out on electronic liqui
crystal phases. These ground-state phases are class
based on broken symmetries, by analogy with classical liq
crystals. So far, these studies have focused primarily on
smectic, which is a unidirectional density wave with brok
translational symmetry in only one direction, but which su
ports liquidlike electron flow,6,7 and to a lesser extent on th
nematic, which is uniform but anisotropic~breaks rotational
symmetry!.8,9 A nematic state in the proximity to the smect
state can be visualized most naturally as a melted sme
i.e.,, a smectic with dislocations. However, a theory of
nematic phase based on this picture has yet to be satisf
rily formalized.

In this paper we approach the nematic metal via a co
plimentary route, from the isotropic and weakly correlat
side. In this limit, the zero-temperature isotropic to nema
transition is a Fermi-surface instability. The director ord
parameter which characterizes the broken symmetry of
nematic state is a rank two symmetric traceless tensor w
is even under time reversal. In two dimensions, but not
three, the order parameter is odd under 90° spatial rota
For simplicity we first consider spinless fermions in two d
mensions with full rotational symmetry, deferring until lat
any discussion of spin and the symmetry-breaking effect
the crystal fields which are inevitable in actual solids. Wh
many microscopic definitions of this order parameter
possible, we shall see that the natural one in the pre
context is the quadrupole density,

Q̂~x![2
1

kF
2

C†~rW !S ]x
22]y

2 2]x]y

2]x]y ]y
22]x

2DC~rW !, ~1!
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where kF is the Fermi wave number. The order parame
Q[^Q̂& can be expressed in terms of an amplitude an
phase,Qe2iu5Q111 iQ12. Thus, in the broken symmetr
state the Fermi surface is elliptical~i.e., the Fermi momen-
tum varies around the Fermi surface!, with eccentricity pro-
portional toQ along a major axis at an azimuthal angle6u.

At finite temperature,T, where the long-distance physic
is purely classical, an electronic liquid crystal has much
same character as a conventional liquid crystal. In the cas
the two-dimensional nematic, this means that there is no
long-range order, and a Kosterlitz-Thouless transition a
critical temperature to the disordered~high-temperature!
state. It is a remarkable feature of the hydrodynamics
classical nematics~in both two and three dimensions! that
the director wave~i.e., the finite-temperature Goldston
mode! is overdamped.10,11

At zero temperature, the nematic phase possesses a
broken symmetry. Many features of this state follow as
direct consequence of symmetry breaking, independen
microscopic considerations. The quantum transition betw
the nematic and isotropic states can be studied at mean-
level by considering the Landau expansion of the grou
state energy as

E~Q!5E~0!1
A

4
Tr@Q2#1

B

8
Tr@Q4#1•••. ~2!

That only even terms appear in this expansion is a con
quence of the odd parity ofQ under 90° rotations. At the
transition point,A changes from positive in the isotropi
phase to negative in the nematic phase, in whichQ
5AuAu/B1•••. The elastic theory which governs any lon
wavelength, static variations of the order parameter is
rectly inherited from the classical theory,10,11 leading to an
energy density functional of the form

V @Q#5E~Q!2
k̃

4
Tr@QDQ#2

k̃8

4
Tr@Q2DQ#1•••, ~3!

whereDi , j[] i] j ~neglecting total derivative terms!. In the
ordered phase, Eq. 3 leads to two elastic moduli~Frank
©2001 The American Physical Society09-1
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constants!, but since they are interchanged by a 90° rotati
the difference between the two is proportional toQ, and so is
small so long asQ is small. The dynamics of the collectiv
modes, as well as explicit expressions for the various coe
cients which enter the theory, must be derived from mic
scopic considerations.

I. THE MODEL

We take as our model

H5E drWC†~rW !e~¹W !C~rW !

1
1

4E drWE drW8F2~rW2rW8!Tr@Q̂~rW !Q̂~rW8!#. ~4!

Heree(kW ) is the single-particle energy and we have ignor
all density-density interactions other than the essential o
for present purposes, involving the quadrapolar densit12

The single-particle energy can be linearized about the Fe
surface, but for later convenience we keep one furt
term in the expansion,13 e(kW )5vFq@11a(q/kF)2# with
q[ukW u2kF . To be explicit, we take the interaction to b
the Fourier transform of a simple Lorentzian,F2(rW)
5(2p)22*dkWeiqW •rWF2 /@11kF2q2#, whereF2 is the appro-
priate Landau parameter. Our results are not qualitativ
sensitive to any of these details.

Landau parameters in a strongly correlated fluid are no
riously difficult to deduce from microscopic consideration
but they can be large. In He3, for instance,NFF0 is found to
vary14 from 10 to 80 as a function of pressure between 0 a
27 atm. At the simplest level, one might hope to expr
these parameters in terms of the Fourier transform of an
fective density-density interaction as

Fn5V~ uqW u50!dn,02E
0

2p du

2p
cos~nu!V@2kF sin~u/2!#.

~5!

Clearly, it is possible to obtain a large negativeF2 and posi-
tive ~or small! F0 andF1 from this expression, even ifV is
positive, especially ifV is peaked at a momentum transfer
order 2kF . Such structure will occur in any fluid with a larg
degree of local crystallinity.

To analyze the collective properties of this system,
introduce a Hubbard-Stratanovich15,16field n to decouple the
four-fermion interaction, and then integrate out the fermio
formally to obtain the effective action,Seff@n#. Althoughn is
also a traceless symmetric tensor, it is convenient to in
duce a vectorial notation in whichn5n1sz1n21sx where
sa are the Paul matrices. WhileSeff is very complicated, we
can readily find the saddle-point solutions,n̄, which are ex-
trema of Seff , and can then obtain explicit expressions f
Seff in powers ofdn[n2n̄. In the limit k→`, the saddle-
point ~Fermi-liquid! approximation becomes exact, and mo
generally this approach can be viewed as an expansion b
on the small parameter, 1/k.
19510
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From now on we will work with the Hubbard
Stratanovich fieldn rather than with the order-paramet
field Q. They are related by a Legendre transform, and sy
metry constrains the form of the effective actions in simi
ways.15 In particular, the effective action for then field has
elastic terms similar to those of Eq.~3! with new elastic
moduli k andk8 which are proportional tok̃ and k̃8.

The saddle-point equations are obtained by minimizing
expression of the form of Eq.~2!, with n̄ replacingQ and
A51/(2NF)1F2 where NF is the density of states at th
Fermi surface. Clearly, the isotropic phase is stable17 so long
as 2NFF2.21, while the nematic phase occurs where th
inequality is violated. The quartic termB is determined
by couplings that are formally irrelevant~in the
renormalization-group sense! at the isotropic Fermi-liquid
fixed point; for the explicit Hamiltonian considered abov
B5(3aNFuF2u3)/(8EF

2) where EF[vFkF is the Fermi
energy.

The effective action which governs the fluctuations ab
the saddle point can be computed to quadratic order indn,

Seff@n#5Seff@ n̄#1
1

2NF
(

a,b561
E dv

2p

d2q

~2p!2

3dna* La,b~qW ,v;n̄!dnb1•••, ~6!

whereLa,b is the inverse propagator of the collective mode
and the collective mode dispersion relation,vq , is deter-
mined from the solution of the implicit equation

det@La,b~qW ,v!#50. ~7!

It is convenient to expressLa,b as the sum of a static an
dynamical piece:La,b(qW ,v)[La,b(qW ,0)1M̃a,b(qW ,v). Sym-
metry strongly constrains the transverse component
La,b(qW ,0);q2 in the ordered phase. In other words, bei
essentially the static/classical deformation energy, its form
determined by the expression in Eq.~3!. However, as we will
see, symmetry considerations do not fully determine
dynamical piece.

II. THE ISOTROPIC PHASE

We warm up by analyzing the fluctuation spectrum in t
isotropic phase for 2NFF2.21. By explicitly computing
the fermionic response functions, withd[2 1

2 21/(NFF2)
ands[v/vFq, we find

La,b~qW ,v!5da,b~kq21d!1M̃a,b~qW ,v!, ~8!

M̃a,b~qW ,v!5
s

2E0

2p du

2p

Pa,b~u!

s2cos~u2f!
, ~9!

Pa,b~u!5S 2cos2 2u sin 4u

sin 4u 2sin2 2u D ~10!
9-2
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QUANTUM THEORY OF A NEMATIC FERMI FLUID PHYSICAL REVIEW B 64 195109
wheref is the polar angle subtended byqW . Without loss of
generality, we can setf50, in which case the two compo
nents of the pseudovector correspond to the longitudinal (n1)
and transverse (n21) polarizations of the quadrupolar wav
andLa,b is diagonal:

M̃a,b~qW ,v!5da,bMb~s!, with s[v/vFq, ~11!

M61~s!5
s

2As221
@16~2s1As221!4#. ~12!

For F2.0 there exist soundlike propagating modes w
vq.vFq(s.1), i.e., the quadrupolar analogs of zero sou
~one for each polarization!. They are undamped because th
lie outside of the particle-hole continuum. Closer to the ne
atic phase boundary, the evolution of the quadrupolar os
lations of the isotropic Fermi liquid deviates markedly fro
that of simple zero sound. The dynamics clearly dist
guishes the two polarizations and there are underdam
modes even whenF2,0.

III. THE QUANTUM CRITICAL REGIME

The difference in the dynamics of the two polarizatio
becomes more pronounced as the quantum critical poin
approached. Asd→01 and forv!vFq

L11~v,q!5kq21d2 i
v

vFq
1•••; ~13!

L22~v,q!5kq21d2S v

vFqD 2

22i S v

vFqD 3

1•••.

~14!

The transverse mode becomes more and more we
damped withv2' iAdvFq1v fAkq2 while the longitudinal
mode remains overdamped,v1; iq3. This behavior should
be compared and contrasted with the behavior of the p
magnon collective mode near the Fermi-liquid to ferroma
netic Fermi liquid transition where, in the disordered pha
and at the critical point, all three polarizations are identic
and indeed have dispersions similar to that of the longitu
nal ~‘‘ 11’’ ! quadrupolar mode. The difference arises fro
the fact that, unlike in the nematic, in the ferromagnet~in the
absence of spin-orbit coupling!, the broken symmetry is un
related to any spatial symmetries. Nevertheless, as with
ferromagnet, a straightforward scaling analysis of the eff
tive action implies a dynamical critical exponentz53 at the
quantum critical point. Remarkably, at the critical point, t
transverse mode has higher characteristic energy (v2;q2

;v1
2/3) than the overdamped critical mode; it plays no ro

in the critical theory, and indeed thev2/q2 term in the in-
verse propagator which makes it dynamical is irrelevant
z53 scaling,v2/(vFq)2;q4. Moreover,z53 also implies
that interaction terms of ordern4 and higher inSeff are irrel-
19510
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evant at the quantum critical point. Thus, according to
standard lore,18,19 the critical behavior is fully captured by
the Gaussian theory.

IV. THE NEMATIC PHASE

In the ordered phase, but close to the quantum crit
point, the order parameter is small. Here we can, to go
approximation, ignore the dependence of theqW andv depen-
dent terms in the effective action on the ordered momen20

La,b(qW ,v;n̄)5La,b(0W ,0;n̄)1La,b(qW ,v;0)1••• . The
higher-order terms are, among other things, responsible
the difference between the two Frank constants in the ela
energy of the nematic; as they complicate the normal-m
analysis, and make little important qualitative difference,
will defer considering them until later. Without loss of ge
erality, we can choose the principal axis of the nematic s
to lie alongx̂, so thatn̄5n̄sz ~wheresz is the Pauli matrix!.
In this case, fluctuations of the amplitude of the order para
eter are associated with the11 component ofdn, and21
are the phase~i.e., orientational! deformations. Inside the
nematic phase, as for phonons in a crystal, the longitud
and tranverse modes are mixed unlessqW lies along a symme-
try axis.

Because we have neglected the difference between F
constants, the purely elastic energy is a sum of indepen
contributions from the phase and amplitude modes,

L11~qW ,0;n̄!52udu1kq2,

L22~qW ,0;n̄!5kq2, ~15!

and L21(qW ,0;0)50. However, even at this level of accu
racy, the dynamics unavoidably mixes the phase and am
tude modes. Explicitly, the dynamical matrix is a function
the scaled variables5v/vFq and the angle,f, between the
principal axis of the nematic order and the wave vectorqW ,

M~s,f!5
s

2 S B~s!1A~s!cos 4f A~s!sin 4f

A* ~s!sin 4f B~s!2A~s!cos 4f D ,

~16!

with B(s)51/As221 and A(s)5B(s)(As2212s)4.

@A* (s) is the complex conjugate ofA(s).# Only if qW is along
a symmetry direction,f50,6p/4,6p/2, etc., isM diago-
nal. That the longitudinal and transverse modes are mixed
all other propagation directions, even in the absence of te
which depend explicitly onn̄ is, at first sight, curious, and is
a direct consequence of the fact that the nematic order
rameter breaks spatial rotational symmetry, not an inter
symmetry~such as spin!.

As in the isotropic phase, we diagonalizeLa,b to obtain
the collective-mode spectrum. An excitation is called ‘‘tran
verse’’ if for qW→0 it is polarized perpendicular to the prin
9-3
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OGANESYAN, KIVELSON, AND FRADKIN PHYSICAL REVIEW B 64 195109
cipal axis of the nematic and ‘‘longitudinal’’ otherwise; th
corresponding eigenvalues of the inverse propagator areL'

andLi .
For generalf and ass→0, the inverse propagator for th

transverse~Goldstone! mode is

L'5kq22
is

2
sin2 2f2s2S cos 4f1

sin24f

128udu D1O~s3!.

~17!

This result is remarkable and, to our knowledge, unpr
edented: Landau damping dominates the dynamics of
Goldstone boson, making it overdamped~the last term is
irrelevant! over most of phase space. Formally, Eq.~17! is
reminiscent of those studied in conjunction with quantu
criticality in metals,18,19 or when a transverse gauge field
coupled to a Fermi liquid.21,22 In all three cases Landa
damping results in a soft boson with dissipative dynam
Naturally, the origin of the softness is different in each ca
while the softness of the quantum critical propagator is
result of fine tuning to criticality, the softness of the gau
and the director-wave propagators stems, respectively, f
gauge invariance and broken rotational symmetry. Never
less, here, as in the other two problems~and in two dimen-
sions!, Eq. ~17! implies a specific-heat vanishing asT2/3 at
low temperatures.

The angular -dependent damping term in Eq.~17! is na-
tive to the nematic state; along symmetry directions, whe
vanishes, a propagating~i.e., undamped asq→0) mode re-
sults. Forf50 andp/2, and forv!vFq,

L'
0,p/25kq22s22 is31O~s4!, ~18!

implying a dispersion according tovq5vFAkq2. An addi-
tional propagating mode with a soundlike spectrumvq

5vFq/A2 exists forf5p/4. These long-lived modes ar
somewhat peculiar: they are already present at the quan
critical point ~with precursors even in the isotropic phase!,
where indeed they propagate in all directions, although t
appear as higher-energy excitations which do not dire
enter the critical phenomena. These collective phenom
can be summarized pictorially~see Fig. 1!.

Finally the inverse propagator of the amplitude mode

Li52udu2
is

2
cos2 2f1O~s2!. ~19!

The apparent fourfold symmetry in these expressions is
part, inherited from the special symmetry of the tw
dimensional director:n̄ is odd under rotation by 90° so quan
tities even inn̄ will be fourfold symmetric, even inside the
nematic state. However, the precise fourfold symmetry is
artifact of our neglecting then̄ dependence of theqW and v
dependent terms inL. For instance,k should rightly be re-
placed by the two distinct Franc constantsk' and k i in
Eq. ~17!, respectively, where from Eq.~3!, k'2k i;k8un̄u
1•••. At the level of the Gaussian theory constructed th
far the corrections can be analyzed perturbatively~in n̄),
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leading neither to qualitative modifications of modes’ disp
sions nor to spoiling of the fourfold symmetry@e.g., in the
damping term in Eq.~17!#. More generally, because the nem
atic order does not gap any section of the Fermi surface,
only distorts its shape, the dynamical consequences of
fermionic particle-hole continuum are preserved, even
from the critical point. In other words, the characteris
scale for the frequency dependence is stillvFq ~i.e., vanish-
ing at long wavelengths! in the broken-symmetry phase, re
gardless of the magnitude of the Fermi-surface distortion

Clearly, interactions among the collective modes can
treated perturbatively in 1/k. What the effects of these inter
actions are away from the critical point is presen
unknown.

It is important to recall that any symmetric traceless te
sor can serve as the order parameter for the nematic s
While we have chosen the deformation of the Fermi surfa
alternate choices include the inverse mass tensor which
fines the Drude weight of the optical conductivity, and t
resistivity tensor itself. They can be interrelated explicitly
our case~the corrections to this first order result are cubic!,

rxx2ryy

rxx1ryy
5

1

2

my2mx

my1mx
5

n11

EF
1O~ un̄u3!, ~20!

wheremx andmy are the effective masses of the quasipa
cles in the nematic state, as determined by the spontan
anisotropy of the Fermi surface.

V. SINGLE-PARTICLE PROPERTIES

We will now consider the effect of the collective mode
on the single-particle self-energy. To one-loop order,

FIG. 1. The spectral function, Imx5ImL'
21 , of the nematic

Goldstone modes as a function ofs5v/vFq ~at fixed smallq) for
different angles of propagation from~top to bottom! f5p/4, f
53p/16, f5p/8, f5p/16 andf50, respectively. The curves
are plotted on the same scale, with vertical offset, ford50.1, k
51, vF51, and q50.15. At f50 there is a sharp propagatin
mode @see Eq.~18!#. Otherwise the spectral function is linear a
v→0, signifying a diffusive peak (Imx(v)/v is peaked atv50).
At f5p/4 the spectrum contains an additional long-lived soun
like mode.
9-4
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QUANTUM THEORY OF A NEMATIC FERMI FLUID PHYSICAL REVIEW B 64 195109
imaginary part of the self-energy~the scattering rate! is given
by

S9~e,kW !5
p

A3

~kkF
2 !1/3

kNF
Ukxky

kF
2 U4/3U e

2vFkF
U2/3

1•••, ~21!

wherekW lies on the Fermi surface and••• signifies sublead-
ing terms in powers ofe. The strong angular dependence
S9 is a startling consequence of the symmetry of the ne
atic. Along the symmetry directions,kW5(kx,0) and (0,ky),
the scattering rate~at the Fermi surface! has a different en-
ergy dependence indicative of a long lived quasiparticle:23

S9~e!5
p

3NFk

1

~kkF
2 !1/4U e

vFkF
U3/2

1•••. ~22!

Although perturbative, our results unambiguously signal
breakdown of Fermi-liquid theory, i.e., the spectral functi
no longer has a quasiparticle pole over most of the Fe
surface.23 For fixed e, the perturbation theory is arbitraril
accurate for large enoughk, but for fixed k, perturbation
theory may well break down at smalle. We have not deter-
mined yet whether this indicates a phase transition to a n
ordered state, e.g., a superconducting state, or the occurr
of a genuine, two-dimensional~2D! non-Fermi-liquid phase
With the exception of the discrete set of symmetry-rela
points where the quasiparticle survives collective dampi
the frequency dependence of our result is identical to
comparable perturbative result for fermions coupled to~Lan-
dau damped! gauge or quantum critical fields.18,19,21,22How-
ever, it is important to emphasize that formal resembla
among these three problems need not persist beyond the
est order in perturbation theory.

VI. EXTENSIONS AND SPECULATIONS

Thus far we have considered a rotationally invariant s
tem. Since the electron fluid is typically realized in a sol
state context, it is important to consider the effects of expl
rotational symmetry breaking by the underlying lattic
These are relevant operators in the nematic phase, and
main effect is to gap out the Goldstone bosons. In the p
ence of such explicit symmetry breaking, the system
haves, at sufficiently low energy, like an anisotropic me
with Fermi-liquid properties. However, an analysis of th
effects on the quasiparticle self-energies indicates a cr
over from non-Fermi-liquid to Fermi-liquid behavior belo
an energy scalee* '(vFl3/2)/Ak wherel is a dimensionless
measure of the lattice-induced anisotropy on the bare qu
particle energy. In many cases,l is small soe* is very
small.

There are many obvious and interesting generalization
these ideas. With very little difference, we can consider
theory of the metallic hexatic, which is similarly non-Ferm
liquid. Such a state would be triggered by a large, nega
F6. While at first that might sound artificial, if we view th
quantum hexactic as a melted Wigner crystal, it is a natu
state to consider. This may have relevance to the lo
19510
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standing problem of apparently metallic states in two dim
sions. In the presence of electron spin, a host of new
interesting states become possible which intertwine spin
spatial ordering. For example, one could imagine a state t
gered by a large and repulsiveF2

a ~i.e., in the triplet channel!
in which the nematic order parameters of the spin-up a
spin-down electrons are rotated relative to each other.
nally, deeper inside the nematic phase the Fermi surface
increasingly distorted, leading to nearly nested segment
is thus natural to consider a further instability, triggered
‘‘backscattering,’’ to a stripe ordered electronic smec
phase.

The three-dimensional nematic can be analyzed simila
Here, the director is a 333 rank two symmetric traceles
tensor. On symmetry grounds one anticipates that, sinc
cubic invariant is allowed in the free energy, the isotropic
nematic transition will generally be first order. We have r
peated the calculation of the ground state energy Eq.~2!# in
three dimensions. In contrast to two dimensions, we ind
find a cubic term which usually24 favors a uniaxial nematic
over a biaxial one and its sign determines whether the n
atic Fermi surface is oblate or prolate. The Goldstone m
is overdamped as in two dimensions; its contribution to
single-particle scattering rate is of the ‘‘marginal Ferm
liquid’’ form, 25 S9(e)}ueu, but strongly angle dependent.

The considerations presented in this paper may serve
starting point for a microscopic theory of a quantum H
nematic fluid. In particular, it was proposed in Refs. 5 and
that the observed large anisotropy in Landau levelsN>2
could be explained by a nematic fluid phase. The results
we have derived in this paper indicate that this is a v
concrete possibility. Moreover, the relation between ani
tropic transport and a nematic order parameter proposed
symmetry grounds in Ref. 8 follows clearly from the spo
taneous effective-mass anisotropy in the nematic state~dis-
cussed above! by means of simple Boltzmann transport a
guments. A candidate ground-state wave function for
quantum Hall nematic at filling factorn51/2 can be con-
structed in the spirit of the Jain wave function for the co
posite Fermi sea26,27 as

CCNFL~zi !5P)
i . j

~zi2zj !
2e2(

j
(uzj u

2/2)CNFL , ~23!

whereCNFL denotes the ground-state wave function of t
2D nematic we have considered here,zi are the complex
coordinates of the electrons~with the magnetic length set to
1!, andP is the Landau-level projection operator. Howev
for a subtle gapless state like this it is not clear that sim
wave functions are able to fully capture the physics.

Finally, the picture of the nematic phase that emerg
from our results is strikingly reminiscent of the behavior
the so-called ‘‘normal phase’’ of high-temperature superc
ductors. In particular the fermion spectral function that w
find in the nematic phase has a behavior that is qualitativ
similar to the electron spectral function measured by ang
resolved photoemission spectroscopy~ARPES! in
BSCCO.28–30In fact, Ioffe and Millis31 have proposed a phe
nomenological form for the quasiparticle scattering rate w
9-5
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the angular dependenceukx2kyu and aueu marginal Fermi-
liquid energy dependence. It is tempting to speculate th
possible origin of this sort of behavior may be a nema
Fermi fluid state setting in at temperatures close to
pseudogapT* . In fact, in Ref. 4, two of us suggested that
a strongly correlated electron system is cooled down from
high-temperature isotropic fluid phase, the first stage
charge ordering should be precisely a nematic phase.32 As
stressed in Ref. 4, this is a Kosterlitz-Thouless thermo
namic phase transition, which is reduced to an Ising tra
tion in by fourfold lattice anisotropy or rounded in an orth
rhombic crystal. Incidentally, spontaneous breaking
rotational symmetry in the two-dimensional Hubbard mo
has also been studied numerically.34 Recent light-scattering
.
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experiments by Rubhausen and coworkers33 have found evi-
dence of a rounded nematic transition at the charge-orde
temperature of the manganite Bi12xCaxMnO3.
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