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Quantum theory of a nematic Fermi fluid
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We develop a microscopic theory of the electronic nematic phase proximate to an isotropic Fermi liquid in
both two and three dimensions. Explicit expressions are obtained for the small amplitude collective excitations
in the ordered state; remarkably, the nematic Goldstone rttbhdedirector waveis overdamped except along
special directions dictated by symmetry. At the quantum critical point we find a dynamical exponent of
=3, implying stability of the Gaussian fixed point. The leading perturbative effect of the overdamped Gold-
stone modes leads to a breakdown of Fermi-liquid theory in the nematic phase and to strongly angle-dependent
electronic self energies around the Fermi surface. Other metallic liquid-crystal phases, e.g., a quantum hexatic,
behave analogously.
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There is a growing body of both experimental and theo-where kg is the Fermi wave number. The order parameter
retical evidence for the relevance of inhomogeneous and/qf= Q) can be expressed in terms of an amplitude and a
anisotropic metallic phases in a wide array of highly COMe-phase,Qe? ’=Q,;+iQ4,. Thus, in the broken symmetry
lated electronic systems. Quasi-one-dimensios#lipe or  gaie the Fermi surface is ellipticéile., the Fermi momen-

;‘;Iﬁg:rogf'i;ﬁ‘;ggﬁ?ﬂﬁ’g{:ﬁ%‘:’dBZ\S’EAgreee?eggﬁﬁ)r;\{ge?hén d"’;alf"rge[um varies around the Fermi surfacaith eccentricity pro-
y ' portional toQ along a major axis at an azimuthal angte.

matic discovery of a metallic phase with a strongly aniso- - . .
tropic resistivity tensor for a range of magnetic fields in ul-. At finite temperature[, where the long-distance physics

traclean heterojunctions has provided clear evidence of thgafnuereclrzaig;selrcgg :réoerlsgtr:gg':alllﬂu:ﬂ dct?rls;?al;llh?: trr?euggstgif
existence of a “quantum Hall nematic” phase. In parallel, N ystal.

theoretical work® has been carried out on electronic liquid- the two-dimensional nematic, this means that there is no true

crystal phases. These ground-state phases are classifié%qg'range order, and a Kosterlitz-Thouless transition at a

based on broken symmetries, by analogy with classical quui&mIcal temperature to the disorderefhigh-temperature

crystals. So far, these studies have focused primarily on thC}Z;Z'ngl Ifle?n;g?r:ksg:ﬁ I\?v?)tueiﬁ dotfh:re]g ng ;?]28?‘;?;5 of
smectic, which is a unidirectional density wave with broken ; . .

; X LT . the director wave(i.e., the finite-temperature Goldstone
translational symmetry in only one direction, but which sup-

H 0,11
ports liquidlike electron floW;” and to a lesser extent on the mod is overdamped: .
. o : : : At zero temperature, the nematic phase possesses a true
nematic, which is uniform but anisotropibreaks rotational

symmetry.®° A nematic state in the proximity to the smectic broken symmetry. Many features of this state follow as a

state can be visualized most naturally as a melted smectiglreCt consequence of symmetry breaking, independent of

) S : . microscopic considerations. The quantum transition between
i.e.,, a smectic with dislocations. However, a theory of the ) . : . .
the nematic and isotropic states can be studied at mean-field

nematic phase based on this picture has yet to be satisfact%—veI by considering the Landau expansion of the ground-

rily formalized. _ _ state energy as
In this paper we approach the nematic metal via a com-=

plimentary route, from the isotropic and weakly correlated A B

side. In this limit, the zero-temperature isotropic to nematic E(Q=E(0)+ =T Q?]+=Tr[Q*]+---. 2)
transition is a Fermi-surface instability. The director order 4 8

parameter which characterizes the broken symmetry of thgp4¢ only even terms appear in this expansion is a conse-
nematic state is a rank two symmetric traceless tensor WhiCHuence of the odd parity d® under 90° rotations. At the

is even under time reversa'l. In two dimensions, .but not iNyansition point,A changes from positive in the isotropic
three, the order parameter is odd under 90° spatial rOtat'O'bhase to negative in the nematic phase, in whidh
For simplicity we first consider spinless fermions in two di- _ [A[/B+- - -. The elastic theory which governs any long
mensions with full rotational symmetry, deferring until later avelength, static variations of the order parameter is di-

any discussion of spin and the symmetry-breaking effects o ectly inherited from the classical thed®*! leading to an
the crystal fields which are inevitable in actual solids. Wh“eener}g/jy density functional of the form ofy? g

many microscopic definitions of this order parameter are
possible, we shall see that the natural one in the present ~ ~

context is the quadrupole density, V[Q]=E(Q)— %Tr[QDQ]— KZTr[QZDQ]+ )
~ 1 > ‘75_‘95 2(9x(9y > . L

Q(x)=— —zllﬁ(r) 5 | W(r), (1)  whereD;j=4;9; (neglecting total derivative termsin the

(& 20xdy  dy=—dx ordered phase, Eq. 3 leads to two elastic modEhank
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constanty but since they are interchanged by a 90° rotation, From now on we will work with the Hubbard-
the difference between the two is proportionalioand so is  Stratanovich fieldn rather than with the order-parameter
small so long a®) is small. The dynamics of the collective field Q. They are related by a Legendre transform, and sym-
modes, as well as explicit expressions for the various coeffimetry constrains the form of the effective actions in similar
cients which enter the theory, must be derived from microways!® In particular, the effective action for the field has

scopic considerations. elastic terms similar to those of E@3) with new elastic
moduli k and x’ which are proportional ta and’x’.
I. THE MODEL The saddle-point equations are obtained by minimizing an
We take as our model expression of the form of Eq2), with n replacingQ and

A=1/(2Ng)+F, where Ng is the density of states at the
Fermi surface. Clearly, the isotropic phase is stdlde long
H:f dref(ne(V)w(r) as NeF,>—1, while the nematic phase occurs where this
inequality is violated. The quartic terrB is determined
1 oL o o by couplings that are formally irrelevant(iin the
+—J er dr'Fy(r—r")Tr[Q(r)Q(r")]. (4  renormalization-group sensat the isotropic Fermi-liquid
4 fixed point; for the explicit Hamiltonian considered above,
Here (K) is the single-particle energy and we have ignoredB = (3aNg|F2|*)/(8EF) where Ep=vgke is the Fermi
all density-density interactions other than the essential one§N€ray. _ _ _ _
for present purposes, involving the quadrapolar dendity. — The effecnye action which governs the fluc'tuatlons .about
The single-particle energy can be linearized about the Fernihe saddle point can be computed to quadratic ordeinin
surface, but for later convenience we keep one further

term in the expansiolt, e(k)=veq[1+a(q/ke)?] with 1 do d2q
q=|k|—ke. To be explicit, we take the interaction to be Seff[”]:Seff[“]+—2NF s fﬂ (2m)?

the Fourier transform of a simple Lorentziark,(r) o

=(2m) " 2fdke'd "F,/[1+ kF,q%], whereF, is the appro- X 6n3 Lap(q,0;n) 60+ - - -, (6)

priate Landau parameter. Our results are not qualitativel
sensitive to any of these details.

Landau parameters in a strongly correlated fluid are noto
riously difficult to deduce from microscopic considerations,
but they can be large. In Hefor instanceNgF is found to
vary'* from 10 to 80 as a function of pressure between 0 and def £, b(a,w)]zo_ (7)

27 atm. At the simplest level, one might hope to express '
these parameters in terms of the Fourier transform of an eft is convenient to expresg,, as the sum of a static and
fective density-density interaction as dynamical pieceL, ,(d,w) =L, p(4,0)+ M, p(d,w). Sym-
metry strongly constrains the transverse component of
. 27d @ Ea,b(ﬁ,O)Aaq2 in the ordered phase. In other words, being
FnIV(|Q|=0)5n,o—f 5, COSNO)V[Zke sin(6/2)]. essentially the static/classical deformation energy, its form is
0 determined by the expression in E§). However, as we will
® see, s i i [
, symmetry considerations do not fully determine the
Clearly, it is possible to obtain a large negativg and posi-  dynamical piece.
tive (or smal) Fy andF, from this expression, even Y is

zvhereﬁa,b is the inverse propagator of the collective modes,
and the collective mode dispersion relatian,, is deter-
mined from the solution of the implicit equation

positive, especially iV is peaked at a momentum transfer of Il. THE ISOTROPIC PHASE
order X . Such structure will occur in any fluid with a large
degree of local crystallinity. We warm up by analyzing the fluctuation spectrum in the

To analyze the collective properties of this system, wesotropic phase for BeF,>—1. By explicitly computing
introduce a Hubbard-StratanovicH®field n to decouple the the fermionic response functions, with=—3—1/(NgF,)
four-fermion interaction, and then integrate out the fermionsands=w/vgq, we find
formally to obtain the effective actiorg.q] n]. Althoughn is
also a traceless symmetric tensor, it is convenient to intro-
duce a vectorial notation in which=n,0,+n_,0o, where
o, are the Paul matrices. Whi4 is very complicated, we
can readily find the saddle-point solutioms,which are ex- ~ - s(2mdf  P,p(0)
trema of S;¢, and can then obtain explicit expressions for Map(0,0)= Efo 27 s—cog 60— )’ ©
Sk In powers ofSh=n—n. In the limit k—~, the saddle-
point (Fermi-liquid approximation becomes exact, and more
generally this approach can be viewed as an expansion based :(

Pa b( ‘9)
on the small parameter, A/ :

Lop(Q,0) = 84 p(kG2+ 8) + M, p(g, @), (8)

2co€26 sin46 )
(10)

sin4f  2sirf26
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where ¢ is the polar angle subtended by Without loss of ~ €vant at the quantum critical point. Thus, according to the
generality, we can seb=0, in which case the two compo- Standard loré{** the critical behavior is fully captured by
nents of the pseudovector correspond to the longitudimgl (  the Gaussian theory.

and transversen(_;) polarizations of the quadrupolar wave,

and L, is diagonal: IV. THE NEMATIC PHASE

~ _ In the ordered phase, but close to the quantum critical
Map(d, @)=, ,Mp(s), with  s=wlveq, (11)  point, the order parameter is small. Here we can, to good

approximation, ignore the dependence ofd_ikmndw depen-
S dent terms in the effective action on the ordered morf&nt,
Moqy(s)=——=——=[1%(—s+s*~1)*]. (12  Lapn(q,0;n)=Lyp(0,0;n)+ Ly p(q,0;0)+--- .  The
2\s?-1 higher-order terms are, among other things, responsible for
_ _ _ ~the difference between the two Frank constants in the elastic
For F,>0 there exist soundlike propagating modes withenergy of the nematic; as they complicate the normal-mode
wq>veq(s>1), i.e., the quadrupolar analogs of zero soundanalysis, and make little important qualitative difference, we
(one for each polarizationThey are undamped because theyyj| defer considering them until later. Without loss of gen-
lie outside of the particle-hole continuum. Closer to the NeM=rality, we can choose the principal axis of the nematic state
atic phase boundary, the evolution of the quadrupolar oscilg ) ;o alongX, so than= ne, (wherea, is the Pauli matrix
lations of.the isotropic Fermi liquid deviatt_as markedly f_ro_m In this case ’fluctuations onthe ampliiude of the order param-
th"’.‘t of simple zero s_ouqd. The dynamics clearly dIS‘t'n'e er are aséociated with thel component ofén, and —1
guishes the two polarizations and there are underdampeéie the phasdi.e., orientationgl deformations. Inside the
modes even whef,<0. nematic phase, as for phonons in a crystal, the longitudinal

and tranverse modes are mixed unlésites along a symme-
IIl. THE QUANTUM CRITICAL REGIME try axis.
The difference in the dynamics of the two polarizations Because we have neglected the difference between Frank
.constants, the purely elastic energy is a sum of independent

becomes more pronounced as the quantum critical point iSONS!aNE ;
approached. A$—0* and foro<uveq contributions from the phase and amplitude modes,

E++(§,0:F)=2|5| + qu-

, L£__(q,0;n)=«q?, (15)

L__(0,q)=kq%+ 6— +.n,

w
Ly (0,9)=kQ®+5—i—+--; (13
Veq
w \? o w
veq "\org and £_,(q,0;0)=0. However, even at this level of accu-
(14 racy, the dynamics unavoidably mixes the phase and ampli-
tude modes. Explicitly, the dynamical matrix is a function of
The transverse mode becomes more and more weakije scaled variable= wlveq andthe angleg, between the

. N. 2 . . . N
damped withw_~i VBueqtupy Ka while the longitudinal = i inal axis of the nematic order and the wave vedtor
mode remains overdamped, ~iqg*. This behavior should

be compared and contrasted with the behavior of the para-

magnon colllecti\ée mode nearhthe Fern;]i-li((qjuid :jo fe(rjronr’]lag- Mis.d) s [ B(s)+A(s)cos 4p A(s)sin 4¢
netic Fermi liquid transition where, in the disordered phase S, ¢)=% . )
and at the critical point, all three polarizations are identical, 2 A*(s)sin4¢ B(s)—A(s)cos 4p 16
and indeed have dispersions similar to that of the longitudi- (16
nal (“ ++") quadrupolar mode. The difference arises from_. _ B —

the fact that, unlike in the nematic, in the ferromagtiethe "It~ B(S)=1/ys"=1 and  A(s)=B(s)(vs j_l_s)4'
absence of spin-orbit coupliigthe broken symmetry is un- [A* () is the complex conjugate ¢f(s).] Only if g is along
related to any spatial symmetries. Nevertheless, as with th@ Symmetry directiongp=0,* 7/4,* 7/2, etc., isM diago-
ferromagnet, a straightforward scaling analysis of the effech@l. That the longitudinal and transverse modes are mixed for
tive action implies a dynamical critical exponent 3 at the  all other propagation directions, even in the absence of terms
guantum critical point. Remarkably, at the critical point, thewhich depend explicitly om is, at first sight, curious, and is
transverse mode has higher characteristic enetgy~q>  a direct consequence of the fact that the nematic order pa-
~ %3 than the overdamped critical mode; it plays no rolerameter breaks spatial rotational symmetry, not an internal
in the critical theory, and indeed the?/q? term in the in- symmetry(such as spin

verse propagator which makes it dynamical is irrelevant for As in the isotropic phase, we diagonaliZg , to obtain
z=3 scaling,w?/(veq)2~q*. Moreover,z=3 also implies the collective-mode spectrum. An excitation is called “trans-

that interaction terms of orde* and higher inS. are irrel-  verse” if for q—0 it is polarized perpendicular to the prin-
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cipal axis of the nematic and “longitudinal” otherwise; the ImrLi'
corresponding eigenvalues of the inverse propagatoare
and ‘CH .

For generakp and ass— 0, the inverse propagator for the
transversdGoldstongé mode is

e is 2, 2 Jrsir124<;$ o
1= KQ° = 5Si’ 2¢— 57| cos 4p 1284 (s%). [\
17
This result is remarkable and, to our knowledge, unprec-
edented: Landau damping dominates the dynamics of the
Goldstone boson, making it overdampétie last term is
irrelevan) over most of phase space. Formally, Eff7) is vk 2 1 S
reminiscent of those studied in conjunction with quantum ) . _
criticality in metals'®*° or when a transverse gauge field is  FIG- 1. The spectral function, Ig=ImL, ~, of the nematic

coupled to a Fermi ”quia},zz In all three cases Landau Coldstone modes as a function ©f w/veq (at fixed smallg) for

damping results in a soft boson with dissipative dynamicsdifferent angles of propagation froritop to bottom ¢= /4, ¢

Naturally, the origin of the softness is different in each case 37/16, ¢=/8, ¢=nl16 and$=0, respeciively. The curves

while the softness of the quantum critical propagator is theiri pliOtEef O:n;hc?fsgrfse Zia‘;e; g'i:e\;zrti'sca; gf]saf;’ ii%liéz;ing
resuit of fl_ne tuning to criticality, the softness of the 9auge ode [';ee Eq.(18)]. Otherwise the spectral function is linear as
and thg dweptor—wave propagators stems, respectively, frorg)_}oy signifying a diffusive peak (Ing(w)/ is peaked ato=0).
gauge Invariance and broken rotational symmetry. NevertheAt ¢=ml4 the spectrum contains an additional long-lived sound-
less, here, as in the other two problefasd in two dimen- | o ode.

sion9, Eq. (17) implies a specific-heat vanishing a$" at

low temperatures.

The angular -dependent damping term in EL/) is na-
tive to the nematic state; along symmetry directions, when
vanishes, a propagatir(@e., undamped ag—0) mode re-
sults. For¢=0 and/2, and foro<<vgq,

leading neither to qualitative modifications of modes’ disper-
.sions nor to spoiling of the fourfold symmetfe.g., in the
I[jamping term in Eq(17)]. More generally, because the nem-
atic order does not gap any section of the Fermi surface, but
only distorts its shape, the dynamical consequences of the
fermionic particle-hole continuum are preserved, even far
L£0™2= kq?—s?—is3+ O(s), (18)  from the critical point. In other words, the characteristic

, , ) ) ) ) scale for the frequency dependence is stilfy (i.e., vanish-
implying a dispersion according t‘i’qva\/_;qz- An addi-  jn4 ot long wavelengthsin the broken-symmetry phase, re-
tional propagating mode with a soundlike spectrusg  gardless of the magnitude of the Fermi-surface distortion.
=vgq/\2 exists for¢=m/4. These long-lived modes are Clearly, interactions among the collective modes can be

somewhat peculiar: they are already present at the quantuffbated perturbatively in &/ What the effects of these inter-
critical point (with precursors even in the isotropic phase! gctions are away from the critical point is presently
where indeed they propagate in all directions, although they,nknown.
appear as higher-energy excitations which do not directly |t js important to recall that any symmetric traceless ten-
enter the critical phenomena. These collective phenomeng,, can serve as the order parameter for the nematic state.
can be summarized pictoriallee Fig. 1 _ ~ While we have chosen the deformation of the Fermi surface,
Finally the inverse propagator of the amplitude mode is gjternate choices include the inverse mass tensor which de-
fines the Drude weight of the optical conductivity, and the
is ) resistivity tensor itself. They can be interrelated explicitly in
CI\:2|5| - 50052 2¢+0(s%). 19 our case(the corrections to this first order result are ciipic

The apparent fourfold symmetry in these expressions is, in
part, inherited from the special symmetry of the two- Pxx" Pyy _ E Mmy=My _ n—11+(9(|ﬁ|3) (20)
dimensional directom is odd under rotation by 90° so quan- pxxtpyy 2 mytmy,  Ee '

tities even inn will be fourfold symmetric, even inside the

nematic state. However, the precise fourfold symmetry is a’ her_emx andm, are the effective masses of the quasiparti-
. . — - cles in the nematic state, as determined by the spontaneous
artifact of our neglecting the dependence of thg and w

dependent terms if. For instancex should rightly be re- anisotropy of the Fermi surface.
placed by the two distinct Franc constanés and x| in
Eq. (17), respectively, where from Eq3), x, —xj~«'[n]
+---. At the level of the Gaussian theory constructed thus e will now consider the effect of the collective modes
far the corrections can be analyzed perturbativty n), on the single-particle self-energy. To one-loop order, the

V. SINGLE-PARTICLE PROPERTIES
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imaginary part of the self-enerdthe scattering rajas given  standing problem of apparently metallic states in two dimen-

by sions. In the presence of electron spin, a host of new and

interesting states become possible which intertwine spin and

o (Kk|2:)1/3 Kk ‘4/3 . ‘2,3 spatial ordering. For exampl_e, one C(_)uld ima_lgine a state trig-
3"(e,k)=— 2y +..0, (2D gered by a large and repulsi# (i.e., in the triplet channgl

V3 «Ne | K2 ‘ 20 ke in which the nematic order parameters of the spin-up and

spin-down electrons are rotated relative to each other. Fi-
nally, deeper inside the nematic phase the Fermi surface gets
increasingly distorted, leading to nearly nested segments; it
is thus natural to consider a further instability, triggered by

wherek lies on the Fermi surface and - signifies sublead-
ing terms in powers oé. The strong angular dependence of
3" is a startling consequence of the symmetry of the nem

atic. Along the symmetry direction&=(k,,0) and (Ok,),  “backscattering,” to a stripe ordered electronic smectic
the scattering ratéat the Fermi surfagehas a different en-  phase.
ergy dependence indicative of a long lived quasiparfitle: The three-dimensional nematic can be analyzed similarly.
Here, the director is a 83 rank two symmetric traceless
1 € ‘3/2 tensor. On symmetry grounds one anticipates that, since a
(€)= (22 cubic invariant is allowed in the free energy, the isotropic to

2\1/4 . L. . .
3Nex (kKg) UFkF| nematic transition will generally be first order. We have re-

Although perturbative, our results unambiguously signal the*@ated the calculation of the ground state energy(&4.in
breakdown of Fermi-liquid theory, i.e., the spectral functionthrée dimensions. In contrast to two dimensions, we indeed
no longer has a quasiparticle pole over most of the Fermfind @ cubic term which Usuaﬁﬁ favors a uniaxial nematic
surface?® For fixed €, the perturbation theory is arbitrarily OVer @ biaxial one and its sign determines whether the nem-
accurate for large enough, but for fixed «, perturbation gtlc Fermi surface is oblatg or prplate._The Go_ldst_one mode
theory may well break down at small We have not deter- IS overdamped as in two d|mer)S|ons; its contrll:_)utlon to the
mined yet whether this indicates a phase transition to a nevy"dlé-particle scattering rate is of the *marginal Fermi-
ordered state, e.g., a superconducting state, or the occurren@id” form,*> X”(e) | €|, but strongly angle dependent.

of a genuine, two-dimensioné2D) non-Fermi-liquid phase. The con_&deraﬂonspresentgd in this paper may serve as a
With the exception of the discrete set of symmetry-relatedt@rting point for a microscopic theory of a quantum Hall
points where the quasiparticle survives collective dampingneématic fluid. In particular, it was proposed in Refs. 5 and 8

the frequency dependence of our result is identical to thahat the observed large anisotropy in Landau lewts2

comparable perturbative result for fermions coupledn-  could be explained by a nematic fluid phase. The results that
dau dampedgauge or quantum critical field&1%2122How- ~ We have derived in this paper indicate that this is a very
ever, it is important to emphasize that formal resemblanc&oncrete possibility. Moreover, the relation between aniso-

among these three problems need not persist beyond the loWOPIC fransport and a nematic order parameter proposed on
est order in perturbation theory. symmetry grounds in Ref. 8 follows clearly from the spon-

taneous effective-mass anisotropy in the nematic stite
cussed aboyeby means of simple Boltzmann transport ar-
guments. A candidate ground-state wave function for a
Thus far we have considered a rotationally invariant sysquantum Hall nematic at filling factor=1/2 can be con-
tem. Since the electron fluid is typically realized in a solid- structed in the spirit of the Jain wave function for the com-
state context, it is important to consider the effects of explicitposite Fermi sed?’ as
rotational symmetry breaking by the underlying lattice.
These are relevant operators in the nematic phase, and their ,
main effect is to gap out the Goldstone bosons. In the pres- ene(z) =Pl (Zi_Zj)2672 (2 e, (29
ence of such explicit symmetry breaking, the system be- =
haves, at sufficiently low energy, like an anisotropic metalwhere Vg, denotes the ground-state wave function of the
with Fermi-liquid properties. However, an analysis of their2D nematic we have considered here,are the complex
effects on the quasiparticle self-energies indicates a crosgoordinates of the electrorfwith the magnetic length set to
over from non-Fermi-liquid to Fermi-liquid behavior below 1), andP is the Landau-level projection operator. However,
an energy scale* ~(v:\%?)/\/k where\ is a dimensionless for a subtle gapless state like this it is not clear that simple
measure of the lattice-induced anisotropy on the bare quasivave functions are able to fully capture the physics.
particle energy. In many cases, is small soe* is very Finally, the picture of the nematic phase that emerges
small. from our results is strikingly reminiscent of the behavior of
There are many obvious and interesting generalizations dhe so-called “normal phase” of high-temperature supercon-
these ideas. With very little difference, we can consider theductors. In particular the fermion spectral function that we
theory of the metallic hexatic, which is similarly non-Fermi find in the nematic phase has a behavior that is qualitatively
liquid. Such a state would be triggered by a large, negativeimilar to the electron spectral function measured by angle-
Fs. While at first that might sound artificial, if we view the resolved photoemission  spectroscopfARPES in
quantum hexactic as a melted Wigner crystal, it is a naturaBSCC0O?®~%In fact, loffe and Millis’™* have proposed a phe-
state to consider. This may have relevance to the longrnomenological form for the quasiparticle scattering rate with

VI. EXTENSIONS AND SPECULATIONS
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the angular dependendk, —k,| and ale| marginal Fermi-  experiments by Rubhausen and coworkemgve found evi-
liguid energy dependence. It is tempting to speculate that dence of a rounded nematic transition at the charge-ordering
possible origin of this sort of behavior may be a nematictemperature of the manganite;BiCaMnO;.

Fermi fluid state setting in at temperatures close to the
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