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Analytical approach to the linear E®e Jahn-Teller problem
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TheE®e Jahn-Teller effect has been studied previously by many authors. This system is important because,
as well as providing results that are useful in their own right, such as for modeling experimental data, it is a
relatively simple system that can be used to test ideas before applying them to more complicated systems. The
most notable feature of this system is that in linear coupling, the lowest adiabatic potential energy surface
forms a two-dimensional trough. Vibrations across the trough and rotations around the trough must both be
taken into account. Previous analytical approaches to this system give results that differ by a factor of 2 from
numerical results in strong coupling. These approaches are also difficult to extend to more complicated sys-
tems. In this paper, we develop an analytical method that shows how the approach can be extended to other
systems. We also eliminate the factor of 2 discrepancy by including coupling to the upper potential sheet.
Finally, we show that a reasonable approximation to the true linear coupling results can be obtained by
including only those points on the trough that become minima when weak quadratic coupling is added to warp
the trough, as long as anisotropy in the resultant wells is taken into account.
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I. INTRODUCTION (APES contains a continuous two-dimensional trough of
minimum energy points, commonly referred to as a “Mexi-
Electron-phonon coupling, via the so-called Jahn-Tellercan hat.” The motion of the system is then characterized by
(JT) effect, can have a significant influence on the energya vibration across the trough and a rotation around the
levels and wave functions of a wide variety of systems. Thdarough. This picture holds for all coupling strengths except
most widely studied vibronic systems are those in cubic symthe weak coupling limit. However, real systems are likely to
metry. This symmetry applies to many systems in naturebe affected by higher order effects such as quadratic coupling
such as substitutional magnetic ion impurities in 1lI-V and or anharmonicity. These cause the trough to warp to give
[I-VI semiconductors and various fluoride and chloride crys-three low-symmetry minimdor wells. When the barriers
tals. Cubic symmetry is also amongst the simplest to deahtroduced are large enough, the motion near the minima can
with. This means that it is ideal for developing theories thatbe treated as a pure two-dimensional vibration, although the
can later be applied to more complex systems, such as tHeequency of vibration in the parallel direction will be sig-
icosahedral symmetry that is applicable to fullerenes andhificantly lower than in the perpendicular direction. Tunnel-
various biological molecules. ing between equivalent minima then restores the cubic sym-
It is important to have good theoretical descriptions of JTmetry. It is desirable to examine the two limiting cases of
systems because this provides information on the energy leure vibration and pure rotation. The results can be com-
els and vibronic states that can then be used to model specifimared and deductions made about real systems, which are
systems in order to interpret experimental data. One imporikely to lie between these two extremes with shallow barri-
tant application of these results is for the calculation of JTers resulting in a hindered vibration around the trofigh.
(or Ham reduction factorRF’s).1~3 These are needed to The first numerical results for the energies of bee JT
predict the forms of effective Hamiltonians used to modelproblem were obtained some 40 years &gdollowed by
the effect of external perturbations, such as stress or spifmprovements using more modern computational metfbds.
orbit coupling. Compared to the non-vibronic cases, som&hese approaches can start from either the weak or the strong
terms are reduced in magnituder even change signFor  coupling limit, as reviewed by PooleiNevertheless, efforts
example, the orbital contributions to the Zeeman and spinto produce reliable analytical results are continuing
orbit interaction terms of several transition metal impurity today*'*? Analytical results give more physical insight into
ions are quenched to zero by vibronic interactib®dso,  the problem than numerical results. They also form a basis
other new terms appear in second-order that will dominate itfior further calculations, such as those of RF’s, which are not
the effective Hamiltonians when first-order terms arepossible with corresponding numerical approaches. Also,
guenched. The general ideas concerning these first arghalytical methods often naturally lead to extensions to other
second-order RF’s can be found in various books and reviewituations, such as multimode JT problehs, the inclusion
articles*® There are also numerous publications giving de-of additional perturbations. One example showing the physi-
tails of the calculation of RF’s both in specific systems and incal insight gained by analytical methods is recent work
more general term’ which has shown that under conditions of very strong qua-
The cubic JT system that has received the most attentiodratic coupling to thee mode, the ground state of titex e
over many years is thE®e JT system, in which an orbital system can be aA-type singlet* Usually, the ground state
doublet E is coupled toe-type vibrations. In the lineaE of a JT system has the same symmetry as the original orbital
®e JT effect, the lowest adiabatic potential energy surfacestate. The crossover to a singlet ground state, which has also
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been observed for the icosahedrab h JT system in strong neling between equivalent wells must be introduced to model
linear coupling*>® can be understood in terms of different the dynamic JT effect by taking appropriate linear combina-
Berry phases around competing tunneling paths. tions of the well states. This is most readily achieved using
Various analytical approaches have been employed by diferojection operator¥’ This method has been applied to all of
ferent authors. Some apply only to specific ranges of couthe cubic JT systems includirig e,>*~*°as well as to icosa-
pling strengths and others work reasonably well for all cou-edral system& The main advantage of this approach over
pling strengths. Much of the earlier work has been reviewednany of the other approaches is that the states are in a form
by a number of authors®® One approach to thE®e prob-  that can be readily used for further calculations, such as in
lem is to treat the states in the wells as displaced harmonithe evaluation of JT reduction factors.
oscillators using Glauber stat€’s\® using ideas developed  The shift transformation results in vibrational frequencies
earlier by Judd; and by Judd and Vogéf, and further dis-  that are the same in all directions, i.e., the wells are isotropic.
cussed by Barentzest al** The Glauber state approach has This is unphysical in trough problems such&se, where
also been applied to the specific example of Féons in  shallow barriers in the direction around the trough means
ZnTe and Zn$? General expressions for the matrix elementsthat the frequency of vibration in this direction can be ex-
of all '®@e JT systems, including thE®e problem, have pected to be much lower than that across the well. It has been
been obtained from group theoretical arguméht¥aria-  shown that anisotropy can be introduced mathematically by
tional approaches have also been used, both for the Basic applying a scale transformation in addition to the shift
®e problenf*~? and for the related pseudo JT effétt. transformatiors’ Symmetry arguments are used to generate
Other methods include operator techniddesd an analyti-  different vibrational frequencies in the different symmetry
cal series approacti.Nonadiabatic contributions have also directions. However, this approach has not been applied pre-
been investigatetf. A discussion of the determination of viously to theE®e system.
RF’s for excited states exhibiting éa®e JT effect can be The significant difference between JT problems with a
found in Fletcher and Stedmah. trough in the APES and those with wells is that the rota-
Of the variety of methods used to solve the lin€abe  tion(s) around the trough must be taken into account. A
problem, the methods based on Glauber states are very atethod such as the shift transformation can be used to obtain
tractive because the states obtained are expressed in a simgie positions of the points forming the bottom of the trough.
form that is both easy to understand and easy to use in sulbtowever, whereas with wells the correct tunneling states are
sequent calculations. However, one drawback is that iformed from a linear combination of a small number of
strong(linear coupling, the calculated energy is larger thanequivalent well states, there is now an infinite number of
the strong-coupling limit of- Ejr+ 3/ wg by twice the ex-  equivalent points to be included. Therefore, the sum must
pected amount. This effect was first observed by Judd  become an integral over the states at all minimum points.
1974 in studying the fivefold unitary and rotation grolyps The principal aim of this paper is to develop the transfor-
and Rs, when discussing results of O’Brien on tiex (e  mation and projection operator approach used previously for
+1,) systen® He pointed out that both potential and kinetic well problems to take account of the continuous nature of
energy terms contribute to the rotational term, whereas &ough problems, utilizing the best aspects of the transforma-
“classical” treatment of rotation considers only the kinetic tion and Glauber state approaches. The results are applied to
energy. He also noted that the off-diagonal matrix elementshe linearE® e problem. The states obtained for this simple
that occur when coupling to the upper APES is included havease are essentially the same as those obtained previously
the effect of exactly halving the rotational term and will considering Glauber staté$However, the theory is devel-
hence produce the correct energy results. It has also beeaped in a manner which will enable the approach to be ap-
noted by Chancéy that the RFs for th&®e problem cal-  plied to other more complicated systems which would not be
culated using Glauber states only exhibit the correct strongpossible at present. Our basic results, as with the previous
coupling behavior when the perturbation calculation is carGlauber state results, show the factor of two discrepancy
ried out to second-ordé?. However, Chancef¥ did not with published numerical results in strong coupling. We
attempt to correct his Glauber states to take account of thishow how this discrepancy can be eliminated by including
coupling. Another drawback of the Glauber state methodgoupling to the upper APES.
used so far is that it is difficult to see how to extend them to The second aim of this paper is to apply the scale trans-
more complicated systems, such as the icosaheDeath formation to theE® e problem under the assumption that the
problem in which the lowest APES forms a three-trough has been warped to produce wells. This is useful for
dimensional trough. two reasons. First, a real system is likely to be sensitive to
The current authors have developed an analytical metholigher-order couplings so to exhibit behavior somewhere be-
for obtaining well states when quadratic coupling is includedtween this case and the trough case. Secondly, the states are
by using two unitary transformations. The first transforma-simpler and calculations using them somewhat more straight-
tion is a shift transformation to displace the origin of phononforward to perform as it is not necessary to integrate over all
coordinates to the well positioi$.The displaced oscillator points on the trough. If good results can be obtained using
states obtained for each well are essentially the same dhkis method, they will provide a quick means of writing
Glauber states, although the origin of their construction isdlown states for this problem and hence carrying out subse-
somewhat different. The well states are appropriate to a statiguent calculationgsuch as for RF’s
JT effect in infinitely strong coupling only. Therefore, tun- By applying the scale transformation, an expression for
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the frequency of vibration parallel to the trough will be ob- A. The vibrational part
tained in the limit of zero quadratic coupling, as a function of
the linear coupling strength. This is shown to predict cor-
rectly the conversion of a vibration in weak couplmg to a

The wave functions for the vibrational problem should
represent harmonic oscillators in tg, direction(namely in
4the direction across the wgllOne method of finding such

functions is to apply a unitary transformation of the form
shown to attain the correct strong and weak coupling limits. PRl y

Unfortunately, the energy is seen to be significantly overes-
timated in strong coupling compared to the trough results U=exp(i2 ;P
and numerical approaches. [

®)

to the complete vibronic Hamiltoniak. The effect of this
IIl. FORMULATION OF THE TROUGH PROBLEM transformation is to displace the origin of vibrational coordi-
The linear vibronic Hamiltoniar¥ for the Eg e JT sys-  hates to positiongia;. If a similar procedure were to be
tem contains the terms followed to that used to solve many different well problems
previously>' =3¢ the energy of the part of the transformed

Hamiltonian#=U ~HU that does not contain phonon op-
erators would be minimized with respect to theusing the
method of @ik and Pryce® A set of values for they; would
and be obtained that map out the bottom of the trough. The only
2 difference here is that there are an infinite number of points
i +MwéQi2> Ca ) gt the bottom of the trough, meaning that theare spec_ified

1 in terms of the anglep rather than being a set of distinct
values. However, an alternative procedure can be carried out
) X : by working in the rotating coordinates, replacing thgby
representation. The coupling constantx/@, p is the mass, a] . Although this is entirely equivalent to the original prob-
and the frequency of the mode is taken to bere. Ca IS o the results are easier to understand. This is because in
the identity operator and thg, are electronic operators that these coordinatesy, must be a constant as all points on the
can be represented in the matrix form trough are the same distance from the origin. Indeed, the
value of Q,=%«aj, on the trough must be the radius of the

Hin=Ve2 QiC, (1)

1
Hvib+rot:§ Z

wherei is summed over the componemsand e of the E

C. = }( 1 0) and Ce = — }(0 1) 3 trough, pg . Performing the calculation, we find that
o 2\l0 -1 B 201 0
with respect to basis statég) and |€). H;, describes the = Ve _ 6)
interaction between the electrons and the vibrations and 2h pw?
Hyib+rot INCOrporates the kinetic and elastic energies for the
rotational mode and the vibrational mode. It can be argued that. must be zero because this mode

It is well-known that the lowest APES for tHe® e prob-  corresponds to a rotation, not a vibration. An alternative way
lem consists of a trough @(2) symmetry? This is a simple  of looking at this is to say that because the transformdtlon
two-dimensional trough that can be represented in a plot ofs applied in order to displace the origin of vibrational coor-
Q, againstQ, as a circle of radiugg centred on the origin. dinates, it should be specified in terms of the coordinates that
Although the formulation in terms d®, andQ, is that tra-  correspond to vibrations only. In this case, is zero from
ditionally used, it does not separate the rotational motiorthe start. It should be noted that values for thefor non-
from the vibrational motion. However, such a separation camotating coordinates can be found fran) as the primed and
be achieved by recasting the problem in terms of “rotating” unprimedc;’s are related in the same way as ®¢s in Eq.
coordinatesQ/ . At a given point on the trough, th®; are  (4). Thus

given by
Qp _( cos¢ sin¢)<Qa>
Q. | -—sing cosp/| Q. @

where ¢ is defined to be the angle between the line joiningThe energy of the minimal points on the ground and excited
that point to the origin and th@, axis. ThusQ_ is a rota- APES's areE=—Ej+ 3fhwg and E=3E;1+ 3hwg, re-
tional coordinate representing motion around the trough andpectively, wherd ;= Véls,uwé is the Jahn-Teller energy. It
Q, is a vibrational coordinate representing vibrational mo-is useful to express this and later results in terms of the
tion across the trough, ot is divided into a termH,;,  scaled coupling constarKg=Vg\A/2uwe which has the
involving Qj, and a terniH,, involving Q. , meaning that the dimensions of energy. The corresponding electronic states
rotational and vibrational problems can be solved indepen|-¢g> on the ground APES anfl),) on the upper(excited
dently. The next step is to find wave functions and corre-APES, expressed in terms of the fix@hprimed coordi-
sponding energies that solve the above Hamiltonians. nates, are

ay= ay, COSe,

a.=aysing. )
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) ) noting that theP; transform in the same manner as Qe
|pg)=co 2 |6)—sin > l€), Whichever procedure is used, the normalized rotational wave
functions will be

M.\ — M
wy=sin 3 |9>+C°5<§>|6>. ® [Yraiy) =€ 2o 12

As the electronic wave functiorg/,) and|4,) contributing

By using Eq.(4), we can also write these results in terms of 10 the vibronic wave functionisfyinronic) change sign wherp

the rotating(primed coordinates as is incremented by & the rotational functionswrot_;mp
must also change sign for the overall wave function to be

3¢ 3¢ invariant. Thus it follows thaim; must be half-integer. A
|z,//g>=cos< 7>|¢9'>—sin(7>|f'>, further ?4iscussion of this point was given by Bersuker and
Polinger.

Although the state given in Eq12) has a fixed value of
) , A m; , itis sometimes more convenigfitom a symmetry point
| ) =sin > |6")+co - le"). 9 of view) to define states that transform according to specific
irreducible representations of the cubic group. R8E=E
The vibronic “ground” states of the transformed Hamil- + A1+ A, the states of the® e system must be doublets or
tonian on each sheet can be written | &giyonc;0), Where singlets. Thelground state is a QOubIet corresponding to the
| Yrsibronid) = | thg) OF [,) and the “0” indicates the absence of statesm;=* ;. States transforming as th_e componefis
phonon excitations in the transformed system. States appréd = of the cubic group can be obtained by replacing
priate to the untransformed system can be found by multi€” ' by cos@/2) and sing/2), respectively. Alternatively,
plying these states by after substitution of the value af). they can be taken_as the real and tht_e neqatlve of the imagi-
To do this, it is useful to writdJ in the second quantized Nary parts respectively of the state wit)=z.
form U=exgkyb, —bj})], wherek,=Kg/2%iwg. Note that
asU contains phonon operators, there are phonon excitations
present for the ground state in the untransformed system, Combining the vibronic state in Ed10) and the rota-
even though they are not present in the transformed systertional state in Eq(12) gives an expression for ground and
States withn excitations of¢’ symmetry can be obtained by excited states at a particular point on the trough. States ap-
multiplying the phonon vacuum state by powers of the pho-propriate for the system as a whdle non-normalized form
non creation operatolo;T. Thus the vibronic state witm  must involve all trough points equally via the integral
0’ -type excitations can be written as

C. Total states

' |¢’tsot;n!mj>:f Ul‘r/’vibronic;n>|(/frot;mj>d¢ (13)
U | Wyivronic’ I’l> = U(b()T)n| ‘/’vibronic;o>- (10
over all points¢ on the trough, where=g or u to label the
B. The rotational part grqund and upper APES'’s, respectivgly. This is equiv_alent to
. _— . _ a linear sum to account mathematically for tunneling be-
The terms in the Hamiltonian giving rise to rotations areyyeen equivalent minima in well cases. The result can be
the kinetic and potential energies of t mode. In com-  expressed in an alternative form using the commutation

. . 18 . .
mon with previous authors;® we will neglect the potential  properties o/, with the resultant unnormalized state
energy contribution. The most convenient way to find solu-

tions for the rotational kinetic energy is to realize tig3t is s 2 (27 ot 4

. . N\ — o (1/2)k kb rt_ naim; ¢
the distance moved around the trough, so th@f = pedé. |0, m;) =e BJO e (b —ky)"e™i? ) d .
Consequently, (14)

N An equivalent expression for the ground states was obtained
__nmr_k (17 by Judd and Vogel? and later by ChanceY, using general-

2l g2 21 ' ized Glauber states. This is because whkeis applied to the

phonon vacuum state, the results are equivalgnto a nor-

wherel = upZ is the moment of inertia. This is the standard malizing factoj to the expressions used when generating
form for a rigid rotator usually quoted for tHe® e system* ~ Glauber states. Note that these states are not exact eigen-
Alternatively, the kinetic energy can be written directly in states of 79 andTz does not commute with{. Consequences
terms ofQ_ followed by a substitution of.=pg¢. Expres-  of this in terms of coupling between the ground and excited
sions can also be obtained by converting to the fixed coordipotential sheets will be discussed below.
nate system, using the polar parametrizati@p= pg coS¢

and Q.= pg sin¢ equivalent to Eq(7). Expressions for the lll. ENERGIES
dl9Q; can be obtained if theg is treated as a variable and
then reset to a constatdnd d/ dpg to zerg. The results can The energies of the resultant states can be calculated by

then be transformed back to the rotating coordinate systenmormalizing the above states and evaluating their matrix el-
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1.0

ements with respect to the untransformed Hamiltoritan
When evaluating the phonon overlaps and matrix elements,
will be necessary to determine the overlaps of wave func o9
tions at two different points on the trough. As the rotating
coordinates are different for the two different points, such
calculations are best performed by converting back to thtg“‘
fixed coordinate system. All relevant overlaps can then be
calculated using appropriate identities and expanding the e>n§ 07 b
ponentials. The same basic formulas apply here as those o2
tained for the overlaps and matrix elements in Ref. 39 foi
“well” problems, except where the two states now refer to
two different points at angle$ and ¢’ on the trough rather
than two different wells. 05 — .| : -
The resultant double integrals ov@érand ¢’ only involve ° ! 2 ¢ ¢ s ®
the difference in angle®=¢— ¢’, and thus can be rewrit- K,/ o,
ten as a single integral. Physically, the integrals arise from
evaluating the overlap between two different poiAtand B
on the trough and integrating over all possible positioné of
andB. One integral can be viewed as fixing the position of

point A and integrating over all possible positionsRifthis as a function of the dimensionless coupling strength

can only depend upon the difference in angles betweand Ke/tog. As expected, the energy at strong coupling is

B. The second integral then integrates over all possible postk : L= :
tions of B. As all points along the trough are identical, the 2hwg, corresponding to one vibration and one rotation. At

S L ero coupling, the relative energy fisvg, representing two
value of the first integral can not depend upon the position of 10 € L d
the pointA. Therefore all of the “first” integrals yield the vibrations. This is because there is no longer a trough at zero

same value and the second integral simply multiplies thisCOUp“ng' Also plotteddashed lingis the numerical result

value by the integral over all possible angles, namety, 2 Obtained by Longuet-Higgin®t al. " This shows that in

) X . e trong coupling, in common with the results of Chanty,
A$ the integrals mvolveq n d(_etermmmg the overlaps and'fhe calculated energy difference from the strong-coupling
matrix elements are only single integrals, they can be eval

ated numerically. Alternatively, analytical expressions for aILIJﬁmit of —Eyrt fwe is twice the expected value indicated
y: y: y P tiy the numerical result. As noted in the introduction, this is

of the resultant integrals can be obtained in terms of Besse ~o ] )
functionsl, andl,. For example, for the ground state, becausel; should contributefi/4 to the overall energy,
whereas, due to the neglect of the rotational potential energy,
g .1 it contributes twice this amount.
'pmf'oi =01, The reason whyi? does not cc_)ntributéizl4 is that the
states| #/¢,;n,m;) contain a terme'™? from |y,;m;) and
1 terms in cos¢/2) and sing/2) from the electronic states
g -0—)= .
H‘ ‘ptot’o’2> M1t we, (15 |s;m;). Consequently, it follows that

No Coupling

Coupling

Numerical

FIG. 1. The ground state energy. The solid lines give the results
of the current method with and without coupling to the upper APES.
The dashed line is the numerical result of Ref. 8.

1
< ‘/ftgot;oii

1
< ’ﬁtgot ; O'E

where
12
7

i -Oi1 *il Y -OJ_r1
tot» > 2 totr > 2 '

; _0+1 h?
o o lﬂtot’ ’—E _?
ol=f eK(°°S®’1)co§§d®=e’Kﬂ-[l0(K)+Il(K)],
0

12
17

u . _,_1 —: .9 . _,_1
Yo: 055 ) 1 e 0,25 ) .

2
tots ¥ 2 2

27 ()]
M1=J eK(°°S®*1)co§§[1+ K(cos® —2)]dd (19)
0
=—e Ka[(K=1)I(K)+KI(K)], (16) In other words,|Z couples the ground APES to the excited

APES. This observation provides a means of at least partially
correcting this problem. We define a new ground state of the
form

whereK = kﬁz E;t/f wg . Dividing these results, we can see
that the ground state energy is

—K+ L (17)
Lo(K)+14(K) |
This expression can be seen to be exactly equivalent to that _ _
given by Chancey if the Bessel functions are expanded aswhere the|W§,;0,= ) (s=u,g) are normalized versions of
sums of polynomials. the |¢2,;0,=3) (e, |¢,;0,+3)/JO;). « and B are as-
The value of the ground state energy in ELj) is plotted  sumed to be real parameters and the factorisavké chosen
relative to— E 1 in Fig. 1 (solid line labeled “no couplingf ~ for convenience.

1 1
‘I’?ot;O,i§> =i ,B‘I’{Jm;o,t§> , (19

E=ﬁwE

g 1
dbtot;O,iE =a
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With this definition, and noting that the normalization 4
constants for the ground and excited electronic states are tl
same, we obtain

ol g1 P! "
Izq)tot;oiiz =(a+B)7 ‘I’tot;o,iz = I
[<}]
©
1 £ 05
ii’w;'ot;o,i§>). 20 8

As the overlap between the ground state on the uppe ©°
APES is the same as that on the lower APES and as

1\
l/ftgot;o-§> =i0; K. / ho,

21
2Y) FIG. 2. The values ofr and 8 to minimize the energy of the
with ground statésolid line9, for the ground state to be an eigenstate of

12 (dot-dash ling and fori? to have an expectation value bf/4
(dashed ling

9 1 u 1 u 1
lﬁtot;oi ¢tot;oa§ == ¢tot;0,§

2w )]
oz=f eK(COS‘I"l)sinZEd(D=e‘K77[I0(K)—I1(K)]
0

(220  We therefore choose to minimize the energy in Ex) by

. . settingdE/da=0 anddE/dB=0 and choosing the root that
We can see that for the new state to bimarmalized eigen- gives the lowest energy. Thus, after some simple algebra, we
state oflZ, it is necessary to set=8=1/\2(1-0,/01).  gbtain the resulte=18, where

However, the eigenvalue i52/2 rather than the expected

#2/4. Furthermore, it is found that the enerdy+ E;1) does (M,—M )0, + JX
not tend to a constant in strong-coupling. For the expectation I= 2(M30,—M,0,) (26)
value ofi2 to be#?/4, it is necessary to set
and
= ! + 3 =(M,—M,)?07—4(M30,—M;0,)(M,0,— M;O0
0—2\/2(1_02/01) 2\/2(14'02/01)’ X=(M, 1)°07—4(M30, 102)(M>0; 3 1()2-7)

1 \/§ The condition that the state is normalized fixes the absolute
= - . (23)  values ofa and 8 (up to the usual phase faci®o that
212(1-0,/0;) 22(1+0,/0;)

— 2 _
However, E+E;7) does not tend to a constant in strong B=1N(I7+1)-210,/0, (28)

coupling in this case either, meaning that this is not a goo&nese values of andg are plotted as a function of coupling
choice. strength as solid lines in Fig. 2. The figure also shows the

P2 : T N
As |7 is not the only term in the Hamiltonian, we should regyjts for the state to be an eigenstatd ofdot-dash ling

not concentrate on this alone. The energy of the ground state ~2 :
using the full Hamiltonian is given by and for 12 to have an expectation value &f/4 (dashed

lines). The energy of the ground state determined using the
2 2 variational values for and 8 is shown in Fig. 1(solid line

_ @Myt M, = 2a M5 (24) labeled “coupling”. It can be seen that the new result is

very close to the numerical restfor all coupling strengths.

u o1 y o . In particular, the value in strong coupling is halved from that

where M= (ot 0,2 | M| Pier: 0.7) and IM3 when the coupling is neglected.

= (o 0.5 H|42,;0,%). More explicitly, In the strong-coupling limitD, andM 3;— 0, implying no

mixing of the state on the upper APES into the ground state.

The results above giva—1 andB—0 in this limit, which

is consistent with this observation. This behavior is also to be

expected because the original energies were seen to be cor-

=e Ka[(BK+1)1,(K)+3KI(K)], rect in this limit; it is only the rate at which the limiting

values of energy were obtained that was incorrect. Note also

B

 (a?+ %0, 2aB0,

2m ()
Mzzf eK(“’S‘I’*l)cosZ?[lJrK(cosCI>+2)]d<I>
0

Mo T K(cosd—1) _n2<I> 4 that because the electronic states on the ground and upper
3=, © s’ [1+K cosd]d & potential sheets are orthogonal to each other, the energies of
the new states witln; = * 3, or equivalently of theE, and
=e Ka[(1-K)lo(K)+KI(K)]. (25 E. components, are still the same as each other.
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It should be noted that although we have used a varia
tional procedure to determine the amount of mixing of the
ground state on the upper APES into the ground state on tt
lower APES, the ground states on the APES'’s are not therr
selves of a variational nature. The wave functions are of ¢
totally different form to those used in other variational cal-
culations in which the wave functions themselves are
variational?*~?’ It should also be noted that the overlap fac-
tors and matrix elements between thg=+1/2 andm,
=—1/2 states are zero. As correspondimg= +1/2 and
m; = — 1/2 states are degenerate at all coupling strengths, iti s
possible to define states composed of any linear combinatics
of the lowestm; = + 1/2 andm; = — 1/2 states on each APES. =
However, the energy of the resultant state after minimizinciwy
the energy with respect to the variational parameters will b(fﬁ
the same in all of these cases. e

We will now derive results for the excited vibrational and
rotational states. It is again found necessary to include cot
pling to the upper APES. The coupling still roughly halves
the difference between the calculated result aBg;

+ 3hwg, although the effect is even more noticeable thar
for the ground states because the magnitude of the reductic
is much larger. It should be noted that the overlap integral:
for many of the excited states tend to zero in the weak:
coupling limit, meaning that the states themselves are nc
properly defined in this limit. This is not surprising as we
have used a picture involving rotations around a trough an KE/h(oE

vibrations across a trough. There is no trough in the weak

coupling limit and so this is not appropriate. Nevertheless, FIG. 3. The energies of thmj:_% and + % states with one
because the matrix elements also tend to zero, the energpponon excitation. The solid lines are the results with both orthogo-
does attain a well-defined finite limit. Unfortunately, the en-nalization and coupling to the upper APES. The dot-dash and dotted
ergies of the higher angular momentum states with phonohines are the results before orthogonalization, with and without cou-
excitations tend to the wrong limit. This is illustrated in Fig. pling to the excited APES respectively. The dashed lines are the
3 for them;= =1 states with one phonon excitation. The numerical results of Ref. 8.

dot-dash and dotted lines are the results with and without

coupling to the excited APES, respectively. It can be seemre also given in Fig. 3. This shows that orthogonalization
that both results tend tofdog in weak coupling rather than can be included for these states also, but it does not have a
the correct value of bwg (hwg zero-point energy for two  significant effect on the results. Comparison with published
vibrations, A wg for the one-phonon excitation plusidg numerical resulfs(dashed linesshow good agreement with
corresponding to thmjzghwE rotation becoming a three- the fully corrected states, although there remains some dis-

phonon vibratioh crepancy in intermediate coupling. This is the hardest region
The occurrence of wrong limits in weak coupling has oc-to model both analytically and numerically.
curred before in other systems with wells in the APE8s Figure 4 gives the energies, including orthogonalization

in these other systems, the problem arises because basisd coupling to the upper APESolid lines for all of the
states with the same value of; but different phonon occu- my=+3, +3, +3, and = states(in order of increasing
pations are not orthogonal to each other. The effect is subtlenergy for phonon occupation numbers of 0, 1, and 2. The
because the overlap between the no-phonon and one-phonground state given in Fig. 1 and the one-phonon states given
states actually tends to zero in weak coupling, but this is @ Fig. 3 are included again for completeness. In strong cou-
consequence of the fact that the states are poorly defined jling, the rotational levels can clearly be seen to be structure
this limit. Nevertheless, the problem can be corrected by desuperimposed upon phonon states separated by the vibra-
fining new states that are orthogonal to all lower-energytional quantafwg. In weaker couplings, the states with
states with the same value of; . The only drawback to this higher m; values start to cross states with lowey values
procedure is that more integrals are required and the resultsut an additional phonon excitation, until the weak coupling
are inevitably more complex, although all integrals can stilllimit where all states are separated by the vibrational quan-
be reduced to a single dimension. The result with both coutum % wg . The numerical results of Longuet-Higgies al®

pling to the excited APES and orthogonalization is given as are also showr(as dashed lings It can be seen that the
solid line in Fig. 3, showing that the correct weak-couplingagreement for all of the zero-phonon states is excellent. The
behavior is now obtained. This is despite the fact that we aragreement becomes less good as the number of phonon ex-
working with a strong-coupling model. The;= + 31 states citations increases, in common with the observation above.
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s, 7 ™ Shift Transformation
09 | g
w 0.8
2
&
E/ 0.7 |
) 06 -
w2
~—
-~
Lﬂb 0.5
¥ 0 1 2 3 4 5 6 7 8
=
~ K, /ho,
=2 FIG. 5. Comparison of the ground state energy using trough and

well states. The solid line is the ground state of the trough method
as given in Fig. 1. The dot-dash line is the results of calculations
based on isotropic well states when the quadratic coupling tends to
zero. The dashed line labeléd is the well energy corrected for
anisotropy, line(ii) is the ground state energy using the corrected
well energy but with all other terms as for the isotropic result, and

. . . ] ] : - A ] - n=0 line (iii ) is the ground state energy calculating all terms to first order
o0 1 2 3 4 5 6 7 8 9 10 and including anisotropy.

n=1

K /ho . o
E £ Often, in order to simplify well problems, the wells are

FIG. 4. The energies of the states withof +%, =2, =3, and taken to be isotropic. However, this will not be a good ap-

+7 (in order of increasing energy, respectivefgr phonon occu-  Proximation for theE®e JT system as the barriers in the
pation numbersi of 0, 1, and 2. The solid lines give the results of direction around the trough will be much lower than across

the current method including coupling to the upper sheet and théhe trough, and the corresponding vibrational frequency will

dashed lines are the numerical results of Ref. 8. be less. Furthermore, the results cannot reproduce the trough
results in the limit when the quadratic coupling tends to zero.
IV. THE ANISOTROPIC WELL PROBLEM This is shown in Fig. 3dot-dash ling The state starts at the

orrect energy in weak coupling and begins to reduce as the
linean coupling strength increases. However, it then starts

0 increase again and eng$ wg too large in the strong
coupling limit. This is because the rotation that should take
place around the trough is effectively still treated as a vibra-

The results of the trough problem should be compare
with those of the equivalent problem that arises when qu
dratic coupling is included to warp the lowest APES into

three equivalent wells via a term such as
_ 2_ A2 tion, bringing with it its zero-point energy.
Hauad=V2l(Qe Q) Ce, +2QQCe I, @9 Better results for the well problem can be obtained by

whereV, is a quadratic coupling constant. It is not expectedincorporating anisotropy in the wells. Values of the aniso-

that the two approaches will produce equivalent results aopic local mode frequencies in the limit of strong linear

they model different physical situations; whereas the trougtfOuPling can be obtained using the method giiland

states include an infinite set of points at the bottom of the”ryce, as applied previously for the icosahedr@l, @ hq

trough, the well problem includes three points only. Never-Systent:' First, the curvature of the APES is analyzed by

theless, comparison of the two approaches can indicate ho@Panding the potential energj(Q) to second order as a

a real system with a small amount of quadratic coupling willPower series about each minimum. In general terms, if a

behave. minimum k has coordinateQ¥={Q{}, the required po-
The wells in the lowest APES, which will be labeladB,  tential is

andC, correspond to the points

#2=0, 2mw/3, and 4n/3, (30) V() =V(QM)+Vy(q)+Va(q), (3D

respectively in Eq(8) for the ground and excited electronic 1
states on the trough. Symmetrized combinations of the welpvheré

states taken to allow for tunneling between the wells in finite

coupling yield expressions for the ground doublet stafee Py,
symmetry, and also a singlet tunneling levdof A, Vi(q)= 2 (
symmetry.® '

195104-8



ANALYTICAL APPROACH TO THE LINEAR E®e JAHN-TELLER PROBLEM PHYSICAL REVIEW B 64 195104

1 92V a rotation in the strong-coupling limit. Finite-coupling local
Vo) =5 > (—) qiq;, (32 mode frequencies can be obtained by applying a scale
25 j 6’Q|QJ (k) . 37
Q transformatiofi
and qi=Qi—Qi(") are the nuclear displacements from the

minimum k. U =ex;{ A (bib;—b'bh (38)
In this problem, the potential (Q) is ° IEJ (BB by

1 in addition to the shift transformatior\;; is an element of a
V(Q)= > (E,uwéQiz+VEQiCEi). (33  matrix A which, similar to the parameters; in the shift
=0 transformation will be set to minimize the energy. The effect

The zeroth order term{(Q(k)) is that used to determine the ©f this transformation is to both transform to a new coordi-
positions of the wells, and is therefore known to give thehate system and to scale the new coordinates by different

energy— E,;. This can also be seen by substituting the ap_amounts. This can be seen by no_ting that the _zeroth_-order
propriate values OQi(k): — ayfi for a given wellk. The val- ~ Wave functions are a product of simple-harmonic oscillator

ues ofa; for zero quadratic coupling can be obtained fromfunCtionS of the form
Eq. (7) by substituting the values af for the well positions ®
given in Eq.(30). In finite quadratic coupling, both the val- l//(Qi)NeXF{ - %Qf) (39

ues of; and the Jahn-Teller energy are multiplied by 1/(1
2 . ..
—L), whereL =|V,|/uwg.** Thus it can be seen that the |t can be shown that the effect of the diagonal elemétils

warping has a small effect upon these parameters. Hence g the scale transformation on such a wave function is
the following calculations,V, will be set to zero, even

though there are not actually wells in this case and the con- Ug“)zﬂ(Qi)~eAiiw(eZAiiQi). (40)
tinuous trough description should be used. The remainin

terms in Eq(31) can then be used to determine the energy off herefore, if we choosé ;=zIn\;,

well k to second-order in perturbation thedrg the limit of

zero quadratic coupling There are no linear terms oy as U(ii)l//(Q_)N)\_lMexr{ _ ﬂQg) (41)
V(q) is a minimum atQ;=Q" . Therefore, the energy may s v A

be written in the form where\;= w;/wg is the ratio of the scaled to unscaled fre-

1 s guencies. Tlhlésfthe original isotropic frequencies are replaced
—_ .l y new scaled frequencies.
E(@) Eart 2 (A9)M ( qe), (34 Now overall, it is desired that the complete mae’ in
Eqg. (40) formed from the scale transformation parameters
Aj; should not only scale the new coordinates but also trans-
form the basis vector®); to the directions of the local
modes. These are the eigenvectors of the curvature ndtrix
in Eqg. (34). The matrices to achieve this are tBematrices
1 0 such as Eq(37) already obtained using thep@x and Pryce
M= ,qu( ) (35 method to obtain the strong-coupling frequencies. In fact, the
00 S matrices have this effect on all matrices™. Therefore,

so it is immediately clear that the local mode frequencies iff@Mbining this information with the requirement for the di-
the infinite coupling limit arewg and 0. This is consistent agonal elements to scale the frequencies indicates we should

whereM is a 2X 2 matrix. This matrix defines the curvature
of the energy surface. In general, the eigenvalued afe of
the form ,uwﬁ, where thew,, are the frequencies of the local
modes. In this case, the matrix for wéllis

with the view of a vibration of frequencyg across the Cch00Se
trough and a rotation around the trough. For w&lithe M
- 1
matrix Is A= ZST[m NS, (42)
1 1 3 . . o
2 where [In\;] is a square diagonal matrix with elements
MB ,LL(,()E . (36) 3741
4 J3 3 (In\;).3"**We then have
This matrix may be diagonalised using the unitary matrix et =g\ =" (43)
| )
1 1 3 Note that theS matrices can also be deduced using other
) B -1 (37) methods such as projection operators or the so-called eigen-

function method!#2

again giving the local mode frequencieg and 0. The next step is to determine values for finite-coupling
In finite linear coupling, the local mode frequencies arelocal mode frequencies by fixing values for the scale trans-

not simply wg and O but exhibit a complicated dependenceformation parameters by energy minimizati¢as for the

upon the coupling strength. The results must predict two vishift transformation parametersThis involves finding the

brations in the weak coupling limit as well as a vibration andeffect of the scale transformation on the transformed Hamil-
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tonian. The part of{ that does not contain phonon operatorsWherele; €) denotes an electronic stdig coupled to a pho-

is the same as with the shift transformation alone except fofOn €xcitation of symmetrye. Equivalent results for the
the addition of the term other wells are obtained wheth and € are replaced by the

appropriate combinations @ and e in Eq. (8). Coupling to
states with two phonon excitations may be included also, but
fiwe >, (sinh2A)F, (44)  this vastly complicates the calculations.

' The final step is now to calculate the new energy of the
where the effect of the operator sinh Zan be determined symmetry-adapted ground state built from these new well
by converting to exponential notation and using the definistates. The principle of the calculation of the overlaps and
tion in Eq. (43). Unfortunately, if we use the zeroth order matrix elements of the untransformed Hamiltonian between

states and include this term alone, we find the correction téhese corrected states is the same as that given in Badran and

the ground state well energy E 1+ % wg is Bates® although the details are considerably more compli-
cated as they involve operating with matrices such as Eq.
howg 1 1 (43). Therefore, it is first useful to note that the matrix ele-
2 (Mt ~ At )\_2_4 : (459 ment within any of the wells, calleB,; in Ref. 33, is simply
the energy given in Eq48). This is shown as the dashed line
Minimizing the corrected energy with respect to thesim-  labeled (i) in Fig. 5. An approximate expression for the

ply givesA;=\,=1, which is the isotropic result. This is ground state energy can therefore be obtained quite simply
not a surprising result as anisotropy is a second-order effechy replacingE;; in Eq. (3.8) of Ref. 33 for the isotropic
We must therefore calculate the energy to second-order iresult by the energy in Eq48). This is shown as the dashed
perturbation theory. The dominant effect will be from statesline labeled(ii), together with the ground state energy using
with one phonon excitation, which are coupled to the groundhe trough states as given in Fig(sblid line). It can be seen
state via the transformed Hamiltonian that both the well energy in Eq48) and the new zeroth
L order ground state energy attain the correct limits in both
~ oA strong and weak coupling, unlike the isotropic result which
Ha=2 | - KeCe + ShweV2hpoee; (bj-+bf)e; . is 1% wg too large in strong coupling. This confirms that the
(46)  Vibration has correctly converted to a rotation. The new

i
_ ground state energy is also quite close to the trough result for
One-phonon states on both the lowest APES and the exciteeaker couplings. However, the energies tend tavg far
APES will be coupled by this Hamiltonian, and both possi-iog slowly in strong coupling. We therefore complete the
bilities should be included. calculation of the energies to first-order using the well states

_ The easiest calculation is for the wéllasS, is the iden- jn Eq. (48) to see if there is any improvement in the strong-
tity matrix ande” " is diagonal, although the same results coypling results.

priate matrix elements, we find that the correction to thestates in any two welléwhich are all the same as each other
ground state well energy now contains the additional contripecomes

bution — Ejr/{\,[1+4E;1/(hwg)]}. Minimizing all of the

energy contributions with respect to the then givesi

) and P e gesia S1=SP(1+FY), (50)
2114 hog -1 , where
2=1- 2, (47)

0) N, 6E ;7\,

. . . . Siy=-2 exp — 55— —
This has the correct properties of tending to 1 in weak cou- (3+N5)(1+3\y) (1+3\,)hhwg
pling (for a vibration and 0 in strong couplingfor a rota- (51
tion). This also leads to the result

is the zeroth order anisotropic phonon overlap and
1

E=—Ej+
JT 2

ﬁﬁ)E(l"_)\z), (48) 12EJT

Fi)= :
1 (4EJT+hwE)(1+3)\2)

(52)
giving a zero-point energy of wg in weak coupling and
l . . . . . . X . i
2hwe in strong coupling, again consistent with CoNVersionye zeroth order anisotropic matrix element between any
of a vibration to a rotation. two wells is

As the energy has been corrected to second order, it is
also necessary to include perturbation corrections to the well

states. For welR, the result to first order is EO = 48(1%) —E (1+6);+30p)° © (1+2p)?
127(1+3\,) I (1+3),) E(3+\,)
Ke (53
|A)=16;0)~ o), @9 | o
2N (4E s+ hop) and the first-order contribution is
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48 9F() (1-3\3) (7+9\,) only the three points that become minimum points when qua-
dratic coupling is included to warp the APES. The resultant
motion is then composed of a vibration across the trough and
(54 Lo
a lower-frequency vibration around the trough. A real system
Using Eg.(3.8) of Ref. 33, after noting that the original is likely to possess shallow barriers in the trough direction,
orbital overlap of—3 must be substituted by the new over- which will result in a hindered rotation around the trough. It
lap, we obtain the ground state energy from has been seen that the results of the two different methods
are remarkably similar, considering that the two approaches
_ Eu—Ep (55) are not expected to yield the same results in the limit of zero
1-S;; qguadratic coupling as the formecorrectly includes all
points on the trough whereas the latter only includes the
giéree well points. This gives us confidence that we can pre-
ict the behavior of real systems.
It is instructive to comment on the relative merits of the

(1)
2= 1430, | (15 3r,)  UE3EIA,) |

Figure 5 shows this enerdylashed line labeledii)]. It can

be seen that, rather than reducing the difference between t
trough result and the approximate anisotropic well result, th
difference has increased. The strong-coupling behavior i§ .
clearly dominated by the well ener@, . It can be surmised Wwo approaches. The trough approach leaves us with more

that the strong-coupling behavior cannot be improved furthePhyS'Cal feeling for the_behawor observed than_W|th ap-
unless the well energy is improved. It is not clear whetherproaCh(:"S that are numerical fmm the outset, and y_|elds states
better results could ever be obtained from this approach b h;‘t can I?e written dlcljw_r:hana_u)?lcally n tgrrr:s o%;&t)egrals.
cause the states obtained still only consider specific points o € resulls agree well with existing numerical res W=

the trough. One possible improvement would be to correcEVer the integrals obtained must be either evaluated numeri-
the states to include coupling to states with two phonons, an‘(ﬁaIIy or expressed an_alyncal_ly In terms of Bes_zsel functions
then obtain the corrected energies accordingly. However, th@" other rather complicated infinite series. This means that

calculation then becomes extremely cumbersome. The who pme of the advantages of an analy.tical apprpach are Ios_t.
idea of obtaining a result from well states is that the calcu- he latter approach yields more concise analytical results; it

lation is relatively simple and avoids having to evaluate in-1> only necessary to use a computer to graphically display the

tegrals as arise in the trough problem. Therefore this mogifinal formula. However, the calculation of the required over-

fication will not be attempted here. We can conclude that théaIOS f?”d matrix elements is complicated by the necessary
inclusion of anisotropy, and the method can never properly

points that become wells when quadratic coupling is in-, lude the rotati v th int included
cluded are the most important ones, and that these poinl@C ude the rotation as only thre€ points aré inciuced. .
The E®e system has been chosen as the subject of this

alone can be used to give an indication of the true results b st it Ik King it
without performing any integrations. However, it seems thalpapelrt et(_:ause eX|sd|r]1g resuts art?\ V\ée _I_T]OW”' mathlng ttan
more accurate results can only be obtained by solving th €al testing ground for néw methods. These methods can
full trough problem then be applied to other systems where results are either not
' known or difficult to obtain by existing methods. This is
particularly true of the trough approach, which unlike exist-

V. CONCLUSIONS ing methods can be applied to troughs of higher dimensions.

In this paper, we have obtained results for the linEBar
® e system in which the lowest APES forms a trough and the ACKNOWLEDGMENTS
motion is composed of a vibration across the trough and a
rotation around the trough. We have also obtained results for M.R.E. would like to thank the University of Nottingham
the related system in which the trough is approximated byor a research studentship.
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