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Analytical approach to the linear E‹e Jahn-Teller problem
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TheE^ e Jahn-Teller effect has been studied previously by many authors. This system is important because,
as well as providing results that are useful in their own right, such as for modeling experimental data, it is a
relatively simple system that can be used to test ideas before applying them to more complicated systems. The
most notable feature of this system is that in linear coupling, the lowest adiabatic potential energy surface
forms a two-dimensional trough. Vibrations across the trough and rotations around the trough must both be
taken into account. Previous analytical approaches to this system give results that differ by a factor of 2 from
numerical results in strong coupling. These approaches are also difficult to extend to more complicated sys-
tems. In this paper, we develop an analytical method that shows how the approach can be extended to other
systems. We also eliminate the factor of 2 discrepancy by including coupling to the upper potential sheet.
Finally, we show that a reasonable approximation to the true linear coupling results can be obtained by
including only those points on the trough that become minima when weak quadratic coupling is added to warp
the trough, as long as anisotropy in the resultant wells is taken into account.

DOI: 10.1103/PhysRevB.64.195104 PACS number~s!: 71.70.Ej
lle
rg
h
m
re

nd
s
e
a
t

an

JT
le
c
o
J
o
e
p
m

in
ity

e
re
a
ie
e
i

tio
l

c

of
i-
by
the
pt
to
ling
ive

can
the
-
l-

ym-
of
m-
are

ri-

s.
rong

ng
o
sis

not
lso,
her

si-
rk

ua-

bital
also
I. INTRODUCTION

Electron-phonon coupling, via the so-called Jahn-Te
~JT! effect, can have a significant influence on the ene
levels and wave functions of a wide variety of systems. T
most widely studied vibronic systems are those in cubic sy
metry. This symmetry applies to many systems in natu
such as substitutional magnetic ion impurities in III-V a
II-VI semiconductors and various fluoride and chloride cry
tals. Cubic symmetry is also amongst the simplest to d
with. This means that it is ideal for developing theories th
can later be applied to more complex systems, such as
icosahedral symmetry that is applicable to fullerenes
various biological molecules.

It is important to have good theoretical descriptions of
systems because this provides information on the energy
els and vibronic states that can then be used to model spe
systems in order to interpret experimental data. One imp
tant application of these results is for the calculation of
~or Ham! reduction factors~RF’s!.1–3 These are needed t
predict the forms of effective Hamiltonians used to mod
the effect of external perturbations, such as stress or s
orbit coupling. Compared to the non-vibronic cases, so
terms are reduced in magnitude~or even change sign!. For
example, the orbital contributions to the Zeeman and sp
orbit interaction terms of several transition metal impur
ions are quenched to zero by vibronic interactions.1 Also,
other new terms appear in second-order that will dominat
the effective Hamiltonians when first-order terms a
quenched. The general ideas concerning these first
second-order RF’s can be found in various books and rev
articles.4,5 There are also numerous publications giving d
tails of the calculation of RF’s both in specific systems and
more general terms.6,7

The cubic JT system that has received the most atten
over many years is theE^ e JT system, in which an orbita
doublet E is coupled toe-type vibrations. In the linearE
^ e JT effect, the lowest adiabatic potential energy surfa
0163-1829/2001/64~19!/195104~12!/$20.00 64 1951
r
y
e
-
,

-
al
t
he
d

v-
ific
r-
T

l
in-
e

-

in

nd
w
-
n

n

e

~APES! contains a continuous two-dimensional trough
minimum energy points, commonly referred to as a ‘‘Mex
can hat.’’ The motion of the system is then characterized
a vibration across the trough and a rotation around
trough. This picture holds for all coupling strengths exce
the weak coupling limit. However, real systems are likely
be affected by higher order effects such as quadratic coup
or anharmonicity. These cause the trough to warp to g
three low-symmetry minima~or wells!. When the barriers
introduced are large enough, the motion near the minima
be treated as a pure two-dimensional vibration, although
frequency of vibration in the parallel direction will be sig
nificantly lower than in the perpendicular direction. Tunne
ing between equivalent minima then restores the cubic s
metry. It is desirable to examine the two limiting cases
pure vibration and pure rotation. The results can be co
pared and deductions made about real systems, which
likely to lie between these two extremes with shallow bar
ers resulting in a hindered vibration around the trough.4

The first numerical results for the energies of theE^ e JT
problem were obtained some 40 years ago,8,9 followed by
improvements using more modern computational method10

These approaches can start from either the weak or the st
coupling limit, as reviewed by Pooler.5 Nevertheless, efforts
to produce reliable analytical results are continui
today.11,12 Analytical results give more physical insight int
the problem than numerical results. They also form a ba
for further calculations, such as those of RF’s, which are
possible with corresponding numerical approaches. A
analytical methods often naturally lead to extensions to ot
situations, such as multimode JT problems,13or the inclusion
of additional perturbations. One example showing the phy
cal insight gained by analytical methods is recent wo
which has shown that under conditions of very strong q
dratic coupling to thee mode, the ground state of theE^ e
system can be anA-type singlet.14 Usually, the ground state
of a JT system has the same symmetry as the original or
state. The crossover to a singlet ground state, which has
©2001 The American Physical Society04-1



nt

d
ou
u
e

on
d

as

nt

ic
.

o
f

y
im
su

an

ic
s
ic
n

av
ill
e

n
a

th
od
t

e-

ho
e
a
on
r
e

i
ta
n-

del
a-

ing
of

er
form

in

ies
pic.

ns
x-
een
by
ift
ate
ry
pre-

a
ta-
A
tain
h.
are
of
of
ust
.

or-
for
of
a-

d to
le
usly

-
ap-
be

ious
ncy
e

ing

ns-
e
for
to

be-
s are
ght-
all
ing
g
se-

for

JANETTE L. DUNN AND MARK R. ECCLES PHYSICAL REVIEW B64 195104
been observed for the icosahedralH ^ h JT system in strong
linear coupling,15,16 can be understood in terms of differe
Berry phases around competing tunneling paths.

Various analytical approaches have been employed by
ferent authors. Some apply only to specific ranges of c
pling strengths and others work reasonably well for all co
pling strengths. Much of the earlier work has been review
by a number of authors.2,4,5 One approach to theE^ e prob-
lem is to treat the states in the wells as displaced harm
oscillators using Glauber states,17,18 using ideas develope
earlier by Judd,19 and by Judd and Vogel,20 and further dis-
cussed by Barentzenet al.21 The Glauber state approach h
also been applied to the specific example of Fe21 ions in
ZnTe and ZnS.22 General expressions for the matrix eleme
of all G ^ e JT systems, including theE^ e problem, have
been obtained from group theoretical arguments.23 Varia-
tional approaches have also been used, both for the basE
^ e problem24–26 and for the related pseudo JT effect27

Other methods include operator techniques12 and an analyti-
cal series approach.28 Nonadiabatic contributions have als
been investigated.11 A discussion of the determination o
RF’s for excited states exhibiting anE^ e JT effect can be
found in Fletcher and Stedman.29

Of the variety of methods used to solve the linearE^ e
problem, the methods based on Glauber states are ver
tractive because the states obtained are expressed in a s
form that is both easy to understand and easy to use in
sequent calculations. However, one drawback is that
strong~linear! coupling, the calculated energy is larger th
the strong-coupling limit of2EJT1

1
2 \vE by twice the ex-

pected amount. This effect was first observed by Judd19 in
1974 in studying the fivefold unitary and rotation groupsU5
and R5, when discussing results of O’Brien on theT^ (e
1t2) system.3 He pointed out that both potential and kinet
energy terms contribute to the rotational term, wherea
‘‘classical’’ treatment of rotation considers only the kinet
energy. He also noted that the off-diagonal matrix eleme
that occur when coupling to the upper APES is included h
the effect of exactly halving the rotational term and w
hence produce the correct energy results. It has also b
noted by Chancey18 that the RFs for theE^ e problem cal-
culated using Glauber states only exhibit the correct stro
coupling behavior when the perturbation calculation is c
ried out to second-order.30 However, Chancey18 did not
attempt to correct his Glauber states to take account of
coupling. Another drawback of the Glauber state meth
used so far is that it is difficult to see how to extend them
more complicated systems, such as the icosahedralT^ h
problem in which the lowest APES forms a thre
dimensional trough.

The current authors have developed an analytical met
for obtaining well states when quadratic coupling is includ
by using two unitary transformations. The first transform
tion is a shift transformation to displace the origin of phon
coordinates to the well positions.31 The displaced oscillato
states obtained for each well are essentially the sam
Glauber states, although the origin of their construction
somewhat different. The well states are appropriate to a s
JT effect in infinitely strong coupling only. Therefore, tu
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neling between equivalent wells must be introduced to mo
the dynamic JT effect by taking appropriate linear combin
tions of the well states. This is most readily achieved us
projection operators.32 This method has been applied to all
the cubic JT systems includingE^ e,33–35as well as to icosa-
hedral systems.36 The main advantage of this approach ov
many of the other approaches is that the states are in a
that can be readily used for further calculations, such as
the evaluation of JT reduction factors.

The shift transformation results in vibrational frequenc
that are the same in all directions, i.e., the wells are isotro
This is unphysical in trough problems such asE^ e, where
shallow barriers in the direction around the trough mea
that the frequency of vibration in this direction can be e
pected to be much lower than that across the well. It has b
shown that anisotropy can be introduced mathematically
applying a scale transformation in addition to the sh
transformation.37 Symmetry arguments are used to gener
different vibrational frequencies in the different symmet
directions. However, this approach has not been applied
viously to theE^ e system.

The significant difference between JT problems with
trough in the APES and those with wells is that the ro
tion~s! around the trough must be taken into account.
method such as the shift transformation can be used to ob
the positions of the points forming the bottom of the troug
However, whereas with wells the correct tunneling states
formed from a linear combination of a small number
equivalent well states, there is now an infinite number
equivalent points to be included. Therefore, the sum m
become an integral over the states at all minimum points

The principal aim of this paper is to develop the transf
mation and projection operator approach used previously
well problems to take account of the continuous nature
trough problems, utilizing the best aspects of the transform
tion and Glauber state approaches. The results are applie
the linearE^ e problem. The states obtained for this simp
case are essentially the same as those obtained previo
considering Glauber states.18 However, the theory is devel
oped in a manner which will enable the approach to be
plied to other more complicated systems which would not
possible at present. Our basic results, as with the prev
Glauber state results, show the factor of two discrepa
with published numerical results in strong coupling. W
show how this discrepancy can be eliminated by includ
coupling to the upper APES.

The second aim of this paper is to apply the scale tra
formation to theE^ e problem under the assumption that th
trough has been warped to produce wells. This is useful
two reasons. First, a real system is likely to be sensitive
higher-order couplings so to exhibit behavior somewhere
tween this case and the trough case. Secondly, the state
simpler and calculations using them somewhat more strai
forward to perform as it is not necessary to integrate over
points on the trough. If good results can be obtained us
this method, they will provide a quick means of writin
down states for this problem and hence carrying out sub
quent calculations~such as for RF’s!.

By applying the scale transformation, an expression
4-2
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ANALYTICAL APPROACH TO THE LINEAR E^ e JAHN-TELLER PROBLEM PHYSICAL REVIEW B 64 195104
the frequency of vibration parallel to the trough will be o
tained in the limit of zero quadratic coupling, as a function
the linear coupling strength. This is shown to predict c
rectly the conversion of a vibration in weak coupling to
rotation in strong coupling. The ground state energy is a
shown to attain the correct strong and weak coupling lim
Unfortunately, the energy is seen to be significantly over
timated in strong coupling compared to the trough res
and numerical approaches.

II. FORMULATION OF THE TROUGH PROBLEM

The linear vibronic HamiltonianH for the E^ e JT sys-
tem contains the terms

Hint5VE(
i

QiCEi
~1!

and

Hvib1rot5
1

2 (
i

S Pi
2

m
1mvE

2Qi
2DCA1

, ~2!

where i is summed over the componentsu and e of the E
representation. The coupling constant isVE , m is the mass,
and the frequency of thee mode is taken to bevE . CA1

is

the identity operator and theCEi
are electronic operators tha

can be represented in the matrix form

CEu
5

1

2 S 1 0

0 21D and CEe
52

1

2 S 0 1

1 0D ~3!

with respect to basis statesuu& and ue&. Hint describes the
interaction between the electrons and the vibrations
Hvib1rot incorporates the kinetic and elastic energies for
rotational mode and the vibrational mode.

It is well-known that the lowest APES for theE^ e prob-
lem consists of a trough ofO(2) symmetry.4 This is a simple
two-dimensional trough that can be represented in a plo
Qu againstQe as a circle of radiusrE centred on the origin.
Although the formulation in terms ofQu andQe is that tra-
ditionally used, it does not separate the rotational mot
from the vibrational motion. However, such a separation
be achieved by recasting the problem in terms of ‘‘rotatin
coordinatesQi8 . At a given point on the trough, theQi8 are
given by

S Qu8

Qe8
D 5S cosf sinf

2sinf cosf D S Qu

Qe
D , ~4!

wheref is defined to be the angle between the line joini
that point to the origin and theQu axis. ThusQe8 is a rota-
tional coordinate representing motion around the trough
Qu8 is a vibrational coordinate representing vibrational m
tion across the trough.Hvib1rot is divided into a termHvib

involving Qu8 and a termHrot involving Qe8 , meaning that the
rotational and vibrational problems can be solved indep
dently. The next step is to find wave functions and cor
sponding energies that solve the above Hamiltonians.
19510
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A. The vibrational part

The wave functions for the vibrational problem shou
represent harmonic oscillators in theQu8 direction~namely in
the direction across the well!. One method of finding such
functions is to apply a unitary transformation of the form

U5expS i(
i

a i Pi D ~5!

to the complete vibronic HamiltonianH. The effect of this
transformation is to displace the origin of vibrational coord
nates to positions\a i . If a similar procedure were to be
followed to that used to solve many different well problem
previously,31–36 the energy of the part of the transforme
HamiltonianH̃5U21H̃U that does not contain phonon op
erators would be minimized with respect to thea i using the
method of Öpik and Pryce.38 A set of values for thea i would
be obtained that map out the bottom of the trough. The o
difference here is that there are an infinite number of po
at the bottom of the trough, meaning that thea i are specified
in terms of the anglef rather than being a set of distinc
values. However, an alternative procedure can be carried
by working in the rotating coordinates, replacing thea i by
a i8 . Although this is entirely equivalent to the original prob
lem, the results are easier to understand. This is becaus
these coordinates,au8 must be a constant as all points on t
trough are the same distance from the origin. Indeed,
value of Qu85\au8 on the trough must be the radius of th
trough,rE . Performing the calculation, we find that

au85
VE

2\mvE
2

. ~6!

It can be argued thatae8 must be zero because this mod
corresponds to a rotation, not a vibration. An alternative w
of looking at this is to say that because the transformationU
is applied in order to displace the origin of vibrational coo
dinates, it should be specified in terms of the coordinates
correspond to vibrations only. In this case,ae8 is zero from
the start. It should be noted that values for thea i for non-
rotating coordinates can be found fromau8 as the primed and
unprimeda i ’s are related in the same way as theQis in Eq.
~4!. Thus

au5au8 cosf,

ae5au8 sinf. ~7!

The energy of the minimal points on the ground and exci
APES’s areE52EJT1

1
2 \vE and E53EJT1 1

2 \vE , re-
spectively, whereEJT5VE

2/8mvE
2 is the Jahn-Teller energy. I

is useful to express this and later results in terms of
scaled coupling constantKE5VEA\/2mvE which has the
dimensions of energy. The corresponding electronic sta
ucg& on the ground APES anducu& on the upper~excited!
APES, expressed in terms of the fixed~unprimed! coordi-
nates, are
4-3
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JANETTE L. DUNN AND MARK R. ECCLES PHYSICAL REVIEW B64 195104
ucg&5cosS f

2 D uu&2sinS f

2 D ue&,

ucu&5sinS f

2 D uu&1cosS f

2 D ue&. ~8!

By using Eq.~4!, we can also write these results in terms
the rotating~primed! coordinates as

ucg&5cosS 3f

2 D uu8&2sinS 3f

2 D ue8&,

ucu&5sinS 3f

2 D uu8&1cosS 3f

2 D ue8&. ~9!

The vibronic ‘‘ground’’ states of the transformed Ham
tonian on each sheet can be written asucvibronic;0&, where
ucvibronic&5ucg& or ucu& and the ‘‘0’’ indicates the absence o
phonon excitations in the transformed system. States ap
priate to the untransformed system can be found by mu
plying these states byU after substitution of the value ofau8 .
To do this, it is useful to writeU in the second quantize
form U5exp@ku(bu8

†2bu8)#, whereku5KE/2\vE . Note that
asU contains phonon operators, there are phonon excitat
present for the ground state in the untransformed syst
even though they are not present in the transformed sys
States withn excitations ofu8 symmetry can be obtained b
multiplying the phonon vacuum state by powers of the p
non creation operatorbu8

† . Thus the vibronic state withn
u8-type excitations can be written as

Uucvibronic;n&5U~bu8
†!nucvibronic;0&. ~10!

B. The rotational part

The terms in the Hamiltonian giving rise to rotations a
the kinetic and potential energies of theQe8 mode. In com-
mon with previous authors,3,18 we will neglect the potentia
energy contribution. The most convenient way to find so
tions for the rotational kinetic energy is to realize thatQe8 is
the distance moved around the trough, so thatdQe85rEdf.
Consequently,

Hrot52
\2

2I

]2

]f2
[

l̂ z
2

2I
, ~11!

whereI 5mrE
2 is the moment of inertia. This is the standa

form for a rigid rotator usually quoted for theE^ e system.4

Alternatively, the kinetic energy can be written directly
terms ofQe8 followed by a substitution ofQe85rEf. Expres-
sions can also be obtained by converting to the fixed coo
nate system, using the polar parametrizationQu5rE cosf
andQe5rE sinf equivalent to Eq.~7!. Expressions for the
]/]Qi can be obtained if therE is treated as a variable an
then reset to a constant~and]/]rE to zero!. The results can
then be transformed back to the rotating coordinate syst
19510
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noting that thePi transform in the same manner as theQi .
Whichever procedure is used, the normalized rotational w
functions will be

uc rot ;mj&5eimjf/A2p. ~12!

As the electronic wave functionsucg& and ucu& contributing
to the vibronic wave functionsucvibronic& change sign whenf
is incremented by 2p, the rotational functionsuc rot ;mj&
must also change sign for the overall wave function to
invariant. Thus it follows thatmj must be half-integer. A
further discussion of this point was given by Bersuker a
Polinger.4

Although the state given in Eq.~12! has a fixed value of
mj , it is sometimes more convenient~from a symmetry point
of view! to define states that transform according to spec
irreducible representations of the cubic group. AsE^ E5E
1A11A2, the states of theE^ e system must be doublets o
singlets. The ground state is a doublet corresponding to
statesmj56 1

2 . States transforming as the componentsEu
and Ee of the cubic group can be obtained by replaci
e6 if/2 by cos(f/2) and sin(f/2), respectively. Alternatively,
they can be taken as the real and the negative of the im
nary parts respectively of the state withmj5

1
2 .

C. Total states

Combining the vibronic state in Eq.~10! and the rota-
tional state in Eq.~12! gives an expression for ground an
excited states at a particular point on the trough. States
propriate for the system as a whole~in non-normalized form!
must involve all trough points equally via the integral

uc tot
s ;n,mj&5E Uucvibronic;n&uc rot ;mj&df ~13!

over all pointsf on the trough, wheres5g or u to label the
ground and upper APES’s, respectively. This is equivalen
a linear sum to account mathematically for tunneling b
tween equivalent minima in well cases. The result can
expressed in an alternative form using the commutat
properties ofbu8 with the resultant unnormalized state

uc tot
s ;n,mj&5e2(1/2)ku

2E
0

2p

ekubu8
†
~bu8

†2ku!neimjfucs&df.

~14!

An equivalent expression for the ground states was obta
by Judd and Vogel,20 and later by Chancey,18 using general-
ized Glauber states. This is because whenU is applied to the
phonon vacuum state, the results are equivalent~up to a nor-
malizing factor! to the expressions used when generat
Glauber states. Note that these states are not exact e
states ofl̂ z , and l̂ z does not commute withH. Consequences
of this in terms of coupling between the ground and exci
potential sheets will be discussed below.

III. ENERGIES

The energies of the resultant states can be calculate
normalizing the above states and evaluating their matrix
4-4
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ANALYTICAL APPROACH TO THE LINEAR E^ e JAHN-TELLER PROBLEM PHYSICAL REVIEW B 64 195104
ements with respect to the untransformed HamiltonianH.
When evaluating the phonon overlaps and matrix elemen
will be necessary to determine the overlaps of wave fu
tions at two different points on the trough. As the rotati
coordinates are different for the two different points, su
calculations are best performed by converting back to
fixed coordinate system. All relevant overlaps can then
calculated using appropriate identities and expanding the
ponentials. The same basic formulas apply here as those
tained for the overlaps and matrix elements in Ref. 39
‘‘well’’ problems, except where the two states now refer
two different points at anglesf andf8 on the trough rather
than two different wells.

The resultant double integrals overf andf8 only involve
the difference in anglesF5f2f8, and thus can be rewrit
ten as a single integral. Physically, the integrals arise fr
evaluating the overlap between two different pointsA andB
on the trough and integrating over all possible positions oA
andB. One integral can be viewed as fixing the position
point A and integrating over all possible positions ofB; this
can only depend upon the difference in angles betweenA and
B. The second integral then integrates over all possible p
tions of B. As all points along the trough are identical, th
value of the first integral can not depend upon the position
the pointA. Therefore all of the ‘‘first’’ integrals yield the
same value and the second integral simply multiplies
value by the integral over all possible angles, namely, 2p.

As the integrals involved in determining the overlaps a
matrix elements are only single integrals, they can be ev
ated numerically. Alternatively, analytical expressions for
of the resultant integrals can be obtained in terms of Be
functionsI 0 and I 1. For example, for the ground state,

K c tot
g ;0,

1

2 Uc tot
g ;0,

1

2L 5O1 ,

K c tot
g ;0,

1

2UHUc tot
g ;0,

1

2L 5M1\vE , ~15!

where

O15E
0

2p

eK(cosF21)cos2
F

2
dF5e2Kp@ I 0~K !1I 1~K !#,

M15E
0

2p

eK(cosF21)cos2
F

2
@11K~cosF22!#dF

52e2Kp@~K21!I 0~K !1KI 1~K !#, ~16!

whereK5ku
25EJT /\vE . Dividing these results, we can se

that the ground state energy is

E5\vEF2K1
I 0~K !

I 0~K !1I 1~K !G . ~17!

This expression can be seen to be exactly equivalent to
given by Chancey18 if the Bessel functions are expanded
sums of polynomials.

The value of the ground state energy in Eq.~17! is plotted
relative to2EJT in Fig. 1 ~solid line labeled ‘‘no coupling’’!
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as a function of the dimensionless coupling streng
KE /\vE . As expected, the energy at strong coupling
1
2 \vE , corresponding to one vibration and one rotation.
zero coupling, the relative energy is\vE , representing two
vibrations. This is because there is no longer a trough at z
coupling. Also plotted~dashed line! is the numerical result
obtained by Longuet-Higginset al.8 This shows that in
strong coupling, in common with the results of Chancey18

the calculated energy difference from the strong-coupl
limit of 2EJT1

1
2 \vE is twice the expected value indicate

by the numerical result. As noted in the introduction, this
becausel̂ z

2 should contribute\2/4 to the overall energy,
whereas, due to the neglect of the rotational potential ene
it contributes twice this amount.19

The reason whyl̂ z
2 does not contribute\2/4 is that the

statesuc tot
s ;n,mj& contain a termeimf from uc rot ;mj& and

terms in cos(f/2) and sin(f/2) from the electronic states
ucs ;mj&. Consequently, it follows that

l̂ z
2Uc tot

g ;0,6
1

2L 5
\2

2 S Uc tot
g ;0,6

1

2L 6 iUc tot
u ;0,6

1

2L D ,

l̂ z
2Uc tot

u ;0,6
1

2L 5
\2

2 S Uc tot
u ;0,6

1

2L 7 iUc tot
g ;0,6

1

2L D .

~18!

In other words,l̂ z
2 couples the ground APES to the excite

APES. This observation provides a means of at least parti
correcting this problem. We define a new ground state of
form

UF tot
g ;0,6

1

2L 5aUC tot
g ;0,6

1

2L 6 i bUC tot
u ;0,6

1

2L , ~19!

where theuC tot
s ;0,6 1

2 & (s5u,g) are normalized versions o
the uc tot

u ;0,6 1
2 & ~i.e., uc tot

u ;0,6 1
2 &/AO1). a and b are as-

sumed to be real parameters and the factors ofi are chosen
for convenience.

FIG. 1. The ground state energy. The solid lines give the res
of the current method with and without coupling to the upper APE
The dashed line is the numerical result of Ref. 8.
4-5
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With this definition, and noting that the normalizatio
constants for the ground and excited electronic states are
same, we obtain

l̂ z
2UF tot

g ;0,6
1

2L 5~a1b!
\2

2 S UC tot
g ;0,6

1

2L
6 iUC tot

u ;0,6
1

2L D . ~20!

As the overlap between the ground state on the up
APES is the same as that on the lower APES and as

K c tot
g ;0,

1

2 Uc tot
u ;0,

1

2L 52 K c tot
u ;0,

1

2 Uc tot
g ;0,

1

2L 5 iO2

~21!

with

O25E
0

2p

eK(cosF21)sin2
F

2
dF5e2Kp@ I 0~K !2I 1~K !#

~22!

we can see that for the new state to be a~normalized! eigen-
state of l̂ z

2 , it is necessary to seta5b51/A2(12O2 /O1).
However, the eigenvalue is\2/2 rather than the expecte
\2/4. Furthermore, it is found that the energy (E1EJT) does
not tend to a constant in strong-coupling. For the expecta
value of l̂ z

2 to be\2/4, it is necessary to set

a5
1

2A2~12O2 /O1!
1

A3

2A2~11O2 /O1!
,

b5
1

2A2~12O2 /O1!
2

A3

2A2~11O2 /O1!
. ~23!

However, (E1EJT) does not tend to a constant in stron
coupling in this case either, meaning that this is not a go
choice.

As l̂ z
2 is not the only term in the Hamiltonian, we shou

not concentrate on this alone. The energy of the ground s
using the full Hamiltonian is given by

E5
a2M11b2M222abM3

~a21b2!O122abO2

, ~24!

where M25^c tot
u ;0,1

2 uHuc tot
u ;0,1

2 & and iM 3

5^c tot
l ;0,1

2 uHuc tot
u ;0,1

2 &. More explicitly,

M25E
0

2p

eK(cosF21)cos2
F

2
@11K~cosF12!#d F

5e2Kp@~3K11!I 0~K !13KI 1~K !#,

M35E
0

2p

eK(cosF21)sin2
F

2
@11K cosF#d F

5e2Kp@~12K !I 0~K !1KI 1~K !#. ~25!
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We therefore choose to minimize the energy in Eq.~24! by
settingdE/da50 anddE/db50 and choosing the root tha
gives the lowest energy. Thus, after some simple algebra,
obtain the resulta5 lb, where

l 5
~M22M1!O11Ax

2~M3O12M1O2!
~26!

and

x5~M22M1!2O1
224~M3O12M1O2!~M2O22M3O1!.

~27!

The condition that the state is normalized fixes the abso
values ofa andb ~up to the usual phase factor! so that

b51/A~ l 211!22lO2 /O1 ~28!

These values ofa andb are plotted as a function of coupling
strength as solid lines in Fig. 2. The figure also shows
results for the state to be an eigenstate ofl̂ z

2 ~dot-dash line!

and for l̂ z
2 to have an expectation value of\2/4 ~dashed

lines!. The energy of the ground state determined using
variational values fora andb is shown in Fig. 1~solid line
labeled ‘‘coupling’’!. It can be seen that the new result
very close to the numerical result8 for all coupling strengths.
In particular, the value in strong coupling is halved from th
when the coupling is neglected.

In the strong-coupling limit,O2 andM3→0, implying no
mixing of the state on the upper APES into the ground sta
The results above givea→1 andb→0 in this limit, which
is consistent with this observation. This behavior is also to
expected because the original energies were seen to be
rect in this limit; it is only the rate at which the limiting
values of energy were obtained that was incorrect. Note a
that because the electronic states on the ground and u
potential sheets are orthogonal to each other, the energie
the new states withmj56 1

2 , or equivalently of theEu and
Ee components, are still the same as each other.

FIG. 2. The values ofa and b to minimize the energy of the
ground state~solid lines!, for the ground state to be an eigenstate

l̂ z
2 ~dot-dash line! and for l̂ z

2 to have an expectation value of\2/4
~dashed line!.
4-6
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It should be noted that although we have used a va
tional procedure to determine the amount of mixing of t
ground state on the upper APES into the ground state on
lower APES, the ground states on the APES’s are not th
selves of a variational nature. The wave functions are o
totally different form to those used in other variational c
culations in which the wave functions themselves
variational.24–27 It should also be noted that the overlap fa
tors and matrix elements between themj511/2 and mj
521/2 states are zero. As correspondingmj511/2 and
mj521/2 states are degenerate at all coupling strengths,
possible to define states composed of any linear combina
of the lowestmj511/2 andmj521/2 states on each APES
However, the energy of the resultant state after minimiz
the energy with respect to the variational parameters will
the same in all of these cases.

We will now derive results for the excited vibrational an
rotational states. It is again found necessary to include c
pling to the upper APES. The coupling still roughly halv
the difference between the calculated result andEJT
1 1

2 \vE , although the effect is even more noticeable th
for the ground states because the magnitude of the redu
is much larger. It should be noted that the overlap integ
for many of the excited states tend to zero in the we
coupling limit, meaning that the states themselves are
properly defined in this limit. This is not surprising as w
have used a picture involving rotations around a trough
vibrations across a trough. There is no trough in the w
coupling limit and so this is not appropriate. Neverthele
because the matrix elements also tend to zero, the en
does attain a well-defined finite limit. Unfortunately, the e
ergies of the higher angular momentum states with pho
excitations tend to the wrong limit. This is illustrated in Fi
3 for the mj56 7

2 states with one phonon excitation. Th
dot-dash and dotted lines are the results with and with
coupling to the excited APES, respectively. It can be s
that both results tend to 4\vE in weak coupling rather than
the correct value of 5\vE (\vE zero-point energy for two
vibrations, \vE for the one-phonon excitation plus 3\vE
corresponding to themj5

7
2 \vE rotation becoming a three

phonon vibration!.
The occurrence of wrong limits in weak coupling has o

curred before in other systems with wells in the APES.40 As
in these other systems, the problem arises because
states with the same value ofmj but different phonon occu
pations are not orthogonal to each other. The effect is su
because the overlap between the no-phonon and one-ph
states actually tends to zero in weak coupling, but this
consequence of the fact that the states are poorly define
this limit. Nevertheless, the problem can be corrected by
fining new states that are orthogonal to all lower-ene
states with the same value ofmj . The only drawback to this
procedure is that more integrals are required and the re
are inevitably more complex, although all integrals can s
be reduced to a single dimension. The result with both c
pling to the excited APES and orthogonalization is given a
solid line in Fig. 3, showing that the correct weak-coupli
behavior is now obtained. This is despite the fact that we
working with a strong-coupling model. Themj56 1

2 states
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are also given in Fig. 3. This shows that orthogonalizati
can be included for these states also, but it does not ha
significant effect on the results. Comparison with publish
numerical results8 ~dashed lines! show good agreement with
the fully corrected states, although there remains some
crepancy in intermediate coupling. This is the hardest reg
to model both analytically and numerically.

Figure 4 gives the energies, including orthogonalizati
and coupling to the upper APES~solid lines! for all of the
mj56 1

2 , 6 3
2 , 6 5

2 , and 6 7
2 states~in order of increasing

energy! for phonon occupation numbers of 0, 1, and 2. T
ground state given in Fig. 1 and the one-phonon states g
in Fig. 3 are included again for completeness. In strong c
pling, the rotational levels can clearly be seen to be struct
superimposed upon phonon states separated by the v
tional quanta\vE . In weaker couplings, the states wit
higher mj values start to cross states with lowermj values
but an additional phonon excitation, until the weak coupli
limit where all states are separated by the vibrational qu
tum \vE . The numerical results of Longuet-Higginset al.8

are also shown~as dashed lines!. It can be seen that the
agreement for all of the zero-phonon states is excellent.
agreement becomes less good as the number of phonon
citations increases, in common with the observation abov

FIG. 3. The energies of themj56
1
2 and 6

7
2 states with one

phonon excitation. The solid lines are the results with both ortho
nalization and coupling to the upper APES. The dot-dash and do
lines are the results before orthogonalization, with and without c
pling to the excited APES respectively. The dashed lines are
numerical results of Ref. 8.
4-7
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IV. THE ANISOTROPIC WELL PROBLEM

The results of the trough problem should be compa
with those of the equivalent problem that arises when q
dratic coupling is included to warp the lowest APES in
three equivalent wells via a term such as

Hquad5V2@~Qe
22Qu

2!CEu
12QeQuCEe

#, ~29!

whereV2 is a quadratic coupling constant. It is not expect
that the two approaches will produce equivalent results
they model different physical situations; whereas the trou
states include an infinite set of points at the bottom of
trough, the well problem includes three points only. Nev
theless, comparison of the two approaches can indicate
a real system with a small amount of quadratic coupling w
behave.

The wells in the lowest APES, which will be labeledA, B,
andC, correspond to the points

f/250, 2p/3, and 4p/3, ~30!

respectively in Eq.~8! for the ground and excited electron
states on the trough. Symmetrized combinations of the w
states taken to allow for tunneling between the wells in fin
coupling yield expressions for the ground doublet state~of E
symmetry!, and also a singlet tunneling level~of A2
symmetry!.33

FIG. 4. The energies of the states withm of 6
1
2 , 6

3
2 , 6

5
2 , and

6
7
2 ~in order of increasing energy, respectively! for phonon occu-

pation numbersn of 0, 1, and 2. The solid lines give the results
the current method including coupling to the upper sheet and
dashed lines are the numerical results of Ref. 8.
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Often, in order to simplify well problems, the wells ar
taken to be isotropic. However, this will not be a good a
proximation for theE^ e JT system as the barriers in th
direction around the trough will be much lower than acro
the trough, and the corresponding vibrational frequency w
be less. Furthermore, the results cannot reproduce the tro
results in the limit when the quadratic coupling tends to ze
This is shown in Fig. 5~dot-dash line!. The state starts at the
correct energy in weak coupling and begins to reduce as
~linear! coupling strength increases. However, it then sta
to increase again and ends1

2 \vE too large in the strong
coupling limit. This is because the rotation that should ta
place around the trough is effectively still treated as a vib
tion, bringing with it its zero-point energy.

Better results for the well problem can be obtained
incorporating anisotropy in the wells. Values of the anis
tropic local mode frequencies in the limit of strong line
coupling can be obtained using the method of O¨ pik and
Pryce,38 as applied previously for the icosahedralT1u^ hg
system.41 First, the curvature of the APES is analyzed b
expanding the potential energyV(Q) to second order as a
power series about each minimum. In general terms, i
minimum k has coordinatesQ(k)[$Qi

(k)%, the required po-
tential is

V~q!5V~Q(k)!1V1~q!1V2~q!, ~31!

where41

V1~q!5(
i

S ]V

]Qi
D

Q(k)

qi ,

e

FIG. 5. Comparison of the ground state energy using trough
well states. The solid line is the ground state of the trough meth
as given in Fig. 1. The dot-dash line is the results of calculatio
based on isotropic well states when the quadratic coupling tend
zero. The dashed line labeled~i! is the well energy corrected for
anisotropy, line~ii ! is the ground state energy using the correct
well energy but with all other terms as for the isotropic result, a
line ~iii ! is the ground state energy calculating all terms to first ord
and including anisotropy.
4-8
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V2~q!5
1

2 (
i

(
j

S ]2V

]QiQj
D

Q(k)

qiqj , ~32!

and qi5Qi2Qi
(k) are the nuclear displacements from t

minimum k.
In this problem, the potentialV(Q) is

V~Q!5 (
i 5u,e

S 1

2
mvE

2Qi
21VEQiCEi D . ~33!

The zeroth order termV(Q(k)) is that used to determine th
positions of the wells, and is therefore known to give t
energy2EJT. This can also be seen by substituting the a
propriate values ofQi

(k)52a i\ for a given wellk. The val-
ues ofa i for zero quadratic coupling can be obtained fro
Eq. ~7! by substituting the values off for the well positions
given in Eq.~30!. In finite quadratic coupling, both the va
ues ofa i and the Jahn-Teller energy are multiplied by 1/
2L), whereL5uV2u/mvE

2 .35 Thus it can be seen that th
warping has a small effect upon these parameters. Henc
the following calculations,V2 will be set to zero, even
though there are not actually wells in this case and the c
tinuous trough description should be used. The remain
terms in Eq.~31! can then be used to determine the energy
well k to second-order in perturbation theory~in the limit of
zero quadratic coupling!. There are no linear terms inqi as
V(q) is a minimum atQi5Qi

(k) . Therefore, the energy ma
be written in the form

E~q!52EJT1
1

2
~quqe!M S qu

qe
D , ~34!

whereM is a 232 matrix. This matrix defines the curvatur
of the energy surface. In general, the eigenvalues ofM are of
the formmvn

2 , where thevn are the frequencies of the loca
modes. In this case, the matrix for wellA is

MA5mvE
2 S 1 0

0 0D ~35!

so it is immediately clear that the local mode frequencies
the infinite coupling limit arevE and 0. This is consisten
with the view of a vibration of frequencyvE across the
trough and a rotation around the trough. For wellB, the M
matrix is

MB5
1

4
mvE

2S 1 A3

A3 3
D . ~36!

This matrix may be diagonalised using the unitary matrix

SB5
1

2 S 1 A3

A3 21
D ~37!

again giving the local mode frequenciesvE and 0.
In finite linear coupling, the local mode frequencies a

not simplyvE and 0 but exhibit a complicated dependen
upon the coupling strength. The results must predict two
brations in the weak coupling limit as well as a vibration a
19510
-

in

n-
g
f

n

i-

a rotation in the strong-coupling limit. Finite-coupling loc
mode frequencies can be obtained by applying a sc
transformation37

Us5expF(
i , j

L i j ~bibj2bi
†bj

†!G ~38!

in addition to the shift transformation.L i j is an element of a
matrix L which, similar to the parametersa i in the shift
transformation will be set to minimize the energy. The effe
of this transformation is to both transform to a new coor
nate system and to scale the new coordinates by diffe
amounts. This can be seen by noting that the zeroth-o
wave functions are a product of simple-harmonic oscilla
functions of the form

c~Qi !;expS 2
mvE

\
Qi

2D . ~39!

It can be shown that the effect of the diagonal elementsUs
ii

of the scale transformation on such a wave function is

Us
( i i )c~Qi !;eL i i c~e2L i i Qi !. ~40!

Therefore, if we chooseL i i 5
1
4 ln li ,

Us
( i i )c~Qi !;l i

1/4expS 2
mv i

\
Qi

2D , ~41!

wherel i5v i /vE is the ratio of the scaled to unscaled fr
quencies. Thus the original isotropic frequencies are repla
by new scaled frequencies.

Now overall, it is desired that the complete matrixe2L in
Eq. ~40! formed from the scale transformation paramet
L i j should not only scale the new coordinates but also tra
form the basis vectorsQi to the directions of the loca
modes. These are the eigenvectors of the curvature matrM
in Eq. ~34!. The matrices to achieve this are theS matrices
such as Eq.~37! already obtained using the O¨ pik and Pryce
method to obtain the strong-coupling frequencies. In fact,
S matrices have this effect on all matricese6nL. Therefore,
combining this information with the requirement for the d
agonal elements to scale the frequencies indicates we sh
choose

L5
1

4
S†@ ln l i #S, ~42!

where @ ln li# is a square diagonal matrix with elemen
(ln li).

37,41 We then have

e6nL5S†@l i
6n/4#S. ~43!

Note that theS matrices can also be deduced using oth
methods such as projection operators or the so-called ei
function method.41,42

The next step is to determine values for finite-coupli
local mode frequencies by fixing values for the scale tra
formation parameters by energy minimization~as for the
shift transformation parameters!. This involves finding the
effect of the scale transformation on the transformed Ham
4-9
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JANETTE L. DUNN AND MARK R. ECCLES PHYSICAL REVIEW B64 195104
tonian. The part ofH̃ that does not contain phonon operato
is the same as with the shift transformation alone except
the addition of the term

\vE(
i

~sinh 2L! i i
2 , ~44!

where the effect of the operator sinh 2L can be determined
by converting to exponential notation and using the defi
tion in Eq. ~43!. Unfortunately, if we use the zeroth orde
states and include this term alone, we find the correction
the ground state well energy2EJT1\vE is

\vE

4 S l11
1

l1
1l21

1

l2
24D . ~45!

Minimizing the corrected energy with respect to thel i sim-
ply gives l15l251, which is the isotropic result. This i
not a surprising result as anisotropy is a second-order ef
We must therefore calculate the energy to second-orde
perturbation theory. The dominant effect will be from sta
with one phonon excitation, which are coupled to the grou
state via the transformed Hamiltonian

H̃25(
i j

S 2KECEi
1

1

2
\vEA2\mvEa i D ~bj1bj

†!eji
22L .

~46!

One-phonon states on both the lowest APES and the exc
APES will be coupled by this Hamiltonian, and both pos
bilities should be included.

The easiest calculation is for the wellA asSA is the iden-
tity matrix ande22L is diagonal, although the same resu
are obtained whichever well is used. Evaluating the app
priate matrix elements, we find that the correction to
ground state well energy now contains the additional con
bution 2EJT/$l2@114EJT/(\vE)#%. Minimizing all of the
energy contributions with respect to thel i then givesl1
51 and

l2
2512S 11

\vE

4EJT
D 21

. ~47!

This has the correct properties of tending to 1 in weak c
pling ~for a vibration! and 0 in strong coupling~for a rota-
tion!. This also leads to the result

E52EJT1
1

2
\vE~11l2!, ~48!

giving a zero-point energy of\vE in weak coupling and
1
2 \vE in strong coupling, again consistent with conversi
of a vibration to a rotation.

As the energy has been corrected to second order,
also necessary to include perturbation corrections to the
states. For wellA, the result to first order is

uA&5uu;0&2
KE

2Al2~4EJT1\vE!
ue;e&, ~49!
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whereue;e& denotes an electronic stateue& coupled to a pho-
non excitation of symmetrye. Equivalent results for the
other wells are obtained whenu and e are replaced by the
appropriate combinations ofu ande in Eq. ~8!. Coupling to
states with two phonon excitations may be included also,
this vastly complicates the calculations.

The final step is now to calculate the new energy of
symmetry-adapted ground state built from these new w
states. The principle of the calculation of the overlaps a
matrix elements of the untransformed Hamiltonian betwe
these corrected states is the same as that given in Badran
Bates,33 although the details are considerably more comp
cated as they involve operating with matrices such as
~43!. Therefore, it is first useful to note that the matrix el
ment within any of the wells, calledE11 in Ref. 33, is simply
the energy given in Eq.~48!. This is shown as the dashed lin
labeled ~i! in Fig. 5. An approximate expression for th
ground state energy can therefore be obtained quite sim
by replacingE11 in Eq. ~3.8! of Ref. 33 for the isotropic
result by the energy in Eq.~48!. This is shown as the dashe
line labeled~ii !, together with the ground state energy usi
the trough states as given in Fig. 1~solid line!. It can be seen
that both the well energy in Eq.~48! and the new zeroth
order ground state energy attain the correct limits in b
strong and weak coupling, unlike the isotropic result whi
is 1

2 \vE too large in strong coupling. This confirms that th
vibration has correctly converted to a rotation. The n
ground state energy is also quite close to the trough resul
weaker couplings. However, the energies tend to1

2 \vE far
too slowly in strong coupling. We therefore complete t
calculation of the energies to first-order using the well sta
in Eq. ~48! to see if there is any improvement in the stron
coupling results.

It is found that, to first order, the overlap between t
states in any two wells~which are all the same as each othe!
becomes

S125S12
(0)~11F12

(1)!, ~50!

where

S12
(0)522A l2

~31l2!~113l2!
expS 2

6EJTl2

~113l2!\vE
D
~51!

is the zeroth order anisotropic phonon overlap and

F12
(1)5

12EJT

~4EJT1\vE!~113l2!
. ~52!

The zeroth order anisotropic matrix element between
two wells is

E12
(0)5

4S12
(0)

~113l2! F2EJT

~116l213l2!2

~113l2!
1\vE

~11l2!2

~31l2! G
~53!

and the first-order contribution is
4-10
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E12
(1)5

4S12
(0)F12

(1)

~113l2!
FEJT

~123l2
2!

~113l2!
1\vE

~719l2!

3~31l2!
G .

~54!

Using Eq. ~3.8! of Ref. 33, after noting that the origina
orbital overlap of2 1

2 must be substituted by the new ove
lap, we obtain the ground state energy from

E5
E112E12

12S12
. ~55!

Figure 5 shows this energy@dashed line labeled~iii !#. It can
be seen that, rather than reducing the difference between
trough result and the approximate anisotropic well result,
difference has increased. The strong-coupling behavio
clearly dominated by the well energyE11. It can be surmised
that the strong-coupling behavior cannot be improved furt
unless the well energy is improved. It is not clear wheth
better results could ever be obtained from this approach
cause the states obtained still only consider specific point
the trough. One possible improvement would be to corr
the states to include coupling to states with two phonons,
then obtain the corrected energies accordingly. However,
calculation then becomes extremely cumbersome. The w
idea of obtaining a result from well states is that the cal
lation is relatively simple and avoids having to evaluate
tegrals as arise in the trough problem. Therefore this mo
fication will not be attempted here. We can conclude that
points that become wells when quadratic coupling is
cluded are the most important ones, and that these po
alone can be used to give an indication of the true res
without performing any integrations. However, it seems t
more accurate results can only be obtained by solving
full trough problem.

V. CONCLUSIONS

In this paper, we have obtained results for the linearE
^ e system in which the lowest APES forms a trough and
motion is composed of a vibration across the trough an
rotation around the trough. We have also obtained results
the related system in which the trough is approximated
-

a
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only the three points that become minimum points when q
dratic coupling is included to warp the APES. The resulta
motion is then composed of a vibration across the trough
a lower-frequency vibration around the trough. A real syst
is likely to possess shallow barriers in the trough directio
which will result in a hindered rotation around the trough.
has been seen that the results of the two different meth
are remarkably similar, considering that the two approac
are not expected to yield the same results in the limit of z
quadratic coupling as the former~correctly! includes all
points on the trough whereas the latter only includes
three well points. This gives us confidence that we can p
dict the behavior of real systems.

It is instructive to comment on the relative merits of th
two approaches. The trough approach leaves us with m
physical feeling for the behavior observed than with a
proaches that are numerical from the outset, and yields st
that can be written down analytically in terms of integra
The results agree well with existing numerical results.8 How-
ever, the integrals obtained must be either evaluated num
cally or expressed analytically in terms of Bessel functio
or other rather complicated infinite series. This means t
some of the advantages of an analytical approach are
The latter approach yields more concise analytical result
is only necessary to use a computer to graphically display
final formula. However, the calculation of the required ove
laps and matrix elements is complicated by the neces
inclusion of anisotropy, and the method can never prope
include the rotation as only three points are included.

The E^ e system has been chosen as the subject of
paper because existing results are well known, making it
ideal testing ground for new methods. These methods
then be applied to other systems where results are eithe
known or difficult to obtain by existing methods. This
particularly true of the trough approach, which unlike exi
ing methods can be applied to troughs of higher dimensio
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