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Bound states of L- or T-shaped quantum wires in inhomogeneous magnetic fields
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The bound-state energies of L- or T-shaped quantum wires in inhomogeous magnetic fields are found to
depend strongly on the asymmetric parameierW, /Wy, i.e., the ratio of the arm widths. Two effects of
magnetic field on bound-state energies of the electron are obtained. One is the depletion effect, which purges
the electron out of the OQD system. The other is to create an effective potential due to quantized Landau levels
of the magnetic field. The bound-state energies of the electron in L- or T-shaped quantum wires are found to
depend quadraticallflinearly) on the magnetic field in the wealkstrong) field region and are independent of
the direction of the magnetic field. A simple model is proposed to explain the behavior of the magnetic
dependence of the bound-state energy in both weak- and strong-magnetic field regions.
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[. INTRODUCTION are formed at the intersection of the arms of L- or T-shaped
quantum wires when additional magnetic fields are applied
Recently, quasi-one-dimensiondID) structures, such as perpendicular to the plane of arms. A T-shaped quantum wire
guantum wires attract much attention due to the enhancechn be obtained by first growing a GaAs/Bl, _ ,As super-
confinement of the reduced dimension and the possibility ofattice on a(001) substrate, after cleavage, a GaAs quantum
tailoring the electronic and optical properties in wire is grown over the exposgd10 surface, resulting in a
applications:® Among the structures considered, the openedr-shaped region where the electron or hole can be confined
quantum dot(OQD) is one of the simpler mesoscopic sys- on a scale of 5-10 nm. The bound-state energy of a charged
tems in which the essential physics can be studied in gregfarticle (e.g., electronin such an opened quantum dot will
details. An OQD can be formed by additional Ia1t3eral be affected by the asymmetric geometry of the system and
confinement®*** or by applying certain magnetic fields: _the applied inhomogeneous magnetic fields. Intuitively, when
Electrons and holes are trapped at the L- or T-shaped int€fpe confinment along one arm of the quantum wire is in-
sections because the single-particle confinement energy claased, confinment along the orthogonal arm will decrease,

he fqund to b.e Iovyer in the |ntersect|o_n_ of the arms. Thes%ecause squeezing the electron or hole in one arm will result
OQD'’s are quite different from the traditional quantum dots,in pushing the electron or hole out of the quantum wire

since there remain openings in such OQD's. Electrons IE‘Prough the other arm. These pheonomena are not only inter-

OQD systems are classically unbounded. However, rece esting in physics but also have no classical correspondence
experimental photoluminescence spectroscopy analyses g in pny ) ) P A
0 our knowledge this squeezing effect has not been studied

have manifested that there are bound states in such OQD’s. .
The existence of bound states in OQD's essentially show&10roughly. Furthermore, T-shaped semiconductor gquantum

the confinement effect of the mesoscopic geometry in thvires cou_ld be exploited as three-terminal quantum interfer-

quantum-mechanical region. ence dewce_s, thus theT study pf the L—. or .T-shaped quantum
The exploration of the properties of bound states is a keyvire is also important in practical applications.

to understanding some recent optical and electrical experi-

ments on T-shaped quantum wires and quantum Zftts!!

The magnetophc;gtloluminescence of T-shaped wires were [l. FORMULATION

measured recentfyThe energy shifAE of PL peaks with . :

magnetic fieldB applied per;?gndicular to the vr\)/ire axis and [N the present work, a two-dimensional TFOQW) or

parallel to the stem wire was measured. In these experiments;Shaped opened quantum witeOQW) is considered. A

the information of exciton binding energy can be obtaineddt@ntum dot with an area &/, X W, is formed in the inter-

from the photoluminescence spectroscopy. However, it is unSection region while magnetic fields, , B,, andB; are ap-

able to identify exactly the exciton binding energies unlesdlied perpendicularly to the other subregions of the TOQW

we have the knowledge of the confinement energy of eithefs shown in Fig. (). The LOQW as shown in Fig.(y) can

an electron or hole in quantum wires or quantum dots. Bebe regarded as a transformation of TOQW in which arm 2 is

cause they cannot be extracted directly from magneto-opticalut off. For simplicity, the boundaries are assumed to be a

data due to the nonlinearity of the systems. In a theoreticahard-wall confinement potential, leading to the formation of

calculation of magnetoexcitons in T-shaped wittthe ob-  a magnetically confined cavity in which the confinement of

served field dependence of the exciton states for weak corelectron is enhanced. The transverse potential inside the

finement was reproduced, however, the diamagnetic shiftSOQW or LOQW is assumed to be zero. The magnetic fields

calculated from perturbation theory fails to describe the exare assumed to be uniform in each individual subregion. The

perimental results. Landau gauge is chosen for the vector potential in different
In this work, we consider two-dimensional OQD'’s which subregions:
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[0B1(x+0.5W,)]=(—B41y,0)+ VB{(x+0.5W,)y, inregionl,
[0Bo(x—0.5W,)]=(—Byy,0)+ VB, (x—0.5W,)y, inregionll,

A(x,y)=

D)

[—B3(y—0.5W;),0]=(0,B3x) — VB3x(y—0.5W,), inregion lll,

(0,0), inregion IV.

The form of gauge guarantees the continuity of the vector

potential at each interface. The origin is chosen at the center
of the intersection region. The wave functions of the bound

staten of an electron for different subregions I, 11, Ill, IV are

| 2
fi(Y)=\ -

(J—Wy) ,  —0.5W,<y<0.5W;, (4
W,

. [ o T
\I,Inzeﬂ(x-%—O.SWZ)yeBl/fz % rmnelkm(x+0'5\N2)(Dlr11(Y)

in region I,

, [ I ]
\I,Inlzefl(xfo.a/vz)yeBz/h %: tmnelkm(xfo.a/vz)q):rl](y)
in region 11, (2

. L
\I’L“ _ e|x(y—0.5\N1)eB3/h 2 Smnelkm (y_O'E’Wl)(I)lnlll (X)
m

in region I,

\If'r}’=; {f;(y)[aj, sink] (x—0.5W,) + b, sink/ (x
+0.5\N2)]+Cjngj(x)sinkj’(y+0.5\N2)}, €©)]
where
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FIG. 1. The illustrations of the geometries of OQDs (&)
TOQW and(b) LOQW systems.

2 [jm
gj(x)=\/WZS|n(W2x). —0.5W,<x<0.5W,. (5

K =[k>=(jm/W)) 12 K/'=[k?=(jm/W,)]*? and ky,, i
=1L, .... Nowdrop the subscriph and substitute Egs.
(2) into the Schrdinger equation. After solving it numeri-
cally, one obtains eigenwave numbéks.}, {kh1, {k!}, the
expansion coefficients in Eq&) and(3), and the eigenwave

functions{®r(y)}, { @)}, {Pm(X)}.

IIl. RESULTS AND DISCUSSIONS

Figure Za) presents the calculated bound state energy of
an electron in a LOQW as a function of arm ratio The
bound state energy of the electron is expressed in terms of
the dimensionless quantity e=E/E;, where E;
=#2m2/2m* W2 is the first subband energy in arm 1. One
can note from the figure that the bound state energy becomes
smaller as the arm ratia becomes larger. For=1 (i.e.,
W,;=W,), r,=t,, at zero magnetic field, the bound state
energy is 0.92964,. The bound state energy goes down
and behaves similar to the curvenf/as thea is increased
larger than 1.14. A deviation from the curvexf/is observed
in the region ofa<1.14 as shown in the inset of Fig(a2.

The result can be ascribed to the fact that the bound state
energy of the electron matches the subband energy of arm 2
due to the lateral confinement of region Il. Since in this
circumstance, W2(mw/W,)? is equal to ¢r/W,)?, which is

the first subband level of the vertical wire. As the widih
becomes larger and larger, the energy level becomes lower
and lower, and gradually coincides with the bound state level
of the electron. Thus electron is unable to be bounded in the
corner region any more. As the asymmetry becomes more
prominently, the electronic energy becomes larger than the
bottom of the subband of the wider arm. However, if the
energy of the electron state is less than or just equal to the
subband bottom, the electron is still bounded inside the cor-
ner and does not move to the right or to the left.

Figure 2b) shows the bound state energy of the electron
in a TOQW as a function ofx. The bound state energy
approaches unity as the width of the vertical arm becomes
very small, and behaves similar to the curve?Livhile o
becomes larger. This is similar to the case of a LOQW. The
reason of this result can be understood intuitively that the
wave function of the electron is purged out of the vertical
arm when it becomes very narrow, therefore, the energy of
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FIG. 3. The bound state energyversus the field strength (a)
For both arms being acted on by the magnetic fields in LOQW
system.(b) For only one arm being acted on by the magnetic fields.
The dimensionless field strengtlis normalized byE;.

dence of magnetic field of the bound-state energy is revealed
again for weak field, and the linear dependence appears in
the strong-field region as in the case of LOQW. Obviously,
the bound state of the electron in a TOQW system is located
deeper than that in a LOQW, thus, the TOQW system has a
weaker confinement potential than the LOQW system.

The magnetic fields introduce a depleting effect on elec-
trons and add an extra potential surrounding the intersection
region. The effective potentials introduced by the magnetic
fields arek dependent. For the bound state, these effective
potentials are complex due to the pure imaging. One

(b) The bound state energyof a TOQW plotted in unit oF, as a expects intuitively that the magnetic field adds the lowest

function of @. The bound state energy of the electron approaches ttlrandau leveli w /2=feB/2m* directly to the quantum dot

unity for @<1 and can be approximately expressed by the curveYStem. Such levels are added into the wire arm regions.
1/a? for a=1.33. However, the field plays another role due to the essential

physics of the magnetism. Qualitatively, one can understand
the effect induced by the magnetic field on the bound state

FIG. 2. (a) The bound state energyversus the asymmetric ratio
a=W, /W, at zero magnetic field strength. Open circle is our re-
sult. The dotted line is the curve dl/as a guide to eyesE;
=h272/2m* W3 is the first threshold energy of arm(the region ).

this state is close to the first threshold eneigy of the
horizontal arm with a width ofVV;. This bound state of the o T T T T T T T T T T T T T T T T
electron exists as long as the vertical arm is infinitely long, '
and is expected to disappear owing to the effect of leakage it
the arms is finite in length.

The calculated bound state energy of a symmetric LOQW
in magnetic fields as a function of the field strength
=hw./E; is shown in Figs. @) and 3b), wherew, is cy-

clotron frequency of the electron. One can observe that the( s) 095 =T
bound state always exists when the magnetic field is appliect 17 080 |===--... ] et
to both arms. The bound state depends linearly on the mag 085 | ]
netic field in the weak-field region while quadratically in the 080 L ]
strong-field region increases monotonically as the magnetic A N N T R R B TP T T

field increases. However, the energy of the bound state i 05 00
pushed up by the applied magnetic field, and then it goes uj

to E; when the magnetic field is applied to only one arm. f

Thus, the electron can escape via the field free arm. Figure 4 £ 4. The bound state energyof T-shaped QW as a function
presents the confinement energy in a symmetric TOQW Veryf the field strengti. Curve (a) for all arms being acted by mag-
sus the field strength whe(@) all arms are acted on by the netic fields. The field strengthis normalized byE,. Curve (b) for
same magnetic fiel@, (b) the two horizontal arms are acted the horizontal arms being acted by magnetic fields and ciaMver

on by the same magnetic field, afe) only the vertical arm  only vertical arm being acted by magnetic field. The dimensionless
is acted on by the magnetic field. The same quadratic depeffield strengthf is normalized byE;.
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by considering a one-dimensional shallow quantum welladded effective potential, such that it seems likely to depend
with finite heightU,. In the limit of shallow well, there is linearly on the magnetic field in the strong magnetic field
only one bound state exists in the well. Its level energy igegion.
given byEy=Uy— (m*W?/242)U3, which is near the top of
the well. As the magnetic field applies to the system, the IV. SUMMARY
bound-state energy changes because the potential height is The effects of the asymmetric geometry and surrounding
changed tdJ,+ 3% .. The variation of the state level de- inhomogeneous magnetic fields on the bound state of L- or
pends linearly on the potential height, i.e., T-shaped quantum wires are studied. Wheimcreases, the
bound-state energy of the electron is lower as expected. On
the other hand, when the applied magnetic field increases,
the bound-state level of the electron is pushed higher and
higher and the electron begins to be unbounded if there is an
The variation of the state level by taking account the deplearm with finite length which offers a passway for the electron
tion effect of the magnetic field is assumed to be to leak out. Generally, the bound-state level of an electron in
a TOQW system is lower than that in a LOQW system. This
1= m*W ) fac.t reflects the weaker confinement of the geometry. Parg-
W 2 Ug. (7). bolic dependence of the bound-state energy of the electron in
the weak-field region on the field strength is understood as
Obviously, once we take the shrunk well into account, theP€ing a result of the depletion effect. In the contrast, the
quadratic form of the dependence of magnetic field also halnear dependence in the high-field region is found to be
to be considered. This simple model manifests the importarf€Sulted from the additional effective potential due to the
geometric effect and the essential properties of magnetism Stagnetic field.
the same time. Since the shrinking of the geometric scale is
no longer prominent in the strong magnetic field region, the
influence of the magnetic field on the electron becomes This work is supported partially by National Science
smaller. Thus, the bound-state energy depends simply on th@ouncil, Taiwan under Grant No. NSC90-2112-M-009-026.

IEg | m*W?

Wo_l TUO. (6)
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